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Abstract

Numerical analyses of the second-order Knudsen layer are conducted on the basis of

the linearized Boltzmann equation for hard-sphere molecules under the diffuse reflection

boundary condition. These aim at completing the data for the asymptotic theory of the

Boltzmann equation (the generalized slip-flow theory) that have been lacking for nearly

a half century except for the Bhatnagar–Gross–Krook (or Boltzmann–Krook–Welander)

kinetic model equation. Numerical data, except for the curvature effects, are prepared up

to the second order in the Knudsen number expansion.

1. Introduction

Study on the connection between the kinetic theory and the fluid-

dynamics has a long history [3, 8, 7] and a number of important results have

been obtained for a small or a vanishing limit of the Knudsen number, e.g.,

[5, 6, 17, 18, 19, 28]. Mathematical studies are developing to include the

argument of boundary condition for the fluid-dynamical equation [4, 10, 12].

It seems, however, that they are mainly concerned with the vanishing limit

of the Knudsen number and are not intended to describe the gas rarefaction

effect itself. In the meantime, a systematic asymptotic theory established in

the late 1960s and early 1970s [17, 18] and developed further since then [19]
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provides not only the fluid-dynamic description in the bulk region but also

the slip/jump boundary condition and the non-fluid-like correction in a thin

layer adjacent to the boundary (the Knudsen layer) for small Knudsen num-

bers. We call the linear case of this theory the generalized slip-flow theory

in the present paper. The generalized slip-flow theory contains rich informa-

tion on the gas rarefaction effect, giving a fluid-dynamical interpretation to

various phenomena occurring for small Knudsen numbers. It also motivates

recent studies on time-dependent problems in the framework of the theory

[9, 13, 25].

The theory has been applied to various fundamental problems and is re-

vealed to be practical. However, such applications have been limited mostly

to the studies based on the Bhatnagar–Gross–Krook (BGK) [or Boltzmann–

Krook–Welander (BKW)] model equation [2, 26]. This is due to lack of

numerical data at the second order of the Knudsen number for the original

Boltzmann equation. Some difficulties in numerical analyses, which could

be bypassed for the BGK model, have prevented the preparation of the de-

sired data. Here, the difficulties do not mean a mere numerical cost but

rather mean possible singularities inherent in the elemental (or component)

half-space problems to be solved.

The present paper reports the first part of our recent attempts to pre-

pare the missing data that are necessary in applying the theory to specific

problems on the basis of the original Boltzmann equation. Assuming the

hard-sphere molecules and the diffuse reflection boundary condition, we pro-

vide the data for the generalized slip-flow theory, up to the second order of

the Knudsen number expansion, except for the curvature effects.

2. Generalized Slip-Flow Theory: An Outline

2.1. Physical setting

We consider a gas around smooth solid bodies which do not change in

time their shape and position under the following assumptions: (i) There is

no external force and the behavior of the gas is described by the Boltzmann

equation for monatomic molecules; (ii) The gas molecules are reflected locally

isotropically [19] on the surface of the solid bodies (no net flow across their

surface); (iii) The deviation from the reference equilibrium state at rest with
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density ρ0 and temperature T0 is so small that the equation and the initial

and the boundary condition can be linearized around that equilibrium state;

(iv) The mean free path ℓ0 of a molecule at the reference equilibrium state

is much smaller than the characteristic length L of the physical system (i.e.,

the Knudsen number Kn = ℓ0/L ≪ 1); (v) The time evolution is initiated

by a slow change of the surroundings from the reference equilibrium state.

The time scale of the change t0 in (v) is the same order as that of the vis-

cous and the thermal diffusion, and we set it as t0 = (2/
√
π)(L2/ℓ0

√
2RT0),

where R is the specific gas constant (the Boltzmann constant k divided by

the mass of a molecule m). In the actual computations for the Knudsen-

layer analysis, we assume the hard-sphere molecules in (i) and the dif-

fuse reflection boundary condition in (ii). For hard-sphere molecules, ℓ0 =

[
√
2πd2m(ρ0/m)]−1, where dm is the diameter of a molecule.

2.2. Resulting framework

The generalized slip-flow theory consists of first considering the overall

behavior of the gas that changes in the scale of the characteristic length (and

time) of the system and then introducing the correction in the vicinity of

the boundary. The first part is conducted by the Hilbert (or Grad–Hilbert)

expansion to yield a set of fluid-dynamic equations. The solution of this set

is called the Hilbert part (or solution). The second part is conducted by the

expansion after rescaling (actually stretching) the spatial coordinate in the

direction normal to the boundary. This yields a set of slip/jump boundary

condition and the associated correction to the fluid-dynamic solution near

the boundary. The correction is called the Knudsen-layer correction, which

is the primary concern in the present paper.

Let us denote by Lxi the space coordinates, by t0t the time, by ρ0(1+ω)

the density of the gas, by (2RT0)
1/2ui the flow velocity, by T0(1+τ) the tem-

perature, by p0(1 + P ) the pressure with p0 = ρ0RT0, and by (2RT0)
1/2uiw

and T0(1 + τw) the velocity and the temperature of the body surface. Since

solid bodies change neither the shape nor the position, uiwni = 0, where ni

is the unit vector normal to the surface, pointed to the gas. We denote the

Hilbert part and the Knudsen-layer correction of the macroscopic quantity

h (h = ω, ui, τ , P ) by hH and hK, respectively: h = hH + hK. Since the

Knudsen number is small, we use ε = (
√
π/2)Kn as a small parameter. The
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Hilbert part and the Knudsen-layer correction are obtained by a power series

expansion in ε, which will be denoted as hH = hH0+hH1ε+hH2ε
2 + · · · and

hK = hK0 + hK1ε + hK2ε
2 + · · · . Actually, the expansion of hK starts from

O(ε), because no correction to the Hilbert solution is required at O(1).

The resulting set of fluid-dynamic equations, their slip/jump boundary

conditions, and the Knudsen-layer corrections up to the second order of the

expansion in ε are summarized as follows: [25]

Fluid-dynamic equations

∂PH0

∂xi
= 0, (2.1a)

∂uiHm
∂xi

+
∂ωHm−1

∂t
= 0, (2.1b)

∂uiHm
∂t

+
1

2

∂P ∗
Hm+1

∂xi
− 1

2
γ1
∂2uiHm
∂x2j

+
1

4
(γ1γ10 − 2γ6)

∂4uiHm−2

∂x2j∂x
2
k

= 0, (2.1c)

∂τHm
∂t

− 2

5

∂PHm

∂t
− 1

2
γ2
∂2τHm
∂x2j

+
1

10

(

γ2γ3 −
13

2
γ11

)

∂4τHm−2

∂x2j∂x
2
k

= 0, (2.1d)

P ∗
Hm+1 = PHm+1 −

1

6
(γ2γ1 − 4γ3)

∂2τHm−1

∂x2j
+

1

5
γ1
∂PHm−1

∂t
, (2.1e)

PHm = ωHm + τHm, (2.1f)

where m = 0, 1, 2 and the quantities hH−1 and hH−2 (h = ω, ui, τ, P ) should

be read as zero. The γ’s occurring in the equations are positive constants

corresponding to the transport coefficients at the reference state; γ’s are all

unity for the BGK model, while they are respectively γ1 = 1.270042427,

γ2 = 1.922284066, γ3 = 1.947906335, γ6 = 1.419423836, γ10 = 1.63607346,

and γ11 = 2.7931173 for hard-sphere molecules.

Slip/jump boundary condition and the Knudsen-layer correction

[

(uiHm − uiwm)ti
uiKmti

]

=
∂uiHm−1

∂xj
nitj

[

b
(1)
1

Y
(1)
1 (η)

]

+
∂τHm−1

∂xi
ti

[

b
(1)
2

Y
(1)
2 (η)

]

+
∂2τHm−2

∂xi∂xj
nitj

[

b
(1)
3

Y
(1)
3 (η)

]

+
∂

∂xi

∂ujHm−2

∂xk
ninjtk

[

b
(1)
4

Y
(1)
4 (η)

]

+ κ̄
∂uiHm−2

∂xj
nitj

[

b
(1)
5

Y
(1)
5 (η)

]

+ κij
∂ujHm−2

∂xk
nkti

[

b
(1)
6

Y
(1)
6 (η)

]
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+ κij
∂τHm−2

∂xi
tj

[

b
(1)
7

Y
(1)
7 (η)

]

+ κ̄
∂τHm−2

∂xi
ti

[

b
(1)
8

Y
(1)
8 (η)

]

, (2.2a)

[

uiHmni
uiKmni

]

=
1

2

∂

∂xi

∂ujHm−2

∂xk
ninjnk

[

∫∞

0 Y
(1)
1 (z)dz

−
∫∞

η Y
(1)
1 (z)dz

]

+

[

2κ̄
∂τHm−2

∂xi
ni −

∂2τHm−2

∂xi∂xj
(δij − ninj)

]

[

∫∞

0 Y
(1)
2 (z)dz

−
∫∞

η Y
(1)
2 (z)dz

]

, (2.2b)







τHm − τwm
ωKm

τKm






=
∂τHm−1

∂xi
ni







c
(0)
1

Ω
(0)
1 (η)

Θ
(0)
1 (η)






+
∂uiHm−1

∂xi







c
(0)
5

Ω
(0)
5 (η)

Θ
(0)
5 (η)







+
∂2τHm−2

∂xi∂xj
(δij − ninj)







c
(0)
2

Ω
(0)
2 (η)

Θ
(0)
2 (η)






+
∂2τHm−2

∂x2j







c
(0)
6

Ω
(0)
6 (η)

Θ
(0)
6 (η)







+
∂

∂xi

∂ujHm−2

∂xk
ninjnk







c
(0)
3

Ω
(0)
3 (η)

Θ
(0)
3 (η)






+ κ̄

∂τHm−2

∂xi
ni







c
(0)
4

Ω
(0)
4 (η)

Θ
(0)
4 (η)






, (2.2c)

PKm = ωKm + τKm, (2.2d)

wherem = 0, 1, 2 and fij = fij+fji−(2/3)fkkδij (δij is the Kronecker delta).

In (2.2), the quantities with the subscript H or w denote their values at the

(dimensionless) surface position xiw, and ti (or ni) is a unit vector tangential

(or normal) to the surface at xiw. The quantities with the subscript K depend

on η as well as xiw, where η is the stretched spatial coordinate normal to the

surface at xiw such that the position xi in the Knudsen layer is expressed by

xi = xiw + εηni. The surface velocity and temperature are also expanded in

a power series of ε: hw = hw0 + hw1ε+hw2ε
2 + · · · (h = ui, τ). The effect of

surface curvature occurs through the terms with κ’s defined by

κ̄ =
1

2
(κ1 + κ2), κij = κ1ℓiℓj + κ2mimj . (2.3)

Here κ1/L and κ2/L are the principal curvatures of the boundary, with κ1

and κ2 being taken negative when the corresponding center of curvature lies

on the gas side; ℓi and mi are the direction cosines of the principal directions

corresponding to κ1 and κ2 respectively.
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Many terms degenerate from (2.1) and (2.2) when m = 0, 1. For in-

stance, the boundary condition at O(1), namely for m = 0, is none other

than the non-slip/non-jump condition; the slip/jump may occur at the first

or higher order of ε. The reader is referred to [19, 25] for the discussions

on the main features of the above system. The system can be solved from

the lowest order to determine the time-dependent behavior of the gas under

the considered situation, provided that the data of the slip/jump coefficients

c
(0)
1 ∼ c

(0)
6 , b

(1)
1 ∼ b

(1)
8 ,

∫∞

0 Y
(1)
1 (z)dz,

∫∞

0 Y
(1)
2 (z)dz and the elemental (or

component) Knudsen-layer functions Ω
(0)
1 (η) ∼ Ω

(0)
6 (η), Θ

(0)
1 (η) ∼ Θ

(0)
6 (η),

Y
(1)
1 (η) ∼ Y

(1)
8 (η) are available. They are obtained by solving elemental (or

component) half-space problems of the linearized Boltzmann equation, which

may be homogeneous or inhomogeneous depending on that component.

2.3. Remaining issue

Since the first publication of the generalized slip-flow theory [17, 18], the

complete set of the slip/jump coefficients and the associated Knudsen-layer

corrections has been available only for the BGK model. For the original

Boltzmann equation, difficulties in directly solving the component problems

have prevented preparing the corresponding data. Even for hard-sphere

molecules under the diffuse reflection condition, the component problems

have been tackled only for the problems of temperature jump (c
(0)
1 ,Ω

(0)
1 ,Θ

(0)
1 ),

shear slip (b
(1)
1 , Y

(1)
1 ), thermal slip (b

(1)
2 , Y

(1)
2 ), thermal-stress slip (b

(1)
3 , Y

(1)
3 ),

and thermal inertia due to time evolution (c
(0)
6 ,Ω

(0)
6 ,Θ

(0)
6 ) [14, 15, 20, 22].

Recently, we have succeeded in [25] to prepare the complete set of

slip/jump coefficients up to the second order of ε by making use of the

theory of symmetry relation [21]. This method is, however, indirect, and

the information on the Knudsen-layer structure at the second order is still

far from complete. In the present work, we numerically solve the compo-

nent problems at the second order of ε. We shall focus on the component

problems related to (c
(0)
2 ,Ω

(0)
2 ,Θ

(0)
2 ), (c

(0)
3 ,Ω

(0)
3 ,Θ

(0)
3 ), (c

(0)
5 ,Ω

(0)
5 ,Θ

(0)
5 ), and

(b
(1)
4 , Y

(1)
4 ) only. These problems might be handled by the finite-difference

method as in [14]. Nevertheless, we take a new approach that makes use

of the integral formulation of the Boltzmann equation, the formulation that

has been effective in the study of singularities [23, 24]. The primary motiva-

tion of this approach is that the remaining component problems, which are
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related to the curvature effect and left to a separate paper, contain a much

delicate matter, requiring a new methodology for the numerical analysis.

3. Knudsen-Layer Problems

Let us denote by (2RT0)
1/2ζ the molecular velocity and introduce the

notation ζ = |ζ| and µ = ζini/ζ, where −1 ≤ µ ≤ 1 and 0 ≤ ζ < ∞. Then,

the component problems for the Knudsen layer admit a similarity solution

of three arguments (η, µ, ζ) and are reduced to the following two types of

boundary-value problems by assuming the hard-sphere molecules and the

diffuse reflection boundary condition:

µζ
∂φα
∂η

= −ν(ζ)φα + C[φα]− Iα(η, µ, ζ), (3.1a)

φα = −σ(0)α − c(0)α ζ2 + gα(µ, ζ), (µζ > 0, η = 0), (3.1b)

φα → 0, as η → ∞, (3.1c)

and

µζ
∂ψβ
∂η

= −ν(ζ)ψβ + CS [ψβ ]− ISβ (η, µ, ζ), (3.2a)

ψβ = −2b
(1)
β + gSβ (µ, ζ), (µζ > 0, η = 0), (3.2b)

ψβ → 0, as η → ∞. (3.2c)

Here

ν(ζ) =
1

2
√
2

[

exp(−ζ2) +
(

2ζ +
1

ζ

)
∫ ζ

0
exp(−ξ2)dξ

]

;

C is an integral operator acting on a function of ζ to be defined soon later;

and gα, Iα, gSβ , and ISβ are given functions. Iα and ISβ are supposed to decay

fast in η. The solution φα (or ψβ) (α = 1, . . . , 6; β = 1, . . . , 8) is a function

of η, µ, and ζ. It is determined together with the constants σ
(0)
α and c

(0)
α [or

b
(1)
β ] for every given (Iα, gα) [or (ISβ , gSβ )] [1]. The operator C is defined by

C[φ](ζ) =
∫

[k1(ζ, ξ)− k2(ζ, ξ)]φ(ξ)dξ,

k1(ζ, ξ) =
1√

2π|ζ − ξ|
exp

(

−|ξ|2 + |ξ × ζ|2
|ξ − ζ|2

)

,
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k2(ζ, ξ) =
|ζ − ξ|
2
√
2π

exp
(

−|ξ|2
)

.

Thanks to its spherical and axial symmetry, C[φα] becomes a function of µ

and ζ (and η) for the function φα(η, µ, ζ). On the other hand, CS is defined

for functions of µ and ζ (and η) through C, making use of its axial symmetry:

ζitiCS [ψβ ] = C[ζitiψβ ].

Once the solutions are obtained, Ω
(0)
α (η), Θ

(0)
α (η), and Y

(1)
β (η) are obtained

as their moment:

Ω(0)
α (η) = 〈φα〉, Θ(0)

α (η) =
2

3
〈(ζ2 − 3

2
)φα〉, (3.3)

Y
(1)
β (η) =

1

2
〈ζ2(1− µ2)ψβ〉, (3.4)

where 〈f〉 =
∫

f(ξ)E(|ξ|)dξ with E(z) = π−3/2 exp(−z2).
Our present concern is the case α = 2, 3, 5 and β = 4, for which (Iα, gα)

and (ISβ , gSβ ) are given as

I2 =
1

2
ζ2(1− µ2)ψ2(η, µ, ζ), (3.5a)

g2 =2µζ

∫ ∞

0
Y

(1)
2 (z)dz +

1

2
ζ2(1− 3µ2)[b

(1)
2 B(ζ) + F (ζ)], (3.5b)

I3 =− 1

4
ζ2(1− µ2)ψ1(η, µ, ζ), (3.5c)

g3 =− µζ

∫ ∞

0
Y

(1)
1 (z)dz − 1

4
b
(1)
1 ζ2(1− 3µ2)B(ζ)

− 1

2
µζ

[

D1(ζ)− ζ2(1− 2µ2)D2(ζ)
]

, (3.5d)

I5 =0, g5 = −1

3
ζ2(1− 3µ2)B(ζ), (3.5e)

IS4 =0, gS4 = −[D1(ζ) + µ2ζ2D2(ζ)]. (3.5f)

Here ψ1 and ψ2 are respectively the solution of the problem (3.2) with

IS1 = 0, gS1 = µζB(ζ), IS2 = 0, gS2 = A(ζ), (3.6)

(the so-called shear-slip and thermal-slip problems [11, 19]), and (b
(1)
1 , Y

(1)
1 )

and (b
(1)
2 , Y

(1)
2 ) are their associated slip coefficient and Knudsen-layer func-
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tion, all of which have already been obtained in [15]. Hence I2 and I3 in

(3.5) indeed decay fast in η. The functions A, B, F , D1, and D2 of ζ are

familiar solutions of the following integral equations:

L[ζiA(ζ)] = −ζi(ζ2 − 5/2), subsidiary condition: 〈ζ2A(ζ)〉 = 0,

L[ζijB(ζ)] = −2ζij , L[ζijF (ζ)] = ζijA(ζ),

L[(ζiδjk + ζjδki + ζkδij)D1(ζ) + ζiζjζkD2(ζ)]

= γ1(ζiδjk + ζjδki + ζkδij)− ζiζjζkB(ζ),

subsidiary condition: 〈5ζ2D1(ζ) + ζ4D2(ζ)〉 = 0,

where L[f ] = −ν(ζ)f + C[f ] and ζij = ζiζj − (1/3)ζ2δij .

4. Numerical Analysis

As mentioned at the end of Sec. 2.3, our numerical method is based on

the integral form of (3.1) and (3.2).

4.1. Integral formulation

Multiplied by E(ζ) and integrated with respect to η, both of the prob-

lems (3.1) and (3.2) are transformed into

Φ(η, µ, ζ) =G(µ, ζ) exp(−ν(ζ)η
µζ

) +
1

µζ

∫ η

0
C[Φ](s, µ, ζ) exp(

ν(ζ)(s − η)

µζ
)ds

+
1

µζ

∫ η

0
C[Ψ](s, µ, ζ) exp(

ν(ζ)(s− η)

µζ
)ds, (µζ > 0), (4.1a)

Φ(η, µ, ζ) =
1

µζ

∫ η

∞

C[Φ](s, µ, ζ) exp(
ν(ζ)(s− η)

µζ
)ds

+
1

µζ

∫ η

∞

C[Ψ](s, µ, ζ) exp(
ν(ζ)(s− η)

µζ
)ds, (µζ < 0), (4.1b)

with

Φ(η, µ, ζ) → 0, as η → ∞, (4.1c)
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Ψ(η, µ, ζ) =



















− 1

µζ

∫ η

0
I(s, µ, ζ) exp(

ν(ζ)(s − η)

µζ
)ds, (µζ > 0),

− 1

µζ

∫ η

∞

I(s, µ, ζ) exp(
ν(ζ)(s − η)

µζ
)ds, (µζ < 0).

(4.1d)

Here, Φ, C, I, and G should be read as Φ = φαE − Ψ, C[f ] = C[fE−1]E,

I = IαE, and G = (−σ(0)α − c
(0)
α ζ2 + gα)E (α = 2, 3, 5) for problem (3.1),

while they should be read as Φ = ψβE − Ψ, C[f ] = CS [fE−1]E, I = ISβE,

and G = (−2b
(1)
β +gSβ )E (β = 4) for problem (3.2). Remember that I decays

fast in η, so does Ψ. In the above, the original solution φαE or ψβE is split

into the given part Ψ and unknown part Φ. The equation for Φ is none other

than the integral form of the inhomogeneous Boltzmann equation with C[Ψ]

being its inhomogeneous term. The conditions (3.1c) and (3.2c) are reduced

to (4.1c), because Ψ → 0 as η → ∞. The condition (4.1c) is required,

otherwise the constants σ
(0)
α , c

(0)
α , and b

(1)
β are not determined [1].

Since C is the integral operator, C[f ] is mild even if its argument func-

tion f is not; thus the factor of steep variation of Φ in (µ, ζ) is picked up

explicitly in the above integral form. When Φ = φ2E − Ψ or φ3E − Ψ, I

contains ψ2 or ψ1, the solution of the thermal- or shear-slip problem. In the

case, the steep variation of Ψ in (µ, ζ) is, at a glance, less clear than that

of Φ. However, since ψ1 and ψ2 are respectively the solution of (3.2) with

(3.6), we can rewrite Ψ in a way that the factor of steep variation is explicit.

Namely, in the case of Φ = φ2E −Ψ, Ψ can be written as

Ψ =− 1− µ2

2µ
ζ

{

(−2b
(1)
2 + gS2 )E(ζ)η exp(−ν(ζ)η

µζ
)

+
1

µζ

∫ η

0
(η − s)C[ψ2E](s, µ, ζ) exp(

ν(ζ)(s− η)

µζ
)ds

}

, (µζ > 0),

(4.2a)

Ψ =− 1− µ2

2µ2

∫ η

∞

(η − s)C[ψ2E](s, µ, ζ) exp(
ν(ζ)(s− η)

µζ
)ds, (µζ < 0),

(4.2b)

where C[ψ2E] = CS [ψ2]E. In the case of Φ = φ3E −Ψ, the above (−2b
(1)
2 +

gS2 ) and ψ2 are replaced by −(1/2)(−2b
(1)
1 + gS1 ) and −(1/2)ψ1.

In this way, with the aid of the integral formulation, we can pick up

the factor of steep variation in (µ, ζ), which will be advantageous when
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the detailed information on the velocity distribution function is required,

especially near the boundary.

4.2. Plan of numerical computation

In the computation for solving (4.1), we first prepare the accurate data

of C[Ψ] from (4.1d). Then, we abandon the condition (4.1c) and solve (4.1a)

and (4.1b) with G being replaced by G̃ ≡ (−σ̃− c̃ζ2+gα)E [or (−2b̃+gSβ )E],

where σ̃ and c̃ (or b̃) are given constants. Let us denote by Φ̃ the (numerical)

solution that is obtained with this process. The difference of σ̃ and c̃ (or b̃)

from the desired σ
(0)
α and c

(0)
α (or b

(1)
β ) results in the asymptote of Φ̃ such

that Φ̃ → (σ
(0)
α − σ̃)E + (c

(0)
α − c̃)ζ2E [or 2(b

(1)
β − b̃)E] as η → ∞. This

property allows us to determine the constants σ
(0)
α and c

(0)
α (or b

(1)
β ) by

σ(0)α = σ̃ − 2π

∫ ∞

0

∫ 1

−1
ζ2(ζ2 − 5

2
)Φ̃(η → ∞, µ, ζ)dµdζ,

c(0)α = c̃+
4π

3

∫ ∞

0

∫ 1

−1
ζ2(ζ2 − 3

2
)Φ̃(η → ∞, µ, ζ)dµdζ,

[

or b
(1)
β = b̃+ π

∫ ∞

0

∫ 1

−1
ζ4(1− µ2)Φ̃(η → ∞, µ, ζ)dµdζ,

]

and, in turn, to determine Φ by

Φ = Φ̃− (σ(0)α − σ̃)E − (c(0)α − c̃)ζ2E.
[

or Φ = Φ̃− 2(b
(1)
β − b̃)E.

]

For the actual computation, we introduce a finite large distance d from

the boundary, beyond which Φ̃ may be regarded as that at infinity and Ψ

may be discarded because of its fast decay in η (see the first paragraph of

Sec. 4.1). Then, the problem for Φ̃ is reduced to

Φ̃(η, µ, ζ) =G̃(µ, ζ) exp(−ν(ζ)η
µζ

) +
1

µζ

∫ η

0
C[Φ̃](s, µ, ζ) exp(

ν(ζ)(s − η)

µζ
)ds

+
1

µζ

∫ η

0
C[Ψ](s, µ, ζ) exp(

ν(ζ)(s− η)

µζ
)ds, (µζ > 0), (4.3a)

Φ̃(η, µ, ζ) =Φ̃(d,−µ, ζ) exp(ν(ζ)(d− η)

µζ
)

+
1

µζ

∫ η

d
C[Φ̃](s, µ, ζ) exp(

ν(ζ)(s− η)

µζ
)ds
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+
1

µζ

∫ η

d
C[Ψ](s, µ, ζ) exp(

ν(ζ)(s− η)

µζ
)ds, (µζ < 0). (4.3b)

Accordingly, ∞’s in (4.1d) or (4.2) may be replaced by d because discarding

Ψ beyond d implies discarding I beyond d. All the computations are thus

reduced inside a finite region 0 ≤ η ≤ d. The occurrence of Φ̃(d,−µ, ζ) on

the right-hand side of (4.3b) comes from that Φ̃(d, µ, ζ) = Φ̃(d,−µ, ζ) for d
sufficiently large, thanks to its asymptotic form for η → ∞. We solve the

system (4.3) numerically by iteration for a certain fixed value of d. To be

a little more specific, we evaluate C[Φ̃] with an initial guess of Φ̃ and solve

(4.3a) first. This gives the data Φ̃(d,−µ, ζ) in (4.3b), which allows us to solve

(4.3b) next. Then we refine the evaluation of C[Φ̃] with the updated Φ̃, and

repeat the same process until the numerical solution satisfies a criteria of

convergence. The appropriateness of the value of d is judged a posteriori

from the result.

4.3. Discretization and some details of numerical method

Thanks to the factor E, Φ̃ is expected to decay rapidly in ζ. Thus, we

truncate the region of ζ at ζ = Z(> 0) for a properly chosen constant Z

and restrict the computation in the region −1 ≤ µ ≤ 1, 0 ≤ ζ ≤ Z, and

0 ≤ η ≤ d. Justification of the chosen value of Z is made a posteriori again

from the resulting solution. Non-uniform discretization is made in order to

capture the possible steep variation of Φ̃. The grid in molecular velocity

space (µ, ζ) is arranged two-fold: one is the grid for capturing the milder

function C[Φ̃] (and C[Ψ]), while the other is that for capturing Φ̃ (and Ψ)

to compute C[Φ̃] (and C[Ψ]) enough accurately. The latter grid should be

finer than the former. In the standard grid system, namely (S1,M1) in the

Appendix B.1, we set Z = 5.0 and d = 44.46, and arrange 251 grid points in

η space; the two-fold grid in µ-ζ space consists of 257 × 141 and 449 × 161

points. More details are found in the Appendix B.1.

For the spatial coordinate η and related integration, we arrange 2Nη+1

grid points, say η(i) (i = 0, 1, . . . , 2Nη), in the region 0 ≤ η ≤ d:

0 = η(0) < η(1) < · · · < η(2Nη) = d. (4.4)

The functions Φ̃ and Ψ are evaluated on these points. In carrying out the

integration with respect to s in (4.3), C[Φ̃] and C[Ψ] are interpolated with a
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piecewise quadratic function from their data on the grid points {η(i)}.1 The

related integrals are commonly expressed as

T [F ](η, µ, ζ)=















1

µζ

∫ η

0
C[F ](s, µ, ζ) exp(

ν(ζ)(s− η)

µζ
)ds, (µζ > 0),

1

µζ

∫ η

d
C[F ](s, µ, ζ) exp(

ν(ζ)(s− η)

µζ
)ds, (µζ < 0),

(4.5)

with F = Φ̃ or Ψ. By the piecewise quadratic interpolation for C[F ] in s,

T [F ] is computed as

T [F ](η(i), µ, ζ) =

2Nη
∑

r=0

Si,r(µ, ζ)C[F ](η(r), µ, ζ), (4.6)

with

Si,r(µ, ζ) =



















1

µζ

∫ η(i)

0
Y η
r (s) exp(

ν(ζ)(s − η(i))

µζ
)ds, (µζ > 0),

1

µζ

∫ η(i)

d
Y η
r (s) exp(

ν(ζ)(s − η(i))

µζ
)ds, (µζ < 0),

(4.7)

where Y ’s are the following locally defined piecewise quadratic functions:

Y z
2r(y) =















(y−z(2r+2))(y−z(2r+1))

(z(2r)−z(2r+2))(z(2r)−z(2r+1))
, (z(2r) < y < z(2r+2)),

(y−z(2r−2))(y−z(2r−1))

(z(2r)−z(2r−2))(z(2r)−z(2r−1))
, (z(2r−2) < y < z(2r)),

0, otherwise,

(4.8a)

Y z
2r+1(y) =







(y−z(2r))(y−z(2r+2))

(z(2r+1)−z(2r))(z(2r+1)−z(2r+2))
, (z(2r) < y < z(2r+2)),

0, otherwise.
(4.8b)

The functional form of Si,r can be obtained explicitly, which enables us

to perform delicate analyses with numerically obtained data. With the data

C[Φ̃](η(i), µ, ζ) and C[Ψ](η(i), µ, ζ), we can obtain Φ̃ on the spatial grid points

{η(i)}, essentially by the simple summation (4.6).2

1The quadratic interpolation cannot capture a possible logarithmic divergence of the gradient
of Φ̃ with respect to µζ on the boundary for µζ = 0

−
, which is discussed in [24]. However, it does

capture the logarithmic divergence of the gradient of the Knudsen-layer functions with respect to
η (see [24]), thanks to the integral formulation. See the last paragraph of Sec. 5.2.

2In computing Ψ, the integrations in (4.2) with ∞ being replaced with d are performed in the
same way. In the case, the piecewise quadratic interpolation is applied to C[ψ2E].
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As already mentioned in the first paragraph of this section, we prepare

the two-fold grid system for molecular velocity space. As the primary grid,

we arrange (4Nµ+1)×(2Nζ+1) points, say (µ(j), ζ(k)) (j = −2Nµ, . . . , 2Nµ;

k = 0, . . . , 2Nζ) in the region −1 ≤ µ ≤ 1 and 0 ≤ ζ ≤ Z:

0 = µ(0) < µ(1) < · · · < µ(2Nµ−1) < µ(2Nµ) = 1,

µ(−j) = −µ(j), (1 ≤ j ≤ 2Nµ),

0 = ζ(0) < ζ(1) < · · · < ζ(2Nζ) = Z,

which have the enough resolution for the mild function C[F ]. Then C[F ](η(i),

µ, ζ) is recovered accurately for any µ and ζ by the piecewise quadratic inter-

polation of C[F ](i,j,k) ≡ C[F ](η(i), µ(j), ζ(k)). Hence Φ̃(η(i), µ, ζ) is obtained

by (4.3) accurately for any µ and ζ. This applies also to Ψ(η(i), µ, ζ).3

In order to obtain C[F ](i,j,k), we use the numerical kernel method that

was first proposed in [20]. In this method, the argument function F is

approximated by interpolation from the discretized data of F , so that a grid

finer than the primary one is required for achieving the enough resolution

of F . Therefore, as the secondary grid, we prepare (4NM + 1) × (2Nξ + 1)

points in µ-ζ space, say (M (l), ξ(m)) (l = −2NM , . . . , 2NM ; m = 0, . . . , 2Nξ):

0 =M (0) < M (1) < · · · < M (2NM−1) < M (2NM ) = 1,

M (−l) = −M (l), (1 ≤ l ≤ 2NM ),

0 = ξ(0) < ξ(1) < · · · < ξ(2Nξ) = Z.

Note that NM > Nµ and Nξ > Nζ and that F (η(i),M (l), ξ(m)) (for short,

to be denoted by F[i,l,m] below) on the secondary grid is readily obtained

as explained in the previous paragraph. In the present work, we adopt the

piecewise quadratic interpolation for F :

F (η(i),M, ξ) =

2Nξ
∑

m=0

2NM
∑

l=0

[F[i,l,m]B
+
l,m(M, ξ) + F[i,−l,m]B

−
−l,m(M, ξ)], (4.9a)

3The primary grid should also have the enough resolution for C[ψ1E] and C[ψ2E] in (4.2) for
the accurate computation of Ψ.
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with

B±
l,m(M, ξ) = YM

l (M)χ[0, 1](±M)Y ξ
m(ξ)χ[0, Z](ξ), (4.9b)

χ[a, b](y) =

{

1 for a ≤ y ≤ b,

0 otherwise,
(4.9c)

and compute C[F ](i,j,k) as

C[F ](i,j,k) =

2Nξ
∑

m=0

2NM
∑

l=0

(C+
j,k,l,mF[i,l,m] + C−

j,k,−l,mF[i,−l,m]), (4.10a)

C±
j,k,l,m = C[B±

l,m](µ
(j), ζ(k)). (4.10b)

Note that, as the arguments of functions in (4.9), we use the integration

variables ξ(≡ |ξ|) and M(≡ ξini/ξ), in place of ζ and µ, coming from ξ in

the definition of C or C. The factor χ[0, 1](±M) is included in (4.9b) to

reflect that F can be discontinuous at M = 0 on the boundary η = 0, as will

be shown in Sec. 5.1. Hence, F[i,l,m] and F[i,−l,m] in (4.9a) [and (4.10a) soon

below] should be considered different from each other, when i = l = 0. Note

that B±
l,m vanishes for l ≶ 0 and that the discrimination between B+

l,m and

B−
l,m is effective when l = 0. Accordingly, C±

j,k,l,m corresponds to the integral

kernel for the half-range of integrationM ≷ 0, and C±
j,k,l,m vanishes for l ≶ 0.

The computation of C±
j,k,l,m, i.e., (4.10b), can be performed beforehand,

independent of the iteration for solving (4.3). Incidentally, the integrations

for this computation require careful treatments and some transformations to

get rid of the singularity in the kernel k1. However, we omit all the details

on this issue; the interested reader is referred to [15, 20].

Here are two remarks. (i) As is clear from its form, the collision kernel

k1(ζ, ξ) − k2(ζ, ξ) is invariant under the transformation (ζ, ξ) → (−ζ,−ξ).

The symmetric arrangement of grid points in µ with respect to µ = 0 en-

ables the present numerical kernel C±
j,k,l,m to inherit this property, giving the

relation C−
j,k,l,m = C+

−j,k,−l,m. This reduces the required memory capacity

into half. (ii) If we have adopted a finite-difference method, we would need

the secondary grid for the whole numerical solution process, which implies
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(a) η = 0 (b) η = 0.015

(c) η = 0.58 (d) η = 3.0

Figure 5.1: φ2E and its contour plots at four spatial points. (a) η = 0, (b) η = 0.015,
(c) η = 0.58, and (d) η = 3.0. In the contour plots, the curves are drawn with the
intervals 0.1 in (a) and (b), 0.05 in (c), and 0.01 in (d). The white vertical surface
at µζ = 0 in (a) shows the discontinuity.

the size of the numerical kernel to be of (NM ×Nξ)
2. The present approach

economizes again the memory capacity by a factor of (Nµ×Nζ)/(NM ×Nξ).

5. Numerical Results

The results in the present section are obtained by the standard grid

(S1,M1), unless otherwise stated.

5.1. Velocity distribution function

As illustrative examples, we show φ2E and φ5E at four spatial points

η = 0, 0.015, 0.58, 3.0 in Figs. 5.1 and 5.2. The former is the case with
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(a) η = 0 (b) η = 0.015

(c) η = 0.58 (d) η = 3.0

Figure 5.2: φ5E and its contour plots at four spatial points. (a) η = 0, (b) η =
0.015, (c) η = 0.58, and (d) η = 3.0. In the contour plots the curves are drawn with
the intervals 0.02 in (a) and (b), 0.01 in (c), and 0.001 in (d). The white vertical
surface at µζ = 0 in (a) shows the discontinuity.

nonzero Ψ in (4.1), while the latter is the case without it (or Ψ = 0). On

the boundary η = 0, the discontinuity is commonly observed along the line

µζ = 0. This line corresponds to the direction of molecular velocity that

is tangential to the boundary. [Remind that the positive (or negative) µζ

corresponds to the velocity of molecules outgoing from (or incoming onto) the

boundary.] The discontinuity vanishes immediately away from the boundary

with keeping the other part almost unchanged. Accordingly, a continuous

but steep variation part in the molecular velocity space appears near the

boundary [see the panel (b) in both figures]. Such a local deformation can

be understood by that the molecules coming from the boundary with small

normal velocity (µζ ∼ 0) would travel a long distance in the tangential
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Table 5.1: Slip/jump coefficients. The data in [25] obtained by the use of the
symmetry relation are also shown for comparisons.

c
(0)
2 c

(0)
3 c

(0)
5 b

(1)
4

Present results -0.4993 0.00874 0.45957 -0.90393
Symmetry relation [25] -0.4992 0.0087 0.4596 -0.9039

Figure 5.3: Knudsen-layer functions.

direction before reaching the position of interest, thus more likely collide with

others first to deform the part µζ ∼ 0. As going away from the boundary, the

distribution becomes milder and tends to vanish with keeping non-similar

form between the positive and the negative µζ part. The qualitative feature

described above is common in both figures, irrespective of whether or not

the inhomogeneous term appears in the problem (4.1).

5.2. Slip/jump coefficient and Knudsen-layer function

Slip/jump coefficients are shown in Table 5.1. The data in [25], which

are obtained from the information about the first-order Knudsen layer by the

theory of symmetry relation [21], are also shown for comparisons. Excellent

agreement ensures the consistency of the present results to the theory.

The Knudsen-layer functions Ω’s, Θ’s, Y
(1)
4 , and H

(1)
4 are shown in

Fig. 5.3 and Table 5.2 (see Appendix A for H
(1)
4 ). Corresponding to the be-

havior of the velocity distribution functions in η, they decay fast as η → ∞,

mostly monotonically except for Θ
(0)
3 and Θ

(0)
5 (see Table 5.2). From the

table, the 90% thickness of the Knudsen layer is seen to be about 3 ∼ 3.5
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Table 5.2: Knudsen-layer functions.

η −Ω
(0)
2 Θ

(0)
2 −Ω

(0)
3 −Θ

(0)
3 −Ω

(0)
5 −Θ

(0)
5 Y

(1)
4 −H

(1)
4

0.00000 0.07965 0.07610 0.31803 0.04368 0.65823 0.31749 0.62894 0.56938
0.02348 0.07508 0.07019 0.28692 0.04108 0.60555 0.29707 0.58003 0.53685
0.05165 0.07153 0.06590 0.26406 0.03872 0.56413 0.28044 0.54166 0.51032
0.09881 0.06693 0.06064 0.23601 0.03547 0.51105 0.25858 0.49254 0.47522
0.15009 0.06290 0.05623 0.21276 0.03253 0.46540 0.23928 0.45030 0.44399
0.19315 0.05999 0.05316 0.19673 0.03038 0.43311 0.22536 0.42042 0.42128
0.30336 0.05380 0.04689 0.16463 0.02578 0.36657 0.19589 0.35876 0.37265
0.40911 0.04897 0.04220 0.14146 0.02224 0.31708 0.17323 0.31279 0.33467
0.58327 0.04252 0.03618 0.11301 0.01763 0.25470 0.14363 0.25459 0.28411
0.79673 0.03628 0.03059 0.08822 0.01340 0.19900 0.11603 0.20221 0.23582
0.98271 0.03187 0.02674 0.07228 0.01059 0.16263 0.09728 0.16769 0.20222
1.19037 0.02776 0.02323 0.05863 0.00814 0.13118 0.08051 0.13752 0.17148
1.41884 0.02400 0.02007 0.04715 0.00606 0.10458 0.06582 0.11167 0.14392
1.58214 0.02170 0.01814 0.04061 0.00488 0.08938 0.05719 0.09672 0.12738
1.84260 0.01856 0.01554 0.03230 0.00340 0.07008 0.04592 0.07747 0.10530
2.02594 0.01667 0.01399 0.02764 0.00259 0.05931 0.03945 0.06657 0.09234
2.51495 0.01263 0.01067 0.01860 0.00109 0.03855 0.02654 0.04506 0.06560
3.04221 0.00947 0.00807 0.01245 0.00019 0.02469 0.01748 0.03014 0.04586
3.48717 0.00748 0.00642 0.00901 -0.00022 0.01716 0.01236 0.02171 0.03412
4.06758 0.00554 0.00481 0.00603 -0.00049 0.01082 0.00790 0.01433 0.02336
4.91724 0.00362 0.00319 0.00345 -0.00059 0.00565 0.00412 0.00795 0.01356
6.06059 0.00207 0.00186 0.00172 -0.00050 0.00245 0.00171 0.00370 0.00662
8.07087 0.00081 0.00074 0.00056 -0.00028 0.00063 0.00034 0.00101 0.00193

10.06348 0.00032 0.00030 0.00020 -0.00013 0.00018 0.00005 0.00029 0.00058
13.81166 0.00006 0.00006 0.00003 -0.00003 0.00002 -0.00001 0.00003 0.00006
15.00856 0.00004 0.00003 0.00002 -0.00002 0.00001 -0.00001 0.00002 0.00003
20.05147 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
25.14669 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
η ln η∗ 0.0546 0.0809 0.405 0.0153 0.584 0.207 0.546 0.338

* The Knudsen-layer function has the singularity η ln η at η = 0. Its coefficient is shown in this row.

for Ω
(0)
2 and Θ

(0)
2 , about 2.5 ∼ 3 for H

(1)
4 , and about 1.5 ∼ 2 for the others,

measured in η, meaning about three mean-free-path thickness at most.

One interesting observation could be on the data of c
(0)
2 , Ω

(0)
2 , and Θ

(0)
2 ,

as well as on the corresponding distribution function φ2. In the case of the

BGK model under the diffuse reflection boundary condition, the former three

all degenerate (or vanish) (see, e.g., [19]) in spite of the fact that φ2 itself

does not vanish [see (3.5a) and (3.5b)]. The present results demonstrate that

such a complete cancellation is not expected and the missing temperature

jump and associated Knudsen layer indeed come out in general.

It is known that the Knudsen-layer function has the singularity η ln η

on the boundary η = 0, which is another interest of the present work. This

singularity that occurs on a plane boundary was first found in the study

of the Rayleigh problem [16] on the basis of the BGK model. The same

singularity has recently been confirmed to occur on the basis of the Boltz-

mann equation for hard-sphere molecules [24]. By the least-squares fitting

of the curve a + b η ln η + cη to the numerical data near the boundary, we
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determine the coefficient b of the singularity η ln η for each Knudsen-layer

function. The results are shown in the last row of Table 5.2. Incidentally,

determining these coefficients is really challenging. Indeed, we could not get

them by the finite-difference approach, even with the same computational

size as [27]. The integral formulation enabled us to do it (see footnote 1).
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Appendix A. Stress and Heat Flow

The stress tensor and heat-flow vector are also familiar fluid-dynamic

quantities that become necessary, most typically, in computing the momen-

tum and energy exchange with the body surface. Denoting the former by

p0(δij+Pij) and the latter by p0(2RT0)
1/2Qi, their Hilbert part and Knudsen-

layer correction up to the second order in ε are summarized as follows:

PijHm = PHmδij − γ1
∂uiHm−1

∂xj
+

1

2
γ3
∂2τHm−2

∂xi∂xj
, (m = 0, 1, 2), (A.1a)

QiHm = −5

4
γ2
∂τHm−1

∂xi
+

1

2
γ3
∂2uiHm−2

∂x2j
, (m = 0, 1, 2), (A.1b)

and

PijKm =
3

2

∂τHm−1

∂xk
nk(δij − ninj)[Ω

(0)
1 (η) + Θ

(0)
1 (η)], (m = 0, 1), (A.2a)

PijK2ninj = −3κ̄
∂τH0

∂xi
ni

∫ ∞

η
[Ω

(0)
1 (z) + Θ

(0)
1 (z)]dz, (A.2b)

PijK2nitj =
3

2

( ∂2τH0

∂xi∂xj
nitj + κijtj

∂τH0

∂xi

)

∫ ∞

η
[Ω

(0)
1 (z) + Θ

(0)
1 (z)]dz, (A.2c)

QiKmti =
∂uiHm−1

∂xj
nitjH

(1)
1 (η) +

∂τHm−1

∂xi
tiH

(1)
2 (η)

+
∂2τHm−2

∂xi∂xj
nitjH

(1)
3 (η) +

∂

∂xi

∂ujHm−2

∂xk
ninjtkH

(1)
4 (η)
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+ κ̄
∂uiHm−2

∂xj
nitjH

(1)
5 (η) + κij

∂ujHm−2

∂xk
nktiH

(1)
6 (η)

+κijtj
∂τHm−2

∂xi
H

(1)
7 (η) + κ̄

∂τHm−2

∂xi
tiH

(1)
8 (η), (m = 0, 1, 2), (A.2d)

QiKmni =

[

∂2τHm−2

∂xi∂xj
(δij − ninj)− 2κ̄

∂τHm−2

∂xi
ni

]
∫ ∞

η
H

(1)
2 (z)dz

− 1

2

∂

∂xi

∂ujHm−2

∂xk
ninjnk

∫ ∞

η
H

(1)
1 (z)dz, (m = 0, 1, 2). (A.2e)

Here the quantities with the subscript H in (A.2) denote their value on the

boundary. The functions H
(1)
1 , H

(1)
2 , and H

(1)
3 have already been obtained

in [15, 14]. The present work newly provides the data of H
(1)
4 , which are

included in Table 5.2 and Fig. 5.3.

B. Data of Computations

B.1. Grid system

Grid points for spatial coordinate η are arranged in the interval [0, d] as

η(i) =− 20 ln(1− 0.7p(i)) + 10−4 i

2N
, (B.1a)

p(i) =
26(i/2N)4

1 + 25(i/2N)3
, (i = 0, 1, . . . , 2Nη). (B.1b)

The parameters N and Nη and the upper bound d(= η(2Nη)) for the grids S1,

S2, and S3 are as follows: (N,Nη , d) = (100, 125, 44.46) for S1, (N,Nη, d) =

(150, 188, 44.94) for S2, and (N,Nη, d) = (100, 130, 53.04) for S3.

As to the µ and ζ spaces, subintervals (0, µI], (µI, µII], and (µII, 1] in µ

and [0, ζI], (ζI, ζII], and (ζII, Z] in ζ are conveniently introduced for the easy

control of grid points near µ = 0 and ζ = 0; the grid points are arranged as

µ(j) =



























0, (j = 0),

1− tanh
(

π
2 sinh(u

(j))
)

, (j = 1, . . . , 2NII),
(

µ
1/3
II + (1− µ

1/3
II ) j−2NII

2Nµ−2NII

)3
, (j = 2NII + 1, . . . , 2Nµ),

−µ(−j), (j = −2Nµ, . . . ,−1),

(B.2a)
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Table B.3: Grid parameters for µ-ζ space.
Common Primary grid Secondary grid

µI µII NI NII Nµ w NI NII NM w
ζI r NI NII Nζ N W NI NII Nξ N W

Grid Z ζII µ(1) ζ(1) M(1) ξ(1)

M1 10−4 1/125 0 16 64 - 48 64 112 1
10−4 1/10 0 16 70 70 - 10 26 80 80 1

5.0 0.36 1.2 × 10−4 1.6 × 10−4 2.4 × 10−10 5.1 × 10−10

M2 10−4 1/125 0 16 64 - 64 80 128 1
10−4 1/10 0 16 70 70 - 10 26 80 80 1

5.0 0.36 1.2 × 10−4 1.6 × 10−4 2.3 × 10−10 5.1 × 10−10

M3 10−4 1/125 0 16 64 - 48 64 112 1

10−4 1/10 0 22 94 94 - 14 36 108 108 1

5.0 0.36 1.2 × 10−4 1.4 × 10−4 2.4 × 10−10 3.9 × 10−10

M4 10−4 1/125 0 22 86 - 48 70 134 1

10−4 1/10 0 16 70 70 - 10 26 80 80 1

5.0 0.36 1.1 × 10−4 1.6 × 10−4 2.4 × 10−10 5.1 × 10−10

M5 10−4 1/125 5 21 69 5/24 53 69 117 53/48

10−4 1/10 5 21 75 75 5/24 12 28 82 82 12/10

5.0 0.36 1.8 × 10−5 1.8 × 10−5 3.1 × 10−11 9.3 × 10−12

M6 10−4 1/125 0 16 64 - 48 64 112 1

10−4 1/10 0 16 73 70 - 10 26 83 80 1

5.8 0.36 1.2 × 10−4 1.6 × 10−4 2.4 × 10−10 5.1 × 10−10

M7 10−4 1/125 0 12 48 - 36 48 84 1

10−4 1/10 0 12 48 48 - 7 19 55 55 1

5.0 0.36 1.3 × 10−4 1.8 × 10−4 2.6 × 10−10 7.5 × 10−10

with

u(j) =

{

(2.69 − uI)w(1 − j
2NI

) + uI, (j = 1, . . . , 2NI),

(1− j−2NI
2NII−2NI

)uI +
j−2NI

2NII−2NI
uII, (j = 2NI + 1, . . . , 2NII),

(B.2b)

uI,II = sinh−1

(

2

π
tanh−1(1− µI,II)

)

, (B.2c)

and

ζ(k) =















0, (k = 0),

1− tanh
(

π
2 sinh(v

(k))
)

, (k = 1, . . . , 2NII),

3.6v(k) + 1.4(v(k))8, (k = 2NII + 1, . . . , 2Nζ),

(B.3a)

with

v(k) =















(2.69 − vI)W (1− k
2NI

) + vI, (k = 1, . . . , 2NI),

vI(1− k−2NI
2NII−2NI

) + vII
k−2NI

2NII−2NI
, (k = 2NI + 1, . . . , 2NII),

r + (1− r) k−2NII
2N−2NII

, (k = 2NII + 1, . . . , 2Nζ),

(B.3b)
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Table B.4: Slip/jump coefficients c
(0)
2 , c

(0)
3 , c

(0)
5 , and b

(1)
4 obtained by different grids.

Grid c
(0)
2 c

(0)
3 c

(0)
5 b

(1)
4

(S1,M1) -0.4992519 0.0087359 0.4595723 -0.9039300
(S1,M2) -0.4992519 0.0087359 0.4595723 -0.9039300
(S1,M3) -0.4992695 0.0087344 0.4595690 -0.9039293
(S1,M4) -0.4992535 0.0087370 0.4595721 -0.9039303
(S1,M5) -0.4992519 0.0087359 0.4595723 -0.9039300
(S1,M6) -0.4992532 0.0087358 0.4595722 -0.9039301
(S1,M7) -0.4991404 0.0087413 0.4595929 -0.9039335
(S2,M1) -0.4992531 0.0087359 0.4595723 -0.9039288
(S3,M1) -0.4992519 0.0087359 0.4595723 -0.9039300

vI,II = sinh−1

(

2

π
tanh−1(1− ζI,II)

)

, ζII = 3.6r + 1.4r8. (B.3c)

Note that µ(±2NI) = ±µI, µ(±2NII) = ±µII, µ(±2Nµ) = ±1, ζ(2NI) = ζI,

ζ(2NII) = ζII, and ζ(2Nζ) = Z. In (B.2) and (B.3), the primary grid is

supposed. For the secondary grid, µ(j), Nµ, ζ
(k), and Nζ should be replaced

by M (j), NM , ξ(k), and Nξ, respectively. Although the common notation is

used for NI,II, w, NI,II, N , and W , they may take different values between

the primary and the secondary grid. The values of grid parameters for the

µ and ζ spaces, as well as the resulting values of Z, ζII, µ
(1), ζ(1), M (1), and

ξ(1), are summarized in Table B.3.

B.2. Measure of accuracy

The truncation of the ζ and η spaces is justified by checking the ra-

tios F (d, ·, ·)/Fmax and F (·, ·, Z)/Fmax, where F = |φ2E|, |φ3E|, |φ5E|, and
|ψ4E| and Fmax is the respective maximum of F over the all grid points.

For the standard grid (S1,M1) computation, the former and the latter are

respectively less than 8.9× 10−11 and 1.4× 10−9. The velocity distribution

functions have decayed sufficiently at the truncated point.

The grid dependence of the computed slip/jump coefficients is shown

in Table B.4. The grid in ζ-space most affects the results, especially for

c
(0)
2 [compare the results by (S1,M1), (S1,M3), and (S1,M7), where M3 (or

M1) is the grid about twice (or 3/2) as many points as M7]. The accuracy

down to the fourth or fifth decimal place is expected from the table. The
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comparisons among (S1,M1), (S3,M1), and (S1,M6) in the table show that

the error due to the truncation of the ζ and η spaces is almost negligible.

The collision invariants are used to assess the accuracy of the collision in-

tegral computation, which is reduced to check the identities C[(1, µζ, ζ2)E] =

(1, µζ, ζ2)νE for C = ECE−1 and C[E] = νE for C = ECSE−1. With the

standard grid M1, these identities are confirmed to hold within the error of

9.1 × 10−8, 1.7 × 10−8, 6.6 × 10−8, and 8.9 × 10−9 respectively, while the

maximum values of (1, µζ, ζ2)νE are 0.13, 0.064, and 0.062 respectively.

The mass, momentum, and energy balances offer another measure of

accuracy. They are the following identities that are obtained from (3.1a)

and (3.2a) by the integration in molecular velocity space after multiplying

the collision invariants:

〈µζφ2〉 =
∫ ∞

η
Y

(1)
2 (z)dz, 〈µ2ζ2φ2〉+ = −〈µ2ζ2φ2〉−,

〈µζ(ζ2 − 5

2
)φ2〉 =

∫ ∞

η
H

(1)
2 (z)dz, (B.4a)

〈µζφ3〉 = −1

2

∫ ∞

η
Y

(1)
1 (z)dz, 〈µ2ζ2φ3〉+ = −〈µ2ζ2φ3〉−,

〈µζ(ζ2 − 5

2
)φ3〉 = −1

2

∫ ∞

η
H

(1)
1 (z)dz, (B.4b)

〈(µζ, µ2ζ2, µζ3)φ5〉+ = −〈(µζ, µ2ζ2, µζ3)φ5〉−, (B.4c)

〈µ(1− µ2)ζ3ψ4〉+ = −〈µ(1− µ2)ζ3ψ4〉−. (B.4d)

Here 〈·〉± is the half-range integral with respect to the molecular velocity

defined by 〈f(ζ)〉± = 〈f(ζ)χ[0, 1](±µ)〉. H(1)
1 and H

(1)
2 above have already

appeared in (A.2) and are defined as H
(1)
β (η) = (1/2)〈ζ2(ζ2−5/2)(1−µ2)ψβ〉

(β = 1, 2). With the standard grid (S1,M1), the identities in (B.4a) hold

within the error of 3.2× 10−8, 8.1× 10−7, and 6.8× 10−7, while the maxima

of their left-hand side are 0.48, 0.11, and 1.3. In the case of (B.4b), the error

is within 4.3 × 10−7, 7.8 × 10−8, and 1.3 × 10−6, while the maxima of the

l.h.s. are 0.11, 0.055, and 0.076. In the case of (B.4c), the error is within

6.4 × 10−7, 6.3 × 10−7, and 4.7 × 10−6, while the maxima of the l.h.s. are

0.085, 0.071, and 0.29. In the case of (B.4d), the error is within 3.6× 10−6,

while the maximum of the l.h.s. is 0.14.
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