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Abstract

Monge-Ampère gravitation is a nonlinear modification of classical Newtonian gravita-

tion, when the Monge-Ampère equation substitutes for the Poisson equation. We establish,

through two applications of the large deviation principle, that the MA gravitation for a

finite number of particles can be reduced, through a double application of the large de-

viation principle, to the simplest possible stochastic model: a collection of independent

Brownian motions with vanishing noise.

Introduction

The purpose of this paper is twofold. We first want to make a short

presentation of the Monge-Ampère gravitational (MAG) model, which has

been introduced in [13], in close connection with earlier works such as [11, 15,

31, 20, 2] as well as with optimal transport theory (see [38, 3]). This model

can be seen as a nonlinear modification of the classical model of Newtonian

gravitation, for which we use the fully nonlinear Monge-Ampère equation

as a substitute for the linear Poisson equation to derive the gravitational

potential from the density field. We also briefly compare the Monge-Ampère

and the Newton gravitational models, emphasizing that in the MAG model

there is an absolute control of the acceleration of the gravitating particles,

no matter how concentrated they can be, in sharp contrast with Newtonian
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gravitation, for which some particles may runaway to infinity in finite time.

However, the main purpose of this paper is about deriving the MAG model

from a completely elementary microscopic model in which a finite number

of particles just move as independent Brownian trajectories without any

interaction. In order to get the MAG model, we need two applications of

the large deviation principle (LDP) [25, 21]. (Let us mention the interesting

connection between large deviation principles, gradient flows and optimal

transport theory recently made in [29, 32], which was certainly influential

for us.) Through the first application of the LDP, we get a first order (in

time) dynamical system based on the indistinguishability of the gravitating

particles. (In a rather paradoxical way, the indistinguishability principle

leads to a model where particles do interact.) The second application of the

LDP enables us to lift this first order dynamical system to a second order

one which is nothing but the discrete version of the MAG model. Let us

emphasize that this derivation is purely formal and further investigations

are clearly needed to get a complete and rigorous theory. The first section of

this paper will be devoted to a presentation of both the classical Newtonian

and the Monge-Ampère models, with a suitable formulation of the MAG

model relying on “optimal transport” tools [9, 10, 38]. The second section is

devoted to the double application of the LDP in order to recover the discrete

version of the MAG model.

1. Monge-Ampère and Newton Gravitations

1.1. Classical Newtonian gravitation

To describe classical Newton gravitation, let us attach to each gravi-

tating particle a label a, which we suppose to belong to an abstract Borel

measure space (A, λ), and its position at time t, Xt(a) ∈ R
d (classically

d = 3). For each time t, we denote by ρt the image measure of λ by Xt,

defined on R
d by

∫

Rd

γ(x)ρt(dx) =

∫

A

γ(Xt(a))λ(da) ∀γ ∈ C0
c (R

d). (1)

For the sake of simplicity, we further assume ρt(dx) to be Z
d periodic in x

and of unit mean on the unit cube [0, 1]d, so that we can see ρt(dx) as a

probability measure on the flat torus Td = R
d/Zd. (This kind of assumption
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is common in computational Cosmology [26].) We are now ready to write

the Newtonian model:

d2Xt(a)

dt2
= −∇φt(Xt(a)), △φt = ρt − 1, (2)

where the average density 1 has been subtracted out from the field ρt so that

the “gravitation potential” φt is well defined from the Poisson equation as a

zero mean Z
d−periodic function. (This is a perfectly meaningful assumption:

there should be no resulting force ∇φt out of a uniform ρt .) If, at time t, ρt

is just a plain probability measure on T
d, then ∇φt, obtained through the

Poisson equation △φt = ρt− 1, is merely an Lp function for p < (1− d−1)−1

on T
d. This makes very dubious the meaning of ODE

d2Xt(a)

dt2
= −∇φt(Xt(a))

in the general case. This is why Newtonian’s gravitation usually splits up

into two, rather unrelated theories, according to the choice of its initial

conditions:

1) As A is a discrete set of N particles, then Newtonian gravitation boils

down to an “N -body problem”, set on the flat torus Td, which is of form

d2Xt(a)

dt2
= R(Xt(a)) +

∑

b6=a

G(Xt(a),Xt(b)), (3)

where R is a fixed function depending on the torus, and the singular

kernel G(x, y), associated with the operator −∇△−1, behaves as (y −

x)/|y−x|d, as x approaches y. This “bad” singularity makes the study of

the “N -body problem” very hard, in particular because of the possibility

that particles may collide or runaway at infinity, in finite time. (See [18]

as a recent reference.)

2) AsA corresponds to a “continuum” of particles, it is fruitful to introduce,

at each time t, the nonnegative measure ft defined on the “phase space”

T
d × R

d by

∫

Td×Rd

γ(x, v)ft(dx, dv) =

∫

A

γ(Xt(a),
dXt(a)

dt
)λ(da), ∀γ ∈ C0

c (T
d × R

d).

(4)
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A straightforward calculation shows that f must satisfy, at least formally,

the “Vlasov-Poisson” system [35]

∂tft+∇x · (vft)−∇v · (∇φtft) = 0, △φt = ρt−1 =

∫

Rd

ft(dv)−1. (5)

The meaning of this equation is unclear in the general case, because of

the dubious product of ∇φt by ft. However, it is not hard to see that

0 ≤ ft(dx, dv) ≤ Cdxdv for some positive constant C is a consistent

property for equation (5). It turns out that this property is sufficient to

justify the multiplication of ft by ∇φt at least when the initial condition

f0 vanishes for large values of v, say for |v| ≥ C ′ for some other constant

C ′. Then, the Newtonian model gets well defined and, at least for d ≤ 3,

global weak solutions can be shown to exist globally in time, as f0 is

given, whatever are constants C and C ′. In addition, such solutions are

unique and smooth as long as f0 has a smooth density with respect to

the Lebesgue measure. (See [34, 30, 8] for such results, stated on the

whole space R
d rather than on T

d. See also [35], as well as [22] for the

closely related Euler-Poisson system.)

1.2. Monge-Ampère gravitation

We now introduce the Monge-Ampère gravitation (MAG) model which

differs from (2) just by the substitution of the Monge-Ampère equation for

the Poisson equation:

d2Xt(a)

dt2
= −∇φt(Xt(a)), det(I+D2φt) = ρt, (6)

where I denotes the d × d identity matrix and φt is solution to the Monge-

Ampère equation (in a suitable sense), which is Zd−periodic with zero mean

and satisfies the (weak) ellipticity condition I + D2φt(x) ≥ 0, in the sense

of symmetric matrices, for every x. [Notice that φt is unique and Lipschitz

continuous (resp. smooth) as soon as ρt(dx) has an integrable (resp. smooth

and positive) density with respect to the Lebesgue measure dx, see [19] for

example.] We see that Newtonian gravitation can be formally recovered from

the MAG model just by expanding the determinant about I and retaining
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only the linear part:

det(I+D2φt) ∼ 1 + TraceD2φt = 1 +△φt.

Notice that, as d = 1 (which is a case of limited interest, describing gravi-

tating “parallel pancakes”), the MAG model coincide with Newtonian grav-

itation. (As a consequence, our derivation of the MAG model from a double

application of the large deviation principle, obtained in the second section

of the present paper, is also valid for the Newtonian gravitational model in

one space dimension.) However, let us emphasize that, to the best of our

knowledge, MAG has never been considered by any physicist in dimension

larger than one. It has been so far only considered by mathematicians (see

[13] and [15, 31, 20, 2] for closely related topics), mostly because of its close

connection with optimal transport theory (as discussed in the next subsec-

tion). It is easy to describe, as we did for the Newtonian model, the MAG

model through a “kinetic equation”, the so-called “Vlasov-Monge-Ampère”

(VMA) system [15, 31]:

∂tft +∇x · (vft)−∇v · (∇φtft) = 0, det(I+D2φt) = ρt =

∫

Rd

ft(dv). (7)

As for the Vlasov-Poisson system (5), the existence of global weak solutions

can be shown as soon as

0 ≤ f0(dx, dv) ≤ Cdxdv, f0(T
d × {v ∈ R

d, |v| ≤ C ′}) = 0,

for some positive constants C,C ′. Existence of a unique smooth solution,

but only for a short time interval, has been proven by Loeper [31] pro-

vided f0(dx, dv) (resp. ρ0(dx)) has a smooth density with respect to dxdv

(resp. dx) and is uniformly compactly supported in v ∈ R
d (resp. is strictly

positive). These are still limited results, due to the full non-linearity of the

Monge-Ampère equation that leads to analytic difficulties, in particular when

seeking for smooth solutions. However, the Monge-Ampère equation enjoys

remarkable properties, closely related to the theory of optimal transporta-

tion [10, 38]. This is why we are going to introduce a related formulation of

the MAG model, with interesting geometric features.
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1.3. The MAG model written in optimal transportation terms

For the description of the MAG model in optimal transport terms, it is

convenient to discuss the model in a (slightly) different and more abstract

framework. We consider a metric measure space (A, λ), made of a compact

subset A of Rd equipped with a Borel probability measure λ. Two typical

examples are, on one side, the unit cube with the Lebesgue measure, and, on

the other side, any set of N points equipped with the (normalized) counting

measure. In the first case, we will speak of the “continuous” case, while, in

the second case, we will speak of the “discrete” case. (Of course many others

situations could be also considered, in particular the flat torus Td as we did

in the previous subsections, but we will focus on these two cases only.) We

introduce the separable Hilbert space H of all λ−square-integrable maps

from A to R
d, H = L2(A, λ;Rd), with norm and inner product respectively

denoted by ‖·‖ and ((·, ·)). (Notice that, when A is a finite set of N points in

R
d, then H ∼ R

Nd is of finite dimension.) We crucially consider the subset

S of all measure-preserving maps s of A:

S = {s ∈ H,

∫

A

γ(s(a))λ(da) =

∫

A

γ(a)λ(da), ∀γ ∈ C0(Rd)}. (8)

(Observe, in the discrete case, when A is made of N distinct points A(a) ∈

R
d, for a = 1, . . . , N , S just reads S = {(A(σ(1)), . . . , A(σ(N)) ∈ H, σ ∈

SN} with N ! elements, where SN denotes the group of all permutations of

the first N integers.)

According to Edelstein’s theorem [23, 4], given a separable Hilbert space

H and a closed bounded subset S, there is, in the sense of Baire, a generic set

(i.e. containing a countable intersection of dense open subsets ofH) of points

X for which there exists a unique closest point π(X) on S. In addition π(X)

is nothing but the gradient, at point X, of the Lipschitz convex function Π

defined on the Hilbert space H by

Π(X) = sup
s∈S

((X, s)) −
‖s‖2

2
, π(X) = ∇Π(X) = Arg inf

s∈S

‖X − s‖2

2
. (9)

In our particular case, we can say much more in the continuous case, when

A is the unit cube with λ as the Lebesgue measure, thanks to “optimal

transport theory”
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Theorem 1.1 ([10]). Let X ∈ H be a non degenerate map, in the sense that

the image measure ρ of λ by X is absolutely continuous with respect to the

Lebesgue measure on R
d. Then, X has a unique closest point π(X) on S.

We also have

π(X) = T ◦X, (10)

where T is the unique map (in the ρ a.e. sense) y ∈ R
d → T (y) ∈ A such

that:

i) there is a convex Lipschitz function ψ : Rd → R, ρ−a.e. differentiable,

with:

T (y) = ∇ψ(y), ρ− a.e. y ∈ R
d. (11)

ii) λ is the image of ρ by T :

∫

R⌈

γ(T (y))ρ(dy) =

∫

A

γ(a)λ(da), ∀γ ∈ C0(Rd). (12)

As a matter of fact, equations (11,12) form a generalized formulation of

the Monge-Ampère problem on R
d

ρ = det(D2
xψ), (∇ψ)(support(ρ)) = A, D2ψ ≥ 0, (13)

with a unique solution ∇ψ (in the ρ−a.e. sense). (See [9, 10, 38] for more

details.) This generalized formulation of the Monge-Ampère equation allows

us to write the MAG model (6) in a much more geometric way. Indeed, (6)

just reads

d2Xt(a)

dt2
= Xt(a)−∇ψt(Xt(a)), det(D2ψt) = ρt,

after setting ψt(x) = |x|2/2 + φt(x), that we complete with the weak ellip-

ticity condition D2ψt ≥ 0 and the range condition ∇ψt(support(ρt)) = A

(which substitutes for the Z
d-periodicity condition we used in writing (6)).

Assume that, at time t, Xt is non degenerate (or, in other words, ρt is abso-

lutely continuous with respect to the Lebesgue measure on R
d). Then, using

Theorem 1.1, we may write

∇ψt ◦Xt = π(Xt) = ∇Π ◦Xt ,
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and finally obtain

d2Xt

dt2
= Xt − π ◦Xt = Xt −∇Π ◦Xt, (14)

where Π is the Lipschitz convex function defined by (9), π its gradient and

S is the set of measure preserving maps defined by (8). In the rest of this

paper, we will retain (8,9,14) as our definition of the MAG model.

1.4. The discrete Monge-Ampère gravitational model

The geometric formulation (8,9,14) of the MAG model is very convenient

to get its discrete version, as A is just a subset of N points A(a) in R
d, for

a = 1, . . . , N , equipped with the counting measure, in which case, we will

speak of the “discrete MAG model with N particles”. Indeed, at the discrete

level, a time-dependent map Xt can be seen as a sequence of N “particles”,

with positions Xt(a), moving in R
d, for a = 1, . . . , N . (Notice that Xt gets

degenerate at time t in case of collisions.) In this discrete setting, the MAG

model (8,9,14) reads as the finite dimensional dynamical system:

d2Xt(a)

dt2
= Xt(a)−A(σt(a)), σt = Arg inf

σ∈SN

N
∑

a=1

|Xt(a)−A(σ(a))|2, (15)

where σ ∈ SN denotes the set of all permutations of the first N integers.

So we see that, at the discrete level, the MAG looks both very simple and

very different from the classical Newtonian N body problem (3)! (Similar

systems have been previously studied in [11, 20].)

The MAG model, as defined by (8,9,14), can be seen as a dynamical

system in a Hilbert space H with a force term F(x) = x − ∇Π(x) with a

trivial linear part and the gradient of a Lipschitz convex function Π. To the

best of our knowledge, there is no theory for such an ODE in infinite dimen-

sion. Indeed, we are very far from the standard Cauchy-Lipschitz setting.

This is a challenging open problem. (See the related theory developed by

Ambrosio and Gangbo for some infinite dimensional hamiltonian systems [2].

As a matter of fact, their main example is very similar to the MAG model,

written in a different way. See also [15, 27].) However, for the discrete MAG

model with N particles, H ∼ R
Nd is of finite dimension. Thus, equation
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(14), which also reads (15), can be neatly solved globally in time in the

sense of Bouchut and Ambrosio [7, 1], for every initial condition (X0,
dX0

dt ),

except on a negligible subset of the “phase space” H ×H, of zero 2Nd di-

mensional Lebesgue measure. (A more accurate statement can be found in

[1].) Indeed, the force term F(x) = x−∇Π(x) in the right-hand side of (14)

is a smooth perturbation of a “bounded variation” function, since Π is a Lip-

schitz convex function (which implies that D2Π can be seen as a bounded

nonnegative measure valued in the convex cone of nonnegative symmetric

matrices, and, therefore, that ∇Π is of bounded variation). Notice that the

exceptional set of bad initial conditions in the phase space is not empty, as

it follows clearly from formulation (15), where we see that the evolution of

the particles becomes ambiguous as different particles depart from the same

position with exactly the same velocity.

1.5. Monge-Ampère versus Newtonian gravitational models

It is now interesting to compare the Monge-Ampère and the Newton

gravitational models. We first observe that, according to the MAG model,

particles may never runaway to infinity in finite time. Indeed, from the

optimal transportation formulation (8,9,14), we immediately get

|
d2Xt

dt2
−Xt| ≤ R = sup

a∈A
|a| ,

and deduce that

|Xt|+ |
dXt

dt
| ≤ (|X0|+ |

dX0

dt
|+ 1)C cosh t, ∀t ∈ R,

where C depends only on R. Of course, there is nothing similar with New-

tonian gravitation. Indeed, the Poisson equation in (2) does not behave well

when particles concentrate. For instance, if some particles concentrate as a

delta measure at some point y at time t, then ∇φt(x) has a singularity as

bad as (x− y)/|x− y|d.

In this way, the MAG model has a lot of similarity with the Born-

Infeld (BI) theory of the electromagnetic field [6, 5, 12, 16], in which any

electrostatic field is bounded by a universal constant. (Notice that the BI

model, which goes back to 1934, is no longer for use in Electrodynamics, but

has enjoyed a remarkable revival in String Theory since the 1990s [33].)
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In addition, the MAG model enjoys good properties of approximations

by finite sums of Dirac measures (see [20] for closely related results). In sharp

contrast, such discrete approximations have never been justified, to the best

of our knowledge, in the case of 3D Newtonian gravitation, because of the

bad singularities of the Green function for the Poisson equation [28]. As a

matter of fact, the treatment of point particles in classical Electrodynamics

remains an outstanding open problem in both Theoretical and Mathematical

Physics (see [24, 37] for instance).

2. Formal Derivation of the Discrete Monge-Ampère Gravitation

Model from a Double Application of the Large

Deviation Principle

In this second section, we provide a formal derivation of the discrete

MAG model (15) from a double application of the large deviation principle

[25, 21].

2.1. A basic model of N independent Brownian particles

We fix a positive integer N and a finite set A of N distinct points

A(a) ∈ R
d, for a = 1, . . . , N . Using the notations of subsection 1.3, we set

H = R
Nd and

S = {(A(σ(1)), . . . , A(σ(N))) ∈ H, σ ∈ SN}, (16)

where SN denotes the set of all possible permutations of the first N integers.

Given σ0 ∈ SN , we consider the motion of N “particles” that move in

the Euclidean space R
d, according to

Xε
t (a) = s0(a) + εBt(a), s0(a) = A(σ0(a)), ∀a = 1, . . . , N. (17)

where (t ∈ R+ → Bt(a) ∈ R
d)a=1,...,N denote N independent realizations of

the “standard” (i.e. normalized) Brownian motion in R
d.

Fixing t∗ > 0 and

Y ∗(a) ∈ R
d, ∀a = 1, . . . , N,
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it is easy to compute the probability that, at time t∗, each particle occupies

the position given by Y ∗:

Prob(Xε
t∗(a) ≈ Y ∗(a), ∀a = 1, . . . , N)

≈
N
∏

a=1

[exp(
−|Y ∗(a)− s0(a)|

2

2εt∗
)(2πεt∗)−d/2],

or, in other words

Prob(Xε
t∗≈Y

∗) ≈ exp
(−‖Y ∗ − s0‖

2

2εt∗

)

(2πεt∗)−Nd/2.

Here we have denoted by | · | and ‖ · ‖ the Euclidean distance on respectively

R
d and H = (Rd)N . We have also used symbol ≈ just to make notations

lighter. [What we precisely mean is: for any Borel B subset of (Rd)N , the

probability that Xε
t∗ belongs to Y ∗ + B is given by

∫

Y ∈Y ∗+B

exp
(−‖Y − s0‖

2

2εt∗

)

(2πεt∗)−Nd/2dY,

but we hope that our simplified notation is acceptable. Indeed, we will use

it again, without further notice.]

2.2. First application of the large deviation principle

We now want to compute the probability that Xε
t∗ and Y ∗ coincide, up

to a permutation, property that we denote by (Xε
t∗) ≈

perm
(Y ∗). We find

Prob[(Xε
t∗) ≈

perm
(Y ∗)] ≈

1

N !

∑

σ∈SN

exp(
−‖Y ∗ ◦ σ − s0‖

2

2εt∗
)(2πεt∗)−Nd/2. (18)

When the level of noise ε goes to zero, we immediately get

− lim
ε→0

ε log Prob[(Xε
t∗) ≈

perm
(Y ∗)]≈ inf

σ∈SN

‖Y ∗ ◦ σ − s0‖
2

2t∗
,

which is a rather trivial illustration of the Laplace method and the large

deviation principe (LDP) [25]. There is a more sophisticated aspect of the

LDP: as the level of noise goes to zero, the Brownian trajectories of the
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particles conditioned by (Xǫ
t∗) ≈

perm
(Y ∗) behave more and more as constant

speed minimizing geodesic curves. More precisely, for all t ∈ [0, t∗],

Xε
t ∼ε→0 Xt = s0+

t

t∗
(Y ∗ ◦σ∗−s0), σ∗ = Arg inf

σ∈SN

‖Y ∗ ◦ σ − s0‖
2

2t∗
. (19)

which implies

dXt

dt
=
Y ∗ ◦ σ∗ − s0

t∗
=
Xt∗ − s0

t∗
=
Xt − s0

t
, ∀t ∈]0, t∗]. (20)

Now, we are going to translate this large deviation principle into a self-

consistent dynamical system for the particles. Let us first denote by π(Y )

(as in subsection 1.3) the unique closest point on S of a “generic” point

Y ∈ H = (Rd)N

π(Y ) = Arg inf
s∈S

‖Y − s‖2

2
= ∇Π(Y ), Π(Y ) = sup

s∈S
((Y, s))−

‖s‖2

2
(21)

(where ((·, ·)) denotes the inner product attached to ‖ · ‖ on H). Then we

state:

Proposition 2.1. Equation (20), that we have derived from (17) (through

a large deviation principle), can be written as a self-consistent ordinary dif-

ferential equation for Xt at least for t > 0,

t
dXt

dt
= Xt − π(Xt). (22)

Proof. To get this result, our simple but crucial observation is that, along

the geodesic curve defined by (19), namely

Xt = s0 +
t

t∗
(Y ∗ ◦ σ∗ − s0), σ∗ = Arg inf

σ∈SN

‖Y ∗ ◦ σ − s0‖,

s0 is the closest point in S not only of the end-point Xt∗ = Y ∗◦σ∗ but also of

all points Xt, ∀t ∈ [0, t∗]. [Then, we can write s0 = π(Xt) in equation (20)

which immediately leads to (22) and completes the proof of our Proposition.]

Although this property is geometrically quite obvious, let us provide a

comprehensive proof for the sake of completeness.
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By definition (21) of the closest point operator π, it is enough to show

that

κ = ‖Xt − s0 ◦ σ‖
2 − ‖Xt − s0‖

2 ≥ 0

for each permutation σ ∈ SN and each t ∈ [0, t∗]. By definition (19),

κ =
∥

∥

∥
s0 +

t

t∗
(X∗ − s0)− s0 ◦ σ

∥

∥

∥

2

−
∥

∥

∥

t

t∗
(X∗ − s0)

∥

∥

∥

2

where we set, still according to (19),

X∗ = Xt∗ = Y ∗ ◦ σ∗, σ∗ = Arg inf
σ∈SN

‖Y ∗ ◦ σ − s0‖. (23)

Expanding the squares, we obtain

κ = ‖s0 − s0 ◦ σ‖
2 +

2t

t∗
((X∗ − s0, s0 − s0 ◦ σ)).

By definition of X∗ = Y ∗ ◦ σ∗ and σ∗, we get from (23)

‖X∗ − s0‖ = ‖Y ∗ ◦ σ∗ − s0‖ ≤ ‖Y ∗ ◦ σ∗ ◦ σ−1 − s0‖ = ‖X∗ − s0 ◦ σ‖.

Thus ((X∗, s0 − s0 ◦ σ)) ≥ 0. So, we deduce

κ ≥ ‖s0−s0 ◦σ‖
2−

2t

t∗
((s0, s0−s0 ◦σ)) = 2(1−

t

t∗
)[‖s0‖

2− ((s0, s0 ◦σ))] ≥ 0

(using ‖s0‖ = ‖s0 ◦ σ‖ and the Cauchy-Schwarz inequality), which is the

desired inequality and completes the proof of Proposition 2.1.

Equation (22) is clearly singular at time t = 0. We can lift this singu-

larity with an exponential rescaling of time t = exp(θ), θ ∈ R, and finally

obtain:
dXθ

dθ
= Xθ − π(Xθ) = Xθ −∇Π(Xθ). (24)

So we have obtained a first order (in time) dynamical system, of “gradient

type”.

Miscellaneous remarks

i) Since π is the gradient of a Lipschitz convex function (namely Π defined
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by (9)), equation (24) is uniquely solvable in the framework of “maximal

monotone operator theory” [17]. As already discussed in [13], this is a

way to introduce a dissipative mechanism in the motion of particles, such

as sticky collisions when particles stick to each other while conserving

their momentum (but not their kinetic energy which decreases). At the

level of the present paper, we do not want to enter such considerations

and leave (24) just as a formal equation.

ii) Notice that (24) is a gradient flow in the variable X, valued in the Hilbert

space H, which is the counterpart of the gradient flow in the variable

Law(X), in the so-called “Wasserstein space” of half the negative squared

“Wasserstein distance”, as discussed in [3]. For us, it is important to keep

a formulation in terms of X ∈ H and not in terms of Law(X), because,

in the sequel of our discussion, it is crucial to restore the “individuality”

of the gravitating particles during their motion, in order to get a second

order dynamical system for them.

iii) Quite remarkably, as explained in [13], equation (22) is nothing but the

Zeldovich model used in Cosmology [39, 36, 26, 14] as an approximation

of semi-Newtonian gravitation in an Einstein-de Sitter space!

iv) Let us finally provide a possible interpretation of equation (24), vaguely

related to the so-called “anthropic principle”: What is observed at out

“present” time t∗ is just a random output of the independent Brownian

trajectories of a large number N of indistinguishable particles initially

located on the set A. As the noise vanishes, the motion of these par-

ticles, conditioned by what we can observe now, just looks driven by

the deterministic law (24). Of course, this is a highly speculative and

questionable interpretation coming from a mathematician and not from

an authorized physicist.

2.3. Second application of the large deviation principle

Equation (24) is a first order dynamical system, a so-called “gradient

flow” since (24) can also be written

dXθ = ∇Φ(Xθ)dθ,
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where Φ is half of the squared distance function to S:

Φ(Y ) =
‖Y ‖2

2
−Π(Y ) = inf

s∈S

‖Y − s‖2

2
, (25)

where Π is defined by (9). Describing a gravitational theory by a gradient

flow does not sound reasonable. We would rather like to get a second order,

conservative, dynamical system. Here again, the large deviation principle

turns out to be useful to get such a second order system out of (24). Fixing

η > 0, we introduce the “noisy” version of (25) defined by:

dXη
θ = ∇Φ(Xη

θ )dθ + η dBθ, (26)

where Bθ (again) denotes a Brownian process in (Rd)N . Given two points Y0

and Y1 in (Rd)N , we expect from the LDP (or, more precisely, the Freidlin-

Wentzell theorem [25, 21]) that, as the level of noise η goes to zero,

− η log Prob[Xη
θ0
≈Y0 and X

η
θ1
≈Y1] ∼η→0 A(θ0, Y0, θ1, Y1)

A(θ0, Y0, θ1, Y1)=inf
{

∫ θ1

θ0

1

2

∥

∥

∥

dXθ

dθ
−∇Φ(Xθ)

∥

∥

∥

2

dθ, Xθ0 =Y0, Xθ1 =Y1

}

.(27)

In addition, as η goes to zero,

Xη
θ ∼ Xθ, ∀θ ∈ [θ0, θ1],

where

X = Arg inf
{

∫ θ1

θ0

1

2

∥

∥

∥

dXθ

dθ
−∇Φ(Xθ)

∥

∥

∥

2

dθ, Xθ0 =Y0, Xθ1 =Y1

}

.

Strictly speaking, this is correct when ∇Φ is Lipschitz continuous, which

is not true in our case (where ∇Φ is not even continuous), without further

assumptions on the data. However, from the pure modeling viewpoint, it

is very tempting to find the second order dynamical system linked to the

least action principle (27). Since Φ, as defined by (25), is half of a squared

distance function, we have

1

2
‖∇Φ(Y )‖2 = Φ(Y ), (28)

for every Y ∈ H \ N , where N is the set on which Φ is not differentiable,

which is a negligible subset of H, both in the Lebesgue almost everywhere
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sense and in the Baire category sense. Thus, at least for each curve X that

stays away from N for Lebesgue almost every θ ∈ [θ0, θ1], we have

∫ θ1

θ0

1

2

∥

∥

∥

dXθ

dθ
−∇Φ(Xθ)

∥

∥

∥

2

dθ

=

∫ θ1

θ0

(1

2

∥

∥

∥

dXθ

dθ

∥

∥

∥

2

+ ‖∇Φ(Xθ)‖
2
)

dθ −

∫ θ1

θ0

∇Φ(Xθ) ·
dXθ

dθ
dθ

=

∫ θ1

θ0

(1

2

∥

∥

∥

dXθ

dθ

∥

∥

∥

2

+Φ(Xθ)
)

dθ − Φ(Xθ1) + Φ(Xθ0).

Therefore, the action principle (27) is equivalent to

Ã(θ0, Y0, θ1, Y1)=inf
{

∫ θ1

θ0

(
1

2

∥

∥

∥

dXθ

dθ

∥

∥

∥

2

+Φ(Xθ))dθ, Xθ0 =Y0, Xθ1 =Y1

}

.

(29)

From this equivalent LAP, we find as optimality equation

d2Xθ

dθ2
= ∇Φ(Xθ) = Xθ − π(Xθ), (30)

which is just the second order version of the gradient flow equation (24).

More explicitly, we have obtained

d2Xθ(a)

dθ2
= Xθ(a)−A(σθ(a)), (31)

where

σθ = Arg inf
σ∈SN

N
∑

a=1

|Xθ(a)−A(σ(a))|2,

which is nothing but the discrete version (15) of the Monge-Ampère model

of gravitation discussed in the first section.

So we have achieved, at least at a formal level, the main goal of our

paper which was, through a double application of the large deviation princi-

ple, the derivation of the (discrete) Monge-Ampère gravitational model from

one of the simplest thinkable model of particles: N independent Brownian

trajectories, with an intriguing interplay between their indistinguishability

(for the first application of the LDP) and their individuality (for the second

application of the LDP).
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