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Abstract

We study the vanishing viscosity—capillarity limit under the assumption of self-
similarity when the underlying nonlinear hyperbolic system of conservation laws is for-
mulated as a boundary value problem on the half-line. We establish a uniform bound on
the total variation of solutions for the corresponding viscous—capillary boundary Riemann
problem, provided the capillarity coefficient does not exceed a critical threshold. This
leads us to a convergence theorem, as well as an existence result for the boundary Riemann
problem for systems with sufficiently small Riemann data and sufficiently small capillarity.
Furthermore, allowing for a possibly large capillarity coefficient, we then derive an equa-
tion governing the boundary layer and we introduce the notion of “viscous—capillary set of
admissible boundary states”, which, following Dubois and LeFloch, represents all possible
boundary states arising in the vanishing viscosity-capillarity limit. This set may involve,
both, classical (compressive) and nonclassical (undercompressive) shock layers, the latter

being typically determined by a kineric relation associated with the problem.
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1. Introduction

Our general motivation is to investigate the structure of boundary layers
associated with nonlinear hyperbolic systems, when vanishing viscosity and
capillarity effects are taken into account. Our analysis covers the general
regime when the boundary is characteristic, that is, one of the wave speeds
may vanish. In the present paper, we address this problem first in the case
of the Riemann problem associated with a scalar conservation law in one

space dimension. That is, we consider weak solutions to the equation
O+ Oz f (u) =0, t>0,z>0, (1.1)

with smooth prescribed flux f : R — R and unknown u = u(t,z) € R,

subjected to the boundary and initial conditions

u(t,0) = uy, t>0,

(1.2)
u(0,x) = ug, x>0,

the two constant values wp,ug are prescribed. In the second part of this

paper, we will also treat general hyperbolic systems of conservation laws.

Solutions to hyperbolic conservation laws are generally discontinuous
and are not uniquely determined by their initial data, unless some entropy
criterion is added. In addition, since we consider the boundary value prob-
lem, an additional difficulty arises at the boundary and a layer is expected
to develop (in a sequence of approximations to the above problem, say). As
discussed in Dubois and LeFloch [5], the prescribed boundary condition at

x =0 in (LZ) can not be achieved as stated, but must be weakened.

We rely here on extensive work by Joseph and LeFloch [7, 8, |9, [10]
on the (boundary) Riemann problem with vanishing viscosity, as well as
on a paper by LeFloch and Rohde [17] concerning the Riemann problem
with viscosity and capillarity. The general methodology was introduced by
Tzavaras [22] in order to cope with system and an artificial viscosity term nd
extended earlier works by Slemrod et a. [6,20,21]. Specifically, we construct

here solutions u. , = uc,(x) to the boundary Riemann problem by adding
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vanishing diffusion—dispersion terms, as follows:

/ 2 1M

_ xuéﬂ + fluey)' = sugﬁ +yetug, x>0,

(1.3)
uE,’y(O) = Ub, u87’y(+oo) = UO,

where v is a fixed parameter and ¢ — 0. For definiteness, we take v >
0 and, without loss of generality for our purpose, we assume ¢ € (0,1].
Hence, we treat here the regime when the diffusion eu , is in balance with
the dispersion E2ué_’7’ﬂ/. Observe that (3] is equivalent to adding a time—
dependent diffusion—dispersion regularization to the right—hand side of (L],

that is,
Ortie y + Op f (Ue ) = €t Opatic 5 + ’762t2 Opzalle -

Since this problem is directly motivated by models arising in fluid dynamics,
especially models of complex fluid flows including viscosity and capillarity, it
is natural to refer to the former term as “viscosity” and the latter as “capil-
larity”. The regularization (L.3]) provides a selection of physically admissible
solutions to the Riemann problem (I.1]), and, of course, is also relevant for
the general Cauchy problem; see LeFloch [14, [15, [16] for a background on
diffusive-dispersive limits.

The self-similar strategy for the Riemann problem was investigated first
by Dafermos [1, 2, 3] (without a boundary and without capillarity term), in
order to develop an existence theory for the Riemann problem. We do not
attempt to review the large literature on this subject but refer to |4, [15] for
background and additional references.

An outline of this paper is as follows. In Section 2, we study a “linearized
problem” which is used later to construct an integral form of the problem. In
Section 3, we establish the existence of solutions and derive a uniform bound
for the total variation. Section 4 is devoted to the analysis of the boundary
set. Then, in Sections 5 and 6 we extend our analysis and conclusions to
general systems of conservation laws. The analysis threin is more involved,
since the nonilnear coupling within the system must be analyzed.
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2. A Linear Second—Order Problem

It is convenient to introduce the notation A(u) := f,(u) for the wave
speed function associated with the scalar conservation law. We consider a
bounded interval [0, L] and begin by considering (L3]) in which the left-hand
side —zul ., + f(uey) = (=2 + Mue ) ul ,, the speed coefficient A(ue ) is
replaced by a fixed function A : [0, L] — R which is assumed to be smooth
and bounded function and is defined in the interval [0, L], which is yet to be
specified. Then, we solve (L3J)) in terms of ¢ := u( . /(up — up), (L3)) which

becomes a second—order differential equation. We set

M= ?83:}]()\’ )\y ‘= max (O, )\M),
A= 1[%115]1 A, AT = max (0,A™).

We asssume that the upper bound L is large enough so that
MM <. (2.1)
Consider the second—order differential equation
ve? ¢ (x) +ed(z) + (x — A(z)) p(x) =0, xr €[0,L)]. (2.2)

As we will now show, our key assumption about the coefficient of this equa-

tion is that « is sufficiently small so that

plz) = ANz) —z+ i >0, x € [0, L]. (2.3)

In fact, provided the inequality

1

v < 1O ) OO ) (2.4)

holds, we can then choose L sufficient close (but larger) to )\JJ‘F/[ so that
m 1
A" —L+-—>0
4~y

is satisfied, which implies precisely (2.3]).
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Our first objective is to show the existence of fundamental solutions to

([22)), which will be unique up to a multiplicative constant and be normalized
later on. Consider first the function p : [0, L] — R defined by

v — L L
p(z) = — ML—/x \/@dyzﬁ ’ (1—\/1+47(A(y)—y)) dy.

Observe that, clearly, in the limit v — 0 we obtain

1

i (1)~ ) =A@ o 9= [ - 2w) do

Hence, p plays the role, roughly speaking, of the wave speed A (up to a linear
shift) when the viscosity and capillarity are taken into account.

Proposition 2.1. There exists a real p € (N7, MY such that p'(p) = 0 if
p > 0 and, more precisely,

(i) p'(z) <0, ze (WM L),
(i) p(x) < p(p), z €0, L],

and the behavior of p is further described as follows, with constants ¢,C > 0
independent of v,

(iii) p(z) —p(p) = —clz —pl, z € [0, AY],
(iv) p(z) —p(p) < —C(z —A¥)?, ze [\ L].

Proof. 1. If x > A we have u(z) < 1/(47) and, therefore,

po) =5+ /M2,

which is negative. By continuity, the function p achieves its maximum value
at some point of the interval [0, \}/], which we denote by p.

2. Let us consider first the case p > 0, that is, the maximum is an
(interior) point of the interval (0, L). Then, it follows that p/(p) = 0 and we

deduce that % = \/@, and hence

)=o) = [ (,/@—\/@) ay.
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This identity is now used in order to derive the first estimate of interest.

For definiteness, we treat the interval [p, )\JJ‘F/[ ], since the argument in the
interval (0, p] is completely similar. Since for y € [0, A}!] one has

1 1
>\ — — < A\M _ —
w(y) > y+4,y, u(p) < p+4,y,

we find that, for all = € [p, )\M

o= [ ()

i/ (VI=a7 (=) — 1Ay (M - o)) dy
p
_ 2(1—4fy(p AN (1= dy (= Am)) P

>
—6y(z —p) (1+4y (M - p))1/2->

—_
)

Since g = g(p) = (1 —4~(p— )\m))?’/2 is a concave function, this yields

p(z) —p(p) > 12172 (9(p) = (x — p) g'(p) — g(x))

+ %(ZE—P) ((1+47(>\m_p))1/2 LAy _p))l/z)

> —c(z—p)

and

¢i= %((1 +dy (M = o)) — (14 4y (A7 —p))1/2>

M _ \m
2(A A™) > ¢ >0,

> >
(L+ 4y M = p)) 2 4 (1445 (Am — p) /2

since 14+4y (A™—p) < land 14+45 (A —p) < 1+ A /(A — ™), so that
our estimate is independent of the parameter . This completes the proof
of (i)
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We now turn our attention to interval x € [\, L] and write

o) =2l) <p0) -2 = 5 [ (=14 VIFR OG-0
1 x
Sﬂ " (—1+\/1+47(AM—y))dy
< 5 O =X = 2 (@ = AP < 2 (@ — AN,

where we used —1 4+ /1 4+ o < /2 for a > —1.

3. It remains to consider the case p = 0, that is, the maximum is at the
left—-hand boundary of the interval. Then, it follows that p'(p) < 0 and it
is not difficult to check the inequalities above remain true. In this case, we

can actually establish a better estimate than (iii), as follows:

pla) = plo) =ple) =0 =~ + [ /12

2——+—/ V1—dy(y — Am)dy

1 m m
1272 ((1 + AN (1 — Ay (z — N ))3/2 - 6’71’)

and thus, with the function g defined earlier,

p(z) — p(p) ZW (9(0) —xg'(0) — g(x) + 67z ((1 Ay A2 1))
2% ((1 + 4y A2 1) z>2min(0,\™)z,  x € [0,\V].

The argument for (iv) is completely similar, and the proof of the proposition

is now completed. O

We arrive at the main result of the present section.

Theorem 2.2. The equation [2.2)) admits a smooth solution ¢ : [0, L] — Ry

of the form
1+ <I>(a:) p(z)=p(p)
Bla) = — T A
(47 pl))
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in which the remainder ® satisfies, for all x € [0, L],

@000 + L oy < 5 VA K,

5 (2.5)
K = Z|’M_5/2 (N) 0.0y + 1022 1 20,1,
provided the following condition on the parameter €, hold
€
1 VYK <1 (2.6)

In particular, for some constant C' > 1 independent of €,~, one has

. 4 i . € L
) o<¢<x>§< ) L) g2 [ ewa<c

v ()

Proof. 1. The function H(z) := eTve ¢(x) is easily found to satisfy the

equation

H"(z) — % H(z)=0.

Since the coefficient i is bounded below by a positive constant on the interval
[0, L], Theorem 2.1 of Chapter 6 in [19] provides us with the existence of a
solution ¢ having the form stated in the theorem, together with the pointwise

estimate

2(@)] + 2 ()™ o (@) < AT 1,

where F : [0, L] — R is defined by
"
F'(w) = & 7 pl(e) ™ ()™
_ 5 _ 1 N
= = A ue) (5 pla) e @) = 7 p) T @),
so that its total variation is bounded, as follows:
1
TV (F) <ef/ ) 2 )P+ ) )1 dy

_ZﬁK
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Observe that e4/2 <1+ A for 0 < A < 1, which motivates us to impose the
condition (2.6]).
2. Next, we note that

1 le 1
) <-TVF < == K< =

so that 14+®(z) > 3 and the unknown function ¢(z) is positive. Furthermore,

the upper bound in (i) follows from the property p(z) — p(p) < 0.

3. We now establish (ii). Provided (¢/4) /7K < 1, we find ¢(z) > 0
for all x € [0, L], and the coefficient in ¢ satisfies

(7)) = (XY = am) T

and, therefore, is bounded away from zero by a constant independent of ~.

Hence, for some uniform C', we find

L L p(y)—p(p)
/ o(y)dy > Cq / e = dy,
0 0

but

Lo, A , (Y —p)/e

W) =p(p) + Iyl =
/ et dyZ/ e e dy=€/ e Wldy > Oy,
0 0

—p)

€

where, in the last inequality, we have used that € is bounded above (and,
actually, € € (0,1]). This establishes the lower bound.

For the upper bound, we note that (4~ p(z)) < (1—4y(L—X™)) —/4

and thus is uniformly bounded in [0, L]. For some constant C'3 > 0, we obtain

L L r(y)—p(p)
/¢>(y)dy§03/ e = dy <C3L,
0 0

which completes the proof of Theorem O

3. Viscous—Capillary Boundary Riemann Problem

We are now in a position to treat the problem of interest (L.3]), associated



648 A. P. CHOUDHURY, K. T. JOSEPH AND P. G. LeFLOCH [December
with prescribed data wup, ug. We write
I(up, up) := [min(up, ug), max(up, ug)]

and from the flux function f we determine the smallest and largest wave

speeds
MM (g, ug) = 1}1(1ax ))\(u), MY (up, up) := max (0, )\M(ub,uo)),
uel(up,uo
A" (up,up) ;= min  A(u).
wel (up,uo)

Theorem 3.1 (Viscous—capillary boundary Riemann problem). Given bound-
ary and initial data up,up € R, a viscosity coefficient € € (0,1], and a (suf-

ficiently small) capillarity coefficient v satisfying

1
4()\%(1%, uO) - Am(ul” Uo)) 7

v < (3.1)

the boundary Riemann problem with viscosity and capillarity (I3) admits a
unique solution ue y = U () defined on some interval [0, L] with L > )\f\([.

This solution is smooth, strictly monotone, and satisfies

min(up, ug) < uey < max(up, uo),
ue ~(0) = up, ucy(x) =19, € ()\{\f,L], (3.2)

TV (ue ) = [uo — wp.
Furthermore, one has the uniform bound
€ ||uz/-:,~/||L°°(O,L) + 762 ||u/5/,'y||L°°(O,L) < 07 T e [07L]7 (33)

where the constant C' is independent of €,.

Based on this result, we can next justify the limit € — 0, while ~ is kept
fixed.

Theorem 3.2 (Boundary Riemann problem for the hyperbolic conservation
law). As e — 0, the solutions u., given by Theorem [31l converge almost
everywhere to a limiting function u, : [0,L] — I(up,up) C R, which is

monotone and has bounded total variation less or equal to the prescribed
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Jump, that is,

TV (uy) < |ug — ul, (3.4)

and is a weak solution of the self-similar boundary Riemann problem (LI
(T2)). The solution also satisfies the following properties: u.(x) = ug for
T € ()\JJ‘F/[, L]. Ifx e suppui/ N (0, )\{‘f] is a point of continuity of u~, then

Muy (7)) =, (3.5)

which is the equation of a rarefaction wave. If x € suppu’v N (O,)\JJ‘F/[] 18
a point of jump discontinuity, then . satisfies the Lax shock admissibility

inequalities [11,|12]:

Al (2-)) > & > A, (a+)). (3.6)

Thanks to the monotonicity property established for the solutions u, .,
we see that this limit can not contain nonclassical shocks, but only shocks

satisfying the standard shock admissibility conditions.

Proof.[Proof of Theorem B.1] Given a function v : [0, L] — R satisfying the

boundary conditions
v(0) = uy, v(L) = uy,

we can determine the corresponding function ¢[v] : [0, L] — R from Theo-

rem it has the form
1+ ®v|(z)  plli@-plik)

Bl)(z) = M
(47 p(v()))

in which the argument p[v] is given by

z— L

plol(e) = =2 0 [ o) dy

and the remainder term ®[v] satisfies the inequality (2.5]), with obvious no-
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tation. Then, we recover a “new” function w : [0, L] — R by setting

/ " oly) dy
OL*, xz € [0, L],

P(y) dy

w(z) = up + (up — up)
0

which allows us to define a map T : v — T'[v] = w.

Given the data wup, ug, we introduce the affine space of continuous func-
tions with prescribed boundary values

E(0,L) := {v € C[0,L] / min(up, up) < v < max(ub,uo)}.

Observe that 7" maps & into itself, and we can endow £(0, L) with the uniform
norm || - || e (o,ry- We want now to apply the Schauder fixed point theorem:
it is clear that £(0, L) is bounded, closed, and convex subset of C[0, L]; thus,
we only need to check that T is continuous and compact.

If v™ — v is a converging sequence in £(0, L), then

L
Ip[v](z) — plvn](z)] < 7_1/2/ ‘M(U(y))l/z — (v (y))?| dy
< C(L =) | w2 oo, 0 = vnll poo 0,1

Similary, we can write

Ayp(u(e)Vt dyp(og ()14
< 19| Lo (0,1 L+ [|®]| (0,1
T\ M e,y 1691654 | e 0,1

‘ 1+ ®v)(x) 14+ @[vy,](2)

||:U/||L°°(0,L)> [0 = vnl| Lo 0,L)

and we deduce that T'[v"] — T[v]; hence, the map T is continuous.

Furthermore, let us check that 7' is compact. If {v,} be a bounded
sequence in £(0, L), we have the inequality

[ploa)(@) = ploa) ()] < Cllu'u™ 2 oo 0,0y |00l 0w 0,1 |2 = ]

<Clx - $/| ||M/M_1/2||L°°(0,L) sup ||Un||L°°(0,L)
n

shows that {p[vn]} is equicontinuous. Obviously {p[vn]} is bounded, hence,
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by Ascoli’s theorem, {p[vn]} is relatively compact. So, T is the composition
of a compact operator and a continuous one and, thus, a compact operator.
In conclusion, by Schauder’s fixed point theorem, T admits a fixed point
which we denote by u. - and is easily checked to satisfy all of the conditions
in the theorem. The corresponding function ¢ as defined above is denoted

by ¢e
To derive (3.3]), we simply observe that

/”Y UO . ub ¢6,'y
/ e
in which fOL be,~(y) dy is bounded below by C'e. O

Proof of Theorem [3.2. 1. In view of Theorem BIl we can now take
the limit € — 0 in the family of solutions u. . Since we have established a
uniform bound on the total variation, Helly’s theorem allows us to extract a
converging subsequence which converges to some limit w, : (0, L] — R which
is also a function of bounded variation, i.e.

ueq(y) = uy(y), v € (0, L]

Since u, , connect monotonically uy, to ug, it is clear that the total variation
of the limit u, is less or equal to the jump |ug — up|. Note that it can
be smaller, however, due to the possible formation of a boundary layer at

x = 0. We can also assume that the sequence of measures u. . converges in

€,y
the weak—star sense

/

Ug weakly.

/
—\
Uy

With obvious notation, we can also extract a converging subsequence so that
pe~ — p~ and in the uniform norm

Pery(Y) = Pery(pey) — Py(2) — Py(py)

_ 2L <1_ \/1+4’y (Muy (y)) — y)) dy.

Since u, -, solves

2, 1M

_yu;ﬁ—l—f(ueﬂ)’:gu +yetug x>0,
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we immediately deduce that u, is a weak solution to the hyperbolic conser-

vation law
—yul, + f(uy) = 0.

Moreover, the exponential decay properties yield that the boundary condi-
tion at wug holds, and u is a solution of the boundary Riemann problem,

except that the boundary condition at x = 0 need not hold.

2. We now discuss the structure of this solution. Using the inequality
|u’57| < C ¢. and the decay properties for the functions ¢, ., we see that

for small n > 0

uiw(y) — 0 uniformly in y € \M + 1, L].

Therefore, u is constant equal to ug on the interval (AM, L].

Now, we show that if y € supp ¢,, then

py(z) > py(y) =0,  x€(0,L).
This shows that the points in the support of ¢, are global maxima for the
function p,.

Namely, fix y and some « > 0 and consider the set
A= {z€[0.L]/p,(x) - py(y) < —a < 0}.

The functions p, being (Lipschitz) continuous, we have either A = () or A
contains a non-empty open interval. In the second case, we shall show that

there is an open interval I containing y such that

/OquW?[)dw:O

for every v with compact support in /. This will show that y ¢ supp ¢,.
Henceforth if y € supp ¢., we can only be in the first case A = 0 for every o
and thus p,(x) —p,(y) > 0 for all « € [0, L], which is the desired conclusion.

3. First, we conclude the proof of the theorem as follows. Fix y and use
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that v has bounded variation to write:

i 2@ =) / (_L+ u(uw(z))) "

Tyt T —y Tyt — Y

Therefore, we find

(uy(y))

ply(y) = T + . if y is a point of continuity of u.,

while the left- and right-derivative exist at a point of jump of u, and

i) = — -+ [EE0ED

if y is a point of jump of wu..
Suppose now that y € supp u’y N AT, )\f\ff |, thus y € supp ¢, and, using

the above claim,
pa,(a}) > p"/(y)v

S0 p"/(x)_p"/(y) 2 0 when T—y 2 07 while Z)W(L—Z‘/(y) S 0 when T—y S 0. This

T—y T
leads us to, both, —% + M > 0 and —% + M < 0. This
implies y — A(uy(y+)) > 0 and y — A(uy(y—)) < 0. Of course, the equality

holds when u,, is continuous at the point y.

4. We can determine an interval I = (y — d,y + d) in which

e_%
< .
0 < eyls) < meas (A) =0

Since p. - is continuous, we have
9

Ipy(0) =py ()| < =,  0€(y—3d,y+9),

e (8) =2 (O] < =, O €[0,AY].

oo

Thus for all 0 € (y —d,y+J) and x € A

p:—:n/(x) - pe,v(e)
< py(@) = Py (Y) + [Py (Y) = Py (O)] + [Py (0) — Py (O)] + [Pey () — Dy ()]
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«@
< —=<0.
-2
That is, the inequality defining the set A remains valid for the functions p,

and in a uniform neighborhood of y.

Returning to the definition, for some constant C' > 0 and for all €
(y - 57 Yy + 5)7

C

: Ja exp(—% (Pery(z) = pey(0)) da

C
< = — 0, as € — 0.
exp(g:) meas (A)

0 < ¢-5(8)

Thus (¢e, 1) — 0 and (¢,10) = 0 for all 1) compactly supported in 7. 0O

4. The Viscous—Capillarity Set of Admissible Boundary Values

Derivation of the layer equation

In this section, we rigorously derive the equation describing the bound-
ary layer which, in general, arises near x = 0 in the solutions u., to the
boundary Riemann problem. Our objective is thus to establish a relation
between the prescribed boundary data, that is, uy, and and the trace u. (0+)
of the solution u, to the boundary Riemann problem constructed in Theo-
rem [3.21 More precisely, we are going to establish that this layer is governed

by the following ordinary differential problem with unknown V., =V, (y):

’YV-;,"i_V-y,:f(v'y)_f(v'y,oo)a y € Ry,

(4.1)
V5(0) = up, Vy(400) =V, oo,

in which V,  is expected to be closely related to, but need not coincide
with, u,(0+).

The smallness assumption made on the capillarity coefficient is not nec-
essary in the present analysis, which therefore does cover the possibility of
nonclassical shocks. So, we proceed here under the assumption that the to-
tal variation of a sequence of viscous—capillary boundary Riemann solutions
ue ~ is uniformly bounded (which is valid for small +, at least), and now we

perform the corresponding boundary layer analysis. As we are going to see,
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the structure of this layer is much richer than the one obtained by adding

viscosity, only.

Theorem 4.3 (Boundary layer equation for the vanishing viscosity—capillar-
ity limit). The trace u,(0+) of the boundary Riemann solution constructed
in Theorem satisfies the following property. There exists V, o € R and
a smooth function V., : [0,00) — R which satisfies the boundary layer prob-

lem [@J) and the following jump relation at infinity:
f(Vy00) = fuy(0)). (4.2)

Proof. We follow the argument in [8] and consider an arbitrary sequence

& > 0 such that

Define the function V; (y) = u. ~({-+€y) for all y > 0. Since u. 5 is uniformly
bounded and of uniformly bounded total variation, the functions V. are
also bounded and of uniformly bounded total variation. So there exists a
function V,, = V. (y) of bounded total variation defined on the interval [0, co)

and there exist two constants V, o, Vy o such that

m Voo (y) =V5(y),  y>0

V,,(0 V. lim V. V. (4.3)
H(0+) =Vyo,  dim V(y) = Vyco-
To check that, in fact, Vj = up, we note that
[V5(0) — up| = y1_1>%1+ V(y) —up| = il_% Jim |te (8= + €y) — wp
and
Eetey , C [Etey
ueo (€ +en) —wl < [ @l < S [T ds= O+ e e)
0 0

where we used |u_ | < Ce. Since & = o(¢), we deduce that V,(0) = uy.

Next we derive the boundary layer equation (4.1]). Integrating (L3]) from
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some point a to & + ey, we get

eul (& +ey) —eul (a) +yeul (& + ey) — ve*ul ,(a)

— (& + Ey)uaﬁ(fa +ey) + f(ua;y(fa +¢€y))

Eetey
+ aue 5(a) — f(ue(a)) +/ Ue~(5) ds.

After integration with respect to a € (0,0), this identity becomes

d c ) , d2 ’)/62 § "
gy (o€ +en) =5 [t (@)datn gy (uen (6 29) =T [ il ()
Y 0

— (& + Ey)us 'y(fa +ey) + f (Ua 'y(fa +ey))
1 g Eetey
ts5 /0 (aus(a) — f (usy(a))) da+ / / Ue (s) ds da.

We now integrate with respect to y, starting at 0:

J d
Us,v(&e + 5y) - us,v(&s) - %y/o ué,«,(a) da + ’Yd_y (us,“f(gs + €y))
d )
o (0 (€)= 9e% /0 u!(a) da
_ / Nt eruen (6 o) + (e (6 + e0) Y

+ / e (@)  f (2(a))) da

fs‘f‘EZ'
+—/ // Uz ~(8) ds da dz. (4.4)
g 0 JO Ja

Next, letting ¢ — 0 in (£4]) and using (43]) and (£4]), we arrive at

Vy(y) = up + 4V (y) — 7V7(0)

/f ) dz + 2 /Oé(auy(a)—f(uv(a))) da+%/06/aou7(s)dsda

for all §,yy > 0. Next when & — 0, it follows that

V(y) — up + 1V (0) / V(@) di — yf (us (04)),
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which is equivalent to the first equation in (4.1]).

Integrating the equation ([4.I]) from n to n + 1, it follows that

n+1
/ F(Vy(@)) dx = f(uy(04)) = Vo(n + 1) = Vy(n) +4Vi(n + 1) =7V (n).
" (4.5)
Since V, and V., have bounded total variation and V,, converges to V, o at
infinity, we have

n+1

n+1
/ F(Vy(@)) = F(Vyo0)| da < / V() — Vi e

n

SCTVﬁﬂ(ny) + CVy(n) = Vi 0ol

in which the upper bound vanishes in the limit n — +o00. Therefore letting n
tend to +oo in (0], we obtain f(V, o) = f(u(0+)), which is the condition
([#£2)) stated in the theorem. O

Notion of set of admissible boundary states

Following Dubois and LeFloch’s approach based on sets of admissible
boundary values [5], we define the set of admissible boundary states

®(up) = {Vio /There exists a solution V; : [0,+00) — R
to the boundary problem ([@I)}.

and now determine this set under various circumstances. One may not be
able to establish directly that w,(0+) coincides with V, ., but, yet, we may
conclude that sufficient information is deduced from the boundary layer anal-
ysis in the sense that existence and uniqueness is recovered at the level of
the boundary Riemann problem. We consider the cases when the boundary
is non-characteristic or the capillarity is vanishing.

Increasing flux
Suppose that
Au) >0 for all u € R. (4.6)

The condition (4.6)) implies that the flux-function f is one-to-one on the
interval [0, co) and hence the condition ([.2)) is equivalent to saying u-(0+) =
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V. 00- It is also elementary to check that the viscous-capilary equation admits
no solution V, = V,(y) except the trivial one V,(y) = uyp, hence

Dy (up) = {Ub}

This concludes the proof that the Riemann problem (L3) admits a weak
solution and the boundary condition must be imposed in the strong sense

u(t,0) = up. (4.7)

Decreasing flux
Suppose that
AMu) <0  for all u € R. (4.8)

The discussion is similar to the one in the increasing case, except that now
the boundary value is not achieved by the limiting solution. It is elementary
to see that any V, o can now be achieved, that is, there exists a boundary
layer connecting wu; to any V, o, so that

. (up) = R. (4.9)

The Riemann problem (L3) admits a weak solution and no boundary con-
dition is necessary at y = 0.

Viscous boundary layer

The case o = 0 was treated in |13] (see also the references therein and
[8]) and leads to the following result:

<I>0(ub) = {ub} U {Voo / w < 0, k€ I(Ub,Voo)}-

In particular, we have the following two special cases:

e Case of a strictly convex function f tending to infinity at infinity and nor-
malized so that f(0) = f/(0) = 0. Provided we normalize the boundary
data so that uy > 0, it follows that

Do(up) = (—00,up) U {up},
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where uj < 0 is defined by f(u)) = f(up).

e Case of a flux f having a single inflection point and tending to infinity
at infinity and satisfying, say with f(0) = 0 and f’(0) < 0, having a
maximum at some u,, < 0 and a minimum at w}; > 0. Let us define
ul; > 0 and u,, < 0 by the condition f(u,,) = f(u},) and f(uy,) =
f (u;\%) Depending on the value of the boundary data u; with respect
to u, < uy <0< uh < u;\%, we obtain the following boundary set

(omitting certain isolated values):

- If up < g, then ®p(up) = {ub}.

If up € (up,,uyy), then @o(up) = {up} U fuj, wh], where uj is charac-
terized by f(up) = f(ug) and f'(u;) < 0.

If up € (uyy,ut), then ®gup) = [uy,, uh].

If wp € (u;h,uj,), then ®o(up) = [uj,, ui], where uj is characterized
by f(uy) = f(up) and f'(uz) < 0.
- If upy > uj\r/[, then ®g(up) = {ub}.

Viscous—capillary boundary set

A full analysis of the boundary layer with viscosity and capillarity is
not realistic, since even the traveling wave solutions are understood only
under certain conditions on the flux and require a rather technical analysis;
see |15]. Consequently, we propose to follow Dubois and LeFloch [5] who
observed that, for scalar equations, the boundary set based on viscosity can
be equivalently determined from the Riemann problem on the real line. We
thus determine here the boundary layer set which is based on the nonclassical
solutions to the Riemann problem described in |15], while conjecturing that
it should coincide with the one defined from the boundary layer equations
—except for certain exceptional values so that it is convenient to look at the

closure of this set.

We assume that the flux f : R — R is concave/convex in the following

sense:

wf’(u) >0 (u#0), lim f'(u) = 4o0.

u—=+o0
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Denote by ¢ : R — R the tangent function characterized by

foéi(u) - f(w)
PH(u) —u

fo@h(u) = (u #0).

Recall that an analysis of traveling wave solutions to the viscosity—capillarity
model allows one to define a kinetic function gouy : R — R satisfying [15]

up i) <u@’y(u) Suph(u), ueR,

where ¢ =7 : R — R denotes the inverse of the function ¢%. To this kinetic
function we associate its companion gpﬁy : R — R defined by u ¢’ < u goﬁv for
u # 0 and

Foghy(u) = fu) _ fog,(u)— f(u)
Soﬂ'y(u) —u Sob'y(u) —u

(u #0).

We also assume f/(0) < 0 and introduce u,, < uy, < 0 < u}, < u}, as in the
previous subsection.

The structure of the boundary set in presence of nonclassical shocks
induced by viscosity and capillarity is much more involved. For definiteness,
we begin with the (most interesting) case that w, < 0 with f’(up) > 0
(entering boundary data) and its kinetic state gpby(ub) has f'o go"v(ub) >0
(entering kinetic image). To the boundary data we associate u; defined by
the conditions

flup) = f(up),  f'(up) <O0.
To the kinetic image we also associate go"(ub)* by the conditions
fo (pbﬂ/(ub)* =fo Sob’y(ub)7 f/ o (pbﬂ/(ub)* <0.
We then distinguish between two cases, as follows:
e When gpﬁﬂ/(ub) < gpbﬁ/(ub)*, we find
@, (up) = {up} U {9 (up) } U [, @ (up)*].

e When gpby(ub)* < @ (up), we find

CIDV(ub) = {ub}
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Hence, it appears that the shock set does depend upon the kinetic function
and, therefore, the shock layer equation can be thought of as a “composite”

of classical as well as nonclassical shock layer equations.

5. Systems with Diffusion and Dispersion

Formulation of the problem

Our method also applies to the boundary and initial value problem for

a nonlinear hyperbolic system of conservation laws [4, 15, [1§]
O + O f (u) =0, (5.1)

where u = u(z,t) € B(ux,dp) is the unknown, and B(us,dy) denotes the
open ball with center u, and radius &y, and f : B(us,dy) — R" is a smooth
mapping, such that A(u) := D f(u) admits N real and distinct eigenvalues

A(u) < -+ < An(u).

We denote by [;(u) and 7;(u) corresponding basis of left and right eigenvec-

tors normalised so that for all u € B(ux,do),
li(u) - rp(u) = Ok

It is well known that weak solutions are not uniquely determined by bound-
ary and initial data. In this paper we consider the simplest initial boundary
value problem namely the Riemann initial boundary value problem. One
very successful approach is to study the self similar zero-diffusion method.
In the present paper, we consider a different regularization namely the self
similar zero-diffusion-dispersion method. So, consider (5.I]) in the quarter-
plane x > 0,t > 0 and assume that the data at x = 0 and at t = 0 are two
constants, ur and up(€ B(us,do)), respectively. Let us continue to denote

the self-similar variable 7 by x itself.

—aul, + fluey) = eul  +~e*ul, x>0, (5.2)
mli_)ngouaﬁ(a:) = uy, (5.3)

us~(0) = up. (5.4)



662 A. P. CHOUDHURY, K. T. JOSEPH AND P. G. LeFLOCH [December

The linearized problem

In this section we study a linearized version of the problem (5.2])-(5.4]).
Given data ur,up € B(ux,d), the unknown function w. , will take its values
in B(us, Cy9) for C,d < dp. We assume that (B.I]) is strict hyperbolic at
us but the characteristic fields are not necessarily genuinely nonlinear nor
linearly degenerate. Further we assume that the boundary z = 0 is not
characteristic. Thus we assume that for dy small enough, the eigenvalues

satisfies
A< A <A < AT <0< AT < AL < AR < A (u) < AR,

for u € B(uy,dp). Since Df(u) depends smoothly upon u, one can ensure
that A\M — A" = O(&).

Given ur,up € B(us,0) for some § < dp, we are going to construct a

solution u® of (5.2))-(5.4]) having uniformly bounded variation, i.e.,

TV (ue ) = /000 u -, (x)] dz = O(1).

We shall henceforth write u. - as u itself. We set

k=1
where ap (k= 1,...,N) satisfy ag(z) = lx(u(z)). v/(x) and are determined

by the system

yela + ed + (¢ — Aj(u))a; = Di(a) + Da(a,d’), (5.5)

where
N
Di(a) = ~lp(u)- Y aia;(Dry(u) - rj(u)),
§i=1
Di(a,a') = ~l(u) - (D (2aia) + ajay)(Dry - r5)(w) (5.6)
ki

N

+ Z aiakalD(Dn'rk)rl(u)>.
ki l=1
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Now we look for solutions of (5.5]) having an asymptotic expansion of the

form
ai(r) = 7¢i(x) + 0i(z), = €0, L] (5.7)

The vector 7 = (71,...,7n) encodes the wave-strengths and 6; is of second-

order with respect to 7.

From (5.0)) it then follows that ¢; satisfy the decoupled homogeneous

equations
ve? ¢ + e + (@ = Ni(w))¢i =0, i =1,..., N, (5.8)

whereas 0; satisfy the following coupled system of N inhomogeneous equa-

tions
2t / _ 1 212 / -
ve“ 0! +eb; + (x — 0;(u))0; = eD; (a) + ve*D; (a,a’), i=1,...,N. (5.9)
Let us therefore consider the linear equation
a2l + el 4+ (x — \i(z)) s = 0.

We have already seen one of the solutions, we shall call it ¢;, for the above

second order equation in Theorem 2.2l The other solution is described below.

. L[
qi(w)sz +/ \/Msy) dy

- % /IL (1 + /1 +47(Ni(y) — y)) dy.

We write

Theorem 5.1. The linearized equation admits a smooth solution v; defined

in [0, L] satisfying the following asymptotic formula

- 1+ \IJZ(:L‘) q; (2)—a;(p;)

Vi) = ——Fe = 5.10
) (Aypi(x))s (310
where
()| + — YT ()] < ey, (5.11)
2p1i()?

with K, p; as chosen in Theorem [2.2.
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Let us introduce the notation

b (2) = — 7[%(90) () = 5232‘(513) ‘
“O) = i@ VY T baGew@ O

where Det(¢;, ;) = gZBﬂ[J; — ngbgq/v)Z The following theorem, which describes
an asymptotic form for ¢; and 1[114, will also be of importance later.

Theorem 5.2. Assuming that

K<cl
g

one has

pi—%

Det(éiﬂ[’t’)( ) = Det((;ﬁ“zb,)(p,)e =, z €0, L]

and, for some constant C > 1,

C
Det < =,
on < IDetG o] < 5
Also up to constant multiplication factors, the functions ¢;, zﬁ, have the form

14 ®4(2) pilei)—pi=) o 1+ U, (m) 9ilpi)—a;(z)
—1¢ 9 7/’2(@ =1
(ypi(x))s (ypi (@ ))Z

with ;, ®; satisfying the bounds as in Theorems and [5.1].

le(aj) =~e (5.13)

Now given a continuous and bounded source S : [0,L] — R, let us
consider the non-homogeneous equation

0" (z) + 7—169'(3:) + ’y—;(x —ANz))0(x) = S(x), = €0, L] (5.14)

Then it can be proved that the general bounded solution 6 of the above
equation can be represented as

— () / b)S() dy + ol / 3(y)S(y) dy, (5.15)

where c is an arbitrary non-negative constant.



2015] SELF-SIMILAR BOUNDARY LAYERS 665
Wave interaction estimates

To begin with let us fix some ¢ = 1,2,..., N and some smooth function

v : [0, L] — Bl(us, do) satisfying the condition

C

(@) < =, =z e[0,L]. (5.16)

Let us then consider the linearized equation
V29 + gy + (& — Xi(v))¢s = 0

and denote by ui,pi,gzgi,qi,zﬁi,qgiand 1[11 the corresponding solutions. More

specifically we have

wi(x) = Ai(x) —91:4-i

(5.17)
(2) = ‘/ L-z " [y
pi(®) = 27 / T2y +/x ¥ 4,

where the coefficients u; satisfy the bounds

C (5.18)
- :

Let pi(z,p) := pi(z) — pi(p) and g¢i(x,p) := qi(x) — qi(p). Then upto
constant multiplicating factors, we have

i(x) = L (I)Z(x;) e, di(x) = e L+ (i)z(xl) o
(ypi(x))7 (ypi(zx))s (5.10)
A 1+ Ui(z) e 5 1+ Ui(z) ueen '
1/}7,(:1:) =€ 1 & ¢z(33) = 7€ ¢
(ypa(x))7 (ypi(x))s

where p; is as defined before. Further we assume that the constant K ap-
1

pearing in Theorem satisfies the condition 0 < K < % which further

leads to the fact that for x € [0, L], we have

[@i(@)], ()], [Wi(2)], [ (2)] <

<

N2
l\’)l»i
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for all ¢ = 1,2,...,N. Similar inequalities hold for their derivatives as well.

Let us consider the normalized function

(o) e éi@ﬂ) Y L 5 .
oi(x) = 16 where I(¢;) —/0 oi(y) dy, i =1,2,..,N.

Let us define a weight function w, by

_ I+x+ AT

, x €0, L].
~

w(z)

Proposition 5.3. There exist constants C,c > 0, independent of € and -,

such that for alli=1,2,...,N and x € [0, L]

0<¢; < g, (520)
@) < Son@ente), (521)
bil) < CeTHeN? g e D) (5.22)

Proof. We have already seen that 0 < ¢;(z) < ﬁl— and & < fOL bi(x)
Ypi(x)) 4
< C which imply that

2C

0 i\ T —_— -
<) < @)

Now using the fact that yu;(x) > ¢ > 0 (see (5.18]), we have 0 < ¢;(z) <

o|Q

For z € [)\ﬂ‘f, L], we have

@z(l') _ L(Zfz(x) < g(}%(ﬂ:) < g 1+ z(xz epi(z)—spi(m) < ge—ﬁ(w—A%F
Jo dily) dy € € (dyp(x))4 €
and therefore
ia) < SN, e WL

which proves (5.22)).
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Differentiating ¢;(z), we get ¢}(x) = 9(®) and hence

- 1(%)

L@ )

= =1+ Ir + Is.
d;(2) £ 4p1;() P

Ga) _de) _ b
¢i(x)  gi(x) 1+

To estimate I, we begin by noting that p}(z) = % (—1+/1+ 4y(Ni(z) — 2))

and hence

1P ()] < %| 14 TT @) — ).

Using the fact that 4y(\;(x) —z) > —1, x € [0, L] and the inequality | — 1+
V1+al <|a|, > —1, we then obtain

1P ()] < %mmm —2)| < 2(Jz] + i) < Cwy(2).

I3 can be estimated as

!/
() c _C
Iy = | L ( <2 < Zu ().
|3‘ 4,“@(:17) — e = va(m)
Let us next estimate [1. First we note that " &:_ @ < 2. Also, we have

. C
[@i(2)] < Chy/l < — V1

Now using the inequality —1 + 1+ a < 5, a > —1, we have

VAT = 5V TF B0 —9) < 5 +9((@) = )

IN

A

1+ |z + [Ni(x)| (using v < 1)

1
< (1A 2|+ |>\i(l’)|); < Cuwy ().
Hence we get |[;| < gww(:n). O

Observe in passing that for some constants 0 < C; < Cy, the following

relations hold:

C1(1 +wy) < Vpi < Co(1 4 ywsy).
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Henceforth, we shall assume that, for all « € [0, L],

1 1
i(z) = Ai(z) — IVt 2
wi(x) = Ni(x) —x + yoo (5.23)

We note that this is a slightly stronger condition on + than that we had

assumed till now. Let us fix a number ¢; such that

e (A AMY ifi>p+1,
cz-=0, if i <p,

and consider the interaction terms defined, for 4,5, k,l =1,..., N, by

Fzgk(

¢]¢k dy7
(5.24)

Fi () ¢z(/¢mmwmzm<ﬁﬁmq/@@mm@,
and

ngk( ¢]¢k dy7

i (5.25)
G2L(@) = dila /WMWZM%WMAWWM@

With the above notation, we have the following result.

Theorem 5.4. For some fized, sufficiently small, o9 and 7y, there exists
a uniform constant C > 0 such that for any smooth function v : [0,L] —

B(u, dg) satisfying the condition

v'(2)l < —, = €[0,L],

o[Q

one has (for all x € [0, L] and all i,j,k,1)

N

[Flp@)| + | @) + [Fp @) < CY (@), (5.26)
m=1
N

GL(@)| + |G (@) + [Gh @) < Cv - dm(@). (5.27)
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Proof. To begin with we note that an application of the Cauchy-Schwartz

inequality leads to

N N

ST EL @+ IFS @)+ Fah @) < C Y Fya),
1,5,k,l=1 ij=1

N N

S G @) + G @) + |Gon@)] < Oy Y Gijla),
i,5,k,0=1 ij=1

where

P (o :Cf;z(l’) s 2 o
Py =22 [ 6000 + e ) dy -

A '&z x T
Gisa) = 2 [ )21+ 2 ) iy
Hence it would be enough to prove the required estimates (5.26)-([5.21) for

l*:'ij and é’ij respectively.

Estimating G‘ij

Let us define D;;(y) := —qi(y, pi) + 2p;j(y, pj). Then for all z € [0, L], it

follows using (5.23)) that

Dyj(x) = —gj(z) + 2)(z) = — + / 1 + )
_ pi(z)
= 27 + \/ Y +2\/ 5

1 3 1
- > >0. 5.29
2y 27\/_ 2y (5.29)

Also since the maximal value of 1+ yw, in the interval [0, L] is bounded, it

can also be seen that

1+ yw,(2) < CyDjj() (5.30)
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Then, we have

Gij(@)] < C(V#i(:ﬂ))_ie@
v pj(y,p5) ,
1 i (Y:p4) e =
x / (rpa(y) 5™ () (1 () dy
0 (v (v)) 1 1(95)

e = T ae) 2PiWe5)
€

167 o e = (14w (y) 2 dy

a;(x,p4)

1e ¢ T Di;(y) 1
< Ol ()3 | )
J

< C(1+7wy ()72

Now, we obtain

< C(1 4wy (@) 7 j(x) e
L) by o P
0 ng(y) Y

< Cye(l + s (2)) 3¢5 ()2 ,
since (1 +’yw7(y))_% <1, so that
1 9 _Pij@ Dij@)
Gij(z) < Cre(l +ywy(x))20j(z) e < e ¢
1 9 _Dij®) D0
— Cye(l+ywy(z))2¢;(x)%e "= e ¢
< Cre(149wy (2)) 26 (2)2-Cre(l + w, (7)) 2 65 () e 1P O~ P =)

Py

<P
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To estimate P;, we note that
SR e st
I(¢;)*  I(¢) I(e;)
< Co@)dye) < Coyjla)——  lsince p;(w,p;) <O
(vpj(x))1
< C(1 4 ywy(2) 2¢(x) (5.31)

e¢j(x)? =

and, therefore,
[P < Cyoj().

Hence we have |G;j(x)| < Cy¢;(x). and therefore
|Gij(2)] < Croj(x).

Estimating ﬁ'ij
We begin by observing that

JACH)

~ 1e e T —pi(y,p)+2p;(y,p5) 1
File) £ O+ )~ oy [ e ) ay
J Ci

Then using the fact that p;(z, p) — pi(y, p) = pi(z,y) we have

2p;(z,p5)
~ 1e €
FZ](:L‘) < C(l + ’way(:L‘))_EAi
1(;)?
T [=pi(y,p))+p;i (2,0))+2p; (y,05) —2p; (2,p;)] 1
X / e E (14 ywy(y)) 2 dy
¢

>

19j(@)® [T piew 2w 1
§0<1+ww<:c>>z;;;2 [T e )
J Ci

Let us define the term Ej;(x,y) := pi(z,y) — 2p;(z,y) and define

P2 (x)
I(¢;)?

Thus it is enough to estimate the term Fj;.

N[ =

Fij() = (1 + 0y(2)) [ e e )4

First let us consider the case when i = j. Then Ey(x,y) = —pi(z,y)
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and

3 o2pi(z,pi) x
(1 —l—’wi(ml))ze — ‘/ e—%pi(x,y)(l_i_,yw’y(y))_% dy|
(yui(z))2  L(di)* e
O+ @) [ ) (1 4 ()
< +w1‘_2%/egi7i + W -3
e I(¢2)2 c; Rhaedt Yy
Lpi(,pi) xeipz‘(ymi) 1+ ~vw -1 d
< Oty () T e (1-+ 9 (y)# dyf
I(¢:) 1(6)

L
< Cilx) /O buly) dy < Con(x).

Next we consider the cases i < j and skip the case i > j since the proofs

are analogous. For a > 0, let us define

A = xléﬂ[él’ﬂn Aij(z) — ado,

0.32
Af‘]/-[ = sup Ajj(x) + ado, (5.32)
z€[0,L]
where Ajj(x) := 2A;(z) — A\i(x). Hence for o sufficiently small,
M AT < Ngi(z) <AM < L, 2 €0, L
7 ] — ]( ) — J [ ] (533)

M
Let us choose a point a;; € ()\;-W, A7) such that
aij = A?} — K,

where x > 0 is sufficiently small. In case A{-’; < 0, we shall choose a;; = 0.
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Case i< jand j > p+ 1.

Case 1: 0 < A; < Aj. Let us briefly collect some properties of E;j(x,y) to
be used later. For a fixed p € [0, L], for any z € [0, A]"], using the fact that
wi(z) < pj(x), it follows that

81EZ] (:1:7 p) — \/N] \/NZ

< —p] < wﬂ/

Now for x € [0, L], using the expansion (with respect to )

V1tdy(N(z) —2) = 1+ 2y(N(2) — 2) + O(?),
we obtain
N Ej(z, p) = 2(x — (2 (z) — \i(z))) + O(9).

Using these we find that 01 E;;(x, p) is strictly less than a negative constant,
when z < a;; and is negative (positive) for x < A7} (z > AZ]-\J/-[ ). Therefore,

for each p € [0, L], E;j(z, p) achieves its minimum at a point p;; € [A]], AM ].

It can then be easily checked that
Eij(z, pij) > 0, x € [0, L].
Also when Af‘]/-[ < 0, it follows that
E;j(x,0) > 0.
Let us suppose that = € [0,a;;]. Using the fact E;;(z,y) = Ej;(z, pij)

—Ei;(y, piz),

|F(2)] < C(1 + yws ()2

‘/ O Eij(y, pij )e_Eij(y:Pij) )
81EZ] Z/,PZJ)
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Similarly as in the case of Dj; (see (5.30)), we can show that

1 4+ ywy ()

———= | <C, z€[0,a]

0L Eij(x, pij) 0,235

Using this, we find that
P@) maen
1 X i \T>Pq4
By @) < C1L+ 7w (a)) L ™
1(¢;)?
’Lj(y /Jz]) _3
<| [ 0Bt e 1k )
42 T) Eij(@pi5) Bij(@,pi5) Bij(cipig)
SC’E(l—i—’yww(az))% ]A( )26 S (e‘ S e sp])
1(¢;)
12 1 g (x,c;)+2p,;(x,p5)
e G TS
1(¢;) 1(¢;)
= (14w, (2))2(T1 + To).
(5.34)

The term T; can be estimated as in the case of P; above (see (B.31])). For

the term Ty we proceed as follows

O (1 +7W~y($)) L oByje)+2pi(@0)=pi(@p) o

" e ACE : I(6)(1+ w23 2

IA

Ce (1 -|—fywﬂ{(ag))_% Bij(m,ci)+2pj(@p)=pi(=.p5)

1(d;)? € ° 1(¢i)pi(x). (5.35)

IA

Now , we have

Eij(x, ;) + 2pj(x, p;) — pi(w, pi)
= pi(z,ci) = 2pj(x, ¢;) + 2pj(x, pj) — pilz, pi)
= pi(pir i) — 2p;(pj, ci) — 2pj(pi, i) + 2pj(pis ¢i)
= Eij(pi, ¢i) + 2p;(pi, p5)

and therefore

C Eijlri, cl)+2p (pi>py)
Ty < (14 ywy(x))” ége : T i),

Thus it will be enough if we can prove that E;;(p;, ¢;) + 2p;(pi, p;) is strictly
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less than a negative number.

Now using the fact that for z,p € [A",L], the partial derivative
|01E;;(z, p)| is bounded by a positive constant that is independent of v and
the fact that p;,c; € [\, AM], we have

777N

Eij(pisci)| < max {01 Eij(z,¢)}pi — cil,
| Eij (pis ci)| :cE[AQ"A{”]{ L Eij (2, i) Hpi — cil

which implies E;;(p;, ¢;) = O(do).

On the other hand, using the fact that for z € [0, L], \/1 + 4y(\(z) — 2)
=1+ 2y(N(z) — ) + O(7?), we obtain

pji—pi 1 [P
- = 1+ 47(\j(y) — ) d
5 ), \/ +47(\i(y) —y) dy

= —/pj(kj(y) —y) dy+O(v)

pi(pispj) =

AT Py
— _/ (\i(y) —y) dy — / (Aj(y) —y) dy + O(v)
p

Am
)\;" ’
<- / (AT — ) dy + O(6) + O(y)
Pi
< (AT =AM+ 0(6) + O().

Therefore choosing «, dp small enough, we find that E;;(p;, i) + 2p;(ps, pj)
is dominated by the strictly negative term —%()\;” — )\ZM )2, which proves the
required estimate on 75, that is,

Ty < C(1+wr(2) "2 ().

Hence it follows that
|Fij(x)] < Coi().

Let us suppose that x € [a;;, L]. For this case we proceed as follows:

|Eyj(@)| =

—~

1 A?(l’) T Bijj(zy) 1
1 +’yw7(m‘))2[(¢3 2 ¢ (1+ywy(y) "2 dy
J Ci
. pj(zp)+Eij(z.pi5) [T Eij(y.pij)
< qb](Al‘)e J J . J J / 6_% dy
1(¢;) ci
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Now using the properties of Ej;(y, pij), it can be easily shown that

Eij (y Piz)
ff_ e dy is bounded. Therefore it is enough to estimate
C Pij (@)
Fy(@)] < Soje s
where

Pij(x) :=pj(x, pj) + pi(x, pij) — 2p;(x, pij)-

In particular we shall now prove that P;;(x) is strictly less than a negative
constant.

P ( ) = bj pl]vp] (x pzy p] x pzy

+
pm / /ug d +/ \/Nz \/u;
Pj Pij

P 1 Pij
— P p”+2—/ \/1—1-47)\ (y) —y) dy

2y

4 (T )

/p ) dy+ / %_(Axy) - X)) dy) +00)
() +0().

Now using the fact that \;(y) < \;(y) we find that P,; takes its maximum at
a;j. In what follows we prove that P;j(a;;) is less than a negative constant,
which in turn would prove the required estimate.

~ Pij oy
Pij(ai;) < /p_ (A\j(y) —y) dy + /p“ () = (1) dy + O()
< _/Pij(y - )\é\/l) dy + (pij — aij)()\;\/f — ™)+ O(9)

Pj

IN

5 (s = M — (o = AMY) + (i — asg) (X~ AT) + O(3)
1 M2 m

=3P = A7)+ (i — aij) A} = AT + O(%) + O().

Now choosing 7, §p and « (as in the definition of a;;) small enough, we obtain

that p@j (a;j) < —C with C strictly positive, whence the desired estimate for

F;; follows.
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Case 2: \; <0 <\

Let us suppose that x € [0, a;;]. Proceeding as in Case 1, we deduce (5.34))
and (0.35]) corresponding to this case as well. The estimate for 7} is again
obtained as before. For T5 proceeding as in the previous case, we have

Eij(z,ci)+2pj(x, pj) —pi(z, pi) = Eij(pi, ci)+2p;(pis pj)
= 2p;(0, pj), using the fact that p; =0 = ¢;.

But 2p; (0, pj) is strictly negative (p; attains its maximum at p; and is strictly
increasing in [0, A7"]) and therefore

g(l + e (2)) 7225000 gy ()
< C(1+qwy (@) 2¢4(2),

T <

whereby it follows again that |Fj;(x)| < C¢;(x).

Let us next suppose that x € [a;j, L]. The proof in this case is analogous
to that corresponding to the previous one and hence we omit the proof.

Case i < j <p.

Then we have ¢; = 0, p; = 0 = p;. We can then write

. p;(x,0)+E;;(x,0) r E;;(y,0)
‘.FZ]({L’)‘ < ?z;xie ’ = / e - dy
' 0

C Py [T B0
<S4 (a)e s /e =y,
3 0

where Pj;(z) := pj(x,0)+ Ej;(x,0). Observe here that choosing a sufficiently

small, we can always make AZ]-\J/»[ #0.
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Let us first consider the case when Af‘]/-[ < 0. We have

Pij(z) = pi(x,0) — pj(z,0) = (x)

=5 /\/7 27 / sz)
_m+/ M L \/7
\/uz \/u] )y <o

since 11;(y) < pji(y). Now 01 Eij(x,0) = 2(z — (2A(x) — Ai(z))) + O(v) and

hence choosing v to be sufficiently small, we obtain

—01E5(x,0) = 2((2A;(z) — Ai(z)) —x) + O(7)
<20} +0(y)

—(C1, where C is a positive constant.

Integrating this from 0 to y, and using the fact that £;;(0,0) = 0, we obtain
—Ei(y,0) < -Cr y

and since P;; is nonpositive, we further have P;;(z) — E;;(y,0) < —C y.

Therefore, we obtain

and hence we obtain
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Next let us consider the case Af‘]/-[ > 0. We have

Nz Hj
B](x) - EZ] y,0 \/ \/ / ds + pj (y, 0)

<pg y,0

using the fact that p;(s) < pj(s) and y < 2. Therefore it is enough to

C T p;(y,0)
—¢j($)/ e~ = dy.
€ 0

estimate the term

We obtain

pin0) = -2+ [/

:___|__/ \/14-47 —5) ds
1

:_%+% 1+ 2109 — )+ 0GR (s) — 5 ds
— 5 [0 = )+ 00 0) = 97 s
<_Oly7

choosing v sufficiently small. Therefore, we find

C T pj(y,0) C L e
Sow [ a< o [
= 0¢(x)(1 — e~ ) < Co;(x)

and therefore |Fjj(x)| < C¢;j(x). This completes the proof of the theo-

rem. Oa

6. Existence Theory for Systems with Diffusion and Dispersion

We now establish the existence of a solution for the boundary Riemann
problem (5.2))-(5.4) with diffusion and dispersion. Throughout this section
€ > 0 is a given parameter; all the estimates below are uniform in the limit
e — 0. We follow the previous works of LeFloch and Rohde [17], and Joseph
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and LeFloch [8,19,110] and since the proof of the theorems are straightforward

adaptation of these papers, we omit all the proofs.

The first step is to analyze the coupled system

1
ve2all + ea) + (2 — \p(v))ayp = %D,ﬁ(a) + Di(a,d"), (6.1)
where
N
Di(a) = —lx(v) - Y aia;(Dry(v) - rj(v)),
ji=1

DX(a,d') = —lk(v)-(Z(2aia;-+a;aj)(Dri'rj)(v) (6.2)
ki
N

+ Z aiakalD(Dri'Tk)Tl(v)>a
k=1

for a fixed function v : [0,00) = B(us, Cy 9).

We are given the boundary value up € B(us,d) and, instead of using
a right-end state uy, we first describe the Riemann solutions using a “wave
strength” vector 7 € RN. The coefficients ag, are sought in the form of an

asymptotic expansion in the wave strength:
ap(z;v,7) = T o (25 0) + O (250, 7), (6.3)

where 7 = (71,...,7n5) € B(0,61), the ball in RY having center 0 and radius
01 > 0 and ¢ are solutions of the homogeneous system constructed in in the
previous section. The remainder 67 (z;v,7) in ([6.3)) is sought to be second-
order in 7. In view of (G.1l), the coeflicients x +— 67 (z;v) must satisfy the

coupled system (k=1,...,N)

" 1 / 1 D}lf(a) 2
0" + %92 + @(l’ — Ak(v)) 05 = e + Dj(a,d). (6.4)

Using an equivalent integral equation for 6 = (61,...60y), we have

bu(x) = () /0 " )Sk(0) (W) dy + o) / "o )S )W)y, (6.5)

Ck
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where
1
Sk(6) = %D,i(a)—i-D,%(a,a'), a=(ay,...,ay),
ag(z;0,7) = T pf (23 0) + O (50, 7),
and by a straightforward generalization of [17], we get the following theorem.

Theorem 6.1. There exist constants 6,1, Cx, C > 0 with the following prop-
erty. For all ¢ > 0 and every continuous function v : [0,00) — B(u, Cy J)
and for every T € B(0,61), there exists a unique solution (6%,...,0%) of
(64)) satisfying ([©.5) with following estimates,

105(;v T)\+—\98( v T)\<C\T|2Z¢] k=1,...,N. (6.6)
7=1

Furthermore for |7|,|o| < 01 we have the continuous dependence estimate
6250,7) = B 0,0)| + |50, 7Y — 6(5v,0)]
Wy
N
< Coilr—ol Y ¢i(5v),  k=1,...,N. (6.7)
j=1

Next we construct solution to the nonlinear problem. For each up and
each vector of wave strengths 7, we construct a solution u® of the Riemann
problem (5.2)-(5.4) with diffusion and dispersion.

Theorem 6.2. There exist 9,01, Cy, C > 0 with the following property. For
alle > 0 and all up € B(us,0) and 7 € B(0,61), the boundary Riemann
problem ([B2)-(E4) admits a solution x — uf(x;7) € B(us,Cyd) leaving
from up = u®(0;7) and reaching some state ur := u®(4o00; 1), with

N
= a5 r(u (6.8)
k=1

N
ag(z;7) = 1 05 (x; ) 4+ 05 (25 7), 105 (z;7)| < C|7)? Zgoj x;T)

(p% (=37) —pF (pgi7))
(& 5
PrlaiT) = oo PEET)—PE (PKiT)) » Pi(w;7) / \/ . (6.9)
I e E dx

0
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paw) = M (7)) — o+ o
4y
In particular this implies that u® has uniformly bounded total variation, in-
deed

N
[w'| <O 7] )¢5 (6.10)
j=1
and, thus,
TV (u®) < O(1)|7]. (6.11)

We now consider the Riemann problem with both ends up and u; fixed.

Theorem 6.3 (The Riemann problem with diffusion and dispersion). There
exist §,Cy,C > 0 with the following property. For every e > 0, ug,uy €
B(uy,d), the Riemann problem (5.2)-(.4) admits a solution x — u®(x) con-
necting up = u°(0) to uy = u(+00) and satisfying u®(x) € B(us,Cy ) for
all x > 0. It satisfies also the expansion (6.8)-(6.9) for some T = 7 with

1
ol |7 < |Jur —up| < C'|7°. (6.12)

Furthermore, u® is of uniformly bounded total variation and satisfies ([6.10])-
6.11).
The proof of this theorem relies on the invertibility of the mapping

Se:1=(71,...,7n) € B(0,01) = Sc(v,7) € B(uy, Cs9)

defined for each function v by

N 00
&mﬂ=w+2/(wmwwﬁuwwmwm
k=170

the right-hand side being defined by Theorem from the data upg, 7 and
v. We state the result, the proof is similar to LeFloch and Rohde [17] and
is omitted.

Proposition 6.4. There exist §,01,C,,C > 0 with the following property.
For alle > 0, up € B(ux,0) and each function v : [0,00) — B(uy, Cy ), we
have the following.
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For each ur € B(us,?6), there exists a unique solution T € B(0,61) of
the equation

Se(vv 7_) =uy.

The mapping S- is thus locally invertible and S is uniformly bounded in e
in the sense that

1S (ur)| < Clup — upl.

7. Analysis of Boundary Layers and Convergence Results

In this section we study the structure of the limiting solution u =
lim._,ou®. This analysis rely on the estimate u® obtained in the previous
section. Qur objective is to describe the boundary layer that generally arises
in the solution at x = 0. We refer to Joseph and LeFloch [§] for a discussion
of this problem in the general framework of L solutions. First of all, as an

easy consequence of Theorem [6.3] we obtain the following result when ¢ — 0.

Theorem 7.1 (Existence theory for nonlinear hyperbolic systems). There
exist 9, Cy, C' > 0 such that the following property holds. For every up,us €
B(uy, ), the solution u® (or at least a subsequence) of the boundary Riemann
problem (B.2)-([5.4]) converges pointwise to a weak solution x — u(x) of

—ZL'U/ + f(’LL)/ = 07

which is a function of bounded variation connecting some value u(0+) to
ur = u(400) and satisfying u(x) € B(uy, Cy6) for all x > 0. Moreover, we
have

u(x) = ug for all x> \¥

and
TV (u) < Clu; —upl.

Therefore the condition (5.3) at infinity holds for the limiting function.
However the condition (5.4 does not pass to the limit in general due to the
formation of boundary layers near = 0 and must be relaxed and expressed

in the weak form.
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To determine the value u(0+), we analyze the boundary layer near 0.
The same analysis as in the scalar case leads to the following result for the
boundary layer.

Theorem 7.2 (The boundary layer for systems with diffusion and disperi-
son). The trace u(0+) of the Riemann solution constructed in Theorem [7.]]
satisfies the following property. There exist a vector Vo, and a smooth func-
tion y > 0+ V(y) such that

W+ V" (y) = F(V(y)),

V(0) =up,  lim V(y) = Ve, (7.1)
Jim V'(y) = lim V7(y) =0
and
F(Vao) = F(u(0+)). (7.2)

Let us now introduce the admissible set based on the diffusive-dispersive
regularization:

@, (up) := {V / There exists a solution V, : [0, +00) — R

7.3
to the boundary problem (ZI)-(7.2) }. (7:3)

Then we claim that the trace u(0+4) of the Riemann solution constructed in
Theorem [Z.I] belongs to this set. This follows because the flux-function f is
locally one-to-one and the condition (7.2]) is equivalent to saying

u(04) = Voo
In other words, the solution satisfies the boundary condition
u(0+) € @, (up).

Now, it is important to check that, in some sense, the boundary set ®.(up)
is not too large, which is the purpose of the following section.
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Analysis of diffusive-dispersive boundary layer

One integration of (7.1) gives after using the boundary condition
W'+ V! = (V) = f(Veo),
V(0) = ug, V(o0) =V, (7.4)
Jim V'(y) = lim V"(y) = 0.
Setting W = V', we can write the second order system (7.4]) as the first

order system

Vi =W,

, (7.5)
YW = f(V) = f(Vee) = W,
with boundary conditions
V(0) = up, lim V() = Va.
Y (7.6)

lim V'(y) = lim W(oo) = 0.

Yy—00 Yy—00

Note that (V,W) = (V,0) is a stationary point for the system (.3]) and we

are interested in the set of V,, € RY for which it has a solution satisfying
ZG).

Setting Z =V — V,, we write our system

Z'=W,
7.7
’YW/:Df(Voo)Z_W"i_[f(Z"i_Voo)_f(voo)_Df(voo)Z]ﬂ ( )
with boundary conditions
Z(0) = up — Vx, lim Z(y) = lim W(y)=0. (7.8)

Yy—00 Yy—0o0

Now (Z,W) = (0,0) is the critical point of the system (Z7)). We write the

system as linear part at (0,0) and the quadratic part namely

z' 0 Id 7 0
(W’) B <%Df(voo) —%Id) <W> + <%[Q(Z7W)] ) (7.9)
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where

9(ZW) = f(Z + Vee) = [(Vec) = D (v0)Z = O(||(Z,W)I).
First we analyse the eigenvalues and eigenvectors of the matrix

A(Veo, ) = <%Df0(Voo) _;d]d> . (7.10)

Proposition 7.3. A(Vy,) has 2N distinct eigenvalues ,u]f with correspond-
ing basis of left and right eigenvectors L,f, R,f, k=1,2,...,N given by

—1 = (1 + 492 (Vio)) /2

M];(VOO/V): 2 ) k:1727' 7N7
v
—1+ (14 49\ (Voo ) /2 (7-11)
1 (Vo) = 27 RY<)) " k=1,2,...,N,
Y
Rif (Voo ) = (ri(Vio)s 153 (Voo )7k (Vo)) 712)
Li; (Vao,7) = Fai(— 1 Voo, Mk (Voo Ik (Vo))
where
ap = i (7.13)

(14 4y (Vo)) V/2

The eigenvalues py, Voo, 7).,k = 1,2,...,N and pif (Voo,v) (k= 1,2,...,p)
are negative and pif Voo, ) (k = p+1,...,N) are positive. Further as~y ~ 0,

_ 1
i (Voos ) ~ — 1 (Vo 7) = M (Vio).- (7.14)

Proof. We note that u is an eigenvalue of the matrix A(Vy,~y) with eigen-
vector (R1, Rg),R1, Ry € RN iff

1 1
—uRy + Ry =0, ;Df(VOO)Rl — ;RQ — ARy = 0.
This system is equivalent to

Df(Veo)R1 = (1 + py)uR1, Ro = pRy.
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This means that p(1 4+ yu) is an eigenvalue A\;(Vy) of Df (Vo) with Ry =
re(Vo), K =1,2,...,N. So p satisfies the equation

T+ = M (Veo) = 0, (7.15)
and with corresponding right eigenvectors
(R1, Rg) = (T’k(Voo),/L T’k(Voo)). (7.16)

Left eigenvector (Li, Ls), L1, Ly € RN corresponding to the eigenvalue sat-

isfies the equation
1 . 1
—Df(Voo) Lz = pLy, Ly — —Lo = piLo
0 0
which leads to
1
Df(Voo) Lo = (1 + py)uLa, Ly = (5 + Lz

This relation says that up to a scalar multiple the left eigenvector corre-

sponding to the eigenvalue p is of the form

(L1, Ls) = <<§ )1 (Vao), 1 (Vao): (7.17)

where p is a solution to (ZIH)). Solving (7I5)) for ux we get

L =L (L Ay (Vo)) 2
Ky = % .

Also we have

2 T (14492 (V)2

Thus A(Vs) has 2N distinct eigenvalues

1= (1 Ay (Veo)) 2
My = 2

L 1 (4 Ay (Va)) 2
My = 2y
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Also up to a scalar multiple, the right and the left eigenvectors corresponding

to ,u,f,k‘zlﬂ,...,N are

Ry = (re(Voo), 1t mi(Voo)),
and
L];t = (—/L?lk(voo)vlk(voo))

Now, we have

Li R, = L -Rf = LR =0, j#k jk=1,2,... N,
144 - 1/2
rErt = +UF VA:(V D=

We normalize them so that Lf.R?E = 0p;. This leads to the choice of
normalization factor «y, stated in the proposition. Since A\;x(Vy) < 0 for
E=1,2,...,p and A\g(V) > 0 for k = (p+1),...,N, it easily follows
that u, (Vo) k = 1,2,...,n and u,j(Voo),k: = 1,2,...,p are negative and
,u;,k: =p+1,...,N are positive. The asymptotic form of u; as v goes
to 0 follows from the formula. This, therefore, completes the proof of the
theorem. O

In studying the system (.7))-(7.8]), it is convenient to write it in terms
of the components in the directions of the eigenvectors of A(Vy,7y). Thus
we decompose (Z, W) = (V — Vi, W) with respect the basis given by (712

in the previous theorem.

N N

V-V V-V _ ([ V-V _

( W >=§ L,j.( - ).R;+§ Lk-< - )-Rk.(7.19)
k=1 k=1

Let us denote
aj; (y,7) = 2o (Voo )k (Vao) - [Ff (Vo) (V (,7) = Vi) + W (y,7)]. (7.20)

Then
N

V-V N . B )
- Z ay, (y, V) By + Z ar, (¥, )Ry, - (7.21)

w k=1 k=1
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The system (T9) in a = (af ,a3,...,a%,a7,a;3,...,ay) becomes
af (4,7) = i Voo M (:7) + gt (a(y,7)),  k=1,2,...,N, (729
ar, (4,7) = iy Voo, Maf (y7) + g5 (aly,y)),  k=1,2,...,N,

G (@) = —(1+ (Vo)) V2U(Va)g(a) = O(lal®), k=1,...., N,

ge (@) = (1449 (Vao)) 21k (Vio)g(a) = O(llal|®), k=1,...,N, (7.23)
g(a) = g(Z,W) = f(Z + V) — f(V) = Df(ve0) Z, Z =V =V

We remark that the estimate for gz,c in (Z23)) is uniform in v~ 0 and v > 0
and we used the fact that (Z, W) = (V — V, W) can be written in terms of
a. From (Z.21]) we have,

(Vee) - (V1) = Voo) = (LH49AVae) P ) Fa ) o

e(Voo) - W = (14 49X (Voo )2 1y (Vaos Mag (4,7) — 11 (Voo 7)ay, (y,7))

which gives

N
(V( =3 (1 + 40 (Ve)) 2 (af (1) 0 (:7))7k (Vo)
k=1 (7.25)

N
W =" (14 4y (Vo)) (1, (Voos Mag, (457) = 115 Voo, M)y, (457 (Voo
k=1

The boundary conditions (7.8]) becomes

a;c (0) = Lo (Voo )l (Vio) - [Ff (Voo) (up — Vi) + W (0)]

hmak()—Ok—12 N (7.26)
y—

We observe that W(0) is not prescribed and depends on up. In fact
W (y) depends on up, Vo and v through the relation W = V’. With these
observations in the next theorem we analyze the structure of boundary layer.

Theorem 7.4 (A property of the boundary layer set). There exists 9 > 0
such that for any 0 < v < o, the set ®,(up) contains the point up and near
upg, it is a p dimensional manifold whose tangent plane at up is given by
up+ Span of {rp(up),k =1,2,...,p}.



690 A. P. CHOUDHURY, K. T. JOSEPH AND P. G. LeFLOCH [December

Proof. First we observe that (0,0) is a hyperbolic stationary point for the
system (7.22]) with N +p negative eigenvalues and N —p positive eigenvalues.
So by standard theory of hyperbolic points of systems, near (0,0) the system
has a stable invariant manifold of dimension N + p whose tangent space at
(0,0) is generated by R, (Voo, ),k =1,2,..., N, R,;F(Voo,’y)k, k=1,2,...,p.
So the initial value problem has a solution vanishing at infinity iff the initial

data for a,f (0,7) lies in this stable manifold.

Let us note that the standard way to get stable solutions of the system
is by a fixed point argument applied to an equivalent system of integral
equations

_ y o _
ay (y,7) = e (Vm’”)yagﬁ/ etk Vo= 0 ([|a(s)|[*)ds, k=1,...,N,
0
Yy
o (57) = 2= Vg [ OO P k=1, (720
0

ay (y,7) = - / ete Ve NW=2)0(||a(s)|[*)ds, k=p+1,...,N,
)

with a; g,k =1,2,...,n and a,jo, k=1,2,...,p are constants close to 0.

We note that for stable solutions, we do not prescribe those components
of the initial data in the direction of eigenvectors corresponding to positive
eigenvalues and impose that these components are in the stable invariant
manifold. This means

0 (0) = = [ ED 0 a()Ps, k=pri N (128)

If we denote the right hand side of (T.28) by Gk (aj (0),...,a, (0),a] (0),...,

ay(0), k =p+1,...,N, then G = (Gpy1,...,Gn) together with partial
derivatives of the G in each of its arguments vanish at 0.

Now let us come to our problem of determining the data V,, for which
the system (7.4]) has a solution, or equivalently the problem (7.22]) and
(T26]) has a solution. Above analysis shows that the right hand side of
G = (Gp41,---,GnN) depends only on

_Oék(voo;’}’)lk(voo) : [+N2_(V007’Y)(UB_VOO)+W(O)]7 k=1,...,N
ak(VOOa'V)lk(Voo) : [_N];(VOOy’V)(uB - Voo) + W(O)]’ k=1,....p

S S
ESNINE S
— —
S L
= 2
~— ~—
(I
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but not on

az; (0,7) = (Voo Mk (Vo) [= 15y (Voo 1) (up=Veo)+W (0)], k = p+1,..., N
Let F = (Fpt1,...,Fy) with

Fr.(uB, Voo, 7) = ak(Voo, Mk (Voo) - [~ (Voo 7)(uB — Vio) + W (0)],
k=p+1,....N

Considering G as a function of (up, Vs, ), the solvability condition becomes

F(ZLB, Vooa’Y) - G(ZLB, VOO/'Y) =0. (729)

Now writing W (0) = W (v, up, Voo, ) and using the fact W (v, up,ug,?)

=0, we get

Dy, Fi(up,up,y) = [—pg (uB,y) — Dy, W(v,up,up,v)]ow(up,v)lk(un),
k=p+1,....N

and

DVoon(’LLB, upB, ’7) = 0.
Since the function
ag(Voo)Det[—p, (up,v)Id — Dy, W (v, up, up)] (7.30)

is an analytic function of ~, its zeros are isolated and so we find v9 > 0
such that for 0 < 7 < 7 this determinant is not zero. Thus the rank of
Dy _(F-G)(up,up,y) = N—p. Soin the V-space the relation (7.29]) defines
a p dimensional manifold containing up and if V is in this manifold we have
a solution for the problem (7.4)) satisfying u(0) = up and V(o0) = V4 and
the tangent space at up is spanned by 7;(ug),j =1,...,p. O

Remark 7.5. For any stable solution (a} (y,7),a; (y,7)) of (T22), the
components a, (y,7) goes to zero uniformly for y > § for all 6 > 0 since

tp (Vo) = _71 as v ~ 0. Taking limit in the expression (7.24]), we get,

af (y) = (Vo) - (V(y) = Vo),  k=1,2,...,N,
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which is exactly the expressions for coefficient of the r(V4,) in the expan-
sion of V(y) for the case v = 0, which was analyzed in [§]. In fact the
corresponding expression appearing in (7.30]) is just one.

We summarize our convergence analysis by the following theorem.

Theorem 7.6 (The Riemann problem for systems with diffusion and dis-
persion). Assume that the system (5.1)) is strictly hyperbolic with p negative
eigenvalues and N — p positive eigenvalues (we would like to recall that here
x denotes the space variable, and not the self-similar variable).

o (Existence) There exist 6,C > 0 with the following property. Given
up,ur € B(u,0) there exists a weak solution u(z,t) of ([B.I) which
1s self-similar and of bounded total variation. The solution u satisfies
with nitial condition u(x,0) = ur and a weak form of boundary condi-
tion u(0+,t) € ®,(up) the set of boundary values given by (L3). Fur-
ther the solution satisfies the Lax entropy condition A\ (u(x+,t)) < s <
A (u(z—, 1)), where s is the speed of the discontinuity.

e (Local structure of admissible set) The set ®~(up) defined in (L3) con-
tains the point up and, locally near up, is a manifold with dimension
p whose tangent space at up is spanned by the eigenvectors rj(uB),
j=1,2....p.

The above facts were already established during our analysis, except the
assertion that the solution satisfies the Lax shock inequality, which follows
by the same analysis as for the scalar case in Section 3.
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