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Abstract

In this paper, we follow the framework of construction of Green’s function for Boltz-

mann equation in [12] to establish the pointwise structure for the stability of shock profile

for scalar viscous conservation law in R
2. We treat the 2-D viscous conservation law like a

kinetic equation, and introduce the shock front-remainder decomposition to separate the

effect coming from shock front. Based on this decomposition, we construct the Green’s

function and get the pointwise structure of shock front.

1. Introduction

The viscous conservation law in 2-d is

ut + f(u)x + g(u)y = △u.

Assume the flux function f(u) is strictly convex:

f ′′(u) ≥ a > 0. (1.1)

For any given states u+ < u−, when |u+ − u−| ≤ ǫ ≪ 1, there is a planar

Received March 31, 2015 and in revised form June 10, 2015.

AMS Subject Classification: 82C40.

Key words and phrases: Scalar conservation law, shock profile, Green’s function, shock front-
remainder decomposition.

553

mailto:matdengs@sjtu.edu.cn
mailto:wkwang@sjtu.edu.cn


554 SHIJIN DENG AND WEIKE WANG [December

traveling wave solution φ(x− σt) connecting the given states, [1]:







−σφ′ + f(φ)x = φ′′,

lim
x→±∞

φ(x) = u±,
(1.2)

where the speed σ of the traveling wave is determined by the Rankine-

Hugoniot condition:

σ =
f(u+)− f(u−)

u+ − u−
.

In the study of whole space problem, without loss of generality, one can

assume the speed σ to be 0. Here, to be consistent with the convex condition

(1.1) of f , the planar viscous shock wave φ(x) satisfies:

φ′(x) < 0, φ′(x) = O(|u+ − u−|2)e−(u−−u+)||x|/C . (1.3)

One interesting problem is whether the planar wave φ(x) is stable under

a multi-dimensional perturbation:

{

ut + f(u)x + g(u)y = △u,

u(x, y, 0) = φ(x) + u0(x, y),
(1.4)

where the perturbation u0(x, y) satisfies smallness condition in certain norm.

Goodman gave a positive answer to this problem in [3, 4]. The stability

is proved in [3] and the asymptotic behavior in L1 is given in [4] under the

assumptions f(u) = u2

2 and g(φ(x)) ∈ L2(R). Both of the results are proved

by the anti-derivative method which is classical in the study of 1-D viscous

shock for scalar conservation law given by II’in and Oleinik [5] and the one

for systems of conservation laws initiated by Kawashima and Matsumura [7]

and Goodman [2] and completed by Liu [10].

During the proof of stability, the shock front tracing is always important

since it is corresponding to a slower decaying term and used to take the non-

zero mass part preparing for construction of anti-derivative. In 1-D case,

due to the conservation law, the shift of shock front is a constant; while in

multi-D case, it is a function of y and t which is not possible to be determined

only by initial data. In fact, the equation for shock front and the equation

for anti-derivative are coupled together which makes the energy estimate
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far more complicate than 1-D case. In [3], the structure of the shock front

is proposed after a formal expansion. The dominated part is supposed to

satisfy a heat equation and thus converges to 0 as time goes to infinity. In

[4], they consider the 2-D case with f(u) = u2

2 and g(φ(x)) ∈ L2(R) and

obtain an expression for the asymptotic form of small perturbations. They

give a rigorous proof to verify that the leading order is governed by a heat

equation with the diffusion coefficient depending on forces transverse to the

shock front.

In this paper, we go on with the interest on the structure of shock front

which gives the leading order in the asymptotic form of small perturbations.

Besides, we introduce a new understanding and separation of shock front and

remainder. It may help us to create a new method which is more suitable

for the multi-D case than the anti-derivative method.

To get a clear picture of the perturbation, we construct the Green’s func-

tion for the pointwise structure. The difficulty lies in that the linear equation

is with variable coefficients and it is difficult to apply Fourier analysis. We

do not follow the classical thinking about approximated Green’s function,

[11, 16], but take the special structure of the planar wave into considera-

tion and make an analogy between the problem and kinetic equation. We

introduce the shock front-remainder decomposition similar to macro-micro

decomposition for kinetic equation and adopt the methodology in construc-

tion of the Green’s function for Boltzmann equation in [12] and [13] to over-

come the difficulties due to the non-constant coefficients. Finally we give the

pointwise structure of small perturbation with only convexity assumption on

f(u) and it is very interesting that the structure shows that the hyperbolic

speed λ (the pointwise structure is given in (1.10)) is determined by certain

average of g(φ(x)):

λ =
g(u+)− g(u−)

u+ − u−
.

Rewrite the scalar conservation law (1.4) into a Boltzmann-like equation:

ut + g(u)y − uyy = Q(u) ≡ uxx − f(u)x.

Consider the equation:

Q(u) = 0. (1.5)
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The solution is just the travelling wave solution φ(x) given by (1.2) with

σ = 0.

Denote:

M(x) = (u+ − u−)
−1φ′(x), (1.6)

and reconsider linearization of (1.4) by setting:

u(x, y, t) = φ(x) +
√

M(x)w(x, y, t).

The equation for the perturbation w(x, y, t) is

wt + g′(φ(x))wy − wyy = Lw +N(w). (1.7)

Here, the linear and nonlinear operators L and N are given by

Lw ≡ M−1/2
((

M1/2w
)

xx
−
(

f ′(φ)M1/2w
)

x

)

, (1.8)

and

N(w) ≡ −M−1/2 (N1(w))x −M−1/2 (N2(w))y

≡ −M−1/2
(

f(φ+M1/2w)− f(φ)− f ′(φ)M1/2w
)

x

−M−1/2
(

g(φ+M1/2w)− g(φ)− g′(φ)M1/2w
)

y
.

The Green’s function G(x, y, t;x∗) for the equation (1.7) is given by

{

∂tG+ g′(φ(x))∂yG− ∂yyG = LG,

G(x, y, 0;x∗) = δ(x− x∗)δ(y).
(1.9)

Here, δ(z) is the dirac delta function.

The main result of the paper is:

Theorem 1.1. The Green’s function G(x, y, t;x∗) of (1.9) satisfies:

G(x, y, t;x∗) =
5

∑

j=0

vj(x, y, t;x∗) +G
R5(x, y, t;x∗),
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where the singular waves vj(x, y, t;x∗) are given as follows:

vj(x, y, t;x∗) = O(1)



















e−t/C−
(x−x∗)

2+(y−λt)2

4t

t(2−j)/2 , for j = 0, 1,

e−(|x|+|y|+t)/C , for j = 2, 3, 4, 5,

and
∥

∥

∥
∂k
yG

R5(·, y, t;x∗)
∥

∥

∥

L2
x

= O(1)





e
− (y−λt)2

C1(1+t)

1 + t1/2+k/2
+ e−(|y|+t)/C1



 , (1.10)

with the constant λ given by

λ ≡ g(u+)− g(u−)
u+ − u−

.

Furthermore, the remainder decays faster:

∥

∥P1G
R5(·, y, t;x∗)

∥

∥

L2
x
,

∥

∥G
R5(·, y, t;x∗)P1

∥

∥

L2
x
= O(1)





e
− (y−λt)2

C1(1+t)

1 + t
+ e−(|y|+t)/C1



 ,

where the remainder operator P1 is defined in (2.1).

The rest of the paper is arranged as follows. In Section 2, we define the

shock front-remainder decomposition which is similar to the macro-micro

decomposition for the Boltzamann equation and show the nonpositivity of

shock front operator. In Section 3, we study a model linear problem with a

regular initial function. In Section 4, we design a Picard iteration to separate

the singular and regular terms in the Green’s function. The singular part

can be put down directly while the regular part can be deduced into the

model problem studied in Section 3. We also use the bootstrap to improve

the L2
x estimate into the weighted L∞

x,1/2 estimate and give the pointwise

structure of the Green’s function.

2. Preliminaries

In this section, we define the shock front-remainder decomposition which
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replaces the anti-derivative method in [3] and prove the non-positivity of the

linear operator L as a preparation for the construction of Green’s function.

2.1. Shock front-remainder decomposition

We denote L2
x to be the normal Hilbert space for functions on x with

given inner product:







(h, v) ≡
∫

R

h(x)v(x)dx for h, v ∈ L2
x,

‖h‖L2
x
≡

√

(h, h).

The null space of L in the Hilbert space L2
x is a one-dimensional vector

space with basis χ:

χ ≡ M1/2.

For any function h ∈ L2
x, the shock front-remainder decomposition (P0,P1)

is defined as follows:














h ≡ P0h+P1h,

P0h ≡ (χ, h)χ,

P1h ≡ h−P0g.

(2.1)

The decomposition defined here reveals the seperation of wave front and

remaining parts, the nature showed in [3]. We will show it later.

2.2. Non-positivity for linear operator L

Non-positivity is one of the most important properties of linear collision

operator in kinetic theory. We will prove that it is also true for the linear

operator L defined in (1.8).

Lemma 2.2. The linearized collision operator L is non-positive definite.

Proof. It can be obtained by straightforward computations:

(v,Lv) ≡
(

v,M−1/2
((

M1/2v
)

xx
−

(

f ′(φ)M1/2v
)

x

))

= −
(

vx,M
−1/2

((

M1/2v
)

x
− f ′(φ)M1/2v

))
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−
(

v,
(

M−1/2
)

x

((

M1/2v
)

x
− f ′(φ)M1/2v

))

= −
(

vx, vx +
1

2
M−1Mxv − f ′(φ)v

)

−
(

v,−1

2
M−1Mx

(

vx +
1

2
M−1Mxv − f ′(φ)v

))

= −(vx, vx)+(vx, f
′(φ)v)− 1

2

(

v,M−1Mx

(

f ′(φ)− 1

2
M−1Mx

)

v

)

.

The definition (1.6) for M(x) and the equation (1.5) for traveling wave φ(x)

yield that

Mx = (u+ − u−)
−1φ′′ = (u+ − u−)

−1f ′(φ)φ′ = f ′(φ)M.

Thus, one has

(v,Lv) = −(vx, vx) + (vx, f
′(φ)v) − 1

4

(

v,
(

f ′(φ)
)2

v
)

= −
(

vx −
f ′(φ)v

2

)2

≤ 0. ���

3. A Linear Problem

Consider the linear equation in (1.7):







vt + g′(φ(x))vy − vyy = Lv,

v(x, y, 0) = v0(x, y).
(3.1)

3.1. Fourier analysis: Pointwise estimate for long-wave component

Take the Fourier transform in y-variable. It turns out that the coefficient

g′(φ(x)) becomes constant with respect to y-variable:






















v̂(x, η, t) ≡ 1√
2π

∫

R

e−iηyv(x, y, t)dy,

∂tv̂ + iηg′(φ(x))v̂ + η2v̂ − Lv̂ = 0,

v̂(x, η, 0) = v̂0(x, η).
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We can formally put down the solution v(x, y, t) as follows:

v̂(x, η, t) = e(−iηg′(φ(x))−η2+L)tv̂0(x, η),

v(x, y, t) =
1√
2π

∫

R

eiηy+(−iηg′(φ(x))−η2+L)tv̂0(x, η)dη. (3.2)

To get estimates from (3.2), one needs to study the spectrum of the

operator −iηg′(φ(x))− η2 + L. Denote

σ(η) ≡
{

λ ∈ C : there exist non-trivial e ∈ L2
x such that

(

−iηg′(φ(x)) − η2 + L
)

e = λe
}

.

One has the following description for σ(η):

Lemma 3.1. There exist κ0 > 0 and κ1 > 0 such that for |η| > κ0,

σ(η) ⊂ {z ∈ C : Re(z) ≤ −κ1}, (3.3)

and for any |η| ≤ κ0,







σ(η) = −iλη −A|η|2 +O(1)|η|3,

A = 1− (P1g
′(φ)χ,L−1P1g

′(φ)χ) > 0,
(3.4)

and λ is the eigenvalue of P0g
′(φ)P0:

P0g
′(φ)χ = λχ, λ =

g(u+)− g(u−)
u+ − u−

. (3.5)

Furthermore, for |η| ≪ 1, there exist normalized holomorphic eigenvec-

tors e(η) ∈ L2
x of the operator −iηg′(φ(x))− η2 + L:

{

(

−iηg′(φ(x)) − η2 + L
)

e(η) = σ(η)e(η),

e(η) = χ+ ηe′(0) +O(1)|η|2,
(3.6)

and

e′(0) = iL−1P1g
′(φ(x))χ. (3.7)

Proof. Statement (3.3) for |η| > κ0 can be resulted from spectral gap at the

origin due to the dissipation −η2 in the operator and also the non-positivity
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of operator L.

When η is small, the spectrum information comes from the perturbation

theory, [6]. From (2.1), one has







P0g
′(φ(x))χ = λχ,

P0

(

−iηg′(φ(x)) − η2 + L
)

χ = (−iηλ− η2)χ,

with λ given in (3.5). This suggests that σ(η) and e(η) are small perturba-

tions of −iηλ− η2 and χ.

We consider the normalized eigenvector e(η) and σ(η) in the following

form:


















e(η) = χ+ b1(η), P0b1 ≡ 0,

σ(η) = −iη(λ− iη + ρ(η)),

b1(0) = ρ(0) = 0.

(3.8)

To estimate the dependent variable ρ, one applies the shock front-

remainder decomposition to (−iηg′(φ(x)) − η2 + L)e = σe to obtain







P0 (g
′(φ(x)) − iη)b1 = ρχ,

−iηP1g
′(φ(x))(χ + b1) + Lb1 = −iη(λ+ ρ)b1.

(3.9)

The second equality gives rise to

b1 = iη
[

L− iηP1g
′(φ(x)) + iη(λ+ ρ)

]−1
P1g

′(φ(x))χ. (3.10)

Substitue (3.10) into the first equation of (3.9) to result in

ρχ = iηP0

(

g′(φ(x)) − iη
) [

L− iηP1g
′(φ(x)) + iη(λ+ ρ)

]−1
P1g

′(φ(x))χ.

This gives an equation for two variables (ρ, η):

G (ρ, η) ≡ ρ− iη
(

χ,P0

(

g′(φ(x)) − iη
) [

L− iηP1g
′(φ(x)) + iη(λ + ρ)

]−1

P1g
′(φ(x))χ

)

= 0. (3.11)

Since ∂ρG (0, 0) = 1 6= 0, by the implicit function theorem, the dependent
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variable ρ is holomorphic function of η when |η| ≪ 1.

From the equation (3.11), one can also easily observe that

ρ = iη
(

P1g
′(φ(x))χ,L−1P1g

′(φ(x))χ
)

+O(1)|η|2.

Substitue it into σ in (3.8) and one concludes that:

σ(η) = −iλη + η2
(

−1 +
(

P1g
′(φ(x))χ,L−1P1g

′(φ(x))χ
))

+O(1)|η|3,

which yields (3.4). The non-positivity of
(

P1g
′(φ(x))χ,L−1P1g

′(φ(x))χ
)

comes from Lemma 2.2.

The statements (3.6) and (3.7) are direct results of (3.8) and (3.10). ���

Lemma 3.1 tells full information when η is small and only partial infor-

mation for η large. This leads to different treatments due to the frequency

η. We introduce the long wave-short wave decomposition as follows:

v(x, y, t) = vL(x, y, t) + vS(x, y, t),



















































vL(x, y, t) ≡
1√
2π

∫

|η|<κ0

eiηy v̂(x, η, t)dη

= 1√
2π

∫

|η|<κ0

eiηy+(−iηg′(φ(x))−η2+L)tv̂0(x, η)dη,

vS(x, y, t) ≡
1√
2π

∫

|η|>κ0

eiηy v̂(x, η, t)dη

= 1√
2π

∫

|η|>κ0

eiηy+(−iηg′(φ(x))−η2+L)tv̂0(x, η)dη.

The following two lemmas come directly from Planchel equality and Lemma

3.1:

Lemma 3.2. For any s ≥ 0,

‖vL(·, ·, t)‖Hs
y (L

2
x)

= O(1)‖v0‖L2
y(L

2
x)
.

Lemma 3.3. There exists a constant C > 0 such that the short wave com-

ponent vS(x, y, t) satisfies

‖vS(·, ·, t)‖Hs
y (L

2
x)

≤ Ce−t/C‖v0‖Hs
y(L

2
x)
,
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‖vS(·, ·, t)‖L∞
y (L2

x)
≤ Ce−t/C

(

‖v0‖L2
y(L

2
x)
‖∂yv0‖L2

y(L
2
x)

)1/2
.

Lemma 3.2 gives a rough estimate for the long wave component. To

get the pointwise time and spatial structure, one restricts in the finite Mach

number region and apply contour integral with the information in Lemma

3.1. Denote

RM ≡
{

(y, t) ∈ R× R+ :
|y|
|λ|t ≤ M

}

.

Lemma 3.4. There exist positive constants C0, C1 such that for any (y, t) ∈
R2,































‖GL‖L2
x
= O(1)





e
− (y−λt)2

C0(1+t)

√
1 + t

+ e−t/C1



 ,

‖P1GL‖L2
x
, ‖GLP1‖L2

x
= O(1)





e
− (y−λt)2

C0(1+t)

1 + t
+ e−t/C1



 ,

where

GL(x, y, t) ≡
∫

|η|<κ0

eiηy+(−iηg′(φ(x))−η2+L)tdη,

and λ is given in (3.5).

Remark 3.5. The proof is the same to that for Lemma 3.8 in [12] and we

omit the details here. As a conclusion of Lemma 3.4, one has that

‖vL(·, ·, t)‖L∞
y (L2

x)
=

1√
2π

∥

∥

∥

∥

∥

∫

|η|<κ0

eiηy+(−iηg′(φ(x))−η2+L)tv̂0(x, η)dη

∥

∥

∥

∥

∥

L∞
y (L2

x)

= O(1)‖GL‖L∞
y (L2

x)
‖v̂0‖L∞

x,η

= O(1)‖GL‖L∞
y (L2

x)
‖v0‖L1

y(L
∞
x ). (3.12)

3.2. Energy method: Spatial structure outside finite mach number

region

Lemma 3.4 gives a pointwise structure inside the finite Mach number

region and it remains to describe the solution outside the finite Mach num-

ber region. Since solution decays fast enough outside the cone, one applies

weighted energy method to yield exponetially sharp estimates.
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Lemma 3.6. There exists a constant C > 0 such that for any |y| > 2|λ|t,

the solution v(x, y, t) for (3.1) satisfies

‖v(·, y, t)‖L2
x
≤ Ce−(|y|+t)/C

∥

∥

∥e|y|/4v0
∥

∥

∥

H1
y(L

2
x)
.

Proof. The weighted function is chosen to be

E (y, t) = e(|y|−a|λ|t)/M ,

and it satisfies

Et = −a|λ|
M

E , Ey =
|y|
My

E . (3.13)

Here, 1 < a < 2 and M is sufficiently large.

Multiply (3.1) with E (y, t)v(x, y, t) and integrate the product with re-

spect to (x, y) in R
2:

0 =

∫

R2

E v
(

vt + g′(φ(x))vy − vyy − Lv
)

dxdy

=
1

2

d

dt

∫

R2

E v2dxdy − 1

2

∫

R2

Etv
2dxdy − 1

2

∫

R2

Eyg
′(φ(x))v2dxdy

+

∫

R2

E v2ydxdy +

∫

R2

Eyvvydxdy −
∫

R

E (v, Lv)dy

≥ 1

2

d

dt

∫

R2

E v2dxdy +
1

2

a|λ|
M

∫

R2

E v2dxdy +

∫

R2

E v2ydxdy

−1

2

1

M

∫

R2

|y|
y

E g′(φ(x))v2dxdy +
1

M

∫

R2

|y|
y

E vvydxdy

≥ 1

2

d

dt

∫

R2

E v2dxdy +
1

4

a|λ|
M

∫

R2

E v2dxdy +
1

2

∫

R2

E v2ydxdy. (3.14)

In the last two inequalities, one uses (3.13), Lemma 2.2 and Holder inequal-

ity. One also uses that g′(z) is continuous on [u+, u−] and thus |g′(z)|−|λ| ≪

1. Thus, (3.14) yields

∫

R

E ‖v(·, y, t)‖2L2
x
dy ≤

∫

R

e|y|/M‖v0(·, y)‖2L2
x
dy. (3.15)
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Similarly, one has the estimates for the derivative:

0 =

∫

R2

E vy
(

(vy)t + g′(φ(x))vyy − vyyy − Lvy
)

dxdy

≥ 1

2

d

dt

∫

R2

E v2ydxdy +
1

2

a

M

∫

R2

E v2ydxdy +

∫

R2

E v2yydxdy

−1

2

1

M

∫

R2

|y|
y

E g′(φ(x))v2ydxdy +
1

M

∫

R2

|y|
y

E vyvyydxdy

≥ 1

2

d

dt

∫

R2

E v2ydxdy +
1

4

a

M

∫

R2

E v2ydxdy +
1

2

∫

R2

E v2yydxdy,

which yields

∫

R

E ‖vy(·, y, t)‖2L2
x
dy ≤

∫

R

e|y|/M‖(v0)y(·, y)‖2L2
x
dy. (3.16)

Combining (3.15), (3.16) and Sobolev’s inequality, one has

e(|y|−a|λ|t)/2‖v(·, y, t)‖2L2
x

≤ C

∫

R2

e|y|/M
(

v20 + (v0)
2
y

)

dxdy

≤ C
∥

∥

∥
e|y|/2Mv0

∥

∥

∥

2

H1
y (L

2
x)
.

If one restricts the region to be |y| > 2|λ|t, then |y| − a|λ|t > (|y|+ t)/C for

some positive constant C. Thus we finish the proof. ���

3.3. Conclusion

Lemma 3.3, (3.12) and Lemma 3.6 yield the pointwise structure of the

linear problem (3.1):

Lemma 3.7. There exist positive constants C0 and C1 such that if the initial

function v0(x, y) satisfies e|y|/C0v0 ∈ H1
y (L

2
x) and v0 ∈ L1

y(L
∞
x ), then the

solution v(x, y, t) of (3.1) satisfies

‖v(·, y, t)‖L2
x
= O(1)





e
− (y−λt)2

C1(1+t)

√
1 + t

+ e−(|y|+t)/C1



 , (3.17)
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where

λ =
g(u+)− g(u−)

u+ − u−
.

Furthermore, P1v(x, y, t) decays faster

‖P1v(·, y, t)‖L2
x
= O(1)





e
− (y−λt)2

C1(1+t)

1 + t
+ e−(|y|+t)/C1



 .

Remark 3.8. After a little modification of Lemma 3.4 and similar to (3.12),

if the initial function v0(x, y) satisfies e
|y|/C0v0 ∈ H2

y (L
2
x) and v0 ∈ L1

y(L
∞
x ),

one can get the following estimate for the derivative vy:

‖vy(·, y, t)‖L2
x
= O(1)





e
− (y−λt)2

C1(1+t)

1 + t
+ e−(|y|+t)/C1



 . (3.18)

4. Pointwise Structure for Green’s Function

4.1. Picard Iteration and Regularity Improvement

A main difference between the Green’s function G(x, y, t;x∗) and the

solution v(x, y, t) of the linear problem (3.1) is that Green’s function con-

tains a singular structure inherited from initial dirac function. To separate

the singular structure, we design the following iteration scheme based on a

decomposition of operator L and the approximated profile φ̄(x). Denote

φ̄(x) =

{

u+, for x > 0,

u−, for x < 0,

and decompose

Lv = vxx −
1

2
(f ′(φ(x)))xv −

1

4
(f ′(φ(x)))2v ≡ LKv +Kv,

where

LKv ≡ vxx −
1

4
(f ′(φ̄(x)))2v,

Kv ≡ −1

2
(f ′(φ(x)))xv −

1

4

(

(f ′(φ(x)))2 − (f ′(φ̄(x)))2
)

v.
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Denote G±(x, y, t) solving







∂tG± + λ∂yG± − ∂yyG± = ∂xxG± − 1

4
(f ′(u±))

2
G±,

G±(x, y, 0) = δ(x)δ(y).

Then one has that

G±(x, y, t) =
e−

1
4
(f ′(u±))2t−x2+(y−λt)2

4t

4πt
.

Denote χ(x) to be the smooth cut-off function

χ(x) =

{

1, for x > 1,

0, for x < −1,

with 0 ≤ χ(x) ≤ 1.

The Picard iteration starts with:

v0(x, y, t;x∗) ≡ χ(x)G+(x− x∗, y, t) + (1− χ(x))G−(x− x∗, y, t), (4.1)

and for j ≥ 0,



































ER−1 ≡ 0,

erj ≡ (∂t + λ∂y − ∂yy − LK) vj − ERj−1,

ERj ≡ Kvj − (g′(φ(x)) − λ∂y) v
j − erj ,

vj+1(x, y, t;x∗) ≡ χ(x)
(

G+(x, y, t) ∗(x,y,t) ERj

)

+ (1− χ(x))
(

G−(x, y, t) ∗(x,y,t) ERj

)

.

(4.2)

The iteration scheme yields the equations for vj(x, y, t;x∗):

{

∂tv
0 + λ∂yv

0 − ∂yyv
0 = LKv0 + er0,

v0(x, y, 0;x∗) = δ(x− x∗)δ(y),

and for j ≥ 1,

{

∂tv
j + λ∂yv

j − ∂yyv
j = LKvj + ERj−1 + erj ,

vj(x, y, 0;x∗) = 0.
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Set

G
RJ (x, y, t;x∗) = G(x, y, t;x∗)−

J
∑

j=0

vj(x, y, t;x∗)

and it solves

{

G
RJ
t + g′(φ(x))GRJ

y −G
RJ
yy = LGRJ + ERJ ,

G
RJ(x, y, 0;x∗) = 0.

There are singularities in G(x, y, 0;x∗) when t = 0 and the scheme im-

proves the regularities. The following estimates can be obtained by direct

computations. Denote

H(x) ≡
{

1, for − 1 < x < 0,

0, otherwise,

and one has

v0(x, y, t;x∗) = χ(x)
e−

1
4
(f ′(u+))2t− (x−x∗)

2+(y−λ+t)2

4t

4πt

+(1− χ(x))
e−

1
4
(f ′(u−))2t− (x−x∗)

2+(y−λ−t)2

4t

4πt
,

er0(x, y, t;x∗) = H(x)χ(x)
(

(

g′(u−)− g′(u+)
)

∂y

+
1

4

(

(f ′(u−))
2 − (f ′(u+))

2
)

)

G+(x− x∗, y, t)

+H(−x)(1− χ(x))
(

(

g′(u+)− g′(u−)
)

∂y

+
1

4

(

(f ′(u+))
2 − (f ′(u−))

2
)

)

G−(x− x∗, y, t)

−χ′′(x)G+ − 2χ′(x)∂xG+ + χ′′(x)G− + 2χ′(x)∂xG−

= O(1)
e−t/C− (x−x∗)2+(y−λKt)2

4t

t3/2
,

ER0(x, y, t;x∗) = O(1)
e−t/C− (x−x∗)2+(y−λKt)2

4t

t3/2
. (4.3)
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Substitute (4.3) into the formula of vj+1 in (4.2) to yield

v1(x, y, t;x∗) = O(1)
e−t/C− (x−x∗)

2+(y−λKt)2

4t

t1/2
,

and

er1(x, y, t;x∗), ER1(x, y, t;x∗) = O(1)
e−t/C− (x−x∗)

2+(y−λKt)2

4t

t
.

Go on with the iteration and finally, when J = 5, the error term ERJ

which serves as the source term for remaining functionG
RJ is regular enough:

for k = 0, 1, 2,

∂k
yER5(x, y, t;x∗) = O(1)e−t/C− (x−x∗)

2+(y−λKt)2

4t = O(1)e−(|x|+|y|+t)/C ,

and one can apply the conclusions (3.17) and (3.18) for the linear problem

to yield Theorem 1.1.

4.2. Pointwise estimates in x variable

We apply a bootstrap argument to improve the previous estimates in

Theorem 1.1 to get a pointwise structure in x-variable.

To focus on the problems considered here, we suppose

(f ′(u+))
2 = (f ′(u−))

2 ≡ dK , g′(u+) = g′(u−) ≡ λK . (4.4)

Then the two-sided problem







∂tGK + g′(φ̄(x))∂yGK − ∂yyGK = ∂xxGK − 1

4
(f ′(φ̄(x)))2GK ,

GK(x, y, 0;x∗) = δ(x− x∗)δ(y),
(4.5)

is reduced to a problem with constant coefficients:







∂tGK + λK∂yGK − ∂yyGK = ∂xxGK − 1

4
dKGK ,

GK(x, y, 0) = δ(x)δ(y),
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and one has that

GK(x, y, t) =
e−

1
4
dK t−x2+(y−λKt)2

4t

4πt
. (4.6)

Remark 4.1. One can remove the assumption (4.4) and put down the so-

lution formula for (4.5) by using the master relationship, [14].

Theorem 4.2. For the bounded, compact-supported initial data v0 satisfying







v0(x, y) ≡ 0, for |y| ≥ 1,

|||v0||| ≡ ‖v0‖L∞
y (L∞

x,1/2
) ≡ supx,y∈R

∣

∣M−1/2v0(x, y)
∣

∣ < ∞,
(4.7)

there exists a positive constant C1 such that for all x ∈ R

∥

∥P0G
tv0

∥

∥

L∞

x,1/2
= O(1)|||v0|||





e
− (y−λt)2

C0(1+t)

√
1 + t

+ e−(|y|+t)/C



 , (4.8)

∥

∥G
tP1v0

∥

∥

L∞

x,1/2

= O(1)|||v0|||





e
− (y−λt)2

C0(1+t)

1 + t
+ e−(|y|+t)/C



 , (4.9)

∥

∥P1G
tv0

∥

∥

L∞

x,1/2

= O(1)|||v0|||





e
− (y−λt)2

C0(1+t)

1 + t
+ e−(|y|+t)/C



 . (4.10)

Here, we use the notation

G
tv0(x, y, t) ≡

∫

R2

G(x, y − y∗, t;x∗)v0(x∗, y∗)dx∗dy∗.

Proof. A direct computation based on Theorem 1.1 and initial condition

(4.7) yield

∥

∥G
tv0

∥

∥

L2
x
= O(1)|||v0|||





e
− (y−λt)2

C0(1+t)

√
1 + t

+ e−(|y|+t)/C



 .

From definition (2.1),

∥

∥P0G
tv0

∥

∥

L∞

x,1/2
≡

∥

∥

∥

∥

M−1/2(x)

(∫

R

M1/2(x)Gtv0(x, y, t)dx

)

M1/2(x)

∥

∥

∥

∥

L∞
x
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= O(ǫ−1/2)

∣

∣

∣

∣

∫

R

M1/2(x)Gtv0(x, y, t)dx

∣

∣

∣

∣

≤ C(ǫ−1/2)
∥

∥

∥M
1/2

∥

∥

∥

L2
x

∥

∥G
tv0

∥

∥

L2
x
,

and thus one has (4.8).

To obtain (4.9), one applies bootstrap as follows:

{

∂th+ λK∂yh− ∂yyh = LKh+Kh− (g′(φ(x)) − λK)∂yh,

h(x, y, 0) = P1v0.
(4.11)

The solution h(x, y, t) = G
tP1v0. Also, Theorem 1.1 and initial condition

(4.7) result in the L2
x estimate for the solution:

‖h(·, y, t)‖L2
x
= O(1)|||v0|||





e
− (y−λt)2

C0(1+t)

1 + t
+ e−(|y|+t)/C



 .

Since Kh−(g′(φ(x))−λK)∂yh = O(1)M(h+∂yh), from Schwartz inequality,

one has

∥

∥Kh− (g′(φ(x)) − λK)∂yh
∥

∥

L∞

x,1/2

≤ C
∥

∥

∥M
1/2

∥

∥

∥

L2
x

‖h+ ∂yh‖L2
x

= O(1)|||v0|||





e
− (y−λt)2

C0(1+t)

1 + t
+ e−(|y|+t)/C



 . (4.12)

Use (4.12) as a source term of (4.11) and apply the Green’s function GK

given in (4.6):

‖h‖L∞

x,1/2
=

∥

∥

∥

∥

∫ t

0

∫

R2

GK(x− x∗, y − y∗, t− s)
(

Kh− (g′(φ(x)) − λK)∂yh
)

(x∗, y∗, s)dx∗dy∗ds

∥

∥

∥

∥

L∞

x,1/2

= O(1)|||v0|||





e
− (y−λt)2

C0(1+t)

1 + t
+ e−(|y|+t)/C



 .
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The proof of (4.10) comes from the Picard iteration of the following

problem:

{

∂th̄+ λK∂yh̄− ∂yyh̄ = LK h̄+Kh̄− (g′(φ(x)) − λK)∂y h̄,

h̄(x, y, 0) = v0.

Similar to (4.1) and (4.2), one decomposes:

h̄(x, y, t) =

5
∑

j=0

hj(x, y, t) + hR5(x, y, t),

with

h0(x, y, t) = GK ∗(x,y) v0,
hj(x, y, t) = GK ∗(x,y,t)

(

K−
(

g′(φ(x)) − λK

)

∂y
)

hj−1, for 1 ≤ j ≤ 5.

For hj(x, y, t), one has the solution formula. By using Green’s function GK

and the initial condition (4.7), one has:

∥

∥hj
∥

∥

L∞

x,1/2

= O(1)e−(|y|+t)/C |||v0|||, for j = 0, 1, · · · , 5.

The remainder part hR5(x, y, t) satisfies

{

∂th
R5 + g′(φ(x))∂yhR5 − ∂yyh

R5 = LKhR5 +KhR5 + ERh,5,

hR5(x, y, 0) = 0,

where ERh,5 ≡ Kh5 − (g′(φ(x)) − λK)∂yh
5 satisfying

∥

∥

∥
∂k
yERh,5

∥

∥

∥

L∞

x,1/2

= O(1)e−(|y|+t)/C |||v0||| for k = 0, 1.

Thus, similar to the proof of (4.9), we can prove that

∥

∥P1h
R5

∥

∥

L∞

x,1/2
= O(1)|||v0|||





e
− (y−λt)2

C0(1+t)

1 + t
+ e−(|y|+t)/C



 ,

and we finish the proof. ���
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