Bulletin of the Institute of Mathematics
Academia Sinica (New Series)
Vol. 10 (2015), No. 4, pp. 575-613

GLOBAL SOLUTIONS TO 3D ISENTROPIC COMPRESSIBLE
NAVIER-STOKES EQUATIONS WITH FREE BOUNDARY

HUIHUI KONGY¢, HAI-LIANG LI'"* AND CHUANGCHUANG LIANG!¢
Dedicated to Professor Tai-Ping Liu on the occasion of his 70th birthday

1School of Mathematical Sciences, Capital Normal University, Beijing 100048, P. R. China.
“E-mail: konghuihuiking@126.com
bE-mail: hailiang.li.math@gmail.com

“E-mail: chuangchuang.liang@gmail.com

Abstract

In this paper, we consider the free boundary value problem of 3D isentropic com-
pressible Navier-Stokes equations with the stress free boundary condition where the com-
pressible viscous flow of finite mass expands into infinite vacuum. The density changes
continuously (or discontinuously) across the interfaces separating the fluid and vacuum.
For the spherically symmetric initial data with finite energy, we prove the global existence
of spherically symmetric weak solutions. Furthermore, we investigate the expanding rate

of the domain occupied by the fluid.

1. Introduction

The Navier-Stokes equations are the basic equations of fluid mechanics,
describing the motion of viscous fluid. For isentropic case, the Navier-Stokes

equations of compressible viscous fluid in R™ can be written as

pt + div(pu) =0,

(pu); + div(pu ® u) + VP = div(2£D(u)) + V(Adivu), (L.1)
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where p(x,t),u(x,t) = (u1(x),...,un(x)) and P(p) = p7 (7 > 1) denote the
density, velocity and pressure respectively.

~ Vu+ V'

D(w) =

is the viscous stress tensor. & and A are the Lamé viscosity coefficients
satisfying

€>0, 264 nA > 0. (1.2)

There are huge literatures on initial boundary value problems and the initial
value problems for the compressible Navier-Stokes equations. In one dimen-
sion, the problem has been studied extensively, refer to [17, 9, 19] and the
references therein. In the multi-dimensional case, the problem is more com-
plicated and is far from being completed. The global existence of smooth
solutions to Cauchy problem and initial boundary value problem for (LII)
was first proved by Matsumura and Nishida for smooth initial data with
small perturbation [21, 22, 23] and later by Hoff [11] for discontinuous ini-
tial data. Danchin [2] obtained existence and uniqueness of global strong
solution for initial small perturbation in Besov space. The global existence
of renormalized solutions to (1)) in R™(n = 2,3) for arbitrarily large ini-

tial data with finite total energy and the vacuum possibly contained was

3n
n+2
n

for v > 5. If the initial data is spherically symmetric, Jiang and Zhang

made by Lions [19] for v > and by Feireisl, Novotny and Petzeltov [5]
[14] obtained a global spherically symmetric weak solution provided ~v > 1.
Recently, the classical solution with small initial total energy and possibly
vacuum is shown to exist globally in time in R? by Huang-Li-Xin [§].

The free boundary problems for the compressible Navier-Stokes equa-
tions ((LI)) which involves the influence of the vacuum state on the existence
and dynamics of global solutions to (L) has attracted lots of research in-
terests and been studied with rather abundant results for general initial
data and variant boundary conditions imposed on the free surface, refer to
[1, 6, [15, 120, 124, 125, 132, 134, 135, 136, 137] and the references therein. The
free boundary problems have been studied extensively in one dimension,
in particular, global existence of the weak solutions to the free boundary
problem was investigated for one boundary fixed and the other connected
to vacuum in [24]. Similar results were obtained for the equations of spher-
ically symmetric motion of viscous fluid in [25]. A further understanding
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of the regularity and the behavior of solutions near the interfaces between
the flow and the vacuum was given by Luo-Xin-Yang in [20]. For the free
boundary problem in multi-dimension, there are also many important works
concerned with the well-posedness and asymptotic behaviors of solutions for
either barotropic [6], [30, 135] or heat-conductive fluid |1, 36]. In particular,
the local classical solutions to the free boundary value problem for (1) is
shown in the case that across the free surface stress tensor is balanced by
a constant exterior pressure and/or the surface tension for either barotropic
flow [30, 134, 137] or heat-conductive flow [28, 36]. The global existence of
strong solutions close to the equilibrium state is established in the case that
across the free surface the stress tensor is balanced by exterior pressure |34],
surface tension|31] or both surface tension and constant exterior pressure [35]
in three-dimension. Global solutions to the free boundary value problem for
compressible heat-conductive flow are constructed for spherically symmetric
initial data of large oscillation between a static solid core and a free bound-
ary connected to a surrounding vacuum state in [1]. Global existence of a
spherically symmetric weak solution to the multi-dimensional free bound-
ary value problem with density-dependent viscosity coefficients for arbitrary
large data was shown by Guo-Li-Xin [6] subject to the stress free boundary
condition and positive flow density near/at the free boundary.

In this paper, we investigate the free boundary value problem (FBVP)
for the compressible viscous flow with the stress-free boundary condition
and the zero flow density across the free boundary. For spherically sym-
metric initial data with finite total energy, we prove the global existence of
spherically symmetric weak solutions to the FBVP problem for (1), es-
tablish the local regularity of solution and the positivity of flow density,
and obtain the expanding rate of the domain occupied by the fluid (refer to

Theorems 2.1H2.2)).

The rest part of the paper is arranged as follows. In Sect. 2 we state our
main results. In Sect. 3, we construct the global approximate solutions. In
Sect. 4, the key uniform estimates are established and the global existence
of spherically symmetric solution is proved. In Sect. 5, the expanding rate
of the domain is made.
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2. Main Results
Consider a spherically symmetric solution (p,u) to (ILI)) in R3 so that
X
p(X,t) = p(r,t), u= U(T, t)?v r= |X|7

and (1) are changed to

{ f;zj)t(i <) +2 T PSRV ) @1)
for (r,t) € Q7 and
Qr = {(r,0)|0 <r <a(t), 0<t <T}.
The initial data is taken as
(p, pu)(r,0) = (p1,mo)(r) := (p1, pruo)(r), r € (0,a0). (2.2)

At the center of symmetry we impose the Dirichlet boundary condition
u(0,t) =0, (2.3)

and across the free surface 9€2; which moves in the radial direction along
the particle path » = a(t), the vacuum state appears and the stress-free
boundary condition holds

Fla(t),t) =0, pla(t),t)=0, >0, (2.4)

where d/(t) = u(a(t),t), t > 0, a(0) = ap > 0 and the stress (effective
viscous flux) F' is defined by
2
F=p" —(\+20)diva = p¥ — (A + 26)ur — (A + 25)7“. (2.5)
Before state the main result, let us give the definition of weak solution

below.

Definition 2.1. Let n = 3. (p,u,a) with p > 0 a.e. is said to be a
weak solution to the free boundary value problem (L])—(24) on € x [0,T],
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provided that it holds that

p € L>®(0,T; LY (%) N LY()), /pu € L=(0,T; L* (%)),
Vu € L*0,T; L*()), a(t) € HY([0,T)), (2.6)

and the equations are satisfied in the sense of distribution. Namely, it holds
for any to > t; > 0 and any ¢ € C1([0,7] x Q;) that

/ podxl2 = / ’ / (o + pu - V)dxdt, (2.7)

and for ¢ = (Y1,19,93) € CLH[0,T] x Q) satisfying ¥(x,T) = 0 and
P(x,t) = 0 on 082 that

T
mp - Y (x,0)dx + / / [pu- Op + pu® u : Vopldxdt
Qt 0 Qt

T T
—I-/O /Qt p“/diV?[)dxdt—l—/O /Qt(ZﬁD(u) : Vi 4+ Mdivudivy)dxdt = 0, (2.8)

where Q; = {(r,1)|0 < r < a(t)} x {t}. And ([24) is satisfied in the sense of
trace.

Notations: Throughout this paper, C' > 0 and ¢ > 0 denote the generic
positive constants, C. s > 0 denotes a generic constant which may depend
on the sub-index € and §, and Cr > 0 denotes a generic constant depending
onT.

Theorem 2.1. (Global exsitence) Let n = 3 and T > 0. Assume that the
spherically symmetric initial data [2.2)) satisfies the reqularity and compati-
bility conditions

0< pP1 € Ll(Qo) N LOO(QQ), (pl)k S HI(QQ), ug € HI(QQ), (29)

2u0(a0)

= 2.1
o o, (210)

p1(r) >0, r € (0,a0), pi(ao) =0, uor(ao) +
where k is the constant satisfying 0 < k < v — % Then, there exists a
global spherically symmetric weak solution (p,u) to (L)) with free boundary
|x| = a(t) given by

|

(pv u, a)(x,t) = (p(T, t)vu(r’t)T’a(t))’ r= |X|7
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for t € (0,T] in the sense of Definition 2], where (p(r,t),u(r,t),a(t)) is a
solution to FBVP 2.1)) —(2Z4) and satisfies p(r,t) > 0 a.e. and

Co S CL(t) S CT, te [O,T], Ha”Hl(O,T) S CT, (211)
1 T
/ (=plu* + 7)dx —1—5/ |Vu|?dxdt
o 2 0o Ja,
= / (o1l + ——p])dx (2.12)
= - 201 0 - 1P1 5 .

where cg > 0, C > 0 are two constants. Furthermore, the following trans-
port properties and regularities hold for the global weak solution (p,u,a):

(i) (Transport Property) For any r; € (0,a9], there exits a positive con-
stant Cy, 7 > 0 so that
P1 (Ti)e_czi’T/()\+2§) < p(rwi (t)v t) <p1 (Ti)eczi’T/()\—ng)’ le [07 T]7 (213)
7

cxg Y < rye(t) < alt), t€[0,T), (2.14)

clwy — m1)7T <3 (8) — 3 (1), t € [0,T), (2.15)

where 7 = 14,(t), i = 0,1,2, is the particle path defined by d” () =
u(ry, (t),t) with r,(0) =r; € (0,a0] and z; =1 — fao p1r2dr.

(ii) (Interior regularity) If the initial velocity also satisfies ug € H*([rg Ty 1)

for any 0 < ry <rg <np < r; < ag. Then, the following interior
reqularities hold

(p,u) € C([ra, (t), 72, (8)] x 0, T7),

pEL(0,T5 H' ([ru (1), 72, (£)])), w€ L(0, T3 H? ([ (£), 7, (2)])),
pr € L0, 15 L ([ra (1), 72, (D)) 0 L0, T3 H ([ray (t), 72, (1)),
) ) ]

i (2.16)
ug € L0, T5 L2 ([rag (), 72, (1)])) N L2(0, T3 H' ([rag (£), 72, (1))

t),Te

where = 14, (t) is the particle path defined as the above and r = 14, (t)
is the particle path with r4,(0) =y, and x =1 — frio prridr.
(iii) (Boundary regularity) It holds near the free boundary r = a(t) that

100", w) ()| 2 00y + IF Ol z2(0) + WP 20, 15220,))
+ ||F||L2(0TH1(Q,, + lullz20,7;m2(02,)) + llallzr o)) < Cr.e0 (2.17)



2015] 3D ISENTROPIC COMPRESSIBLE NAVIER-STOKES EQUATIONS 581

with 8o = |p1l Lo (f0,a0]) * 1u0ll 51 (0,a0)) + 105 211 0,007y @nd Ry = (alt) —
n,a(t)) for some small constant n > 0. In addition, if the initial data

_1
(p1,u0) satisfy ug € H?*([ag — 1, ag)), Py 20%2up € L?*([ag — n, ag)) and
compatibility condition, then

. 1
Ivpu(t) |2, + 1w g2, + 102070 120,
HIE O 510, + lallz2qo,m) < Crons (2.18)

with @ = Ut + and (51 = ”pl”LOO([O,aoD + Huo”Hl([O,ao})
_1
+lp1 202u0ll £2(jag—n,a0)) + 1251l 11 ((0,00))-
Then, we have the time expanding of the flow domain into the vacuum.

Theorem 2.2 (Long Time Expanding Rate). Letn =3, T'> 0, v > 1,
and (p,u,a) be any global solution to the FBVP [2I)—(24) in the sense
of Definition 211 for t € [0,T] with F = p7 — (A + 26)u, — (A + 262 €
L%(0,T; HY(Qy,)) and Q, = (a(t) — n,a(t)) for some small constant n > 0.
Then, for any v > 1 and t > 0, it holds

=1

Cl+t) v, 1<y<43,
1—v
ar(t) = Ig[%%a(s) =9 Cl+t)5, y=1, (2.19)
S b
ca+6%, v>3,

where v > 0 is a constant small enough; C is a constant independent of time.
In particular, for v > %, the expanding rate is more precise as follows:

ct+nn, y=4,
1=y 5
a(t) > ¢ C(1+1) TL5<<3 (2.20)
CL+t)%, >3,

3. Global Existence of Approximate FBVP Problem

3.1. Approximate FBVP problem

Consider the modified FBVP for Eq. ([2.I]) with the following initial data
and boundary condition for any fixed € > 0:

(p,u)(r,0) = (po, uo)(r), po(r) >0, &<r<ap, (3.1)
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ule,t) = 0, (p7 — (A + 26)u, — ()\+2£)2Tu)(a(t),t) =0, t>0, (3.2)

where o/ (t) = u((a(t),t), t > 0and a(0) = ag. Without the loss of generality,
one can assume that the initial data is smooth enough and consistent with
the boundary value ([B.2]) to the higher order.

It is convenient to investigate the approximate FBVP problem (21),
BI)-@B2) in Lagrangian coordinate. For simplicity we assume that
J2° por?dr = 1, which implies

a(t) )
/ pridr = / por2dr = 1.
€ €

For (r,t) € Q5 = {(r,t)|le < r < a(t), 0 <t < T}, define the Lagrangian

coordinates transform

r a(t)
w(rt) = / py’dy =1— / py’dy, T =t, (3.3)
£ T

which translates the domain QF. into [0, 7] x [0,1] and satisfies

or 5 Ox s O or

o = ore, % pur?, 87’_0’ 8t_1’ (3.4)

and - - 5

T3:L‘77_ :€3+3/ —(y,7)d :agt —3/ - ,Td,—T:’LL. 3.5
(z,7) Op(y)y (t) Op(y)y87 (3.5)

The free boundary problem (2.1]) and [B.1)—([B.2) is changed to

pr + p*(ur®), = 0,
{ e+ 1257 — (O + 20)p(ur?), ), = 0, 30

for (x,7) € [0,1] x [0, T, with the initial data and boundary conditions given
by
(pu)(x,0) = (po, uo) (),

w(0,7) = 0, (57 — (A +26)pr2us — (A + 25)27”)(1,7) ~0, (37

where r = r(z,7) is defined by

d%_r(a:,T) =u(z,7), z €[0,1], 7 €1[0,T], (3.8)
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and the fixed boundary = = 1 corresponds to the free boundary a(7) =

r(1,7) determined by

d%a(f) —u(1,7), 7€ [0,T]; a(0) = a. (3.9)

The main result for the FBVP (21 and (B.1)—(B.2) is stated as follows.

Proposition 3.1. Let T > 0,7 > 1 and € > 0 be fivred. Assume that the

initial data (po,uo) satisfies

inf po(x) = % > 0, pd € H'([0,1]), uo € H'[0,1]. (3.10)
z€|0,

Then, there exists a unique global strong solution (p,u,a) of the FBVP prob-

lem B.0)—B.9), which satisfies

7y
cxy "V <r(wo,7)<a(r), co<a(t)<Or, (z9,7)€[0,1] x [0,T],
c(xy —:Eg)% <r3(xo, T) =13 (21, 7), 0<21<22<1, TE[0,T], (3.11)

0<cer <plx,7) <Cer, Y(z,7)€[0,1] x [0,T7,

where v = r(z;,7),i = 0,1,2, is the particle path defined by B.8) with

r(z;,0) =1r; € [e,a0] and x; =1 — f:o por2dr, and

T
H@MWW%+WMJWM@+A(Wm@ﬁﬁWﬂﬂ%rwwﬂ%ﬂM
T
+/<Wﬂﬁﬂwﬂmwécﬂm (3.12)
0

with Ce s, a constant depending on e, T, Ey, pi and 6y with 6y =:

o8l 2 o,y + 1ol Lo o.17) + llwoll g (po,17)- Furthermore, if ug € H?([0,1]),
then it holds

T
() 12 + e (1) 122+ 1 (7)1 +/0 (lur ()3 +I1F () 3g2)d7

T
+/wmﬁ+wmﬁﬂwmﬂw§@mu (3.13)
0

with 81 = [|pgll mr1.(o,17) + lpoll Lo 0,17y + lwoll m2(j0,1))-
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3.2. The a-priori estimates

Lemma 3.1. Let T > 0,7 > 1 and (p,u,a) be any reqular solution to the
FBVP 21), BI)—B2) under the assumption of Proposition 31l Then,

a(t) o)
/ pridr = / por2dr, (3.14)
£ £

a(t) 1 1 T a(s) 2 2
/ (5pu”+——p")r?dr+ (A + 2¢) / / (u2+ = )r2drds < Eo, (3.15)
€ 2 /7_1 0 Je r

a(t) € HY([0,T]), co < a(t) < Cr, t e (0,T), (3.16)

where Ey := |

aop (1 2 1
£ (

5P0UG + ﬁpg)Ter, co and Ct are positive constants.

Proof. First, multiplying ([2.1]); by 72 and integrating the resulted equation

over (e,a(t)) lead to

a(t) a(t)
/ peridr +/ (pur?), = 0.
3 3

Integrating by part and using boundary condition give

a(t)
S [ e = pla(®). u(at), 003 (0) + pla(0). Hulal®). > 1) 0
% " pridr =0,

hence

a(t) ao
/ pr2dr = / por2dr.
€ 15

Next, multiplying (ZI))2 by ur? and integrating the resulting equality over

(¢,a(t)), we obtain after integrating by part and using (3.2]) that

d a(t) 1 )
w) Gt

+2(X + 26)(d’ (t)2a(t) = 0,

a(t) 22
p)r2dr 4+ (A + 25)/ (u? + T—z)r2drdr
€
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which gives

a(t) 1 a(s w2
/ (2 p)r2dr + (X + 2€) / / rzdrds
15

+2(>\+2£)( '(t))a(t) = Eo,

for any t € (0,7T). So, (313 holds.
Finally, since

ao a(t) a(t) 1 a(t) 1-1
/ pordr = / pridr < (/ p’yrzdr)7 (/ rzdr) K
€ € 15 €
1
< (=178 By e,

we get

L = 0 2 36T
a(t) >33(y—1) e 1>E S0 (/ por dr) .
£

20 +20035 - ) T 5 T ([T T [(as)2as

€ 0

2\ + 2€) /0 (a/(s))2a(s)ds < Eo.

Therefore, it is easily deduced that

t

la(t)] = |ag +/0 (d'(s))ds| < ag + (/0 (d(s))2ds)2tz < C + Ct2 < C.

The proof is completed. O

From Lemma [B1] we get Lemma below.

Lemma 3.2. Let vy > 1, T > 0 and (p,u,a) be any regular solution to the
FBVP 38)-B9) for 7 € [0,T] under the assumption of Proposition 3.1l
Then,

' 1
/0(§u2+ —° P’ dx + (N + 2€6) // {pr4|ux\2+—2}dxds

F2(A + 26) /0 "/ ())%a(s)ds < Fo, (3.17)
a(t) € Hl([O,T]), c<a(r) <Cp, (3.18)
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— (1 2 1 -1
where Ey = [ (zuf + —1po )dz.

Use the same method as the proof of Lemma 3.4 in [6], we get the lemma
below.

Lemma 3.3. Lety > 1, T > 0 and (p,u,a) be any reqular solution to the
FBVP @Ba)—@B9) for 7 € [0,T] under the assumption of Proposition Bl
Then

_; [N S—
Ey a0 <r(e,7) < alr), (@,7) € [0,1] x [0,7] (3.19)

1 N

Ey "Ny — 1) 7T <@g, 7) =13 (21,7), 0<z1<29<1, TE[0,T]. (3.20)

Lemma 3.4. Let v > 1, T > 0 and (p,u,a) be any reqular solution to the
FBVP B.06)—@B9) for 7 € [0,T] under the assumption of Proposition 3.1
Then

polr(O))e~Coir/O) < p(r(6) 1) < po(r(0))eCe/ 4429,
V(r(t),t) € e, a(t)] x [0,T],  (3.21)
where r(t) is particle path defined as B206) and x is defined as B28) and
3v+l 2 -
Cor = 4E06(”71)m_3ﬁzl) +4TE07_133_% is a constant independent of the
0%

Proof. Define

T

2pu’

= /a:t) pudy, n=pu(r,t) — pu?(a(t),t) +/ dy, r€lga(t)]

at) Y

A direct calculation, together with (2.1)) and (2.4]) gives rise to

B r r 2 2
G4t F = / (pu)edy + pu(r,t) — 2pu(a(t), 1) + / 2pu”
a(t) a(t)

(" = A+ 20u, — (A +2)

a(t) 2u
- / (7= (Ot 26, = (2 =), dy =2 a6 1)

)1

Hou® 47— A+ 26 — (A4 26) 20, 1

= —pu®(a(t),t). (3.22)
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Rewrite ([2.1)); as

2u
ot + pru+ p(uy + 7) =0,

which, together with (2.1])9, yields
(A28 Inp)s + (A 428 Inp)yu+p" — F =0. (3.23)
It follows from (3.22)) and (3.23]) that

E+A+2)mp)+ (E+ A +2)Ip)u = —pu*(a(t),t) —n — p" + uéy

_ /-a(t 2pu

Thus, one has

a(t) 2pu2

d -
&(5 + (A +2)Inp)+p" = /r ; (3.24)
where % = 0; + u0,. Integrating (3.24)) with respect to time ¢ shows
B t
€+ O+ 2 p)(r <>t>+/w< (5),5)ds
a(s
=(€+ (A +26) In p)( / / (3.25)

where r(t) is particle path defined as

{ 4r(t) = u(r(1).1), (3.26)

r(0) =r, r € g, ag).
Therefore, it holds that

7( (it() )t) +/ p(r(s),s)ds

a(t) a(s) 2 ao
= / pudy +/ / p’ /( )pouody. (3.27)
r(t) r(0

r(t) ) a(t) ) ao 9
xz/ Py dy:l—/ Py dy:l—/ poy”~dy. (3.28)
€ r(t) r(0)

(A+2¢)In

Let
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It follows from Holder’s inequality, Lemma [B.2H3.3] and ([3.19) that

a(t) 1 a(t) 1 a(t) 1 L, v s
- 2,2 2 2 2 560-1) , — 5025y 2
/T(t) Pudyﬁrz(%t) (/E puy dy> (/E Py dy) <2E; RIS OF

(3.29)
and,
T ra(s) 2 T 1 a(s) 1
// 2pu dydsﬁ/ 37/ 2pu2y2dyd3§4TE0”_1x_%Eo.
0 Jr(s) Y 0 T(.T,S) €
(3.30)

It holds that for the initial data

ag 1 ag % ag % _2 2y 1

/ poupdy < —2< / PoU3y2dy) ( / poy2dy) < 2B,V 36D ER.
r € €

' (3.31)

From the above estimates, we have

po(r(0))e /42 < p(r(t), 1) < po(r(0))eC/O+29),

V(r(t),t) € [e, a(t)] x [0,T7,

St 2y e S 2
where C, 7 := 4F, O~V g736-0 4 ATE] '™ 51,

Lemma 3.5. Let v > 1, T > 0 and (p,u,a) be any regular solution to the
FBVP (3.6)—(33) for 7 € [0,T] under the assumption of Proposition 3.1l
Then

1 T rl
/ [r2u+ (A +28)(Inp),)2dx —I—/ / P 2(pg)?dads < Ce g5y, T € (0,7,
0 0Jo

(3.32)
where C. 15, 15 a constant depending on ¢, T and initial data.
Proof. ([3:6]); can be rewritten as
(In p)r + p(r’u), = 0. (3.33)

Differentiating (B8.33]) with respect to x and substituting the resulted equa-
tion into (B.6)2, we have

u2
P+ (A 26) (0 )]s + (00 + g =0, (3:34)
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since r2u, = (r~2u), + 27%2 Multiplying 334) by r2u + (A + 2¢)(In p),,
integrating the resulted equation over [0, 1]x [0, 7], we obtain after integrating
by parts that

1d

1
-2 2
s ), [r"u+ (A4 28)(Inp)z) da

1 2U2
[0+ 2l (o 26)n p)uJde = (3.35)

which yields

1d 1 _ b

53/0 [r 2u+()x+2£)(lnp)m]2d$+7()\+2£)/o P (py)?dw
1 L oy3 1 2u?

. -1 2

< 5/ 72( d:E+C(5)/ pride

0

+c/ 2+ (A + 26)(In p).] da:—l—C’/ —d:z:+C/ 7, (3.36)

where 0 € (0,1) is small enough.

Thus, by 3.30), (3I7), (319) and [B.2I]), we have

1 1
d / 2t (A + 26)(In p)af2da + /0 717 () da

at
<C’/ “2u 4+ (A +26)(In p),)2dx
1
+Cer( / w?dz + / utde) + Copr. (3.37)
0 0

It follows from Sobolev embedding and Lemma 3.2 ([B.5)) that

T rl
/ / u?dxds < C, (3.38)
0Jo
T rl T 1
// u4dxd3§/ (||u||%oo[0,”/ wde)ds
0Jo 0 o
S| 1 9 ¢l
g/ (/ \u|dm+/ \uﬂdx) /u2dxds
0o “Jo 0 0
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T 1 1 1
§/ (/ u2d$+/ uidaz)/ u?dxds
0 0 0 0
1 7 rl T rl
< sup / u2da:{// u2dacds—|—// uidwds}
0<s<7 Jo 0.Jo 0 Jo

<C.r. (3.39)

By Gronwall inequality, it holds that
1

/ [r~2u + (A +28)(In p).] dx—i—// 7"2(p,y)2dads < Cergy, T €[0,7T).
0

Finally, we have the following higher order regularity estimates.

Lemma 3.6. Let v > 1, T > 0 and (p,u,a) be any regular solution to the
FBVP (3.4)—(33) for 7 € [0,T] under the assumption of Proposition Bl
Then

1 T /1
/ (U2 + p2 + p2 + F?)dx + / / (u2 + 2, + py, + Fy)dadr
0 0 Jo

T
+/ (|a(T)]? + |d'(1)[P)dr < Ce.T.505 (3.40)
0

T
/(m+F2+u dx—i—// uZ, + F2) dxdT—i-/ uZ(1,7)dr
0

+ / (a(@)P + |/ () + [a" () B)dr < Comsy, (3.41)
0

with Ce 15, and Cg 15, being constants the same as Proposition [3.11

Proof. Taking the inner production of @.8])y with p~tu, over [0,1] x [0, 7]
and making use of the boundary condition (3.7)—(39), we can obtain after
a direction computation that

9 1 T 1
A z 3 / r?ulde + / / ptr2uldads 4+ (A + 28)p e (1, 7)
0 o Jo

T rl T 1
= (\+ 25)/ / ruudzds —/ / (P Y sugdazds
0Jo 0o Jo

T 1

2Up Uy 54
)\+2§// uudd—)\+2§// p“:;
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1 1
—I—/ p'y_luwdzz%l—/ o' tuy,
0 0

A+2¢ 1
+ + 2 / 7“2u325
2 20 T

- /()T(p_lr_1)8u2(1, s)ds. (3.42)

dx

7=0

_Oda: + (A 4 26)p~1rtu?(1,0)

Using the Lemma and the following facts
Cer <a(r) <Cp, 0< cer < p(z,7) < Cop, Y(z,7) € [0,1]%[0,T], (3.43)

we have
1 T 1
/ r2u§da:~|—/ / ptr2uldads 4+ ptr (1, 7)
0 0o Jo

T 1 1
< CE,T/ (1+/ uidaj)/ r2uldads
0 0 0

T 1
+/ sup |ug|® [ |pe|*dads + Cor, (3.44)
0 z€0,1] 0

which together with Lemma [3.5] and Gronwall’s inequality yields

1 T rl
/ r2uldx + / / p T 2uldads < Ce g, (3.45)
0 0o Jo

where we have used the fact that

T T
/ sup |ug2dr < CE,T/ sup |p(ur?).|dr + C.r
0 z€[0,1] 0 z€[0,1]

T r1
< CE,T/ / UzdxdT + C&T < CE,T’ (3.46)
0 JO

It follows from (3.6))2, (3:32)), (B8.43) and (3.45]) that

T /1 T 1
/ / u?, dedr < CE,T/ / (u2 + u2 + p2)dadr
0 Jo 0 Jo

T
+Ceir sup oalgeyy [ sup JuafPdr < gy (347
T7€[0,T 0 z€[0,1]

The combination of (B.6), Lemmas B2H3.5l and (3.45)—(B.47) leads to
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(3.40).

Next, differentiating ([B.6])2 with respect to 7 gives

2, — 2r Sy + (7 — (A + 28) priug, — (N + 2€)

2
7”):” 0. (3.48)

Taking the inner product of (48] with u, over [0,1] and using (B.7)— (39,

one may get

1d [t o5, A+26 b, u2(1,7)
-2 “2,20p 4 245 d N4 2g) o\ )
50 oT urdz + — /Oprum x4+ (A +2¢) ol
1 1
< C’&T/ r_zuzda:—l—Ce,T/ (u2, +u2)dz + Cer. (3.49)
0 0

Applying Gronwall’s inequality to (3.49) and using (B.40]) shows

1 T 1 T
/ r2utdx —I—/ / priu?, dzdr —I—/ uZ(1,7)dr < Ce s, 1. (3.50)
0 0 Jo 0

Furthermore, it follows from ([B.6])2, ([3.50) that

1 T rl
/ (uz, + F7)da + / / F2dzdr < C.g, 1. (3.51)
0 0 JO

The combination of (3.6]), Lemma B.2H3.5] (3.50)—B.51)) leads to (3.41).

The Proof of Proposition[3.1l. At this stage of argument, ¢ is fixed and
positive, so that the FBVP (B.6]) is essentially an one-dimensional problem.
Under the assumptions of Propositions B}, one can apply the standard ar-
gument to obtain the short time existence of the unique regular solution
(p,u,a). By the a-prior estimates established in Lemma B.IH3.6l and a con-
tinuity argument, we can continue the local solution globally in time and
obtain the global regular solution to the FBVP satisfying (3.11])—B.13).

4. Uniform Estimates and the Proof of Theorem 2.1

In this section, we will obtain the uniform estimates of the approximate
solutions established in Proposition 3.l We establish uniform estimates

containing symmetry center in Eulerian coordinate and uniform estimates
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away from symmetry center in Lagrangian coordinate. First we begin with
the uniform estimates around symmetry center.

Lemma 4.1. Under the same assumptions as Lemma [31), there exists a
positive constant Cor > 0 depending on Fy and T, but independent of e,
such that

T ra(t)
/ / p? (r,t)r*2drdt < Cor. (4.1)
0 Je

Proof. We multiply @I))2 by ¢(r)(= r?) and integrate over (r,a(t)) (r €
[e,a(t)]) to obtain

(pu? + 57— A+ 20— (4292

a(t) a)
= c%/ pusody—/ (pu” + p7 — (A +28)uy

2

2u a(t) 9y,
(202 dy + / ody, (4.2)

which yields

o — p U

2u
P = (A+28)p" (ur + -

a(t) a(t)
+p7 0, / pupdy — p7 / (pu® + 7))y dy
a(t) 2u a(t) 20u2
+(A +28)p” / (uy + ?)wydy + p’*/ pdey- (4.3)
It follows from (2.1); that p? satisfies

2vp7u

(P + (pu)r + =(1—7)p u,. (4.4)

Then, one has
a(t) a(t) a(t)
e / pupdy = Oy (p'y / pwdy) — Op” / pupdy
a(t) a(t)
= O (p” / pusody) + O (pvu / sopudy)

2vplu a(t)
+{ w +(’Y—1)p"’ur}/ pupdy+pp'tTu?. (4.5)

r
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Substituting (4.5]) into (4.3]), we get

2u a(t) a(t)
P o= (A+28)p" (ur + e+ o (p” / pusody) + 0, (/ﬂu / pucpdy)

P, a(t) a(t)
+{ (- 1)p”’ur}/ pwdy—ﬂv/ (pu® + o))y dy

a(t) 2 a(t) 2 'LL2
H0+200 [+ Dy [ Ly, (4.6)

Multiplying (8] by ¢* and integrating over [g,a(t)] x [0, T] lead to

T ra(t) T ra(t) 5
// p27g04drdt:// {RH.S of @B} drdt =Y I, (4.7)
0 Je 0 Je i=1

The right hand side terms of (A7) can be estimated as follows:
T ra(t) 9
Bl =020 [ [ 0w+ Tptana
0 Je
T ra(t) 0 4 L T ) 42 A
5/ / pptdrdt + Co™ / (uy + —5)p drdt
0 Je 0 r
T ra(t)
(5/ / pPordrdt + 5_1CO7T.
0 Je

It is easy to see that by ([B.I4]) and BI5):

IN

IN

a(t) 1 e
/ pwpdy( s / (pu” + p)edy < Cor, (4.8)

hence,

T ra(t) a(t)
/ / ©*04(p / pusody)drdt'
0 Je r
a(t) a(t)
< C sup / chpS( / pugody)drdt‘
0<t<T £ r

a(t)
< Cor sup / plptdr < Cor,
0<t<T Je

T ra(t) a(t)
/ / Or(p7u / sopudy)sogdrdt‘
0 Je r
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a(t)
3p’7ug0 ©r (/ gopudy) drdt‘

a(t)
5// P otdrdt + 6 ICOT// 2p2drdt

5/ / PP otdrdt + 5_1C0,T,

27p7 + (v — 1)p“/ur} ( /a(t) pugpdy) drdt‘

“(t 2yp7u
Cor / / &=+ (v = Do,
0 Je r

T ra(t) T pa(t) u2
5/ / p?Yptdrdt + 5_1C0,T/ / (= + u?)p?drdt
0 Je 0 Je r

T ra(t)
< 5/ / p2rotdrdt + 5_100,T.
0 Je

IN

IN

L] =

IN

drdt

IN

By (3I5) and (3.16]), we get

a(t) 9 a(t) 2pu2

/ (pu +p7))goydy' < CEy, / ” gody' < CEy, (4.9)
[ 2o < at+ [T+ da < cor @0
T €

which gives
T ra(t) a(t)
15| = ‘// p'yso?’{/ (pu® + p7)ydy
0 Je T
a(t) 2u a(t) 9
+(A+ 25)/ (uy + ?)@ydy+/ P

T ra(t)
< G [ [ 5arat < e,
0 Je

2

gody}drdt‘

We finally get

T ra(t) T ra(t)
/ / PP otdrdt < 3(5/ / P2 otdrdt + 5_1C0,T,
0 Je 0 Je
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Choosing § = % , We obtain

T ra(t)
/ / pPotdrdt < Cor.
0 Je

Then, we establish the uniform estimates of solutions away from sym-
metry center.

Lemma 4.2. Let T > 0 and v > 1, (p,u,a) be the solution to FBVP (2.1))
with B1) )—B2) for (r,t) € [g,a(t)] x [0,T] constructed in Proposition [3.11.
Assume further that

po € Lm([ro,ao]), Ug € Hl["r’o,ao]. (4.11)

where 0 < ro < ag. Then

T r1 , ) 1 2 1 w2l
/ / (UT-i-Fx)d:L‘dT—l—/ —d:z:—l—/ (pr|us]” + —5 + |uz|)dz < Cp 5,5
0 Jxp x1 P T1 pr ( )
4.12
where C w000 1S @ positive constant just depending on T, x1, 20(0 < zp <

T < 1)} Ey, HpHLO"[ro,ao] and ||u0||H1[ro,ao}'

Proof. Multiplying ([B.6)2 with u,¢ and integrating the resulted equation
over|0, 1], then we have

1 1 1
/ ufqﬁdx—i—/ Ey(ur?),¢pdz —/ E2ru¢dx = 0, (4.13)

0 0 0
where ¢ = x%(z) and x € C*([0,1]) satisfies 0 < x(z) < 1, x(z ) =1 for
x € [r1,1](0 < xg <21 < 1), x(x) =0 for x € [0, 20] and |y/| < . After

—:clx

integrating by part, it holds that

1 1 g 1
2 P’ 2 _
/Oungbd:H—/ F(m ~oda— /F ur? qzbdac—l—/ 20 2ru quaZ—O,)
4.14

which implies

1 1 d 1F2
2
dz+——— [ ZTgd
/()“T¢x 2()\+2§d7/ , #de

1 F pr =1
= dz+—L—— [ Fprp d
200429 Jo fpi“’“mzs)/o prprods
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1 1 1 °
0 0 0

i=1
where we have used the fact

F—p B
2 2

xr — 9 Tr — T-*
(ur®) 0120 F r‘u

Using Lemma B.TH33] Holder’s inequality and ([B.21]), we can estimate each
term in the following way:

( 2 1 Yo L2

1] < VP o + 70 0 lorPan) [ oaa,

o

1 1
Bl<C [ e Cy [ o
xo

o

1 1
[I3] <6 / uZ¢dz + 5" Cug [[ul[7 g 1 / u’der, (4.16)
0 0

1 1
14| 35/ uf¢dx+5‘10xo/ F2dz,
0 o

1 1
|15 SC/ F2dx+Cx0Hu¢H%w[o,1]/0 u?da.
zo

where § € (0,1) is a small positive constant and Cy, is a constant depending

on xg, Ey, T and ||p||pec[rg,a0)- Since

1 1 1
\/EF:—/ (\/aF)ydy:/ uw‘%/@dy—/ (Vo) Fdy, (4.17)

we obtain

1 1
H\/EFH%M[OJ]gch/O u3¢dx+(}x0/ F?daz. (4.18)
o

Substituting (4.16) and (4I8) into (4.I5]), we obtain

1 1 2
/ u3¢dx+i / F—¢dx
0 dr Jo »p

! 3 2 ! F2 ! 2 3 2
< cxo(/ =3, dx)/o 7¢dx+0x0/ (F? 4 p~3|pr [P)da
x xo

0

+Oxo||u¢||2Loo[o71p (4.19)
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By 3.6)1, Lemma B.I-3.3l and (3.21]), we get

T /1 T /1
/ / F?dzdr + / / p 3| pr|Pdadr < Cy. (4.20)
0 Jag 0 Jo

T T 1 1 9
/ ||u¢||2Loo[071}dT§C’/ (/ |u|d$+/ |u$|¢daj) dr
0 0 0 0
T r1 T ,1 T
< // quxdT—i—C// pr4\ux|2¢dde+C’xO// — ¢dadr
0 Jo 0 Jo o Jo PT

T 1
< C’/ / prtug|Pédadr + Cypy < Co,. (4.21)
0 Jo

It follows (4.19)—(@21]) and Gronwall inequality that

T rl 1 2
/ / uaqﬁdxdT—F/ —a¢dz < Cp 50 (4.22)
0 Jo 0o P ’
Notice that
0 P

1 9 2
~ O+ 25)2/ (¥ uaf? + 225 ) + 201+ 26) (1, ()
0
1
—2(\ + 26)? / u’¢'de, (4.23)
0
which, together with ([&22]), gives

! 4, 12 2u? 2
| ot + 251000 +02(1,)a(7)

H O+ 26)p(r%u),)? o
< C/o , qua:—l—C/o u“dx

1F2 1 1
< 0/ —¢d:c+/ p2‘Y—1¢d:c+C/ u?dx
0o P 0 0

1F2
0/ ~¢da + Cyy
0o P

IN

IN

(4.24)

20,00°
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Therefore, there is

1 1 1
1
/0 |ug|pda < C/O pri|ug | ¢pda + Cxo/o ;(;Sdm < Cryby (4.25)

Lemma 4.3. Let T > 0 and v > 1, (p,u,a) be the solution to FBVP (2.1))
and BI)—@B2) for (r,t) € [g,a(t)] x [0,T] constructed in Proposition Bl
If the initial data po satisfies (pl). € L*[x1,1], then

1
/ (p9)z*dz < Cpy 60, (4.26)
1

where % <q=k+ % < v and the constant Cy, 5, depends on T, x1, xo(0 <
xo < x1 < 1), By and 6o with 5o = [[uo || mr1(r,a0) F11 21 Lo fro,a0) F11 (082 | L2 (2 17

Proof. Multiplying (3.8)); by ¢p?~! and differentiating the resulted equation
with respect to x, we obtain

o+ q(p" (ur?),), = 0. (4.27)

Multiplying ([£27) by (p?), and integrating over [z1, 1], we have

1d [!
- qa\ |2
ZdT/lep )oda

1 1
= el )P+ / )+ () (425

from which we get
1d [
- ) 124
a7 | Nhela
! 2 ! 2q 2 ! 2
< Cor (|F ooy +1) / (0, Pda+Ca, / PPl t O / 71(p%) P
x1 x1 z1

1 1 1
ngl(/ |uT|2d:1:—|—1)/ |(pq)x|2dac+0x1/ lu, [2dz, (4.29)
x1 1 1

where Cy, is a constant depending on 1, Ep, T and ||p|| o[y a0]-
By Gronwall inequality and Lemma [4.2] it holds that

1
/ (p7)e|*dz < Coy 5, (4.30)
1
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Lemma 4.4. Let T > 0 and v > 1, (p,u,a) be the solution to FBVP (2.1))

and BI)—@2) for (r,t) € [e,a(t)] x [0,T] constructed in Proposition B.1I.
1
Assume further py 2 02uo(r) € L?[r1,1], namely (por*uos(z))s € L?[z1,1],
then
/ 2da:—|—/ / Tda:dT—l—/ / priul + —)d:z:dr—|—2/ la" (7)]2dr
x2 T2
< Cuyo1s (4.31)
and
/ (p(ur?)2)*da < Ca, 5, (4.32)

where Cy, 5, depends on xa, Cy, 5, and Hporzu()xHLz[ml’l} with
51 = ”uOHHz[T(hao} + ”p”LOO[To,ao} + ”(pg)ﬂf”Lz[xhl} + ”porzu()CC”Lz[:chl}'

Proof. Differentiating (B.0])2 with respect to 7, we obtain
Urr + 12 Fyr + 2ruF, = 0. (4.33)

Choose a smooth function ¢ = (%(z) where ¢ € C*°([0,1]) satisfies 0 <
((z) <1, {(x) =1for z € [22,1)(0 < 29 < 21 < 22 < 1), ((z) = 0 for
x € [0,21] and [¢] < mle.

Taking inner product of ([A33]) with u,¢ and integrating by part, it holds
that

rd [, 1 L p?
- d - “Tud
sar ) v g )

1 FF, ! 5 4 Lou
= ()\—1—25)/0 e pﬂ[)dl‘—l—/ Frur wdasz—m/oFTp ;wdx

y—1 ! y—1 v—1 ! 2y—1

4 1 2 1 5 3
—l—m/ FF— 1/1dx+6/ 2¢dx+2/0 uzurypde

1 F2 9
<5 / I g + Clull e o / ida
o P 0

B 1 3 u2
IO oy [ 07lpr P+ 25)do
z1 1%
. 1'LL2
SO oy e o) [

x1

1
da-+671C ol oy | 0o
1
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1 1
441mmhmm”[;m*wu+&*mmﬁgmﬂﬂ;ﬂwm

F 1
<5 -iwu+cmmﬂmﬂ/1&Mw
0o P 0

1
+5—lom(||u||§oo([mv”+ / uzdxﬂ), (4.34)
1
since
1 1
/p_3|p7|2dac §/ (pr4|um|2+p—)¢dw<0 (4.35)
xo
[F(y,7)| = ‘—/ Fdx _(/ qux
1 2
< - 1 4.
— T2(‘T17T)</xl TdZL') 7y6[3317 ]7 ( 36)

where Cy, is a constant depending on x1, Ep, T'and ||p|zec[ry,q0)- Choosing

a small 6 € (0,1) and using Gronwall inequality, we get

1 T r1 F2
/ ulipdx + / / “Topdadr < Cyy 4 (4.37)
0 0oJo P

Furthermore, we have
T
/ / priuz + —)1[)d:nd7'+2/ la”(1)]2a(T)dr

(priug. + 24)
// 1/1dxd7'+2//ur¢dmd7'
2u? 1
// pr“” )|¢dxd7+//|p”“m| pdwdr
1|p7‘uugc|2 2
// ———dzx dT—I—// ded7+2//u7r|w/|dwd7'
0
1| ‘2
/0/0 —; 1[)d:1:d7'+/0 /0 0273 pr Ppdadr
T Y e
[ el [ 7l Pdedr
zo
T , 1,2 T
[ sl oy Nl o) [ pandr+2 [ [ adaar
0 x1 pr 0 Jxp

IN

IA
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< Cypy o (4.38)

By ([£37) and Lemma 3] we obtain

1 1 1
/ (p(ur?),)aPbde < C / FPgde + C / (072l
0 0 0

IN

1 1
C,, /0 oy e + o, / (o) 2da
T

< Cx1,51'
The proof is completed. O

At last, we obtain the interior estimates below.

Lemma 4.5. Let T > 0 and v > 1, (p,u,a) be the solution to FBVP [2.1))
and BI)—B2) for (r,t) € [g,a(t)] x [0,T] constructed in Proposition Bl
Assume further there exists 0 < ry < 19 < 15 < r; < agp and a positive
constant ps such that

inf . po(r) > pse >0, ug € H*([ry, 7)), (4.39)
r€lry,ry ]
that is
inf . po(x) > pi >0, ug € H*([zg,z}]), (4.40)
x€[zg x|

then it holds that

0 < Cxa,T § ,()(T,t) S Oxa,T’ \V/(’I", t) € [Tza (t)vrx;r (t)] X [OvT]’ (441)

Sup (||uz||%2[x0,xb] + ||p$||%2[x0,xb] + ||pT||%2[zo7zb} + ||F||%2[zo7zb})
T7€[0,T

T T
+ /0 e Fo) (7 Bz 47 + /0 | (tns e ()22 oy 47 < A:42)

T
S}épT](HUTH%Q[Io,xb] + HFIH%Q[IO,%} t ”umH%Q[Io,%]) +/0 HFT(T)”%Q[Io,xb]dT
7€|0,

T
+AHWWEMﬂ@mmM§@, (4.43)
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where Coz T CN’xa o are positive constants depending on xy , T' and the initial

data, and Tag (1), Ty (t) are particle paths with x;, =1 — f:,o por2dr, x; =
0

1— f‘f por?dr and z; =1 — [° p0r2dr (i =0,b). The constant Cy depends

on Eo, ¢, p; C’x_ e af, xi(i = 0,b), HPOHHl[z_ .+ and HUOHHl (e 1] and

Cy depends on Ci and ||U0||H2 ik

wrm

Proof. (&A1) can be deduced from [321]) and (4.39]).
Multiplying (B.6])2 with u7q~5 and integrating the resulted equation over [0, 1],

then we have
1 1 _ 1 _
/ u?qzbda:—l—/ Fx(uTQ)Tqua:—/ F2ru*¢dz = 0, (4.44)
0 0 0

where ¢ = Y2(z) and X € C>([0,1]) satisfies 0 < ¥(z) < 1, X(z) = 1 for z
— +
€ [IOZIO ,xbsz ], X(z) =0for z € [0,z ]U[z;, 1] and || < —04 —+ 2 -

Similarly as the proof of Lemma [£.2] we obtain

T rl . 1F2~
/ / ulpdadr + / —¢dz < Cy, (4.45)
0 Jo o P

202 [ (orual? + 253
A pr|ug +p7"2 T

and

1
0 p 0

where Cy depends on Ey, C’ o and HUOHH1 fwg ]’

From (4.45])—(A.44)), (3.6)- and (4410, we get

sup (luall® o P o)
relor] N\ paftotea Tty r2(%%%0 Zou% |
T
2
+ I IO, ey e &7 < Co (4.47)

where C~’0 depends on Cjy and Cog T Similarly as the Lemma [£.3], we obtain

+ <y (4.48)

‘LO+‘L 1b+1

sup IIszI
T7€[0,T

Thus, ([442]) can be deduced from (3.6 and (4.47])— (4.48)).
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Choose a smooth function 1 = (2(z) and take inner product of (@33)

with u,1 where ¢ € C*°(]0,1]) satisfies 0 < ((x) < 1, {(x) = 1 for z €
iy . xp+a,h i

[wo, @), ((x) = 0 for @ € [0, 5] U [25% 1] and |¢'] < —A— + 4

3 — —.
TO—T Ty —Tp

Then, similarly as Lemma 5] there is

1 " T rl1 F2 "
/ uZipda + / / “Tpdadr < O, (4.49)
0 oJo P

and _— )
22 ~
//(pr4u§T+L;)1[)da:dT
0 Jo pr

T f1 (02 2ur)2 Tl ~
- / / (or g + ) 1[)d:ndr+2/ / ufrd'dedr < Gy, (4.50)
0 Jo P 0 /0

The combination of (3.6]), ([4.41), (£49)— @50) leads to ([A.43).

The Proof of Theorem [2.1. We give the proof of Theorem 2.1l Indeed,
we can construct global solutions to the approximate FBVP (ILI])— (21
with (B1)—(B2), establish uniform a-prior estimates based on Lemma 3.1}
Lemma [3.3] and Lemma [.T-Lemma [£3], show their convergence of the orig-
inal FBVP problem, and justify the expected properties in Theorem 2] for
the limiting solution.

We can modify the initial data (p1,up) in Theorem 2] properly such
that the modified initial data (pf, uf) satisfies all assumptions in Proposition
BI on [e,a] and the following properties:

inf pg(r) >0, inf pg(r) > inf po(r),
réele,ao) réele,ao) réele,ao) (4'51)

ao ao
[ dirtar = [ prtanuite) <o,
€ €

In particular, ((p5)%,u§) — (pf,uo) strongly in H'([0,a0]) as e — 04 and
pi’k — pi(r) as e — 04, refer to |6, [14] for construction of such function.
By Proposition B the FBVP (2.1) and (31— (32]) admits a unique global
strong solution (pe,us,a:) on the domain [, a®(¢)] x [0,7] with the initial
data (pf,uf). Similarly to those in [6] we can construct the global solution
(p%,uf,a®) to the FBVP (LI)—(2.4) by setting (p%,u®,a®) = (pe, ue, az) for
(r,t) € [e,a(t)] x [0,T] and (p%,u®)(r,t) = (pe(e,t),0) for 0 < r < ¢ and
t€[0,77.
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First, we prove the strong convergence of (p®, u®, a®) near the free bound-
ary. It’s enough to prove the strong convergence on the domain [Tib,ae] X

[0,T], where r = r;, is a particle path with 75 (0) = r, € (b, ao] and
Ty = frio por?dr and the initial data satisfies (p’(‘j,uo) € Hllbg,ag]. Tt’s
convenient to show the strong convergence in Lagrangian coordinate on
[p, 1] x [0, T]. Indeed, we can show (p°, u®, a®) satisfies the uniform estimate
established in Lemmas B.2H44] on [xp, 1] x [0,7]. Thus, by Lions-Aubin’s
lemma, there is a limiting function (py,up,a) so that up to a subsequence

(p%,u%i,a%7), it holds that

(p%i,ufi) = (pp, up) strongly in C([0,T] X [zp, 1]) x C([0, T]; LP [z, 1]),

F&i —» F strongly in L2([0,T] x [z, 1]),

at —a strongly in C%([0,1]),a € (0, 3),
(4.52)
where r, = u, and (r3), = %,F = p — A+ 29)pp(r*up)s = p} — (A +
28) ppr20up — (X + 26 )2% In addition, by Lemma [3.4] and the construction
that p5(r) — pi(r) as € — 04 we conclude that the boundary condition

pp(a(t),t) = 0 holds.
Next, we show the convergence of(p®,u%i,a%) on an interior domain
fol defined by

Q7 = {(nt)0<r<da(t), 0<t<Tyn{(r,t)0<r<a(t), 0<t<T}

Due to the strong convergence (4£.52]) of velocity and the particle path as
€j — 04, it holds that for €; > 0 small enough

Qi = {(n)0<r <7y (t), 0<t<T}CCQ (4.53)

m?

where r = r,, (t) is a particle path defined by

d
&rﬂﬁm (t) = ub(rﬂﬁm (t)7t)7 Txin(o) =Tin € (T’b, CLQ), (4’54)

which satisfies that for xp < x4, =1— [ % poridr,

Tin
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With help of Lemma M1l a proper cut-off function and a similar com-
pactness argument as |14], we can show that there is a limiting function
(Pin, Win)(ryt) ((r,t) € Qiyn), so that up to a sub-subsequence (p7, p%iui)
converge to (pin, pintiin) in the sense that

P = pin strongly in LP(0,T; L7(0, rin(t))), ¥ 1<p<2y

- | . (4.5)
PEIufT = pinug, weakly in L°(0,T; £3F1(0,r4,(1))),

and (pin, win) satisfies (LI)—(ZI) on €2, in the sense of distribution. As
[14], we define LP(2)) := {f € LL.(Q)| Jo|f(r)Pr?dr < oo} with norm
I~ 1lzry = (Jo |- |pr2dr . Finally, define

(p’ pu) _ { (pbapbub)(x7t)7 rl‘b(t) < |X| < a(t)7 te [O,T], (4'57)

(pinypinuin)(x7t)7 0 < |X| < Txin(t)7 te [07T]7

where u = u%, up = %, W, = Ui’ and r = [x[. This is well defined and

(pbapbub) = (pmapmum)y a.e. (T, t) S [Tmb(t)arl‘m (t)] X [OaT] (458)

We can easily deduce that (p, pu,a(t)) is a weak solution to FBVP (I.I])—
[24)) in the sense of Definition 2.1l and by similar argument to [6] verify
that (p, pu, a(t)) satisfies the properties (Z11])— (2.I8]) and the free boundary
condition with the help of Lemmas [L2HAFl The proof of Theorem 2] is
completed. O

5. Long Time Expanding Rate

In this section, we investigate the large time behavior of any global
spherical symmetric weak solutions to FBVP (LI)—(24). Indeed, we can
obtain an expanding rate of the domain occupied by the fluid.

The proof of Theorem [2.2. Define an energy functional for a spherically
symmetric solution (p,u,a) as

a(t) 9 a(t)
H(t) = / (r — (1 + t)u)?pridr + -1 (1+ t)2/ pYr3dr
0 - 0

a(t) a(t) a(t)
= / pridr —2(1+1) / purddr + (1 + t)? / pulr?dr
0 0 0
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9 a(t)
+——(1+ t)2/ pYr2dr. (5.1)
y—1 0

A direct computation gives

a(t) a(t) 2
B = [ (' = 2purt)ir + (1402 [ (o) + = ()
0 0 -

a(t)
+2(1+1) / (pur? — (pu)er® + %p”rz)dr
0 _

2
+(purt —2(14t) pu®r3 4+ (141)2 pudr? + —1(1—|—t)2p7ur2) "
v r=a(t

=L+ L+ I3+ Ip. (5.2)

By (1) and (24]), one has

a(t) a(t)
L = —/ ((purQ),«r2 —pur22r)dr = —/ (purt),dr
0 0

4
= — ur 5 53
(p )T:a(t) (5.3)
a(t) a(t)
I, =(1 +t)2/ 2upugr?dr 4 (1 +t)2/ peulridr
0 0
alt) 9
+(1 —|—t)2/ —Vp“’_lpﬂﬂdr
o v—1
a(t)
= —2(A +2¢)(1 +t)2/ (ur + 27u)2r2dr
0
2
—(1+ )% (pur? + —— pur? ,
(1+8)(p po V4 )T:a(t)
a(t)
I3 = 2(1+ t)/ {pu2r2 — (pu*r?),r + (p7 — (N + 26)u,
0
2u 2
_ 26)=), 3 e v,.2
A+ é)r)r —I—fy_lpr }dr
= 2(1 +t)(pu®r3
o)
ot [ {(7-0+2) —(+26) 22 "2
; p Uy o o [P pdr

a(t)
= 220D (144 / PP Ar 21+ BA+ 2 ur +pu’r?)|  .(5.4)
0 _
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Substituting the above estimates into (5.2]) yields that

a(t) 2
H'(t) = =20\ +26)(1 +t)2/0 (u? + %)rzdr

o a(t)
W(I—I—t)/ pIrPdr —4(A+28) (1+4)*u* (a(t), t)a(t)
— 0
60X+ 26)(1 + tu(alt), (D), (5:5)
S L ey /0““) P+ 60+ 2000, (5.6)

where we have used (1+ t)u(a(t),t)a?(t) < ${(1+1t)*u*(a(t), t)a(t) +a3(t)}.
Therefore, we deduce from (5.6)) that for v > 2

H'(t) < 6(\ + 26)a®(t), (5.7)
which leads to
H(t) < H0) 4+ Cad(t)t < C(A+1t) + C(1 +t)a(t) < C(A+t)ai(t), (5.8)

where

ay(t) := max} a(s) > c¢> 0. (5.9)

Thus, the combination of (5.1 and (5.8]) lead to

a(t) 5
/ pIr2dr < C(1+t)tad(t), v > 3 (5.10)
0
For 1 <~ < 2, we get from (5.I) and (5.6) that
H(#) < %H(t) + 601 + 26)a*(0), (5.11)
from which it follows that for 1 < v < g and vy # %
H(t) <CA+t)" 4+ C(1+t)ai(t), (5.12)

and for v = %

H(t) < C(1+t)ai(t) + C(1 +t) log(1 + t)ai (t). (5.13)
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By (59)—(EI0) and (512)—(G.13]), one has

" c(1+ t)_lai)’(t), v
|t < 3 e o tos+ e, o =4 (5.14)
0
)

C(1 + )30 Va(t), e(1,4)
Due to
ao a(t) 3(y—1) a(t) 1
/ por’dr = / pridr < Ca(t)3 N (/ p’yrzdr> 7, (5.15)
0 0 0

combining (5.14) with (5I5) implies

a1(t) = max a(s) > ¢ C(1 —|—t)13_w7 o (5.16)

s€[0,t]

where we have used (1 +¢)” ~ log(1 + ¢) for any v > 0 small enough, and

ai(t) = 400, as t — +o0. (5.17)

Next, we show the exact expanding rate of the interface r = a(t). By

(EE), we have

22-30v-1)

H'(t) < o ))(1+t) /Oa(t) P r2dr +2(A+26) (1 +1) d 3(t) (5.18)

&a

due to the fact 3u(a(t),t)a(t) = La3(t). For v > 2, it holds

&l

H'(t) < 2()\+2§)(1+t)%a3(t) =2\ + 2{)%[(1+t)a3(t)]—2()\+2§)a3(t)
< 2\ + 25)%[(1 + t)a®(t)] (5.19)
because of (A + 2¢) > 0 and a(t) > ¢p > 0. Therefore, we obtain finally

H(t) <C+C(1+t)a3(t), (5.20)
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which, together with (5.1I), leads to
a(t)
/ prridr < C(1 +t) a3 (t). (5.21)
0

The combination of (5.2I)) and (B.13]) gives rise to

a(t) > C(L+ )%, 7> g (5.22)

For v < 2, (5.1) and (5.8) lead to
2-3(y—1) d
H@t)<=—=1_f 2N+ 26)(1 + t)—a’(t). 2
0 = 220 H () + 200+ 26)(1+ ) ' (0) (523)
If~= %, by Gronwall inequality, it holds
H(t) < C(1+)(H(0) + a’(t) — a®(0)) < C(1 +t)a’(t),

which leads to

a(t)

/ prridr < C(1 +t) a3 (t).
0

Therefore,

a(t) > C 1%, =2 (5.24)

3
If % <y < %, the application of Gronwall inequality to (5.23]) gives

H(t) < COL+ 01 {H(0) + 200 + 26)(1 + 7463 (8) = 21 + 26)a%(0)

t (13 S
—2(A+2§)(3y—4)/0 (#ds}

1+ 5)5=37
C(L+t)° 3V (H(0) + 2(A + 26)(1 + ) 1a(t) — 2(\ + 2€)a®(0))

IA

< CA+)7 4 C1+t)a(t),
which leads to

a(t)
/ pir2dr < C(1+t)7307D L 014+ ) e (1)
0

< C{A+6)730 D L1+ @) (5.25)
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Thus, it follows

-1

at) > C(1+8) 57 +C1+0)5 >CA+1) 7,

4 )
—<y< =z (5.26)

3 3
To conclude from (5.22)), (5.24)), and (5.26)), it holds that
1
0(1 + t)av Y= %
’Y_71
o2 ca+0 e ). (5.21)
Cl+t)%, y>3.
The proof is completed. O
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