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Abstract

We establish Extended Thermodynamics (ET) of rarefied polyatomic gases with six

independent fields, i.e., the mass density, the velocity, the temperature and the dynamic

pressure, without adopting the near-equilibrium approximation. The closure is accom-

plished by the Maximum Entropy Principle (MEP) adopting a distribution function that

takes into account the internal degrees of freedom of a molecule. The distribution function

is not necessarily near equilibrium. The result is in perfect agreement with the phenomeno-

logical ET theory. To my knowledge, this is the first example of molecular extended

thermodynamics with a non-linear closure. The integrability condition of the moments

requires that the dynamical pressure should be bounded from below and from above. In

this domain the system is symmetric hyperbolic. Finally we verify the K-condition for this

model and show the existence of global smooth solutions.

1. Introduction

Rational extended thermodynamics [1] (hereafter referred to as ET) is

a thermodynamic theory that is applicable to nonequilibrium phenomena

with steep gradients and rapid changes in space-time, which may be out of
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local equilibrium. It is expressed by a symmetric hyperbolic system of field

equations with the convex entropy.

As ET has been strictly related to the kinetic theory with the closure

method of the hierarchy of moment equations, the applicability range of the

theory has been restricted within rarefied monatomic gases.

In the case of 13 moments, there are at least three different methods of

closure in the moment theory associated with the Boltzmann equation:

1. A phenomenological closure of ET by using the universal principles of

physics (entropy, relativity, and causality principles) to select admissible

constitutive equations [1, 2, 3]. We observe that, in this macroscopic

approach, densities, fluxes and productions are not related to any dis-

tribution function although, at the beginning, special balance laws are

suggested from the moment theory. Therefore the approach is at the

level of continuum mechanics.

2. A closure at the kinetic level proposed firstly by Grad in the case of 13

moments, which is based on a perturbative procedure of the distribution

function in terms of the Hermite polynomials [4].

3. A kinetic closure of ET by using the Maximum Entropy Principle (MEP)

[5, 6]. In this case, we recall that the fields are the moments of a distribu-

tion function. To distinguish this approach from the phenomenological

approach, we call this molecular ET. [6, 1].

It is very suitable and in some sense surprising that the three different clo-

sure methods give the same result in the case of the 13-moment theory for

monatomic gases [1] provided that the thermodynamic processes are not far

from equilibrium.

We here want to focus mainly on MEP and therefore we want to firstly

summarize the principle and its limitation. The MEP has its root in statis-

tical mechanics and was developed by Jaynes in the context of the theory

of information related to the concept of the Shannon entropy [7, 8]. MEP

states that the probability distribution that represents the current state of

knowledge in the best way is the one with the largest entropy. Concern-

ing the applicability of MEP in nonequilibrium thermodynamics, this was

originally motivated by the similarity between the field equations in ET and

the moment equations, and later by the observation made by Kogan [9] that
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Grad’s distribution function maximizes the entropy. The MEP was proposed

in ET for the first time by Dreyer [5]. The MEP procedure was then gen-

eralized by Müller and Ruggeri to the case of any number of moments [6],

and later proposed again and popularized by Levermore [10]. In molecular

ET, the complete equivalence between the entropy principle and the MEP

was proved by Boillat and Ruggeri [11]. Later MEP was formulated also in

a quantum-mechanical context [12, 13].

As seen below, the truncated distribution function of MEP has the mean-

ing also far from equilibrium provided that the integrals of the moments are

convergent. The problem of the convergence of the moments is one of the

main questions in the far-from-equilibrium case. In particular, the tenso-

rial index of truncation of the moments N must be even [11]. This implies

that the Grad theory (N=3) with 13 moments is not allowed in a situation

far from equilibrium! For this reason the truncated distribution function is

formally expanded in the neighborhood of equilibrium as a perturbation of

the Maxwellian distribution. If the expansion is truncated at the first or-

der, the differential closed system of PDE’s is linear in the nonequilibrium

variables like heat flux, shear stress and dynamical pressure (the system is

still non-linear with respect to the equilibrium variables like density, veloc-

ity and temperature). This is a severe limitation because the hyperbolicity

exists only in some small domain of the configuration space near equilibrium

[1, 14]. In literature, there proposed an expansion up to the order greater

than one (see [15]). But, in my knowledge, there is no explicit system of

ET for monatomic gases that is valid completely far from equilibrium and is

totally non-linear with respect to all variables.

Therefore the ET of monatomic gases, even though it has been very

successful because of its excellent agreement with experimental data [1] like

sound waves in high frequencies, light scattering, shock waves with moderate

Mach numbers, suffers from two limitations: the theory is valid only for

rarefied monatomic gas and for processes not far from equilibrium.

Precise modeling of polyatomic gases and of dense gases in nonequilib-

rium is an active and urgent issue nowadays with many important applica-

tions like the study of shock wave structure, which is essentially important,

for example, for the atmospheric reentry problem of a space vehicle.

The first limitation has been overcome recently by Arima, Taniguchi,

Ruggeri and Sugiyama [16] by constructing the 14-field ET theory for dense
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gases including the case of polyatomic rarefied gases, which, in the limit of

small relaxation times (parabolic limit) reduces to the Navier-Stokes-Fourier

classical theory. The 14 variables are the typical macroscopic fields in a gas,

i.e., the equilibrium variables: density ρ, temperature T , velocity v ≡ (vi),

and the nonequilibrium ones: heat flux q ≡ (qi), shear viscous deviatoric

(traceless) tensor σ
D ≡ (σ<ij>) and the dynamic pressure (nonequilibrium

pressure) Π. We recall that the stress tensor t ≡ (tij) for a fluid can be

decomposed in an equilibrium isotropic part due to the equilibrium pressure

p and a viscous stress tensor that vanishes in equilibrium:

tij = −pδij + σij = −(p+Π)δij + σ<ij>. (1.1)

This new approach in the case of polyatomic rarefied gases is perfectly con-

sistent with the kinetic theory in which the distribution function depends on

an extra variable that takes into account the internal degrees of freedom of

a molecule [17]. Both macroscopic and molecular approaches are, however,

valid only in a neighborhood of the equilibrium state and therefore the dif-

ferential system is non-linear in the equilibrium variables but linear in the

nonequilibrium ones. We recall that the dynamic pressure is typical only

for polyatomic gases because, in monatomic gases, it vanishes identically. In

the parabolic case, the dynamic pressure is proportional to divv and the

proportionality factor is the bulk viscosity.

In [18], a simplified version of the 14-moment theory, that is, the ET6,

where only the dynamical pressure is responsible for the dissipation, is pro-

posed. This simplified theory preserves the main physical properties of the

more complex theory of 14 variables, in particular, when the bulk viscosity

plays more important role than the shear viscosity and the heat conductivity.

This situation is observed in many gases such as rarefied hydrogen gases and

carbon dioxide gases at some temperature ranges [19, 20, 21]. The theory

is phenomenological and is valid near equilibrium. The main success of this

simplified model is that the theory matches the classical theory of Meixner

with one internal variables [22, 23]. In [24] fluctuating hydrodynamics based

on ET6 was also presented.

On the basis of these models, the linear dispersion [20] and shock wave

structure in ET14 [21], and ET6 [25] were analyzed and very good agreement

with experiments was shown.
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Concerning the second limitation, it was shown recently [26] that, in

the case of 6 fields, it is possible to close the system using the macroscopic

phenomenological ET without the assumption that the processes must be

near equilibrium. The interested reader can find more details about the

present state of art of ET in the new book [27].

The aim of this paper is to prove that, in the case of rarefied poly-

atomic gases, we can close the ET6 system using kinetic considerations and

MEP also far from equilibrium and we will show that this non-linear closure

matches completely the previous result obtained by using only the macro-

scopic method [26]. In this case, in fact, we can prove that as the truncation

index is N = 2 like in the Euler case and the convergence of moments the

closure is possible also with the non-linear distribution function without re-

quiring expansion with respect to the equilibrium state. In the monatomic

gas case, N = 2 corresponds only to the Euler fluid because the dynamic

pressure is identically equal to zero. Therefore the presence of more de-

grees of freedom typical of polyatomic gases permits via dynamic pressure

to obtain a theory far from equilibrium adding only a moment more than

Euler. Of course in principle it is possible to construct a theory far from

equilibrium also for monatomic gases but it is necessary at least up to an

index of truncation N = 4. Furthermore the integrals are complex and it is

not possible to invert analytically the Lagrange multipliers in terms of the

density fields.

Finally we can prove that the differential system of ET6 is symmetric

hyperbolic and satisfies the so-called Shizuta-Kawashima K-condition [28]

and therefore the model belongs to the ones for which there exist well-known

theorems [29, 30, 31, 32] that guarantee global smooth solutions provided

that initial data are sufficiently small.

2. Rarefied Polyatomic Gas

A crucial step in the development of the kinetic theory of rarefied poly-

atomic gases was made by Borgnakke and Larsen [33]. It is assumed that

the distribution function depends on, in addition to the velocity of particles

c, a continuous variable I representing the energy of the internal modes of

a molecule. This model was initially used for Monte Carlo simulations of
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polyatomic gases, and later it has been applied to the derivation of the gener-

alized Boltzmann equation by Bourgat, Desvillettes, Le Tallec and Perthame

[34]. The distribution function f(t,x, c, I) is defined on the extended domain

[0,∞)×R3×R3× [0,∞). Its rate of change is determined by the Boltzmann

equation which has the same form as in the case of monatomic gases:

∂tf + ci ∂if = Q, (2.1)

where the right-hand side, the collision term, describes the effect of collisions

between molecules. The collision term Q(f) now takes into account the

existence of the internal degrees of freedom through the collisional cross

section. Here ∂t = ∂/∂t and ∂i = ∂/∂xi.

The idea, firstly proposed at the macroscopic level by Arima, Taniguchi,

Ruggeri and Sugiyama [16] and successively in the kinetic framework [17]

for 14 moments and [35] for a generic number of moments, is to consider,

instead of the typical single hierarchy of moments, a double hierarchy, i.e.,

an F -series at the index of truncation N and a G-series at the index M :

(N,M)-system given by

∂tF + ∂iFi = 0,

∂tFk1 + ∂iFik1 = 0,

∂tFk1k2 + ∂iFik1k2 = Pk1k2 , ∂tGll + ∂iGill = 0,

... ∂tGllj1 + ∂iGllij1 = Qllj1 ,

...
...

∂tFk1k2...kN +∂iFik1k2...kN =Pk1k2...kN ,
...

∂tGllj1j2...jM +∂iGllij1j2...jM =Qllj1j2...jM .

with

Fk1k2···kp =

∫

R3

∫

∞

0
mf(t,x, c, I)ck1ck2 · · · ckpϕ(I) dI dc, (2.2)

Gllk1k2···kq =

∫

R3

∫

∞

0
mf(t,x, c, I)

(

c2 + 2
I

m

)

ck1ck2 · · · ckqϕ(I) dI dc,

(2.3)

and 0 ≤ p ≤ N, 0 ≤ q ≤ M (when the index p = 0 we have F and

when q = 0, Gll). The double hierarchy is composed of the traditional
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velocity-moments F ’s and the energy-moments G’s where the variable I of

the internal modes plays a role. The connection between the index M and

N is discussed in [35]. The non-negative measure ϕ(I) dI is introduced so

as to recover the classical caloric equation of state for polyatomic gases in

equilibrium. The functional form of ϕ will be given in the next section.

2.1. Equilibrium distribution function and the Euler system

Let us consider firstly the case of 5 moments corresponding to an Euler

fluid. In this case, N = 1 and M = 0. The collision invariants in this model

form a 5-vector (m is the atomic mass):

m

(

1, ci, c
2 + 2

I

m

)T

, (2.4)

which leads to hydrodynamic variables:







F

Fi

Gll






=







ρ

ρvi
ρv2 + 2ρε






=

∫

R3

∫

∞

0
m







1

ci
c2 + 2I/m






f(t,x, c, I)ϕ(I) dI dc.

(2.5)

The symbols are the usual ones and ε is the specific internal energy. The

entropy (for non-degenerate gas) is defined by the relation (kB is the Boltz-

mann constant):

h = −kB

∫

R3

∫

∞

0
f log fϕ(I) dI dc. (2.6)

By introducing the peculiar velocity:

Ci = ci − vi, (2.7)

we rewrite Eq. (2.5) as follows:







ρ

0i
2ρε






=

∫

R3

∫

∞

0
m







1

Ci

C2 + 2I/m






f(t,x,C, I)ϕ(I) dI dC. (2.8)

Note that the internal energy density can be divided into the translational
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part ρεT and the part of the internal degrees of freedom ρεI :

ρεT =

∫

R3

∫

∞

0

1

2
mC2f(t,x,C, I)ϕ(I) dI dC,

ρεI =

∫

R3

∫

∞

0
If(t,x,C, I)ϕ(I) dI dC. (2.9)

The energy ρεT is related to the kinetic temperature T :

εT =
3

2

kB
m

T. (2.10)

The weighting function ϕ(I) is determined in such a way that it recovers

the caloric equation of state for polyatomic gases. If D is the degrees of

freedom of a molecule, it can be shown that the relation ϕ(I) = Iα leads to

the appropriate caloric equation of state:

ε =
D

2

kB
m

T, α =
D − 5

2
, (2.11)

(D = 3 for monatomic gas and D > 3 for the polyatomic ones).

The maximum entropy principle is expressed in terms of the follow-

ing variational problem: determine the distribution function f(t,x,C, I)

such that h→ max, under the constraints (2.5), or equivalently, due to the

Galilean invariance, under the constraints (2.8). The result due to Pavic,

Ruggeri and Simić [17] is summarized as follows:

Theorem 1. The distribution function that maximizes the entropy (2.6)

under the constraints (2.8) has the form:

fE =
ρ

m (kBT )1+αΓ(1 + α)

(

m

2πkBT

)3/2

exp

{

−
1

kBT

(

1

2
mC2 + I

)}

,

(2.12)

where Γ is the Gamma function.

This is the generalized Maxwell distribution function for polyatomic

gases. In [17], the following theorem was also proved:

Theorem 2. If (2.12) is the local equilibrium distribution function with

ρ ≡ ρ(t,x), v ≡ v(t,x) and T ≡ T (t,x), then the hydrodynamic variables ρ,
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v and T satisfy the Euler system:

∂ρ

∂t
+

∂

∂xi
(ρvi) = 0,

∂

∂t
(ρvj) +

∂

∂xi
(ρvivj + pδij) = 0, (2.13)

∂

∂t

(

ρε+ ρ
v2

2

)

+
∂

∂xi

{(

ρε+ ρ
v2

2
+ p

)

vi

}

= 0

with

p =
kB
m

ρT, ε =
D

2

kB
m

T. (2.14)

This is an important result because we can obtain the Euler equa-

tions from the kinetic equation for any kind of polyatomic gases as well

as monatomic gases.

3. The 6 Moment-Equations for Polyatomic Gases

The 14-field theory, N = 2 and M = 1, gives us a complete phenomeno-

logical model but its differential system is rather complex and the closure

is in any way limited to a theory near equilibrium. Let us consider now a

simplified theory with 6 fields (referred to as the ET6 theory): the mass

density ρ, the velocity v, the temperature T , and the dynamic (nonequilib-

rium) pressure Π. As was observed in the introduction this simplified theory

preserves the main physical properties of the more complex theory of 14 vari-

ables, in particular, when the bulk viscosity plays more important role than

the shear viscosity and the heat conductivity. ET6 has another advantage

to offer us a more affordable hyperbolic partial differential system. In fact,

it is the simplest system that takes into account a dissipation mechanism

after the Euler system of perfect fluids. In the present case we have:

∂F

∂t
+

∂Fk

∂xk
= 0,

∂Fi

∂t
+

∂Fik

∂xk
= 0,

∂Fll

∂t
+

∂Fllk

∂xk
= Pll,

∂Gll

∂t
+

∂Gllk

∂xk
= 0

(3.1)
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with






F

Fi

Fll






=







ρ

ρvi
ρv2 + 3(p+Π)






=

∫

R3

∫

∞

0
m







1

ci
c2






fIα dI dc (3.2)

and

Gll = ρv2 + 2ρε =

∫

R3

∫

∞

0
m(c2 + 2I/m)fIα dI dc. (3.3)

3.1. Nonequilibrium distribution function

We want to prove the following theorem:

Theorem 3. The distribution function that maximizes the entropy (2.6)

under the constraints (3.2) (3.3) has the form:

f =
ρ

m (kBT )1+αΓ(1 + α)

(

m

2πkBT

1

1 + Π
p

)3/2(

1

1− 3
2(1+α)

Π
p

)1+α

exp

{

−
1

kBT

(

1

2
mC2

(

1

1 + Π
p

)

+ I

(

1

1− 3
2(1+α)

Π
p

))}

. (3.4)

All the moments are convergent and f is positive provided that

−1 <
Π

p
<

2

3
(1 + α), α > −1. (3.5)

Proof. The proof of the theorem is accomplished with the use of the La-

grange multiplier method. Introducing the vector of the multipliers (λ, λi, λll,

µll), we define the functional:

L = −

∫

R3

∫

∞

0
kBf log fIαdIdc+ λ

(

ρ−

∫

R3

∫

∞

0
mfIαdIdc

)

+λi

(

ρvi −

∫

R3

∫

∞

0
mfciI

αdIdc

)

+λll

(

ρv2 + 3(p +Π)−

∫

R3

∫

∞

0
mc2fIαdIdc

)

+µll

(

ρv2 + 2ρε−

∫

R3

∫

∞

0
m

(

c2 + 2
I

m

)

fIαdIdc

)

.
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As this is a functional of the distribution function f and we want to maximize

it with respect to f with the given macroscopic quantities, this functional

can be substituted by the following one:

L = −

∫

R3

∫

∞

0
kBf log f Iα dI dc− λ

∫

R3

∫

∞

0
mf Iα dI dc

−λi

∫

R3

∫

∞

0
mfci I

α dI dc− λll

∫

R3

∫

∞

0
mc2f Iα dI dc

−µll

∫

R3

∫

∞

0
m

(

c2 + 2
I

m

)

f Iα dI dc. (3.6)

Since L is a scalar, it must retain the same value in the case of zero hydro-

dynamic velocity v = 0 due to the Galilean invariance. Therefore:

L = −

∫

R3

∫

∞

0
kBf log f Iα dI dC− λ̂

∫

R3

∫

∞

0
mf Iα dI dC

−λ̂i

∫

R3

∫

∞

0
mfCi I

α dI dC− λ̂ll

∫

R3

∫

∞

0
mC2f Iα dI dC

−µ̂ll

∫

R3

∫

∞

0
m

(

C2 + 2
I

m

)

f Iα dI dC. (3.7)

Comparison between (3.6) and (3.7) yields the relations between the La-

grange multipliers and the corresponding zero-velocity Lagrange multipliers

indicated by hat:

λ= λ̂−λ̂ivi+(λ̂ll+µ̂ll)v
2; λi= λ̂i−2(λ̂ll + µ̂ll)vi; λll= λ̂ll µll= µ̂ll, (3.8)

which dictate the velocity dependence of the Lagrange multipliers. We no-

tice that these relations are in accordance with the general results of the

Galilean invariance [36]. The Euler-Lagrange equation δL/δf = 0 leads to

the following form of the distribution function:

f = exp
−1− m

kB
χ
, (3.9)

where

χ = λ̂+ λ̂iCi + λ̂llC
2 + µ̂ll

(

C2 + 2
I

m

)

.

By introducing the following variables:

ξ =
m

kB
(λ̂ll + µ̂ll), ηi =

m

kB
λ̂i, ζ =

2

kB
µ̂ll, Ω = exp

(

−1−
m

kB
λ̂

)

, (3.10)
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the distribution function can be rewritten as

f = Ωe−ζIe−ξC2
−ηiCi . (3.11)

Inserting (3.11) into the second equation of (3.2) evaluated at the zero ve-

locity, we obtain immediately ηi = 0. Then the remaining equations of (3.2)

and (3.3) evaluated for v = 0 become

ρ =

∫

R3

∫

∞

0
mfIα dI dC = mπ3/2Γ(1 + α)

Ω

ξ3/2ζ1+α
,

p+Π =
1

3

∫

R3

∫

∞

0
mfC2Iα dI dC = mπ3/2Γ(1 + α)

Ω

2ξ5/2ζ1+α
, (3.12)

ρε =

∫

R3

∫

∞

0
mf

(

C2

2
+

I

m

)

Iα dI dC

= mπ3/2Γ(1 + α)
Ω

4ξ5/2ζ1+α

(

3 +
4

m
(1 + α)

ξ

ζ

)

.

From the integrability condition, we have

ζ > 0, ξ > 0, α > −1. (3.13)

From (3.12) and (2.11) we obtain

ε =
1

4ξ

{

3 +
2

m
(D − 3)

ξ

ζ

}

,

p =
m

2D
π3/2Γ

(

D − 3

2

)

Ω

ξ5/2ζ
D−3

2

{

3 +
2

m
(D − 3)

ξ

ζ

}

,

Π =
m

2
π3/2Γ

(

D − 3

2

)

D − 3

D

1− 2
m

ξ
ζ

ξ5/2ζ
D−3

2

Ω.

(3.14)

We can invert these relations as follows:

ξ =
ρ

2p

1

1 + Π
p

,

ζ =
ρ

m

(D − 3)

2ρε− 3(p+Π)
=

ρ

mp

1

1− 3
D−3

Π
p

,

Ω =
ρ

mπ3/2Γ
(

D−3
2

)

(

ρ

2p

1

1 + Π
p

)
3

2

(

ρ

mp

1

1− 3
D−3

Π
p

)
D−3

2

.

(3.15)
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The integrability conditions (3.13) imply that, for a bounded solution,

the ratio Z = Π/p must satisfy

−1 < Z <
D − 3

3
, (3.16)

Inserting (3.15) into the distribution function (3.11), we obtain (3.4)

and the proof is completed. When Π→ 0 the (3.4) becomes the equilibrium

distribution function (2.12).

3.2. Closure and Field equations

Substituting (3.4) into the fluxes Fllk, Gllk and into the production term

Pll of (3.1), we obtain after some calculations

Fik =

∫

R3

∫

∞

0
mcickfI

α dI dc = ρvivk + (p+Π)δik,

Fllk =

∫

R3

∫

∞

0
mc2ckfI

α dI dc =
(

5(p+Π) + ρv2
)

vk,

Gllk =

∫

R3

∫

∞

0
m

(

c2+
2I

m

)

ckfI
αdIdc = (ρv2+2ρε+2p+2Π)vk,

Pll = P̂ll =

∫

R3

∫

∞

0
mC2Q(f) Iα dI dC.

(3.17)

From the balance equations of momentum and of energy in continuum

mechanics, we know that

Fik = ρvivk − tik, Gllk = (ρv2 + 2ρε)vk − 2tikvi + 2qk,

where the stress tensor have the expression given in (1.1). Comparing with

the closure (3.17)(1,3), we conclude that the closure gives a result that in the

6-moment theory σ<ik> = 0 and qk = 0. This is the expected result that

there exist no shear viscosity and no heat conductivity in the 6-moment the-

ory. For what concerns (3.17)2, taking into account the Galilean invariance

with ci = Ci + vi, we obtain the zero-velocity of Fllk:

F̂llk =

∫

R3

∫

∞

0
mC2CkfI

α dI dC = 0.
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Concerning the production term (3.17)4, the main problem is that, in order

to have explicit expression of the production, we need a model for the colli-

sion term, which is, in general, not easy to obtain in the case of polyatomic

gases. With (3.17) we obtain the differential system of 6 moments:

∂ρ

∂t
+

∂

∂xi
(ρvi) = 0,

∂ρvj
∂t

+
∂

∂xi
[(p+Π)δij + ρvivj ] = 0,

∂

∂t
(2ρε + ρv2) +

∂

∂xi

{[

2(p +Π) + 2ρε+ ρv2
]

vi
}

= 0,

∂

∂t

[

3(p +Π) + ρv2
]

+
∂

∂xi

{[

5(p +Π) + ρv2
]

vi
}

= P̂ll.

(3.18)

This system with the thermal and caloric equations of state (2.14) is a closed

system for the 6 unknowns (ρ, vi, T,Π), provided that we know the collision

term in (3.17)4. These results are in perfect agreement with the results

derived from the phenomenological theory [26], where a possible expression

of the production term P̂ll was deduced in terms of a relaxation time τ as

P̂ll = −
3(D − 3)p2Π

{(D − 3)p − 3Π} (p+Π)τ
. (3.19)

In the case of the BGK model we obtain P̂ll = −3Π/τ , which is the

linearized version of the (3.19).

3.3. Entropy density

Let us study the entropy density h with non-linear distribution function:

h = −kB

∫ ∫

f log fIαdI dC =
kB
m

ρ

(

D

2
− log Ω

)

,

with Ω given by (3.15)3. The equilibrium part of the entropy density hE is

expressed as

hE = ρs =
kB
m

ρ

(

D

2
− log ΩE

)

. (3.20)

Moreover we may notice that the chemical potential g = ε + p
ρ − Ts is
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expressed as

g

T
=

kB
m

(1 + log ΩE) . (3.21)

On the other hand, the non-equilibrium part of the entropy is expressed

as

k =
1

ρ
(h− hE) = −

kB
m

log
Ω

ΩE
. (3.22)

Since

Ω

ΩE
=

(

1 +
Π

p

)

−
3

2

(

1−
3

D − 3

Π

p

)

−
D−3

2

, (3.23)

we obtain for k the following expression:

k =
kB
2m

log

[

(

1 +
Π

p

)3(

1−
3

D − 3

Π

p

)D−3
]

. (3.24)

This expression also coincides with the one obtained by the phenomenolog-

ical ET approach [26]. k depends on a single variable Z = Π/p; for D > 3,

k exists and is bounded in the domain that contains the equilibrium state

given by the inequalities (3.16) in which k(Z) < 0,∀Z 6= 0 and k has a

global maximum k(0) = 0 at the equilibrium state. Therefore the convexity

condition is satisfied and the ratio between the dynamical pressure and the

equilibrium one Π/p satisfy the inequalities (3.16). According to the Theo-

rem proved in [30], the entropy h has, as is expected, the maximum value at

the equilibrium state where h = hE = ρs.

We notice that the left-hand side of (3.18) is incidentally linear in Π

without assuming any approximations. Instead the production term P̂ll

(3.19) and the nonequilibrium entropy k (3.24) are non-linear. Therefore

the present theory is valid for any nonequilibrium processes as far as the

continuum description is valid. In this case we have used the effective dis-

tribution function that maximizes the entropy (3.11) without the expansion

around equilibrium. For this reason we call the present procedure non-linear

MEP as shown in the title.
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3.4. Main field and symmetric system

Taking into account (3.15), (3.10) and (3.8), we obtain the full expression

of the Lagrange multipliers after some cumbersome calculations:

λ = −
g

T
−

kB
m

log
Ω

ΩE
+

v2

2T

(

1 +
Π

p

)

−1

,

λi = −
vi
T

(

1 +
Π

p

)

−1

,

µll =
1

2T

(

1−
3

D − 3

Π

p

)

−1

,

λll = −
1

2T

D

D − 3

Π

p

(

1 +
Π

p

)

−1(

1−
3

D − 3

Π

p

)

−1

.

(3.25)

According to the general theory developed in [11] for monatomic gases

and in [35] for polyatomic gases, the components of the Lagrange multipliers

coincide with the components of the main field [37] for which the original

system (3.18) becomes symmetric hyperbolic. Notice that, in equilibrium

where Π = 0, the first five components of the main field (3.25) coincide with

those obtained by Godunov for the Euler fluid [38]:

λ|E = −
1

T

(

g −
v2

2

)

, λi|E = −
vi
T
, µll|E =

1

2T
,

while λll|E = 0 according to the fact that the Euler fluid is a principal

subsystem of the 6-moment system [39]. In the reference [26], we proved

that the system (3.18) can be equivalent to the one obtained many years

ago by Meixner [22, 23] via the internal-variable procedure. In the same

paper [26], it was also proved that, in the limit of monatomic gas D → 3,

the system (3.18) converges to the Euler system provided that initial data

are compatible with the case of monatomic gases, i.e., we should choose

Π(0,x) = 0.

We observe that, if we apply the so-called Maxwellian iteration [40], the

last equation of (3.18) with the production given by the BGK approximation

reduces to the Navier-Stokes equation in the absence of the shear stress

[18, 24, 26]:

Π = −ν divv, with ν =
2

3

D − 3

D
pτ, (3.26)
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where ν is the bulk viscosity. The system (3.18) in which the last equation

is replaced by (3.26) was studied by Secchi [41] and by Frid and Shelukhin

[42, 43].

3.5. K-condition, acceleration waves, and global smooth solutions

We now want to prove that the so-called Shizuta-Kawashima K-condition

[28] is satisfied by our differential system and therefore, according to the gen-

eral theorems [29, 31, 30, 32], in contrast to Euler fluid, there exist global

smooth solutions provided that initial data are sufficiently smooth. The

system (3.18) is a particular case of a generic system of balance laws:

∂F0(u)

∂t
+

∂Fi(u)

∂xi
= f(u). (3.27)

We recall that the system (3.27) satisfies the K-condition if, in the equi-

librium manifold, any right characteristic eigenvectors d of (3.27) are not in

the null space of ∇f , where ∇ ≡ ∂/∂u:

∇f d|E 6= 0 ∀d. (3.28)

Lou and Ruggeri [44] noticed a connection between the K-condition and the

global existence of acceleration waves and they propose a necessary weaker

K-condition requiring (3.28) only for the right eigenvectors corresponding to

genuine non linear waves.

For a quasi-linear hyperbolic system, it is possible to consider a par-

ticular class of solutions that characterizes the so-called weak discontinuity

waves or, in the language of continuum mechanics, acceleration waves. Let

us study a moving surface (wave front) Γ prescribed by the Cartesian equa-

tion φ(x, t) = 0 that separates the space into two subspaces. Ahead of the

wave front we have a known unperturbed field u0(x, t), and behind an un-

known perturbed field u(x, t). Both the fields u0 and u are supposed to be

regular solutions of (3.27) and to be continuous across the surface Γ, but to

be discontinuous in the normal derivative, i.e.,

[u] = 0,

[

∂u

∂φ

]

= Π 6= 0, (3.29)



18 TOMMASO RUGGERI [March

where the square brackets indicate the jump at the wave front. In [44] it was

verified that the K-condition is equivalent to the relation:

δf |E = (∇f · δu) |E ∝ (∇f · d) |E 6= 0,

where the operator δ is defined by δ = [∂/∂φ]. By introducing the mate-

rial time derivative, the system (3.18) in the BGK approximation can be

rewritten as

ρ̇+ ρ
∂vk
∂xk

= 0,

ρv̇i +
∂

∂xi
(p+Π) = 0,

ρε̇+ (p+Π)
∂vk
∂xk

= 0,

(

p+Π

ρ
−

2

3
ε

)

•

= −
Π

ρτ
.

(3.30)

As is well known, the characteristic velocities U and the right eigenvectors

can be obtained from the system (3.27) by utilizing the chain rule of the

operators:

∂

∂t
→ −Uδ,

∂

∂xi
→ niδ, f → 0,

and, in particular,

• → −V δ, V = U − vn, vn = vini.

In the present case, from the system (3.30), we obtain

− V δρ+ ρδvn = 0,

− ρV δv + nδ(p +Π) = 0,

− ρV δε + (p+Π)δvn = 0,

− V δ

(

p+Π

ρ
−

2

3
ε

)

= 0.

(3.31)

Taking into account the constitutive equations (2.14) and evaluating (3.31)

in an equilibrium state, we have

1) V = 0 ←→ U = vn, contact waves, (3.32)
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with δρ, δvT , δp arbitrary (multiplicity 4) and δvn = 0, δΠ = −δp (vT

denotes the tangential velocity);

2) V = ±

√

5

3

p

ρ
←→ U = vn ±

√

5

3

p

ρ
, sound waves, (3.33)

with δρ arbitrary,

δv = nV
δρ

ρ
, δε =

2

D

ε

ρ
δρ, δΠ =

4

3D2
(D − 3)εδρ.

We notice that the sound velocity in (3.33) is independent of the degree of

freedom D and coincide with the sound velocity of monatomic gas. This

curious fact was explained by a general theorem [35] in which was proved

that for particular choice of (N,M) systems in which belong the 6 moment

theory the characteristic velocities are independent on D.

As only the last component of the production term f of the generic

system (3.27) is non-zero (see (3.30)), the K-condition (3.28) is satisfied if

δΠ 6= 0. This is true for contact wave and for sound waves. Therefore the

K-condition is satisfied and, together with the convexity of the entropy, we

can conclude that, according to the general theorems, the 6-moment system

has global smooth solutions for all time and the solution converges to the

equilibrium one provided that the initial data are sufficiently smooth.

4. Conclusions

In the present paper, we deduced the system of equations for a dissi-

pative fluid in which the dissipation is due only to the dynamical pressure.

The closure was obtained by the method of the Maximum Entropy Principle

without assuming that the processes are near equilibrium. This system is

the simplest example of non-linear dissipative fluid after the ideal case of

Euler. The system is symmetric hyperbolic with the convex entropy density

and the K-condition is satisfied. Therefore, in contrast with the Euler case,

there exist global smooth solutions provided that the initial data are suffi-

ciently smooth. The result obtained here is in perfect agreement with the

one obtained by using only phenomenological theory of ET [26].
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