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Abstract

The Riemann problem has been proved to play the role of building blocks in vari-

ous aspects of theory, numerics and applications of one-dimensional conservation laws. In

contrast, the solution structures of two-dimensional Riemann problems are much poorly

understood due to the instantaneous space-time interaction of nonlinear waves which

leads to complex but fascinating wave structures. These structures have the universal

self-similarity feature that reflects the invariant property under dilation. With the self-

similarity reduction, the underlying problems change from the purely hyperbolic type to

the hyperbolic-elliptic mixed type. In this paper we will formulate and review precisely

some mathematical problems with plausible explicit structures in the construction of 2-D

Riemann problems and propose some doable problems.

1. Introduction

Hyperbolic conservation laws take the form

ut +∇ · f(u) = 0, t > 0, (1.1)

where u = (u1, . . . , um)⊤ is a conservative vector and f(u) = (f1(u), . . .,

fd(u)) is the flux function, t is the time variable. The gradient operator

∇ is taken with respect to the spatial variable x = (x1, . . . , xd) that is x
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in one-dimension and (x1, x2) = (x, y) in two-dimensions. We are particu-

larly interested in the compressible Euler equations in gas dynamics: The

conservative variable u and the flux function f(u) are

u = (ρ,m, E)⊤, f(u) = (m,m⊗m/ρ+ P I,m(E + P )/ρ)⊤, (1.2)

where ρ, m and P are the density, momentum and pressure, respectively; E

is the total energy which is defined as the sum of kinematic energy |m|2/(2ρ)
and the internal energy, E = |m|2/(2ρ)+ρe, e is the specific internal energy,

I is the standard identity matrix. The velocity function v is defined as

v = m/ρ. For polytropic gases, we use the equation of state,

P = (γ − 1)ρe, γ > 1. (1.3)

The solution we are considering for (1.1) is self-similar in the sense that

the solution is invariant under dilation (t,x) → (αt, αx) for any α > 0,

u(x, t) = u(ζ, 1), ζ = x/t, (1.4)

provided that local structures have such a property (Galilean invariance) or

the initial data just take the form,

u(x, 0) = u0(θ), (1.5)

where θ is the polar angle in the x-space. Then (1.1) becomes

− ζ · ∇ζu+∇ζ · f(u) = 0, (1.6)

or

(−ζI+
∂f

∂u
) · ∇ζu = 0, (1.7)

where ∇ζ is the gradient operator with respect to ζ. We call a flow governed

by (1.7) the pseudo-steady flow when the compressible fluid flow is considered

and the variable ζ a self-similarity variable.

The system (1.7) is unusual because topological structures of solutions

are fundamentally changed: (1.1) may change from the purely hyperbolic

type to the hyperbolic-elliptic mixed type under the self-similarity reduction

(1.4), in addition that the coefficient of (1.7) depends on the self-similarity

variable ζ. This fundamental change naturally arises issues how to formulate
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and propose doable problems of mixed-type and establish inherently related

mathematical theory.

In this paper we will discuss general properties of the pseudo-steady

flows and formulate some doable problems. In Section 2, we show that the

self-similar reduction of (1.1) leads to the study of mixed-type problems

inevitably following Canic and Keyfitz. In Section 3, we review three basic

problems of mixed-type that may help the study of self-similar solutions

to (1.7). In Section 4, we formulate some doable problems based on our

understanding of current progresses in this field.

2. General Theory on Pseudo-steady Flows

In this section, we will discuss the general property of pseudo-steady

flows and answer a basic question that why a purely hyperbolic problem

becomes a mixed-type one in terms of self-similarity variable ζ.

2.1. Hyperbolicity in the (t,x)-space

We write (1.1) as

[I∂t +A(u) · ∇]u = 0, A(u) =
∂f

∂u
, (2.1)

where I is the identity matrix. For any fixed value u0, the linearized symbol

matrix of (2.1) is

Q(λ,α,u0) := −λI+A(u0) ·α, |α| = 1, (2.2)

and the linearized symbol is

q(λ,α,u0) := det(−λI+A(u0) · α), (2.3)

where (λ,α) is a co-vector lying in the space dual to (t,x). We say (1.1)

is hyperbolic if for any direction α ∈ R
d and value u0, the symbol matrix

Q(λ,α,u0) has all real eigenvalues λ and a complete set of eigenvectors

[15]. We assume that the eigenvalues can be found through the fundamental
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theorem in algebra for q(λ,α,u0),

q(λ,α,u0) =

K
∏

ℓ=1

(λ− λℓ(α,u0))

J
∏

ℓ=1

qℓ(λ,α,u0), K + 2J = m, (2.4)

where λℓ(α,u0), ℓ = 1, . . . ,K, have the linear relation with α,

λℓ(α,u0) = α · κℓ(u), (2.5)

and qℓ, ℓ = 1, . . . , J , are the quadratic form of (λ,α),

qℓ(λ,α,u) = (−λ,α)θℓ(u)(−λ,α)⊤, (2.6)

where κℓ(u) is a vector and θℓ(u) is a (d + 1) × (d + 1) matrix. This

assumption is reasonable because there are many physical examples such

as the compressible Euler equations (1.2) and MHD sharing such a property.

Example. For the Euler equations (1.2), m = d + 2, K = d, and J = 1.

The factorization (2.4) is

λℓ(α,u0) = v ·α, ℓ = 1, . . . ,K,

qℓ(λ,α,u0) = (λ− v ·α)2 − (cα) · (cα), ℓ = 1,
(2.7)

where c is the sound speed, given with c2 = γP/ρ. Since the wave equation

can be regarded as the linearized version of the Euler equations, it shares

the same property at this point too.

We define ℓ-nondegenerate normal cone for any value u0 (see [15]),

EN (u0) = {(λ,α); (−λ,α)θℓ(u0)(−λ,α)⊤ = 0}. (2.8)

Its dual is ℓ-nondegenerate wave cone

ED(u0) = {(t,x); (t,x)θ−1
ℓ (u0)(t,x)

⊤ = 0}, (2.9)

where θ−1
ℓ (u0) is the inverse of θℓ(u0). For any (t,x) ∈ ED(u0), there exists
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a (λ,α) ∈ EN (u0) such that

(−λ,α) · (t,x) = 0. (2.10)

Such a plane is a characteristic plane of (1.1) with normal (−λ,α). Indeed,

ED(u0) is the envelope of planes of the form (2.10) and therefore it is convex.

Next we discuss the geometry of discontinuities. Let Γ : σ(t,x) = 0

be a discontinuity separating two states u0 and u. The Rankine-Hugoniot

relation holds stating the continuity of (u, f(u)) in the normal direction

([u], [f(u)]) · (σt, σx) = 0, (2.11)

where (σt, σx) is the normal vector of Γ, [u] = u−u0 and similarly for [f(u)].

Certainly, some additional physical criteria should be introduced to select

admissible solutions and they includes entropy criteria, small viscosity limit

and some others.

We write (2.11) as

(σtI +A(u,u0) · σx)[u] = 0, (2.12)

where A(u,u0) is the Roe matrix of f(u),

A(u,u0) =

∫ 1

0

∂f

∂u
(u0 + π(u− u0))dπ. (2.13)

Then we denote the matrix

Q(σt, σx,u0,u) := σtI +A(u,u0) · σx, (2.14)

and the Rankine-Hugoniot (abbr. R-H) symbol

q̄(σt, σx,u,u0) := det(σtI +A(u,u0) · σx). (2.15)

With the assumption (2.4), we have the decomposition, similar to (2.4),

q̄(σt, σx,u,u0) =

K
∏

ℓ=1

(σt + λ̄ℓ(σx,u,u0))

J
∏

ℓ=1

q̄ℓ(σt, σx,u,u0). (2.16)
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It turns out that such a discontinuity should satisfy the condition of the

form,

σt + λ̄ℓ(σx,u,u0) = σt + κ̄ℓ(u,u0) = 0, (2.17)

or

q̄ℓ(σt, σx,u,u0) = (σt, σx) θ̄ℓ(u,u0) (σt, σx)
⊤ = 0. (2.18)

The former corresponds to contact discontinuities and the latter corresponds

to shocks. Therefore, we can define a Rankine-Hugoniot cone,

(t,x) θ̄−1
ℓ (u,u0) (t,x)

⊤ = 0, (2.19)

which is the envelope of all plane of the form (σt, σx) · (t,x) = 0. As u tends

to u0, this cone becomes the ℓ-nondegenerate wave cone (2.9).

2.2. Pseudo-steady flows

As far as the self-similar solutions of (1.1) is considered, (1.1) is reduced

as (1.7). Then the linearized symbol matrix for (1.7) with a fixed value u0

is

Qζ(β,u0) :=

(

−ζI +
∂f

∂u

)

· β = −ζ · βI+ ∂f

∂u
· β, (2.20)

and the corresponding symbol writes

qζ(β,u0) = det

(

−ζ · βI + ∂f

∂u
· β

)

, (2.21)

where β ∈ R
n is a unit vector. We say that (1.7) is hyperbolic at ζ if qζ(β,u0)

has real roots β. Note that every component of β plays the same role and no

preference is given to a fixed direction. It is evident that the hyperbolicity

depends on the self-similarity variable ζ, besides the fixed value u0. In [5],

Canic and Keyfitz showed that for the case of two spatial variables, the self-

similar perturbation about a fixed state u0 must be of mixed-type. This is

true in general; and the proposition is stated as follows.

Proposition 2.1 (Theorem 2.1, Page 134, [5]). For any fixed u0 ∈ R
m,

(1.7) is hyperbolic if and only if (1, ζ) is outside of the wave cone ED(u0).
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Proof. The proof is not difficult and we would like to include it for com-

pleteness. For this purpose, we write

qζ(β,u0) =

K
∏

ℓ=1

(−ζ · β + λℓ(β,u0))

J
∏

ℓ=1

qℓ(−ζ,β,u0), (2.22)

where

−ζ · β − λℓ(β,u0) = (−ζ + kℓ(u0)) · β, (2.23)

and

qℓ(ζ,β,u0) = (−ζ · β,β)θℓ(u0)(−ζ · β,β)⊤. (2.24)

We assume that (1.7) is hyperbolic at ζ0. Then for some real vector

β ∈ R
n, qζ0(β,u0) = 0. This means that σ0 = (−ζ0 · β,β) ∈ EN (u0) and

the plane σ0 ·(t,x) = 0 is tangent to ED(u0). Due to convexity of ED(u0) and

the fact that σ0 · (1, ζ0) = 0, we conclude that (1, ζ0) is outside of ED(u0).

Conversely, if (1, ζ0) is outside of ED(u0), then we can make a tangent

plane to ED(u0) through (1, ζ0). Since ED(u0) is convex, such a plane is

outside ED(u0), and there holds for some σ ∈ EN (u0),

σ · (1, ζ0) = 0. (2.25)

Denote σ = (−λ,α). Then we have λ = α · ζ0 and (−α · ζ0, ζ0) ∈ EN (u0).

This implies that

qζ0(α,u0) = 0, (2.26)

has a non-degenerate real solution α; and therefore (1.7) is hyperbolic

at ζ0. ���

This proposition shows that the self-similarity reduction of (1.1) into

(1.7) leads inevitably to mixed-type (elliptic-hyperbolic coupled) problems.

We specialize to the two-dimensional case in the next subsection to see more

technical details.

We emphasize that, in terms of the self-similar variable ζ, the wave cone

(2.9) becomes

(1, ζ) θ−1
ℓ (u0) (1, ζ)

⊤ = 0; (2.27)
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and the Rankine-Hugoniot cone (2.19) becomes,

(1, ζ) θ̄−1
ℓ (u,u0) (1, ζ)

⊤ = 0. (2.28)

They are the projection of (2.9) and (2.19) onto the plane {t = 1}, respec-
tively.

2.3. Two-dimensional Riemann problems and pseudo-steady flows

We specialize to the two-dimensional case for which the number of spa-

tial variables are two. We write (1.1) in a special form

ut + g(u)x + h(u)y = 0, (2.29)

and the Riemann initial data for (1.1) is sectorial constant and radially

invariant. That is, the data just depend on the polar angle,

u(x, y, 0) = u0(θ), tan θ = y/x, (2.30)

and u0(θ) is piecewise constant,

u0(θ) = ui, θi < θ < θi+1, i = 1, . . . , J, θJ+1 = θ1 + 2π. (2.31)

We display the distribution of the data (2.31) in Figure 2.1 (a). In [41], the

data is restricted to be constant in each quadrant and assumed that only

one planar elementary wave emanates from each initial discontinuity (half of

each coordinate) for the reason of simplicity and symmetry, see Figure 2.1

(b). The number of pieces of the initial data is not essential. Instead, it is

important to disclose some fundamental phenomena through a simple and

reasonable setting.

Denote ζ = (ξ, η) = (x/t, y/t). Then (2.29) becomes

[−ξI +A(u)]uξ + [−ηI +B(u)]uη = 0, (2.32)

where A(u) =
∂g

∂u
and B(u) =

∂h

∂u
. The initial data (2.31) are now trans-

formed into boundary values imposed in the far field,

lim
ξ2+η2→∞

u(ξ, η) = u0(θ), θ = η/ξ, (2.33)
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(a) 2-D Riemann initial data:

u(x, y, 0) = u0(θ), θ = arctan(y/x)

(b) Four-wave Riemann data by Zhang

& Zheng (1990): SIAM J. Math. Anal.

Figure 2.1: The display of the Riemann initial data (2.31)

where the limit is taken by keeping η/ξ = tan−1(θ). Thus the purely initial

value problem (1.1) and (2.31) is formulated as the boundary value problem.

Please note that this boundary value problem is unusual. Parts of reasons

are the following:

(1) The boundary data is imposed at infinity, but not on any boundary of

bounded domains.

(2) The coefficient matrices −ξI+A(u) and −ηI+B(u) may be singular even

though the Jacobian
∂g

∂u
and

∂h

∂u
are not on their own. This is because we

assume that the system (2.29) is hyperbolic in every direction (of course

in the x or y-direction). Also they depend on independent variables ζ so

that (2.32) is not autonomous.

(3) Characteristics are the projection of corresponding characteristic sur-

faces of (1.1). This projection is made from three-dimensional sets onto

two-dimensional sets and therefore the topology changes fundamentally.

For example, the system of 2-D Euler equations possibly change the hy-

perbolic type from the elliptic type after the dimension reduction, which

will be specified later.

Nevertheless, this dimension reduction still supplies great benefits so

that we are able to apply current existing (elliptic and hyperbolic) theories

to resolve some physics-based problems.



402 JIEQUAN LI [September

The eigenvalues for (2.32) are computed through the equation for β =

(α, β),

det(α(−ξI +A(u)) + β(−ηI +B(u))) = 0, (2.34)

and characteristic curves are defined using the equation

αdξ + βdη = 0, (2.35)

Due to the distinct feature of (2.34), the characteristic curves defined by

(2.35) have unique properties different from those in the (t,x)-space.

(i) Singularity of characteristic curves. With the assumption of hyper-

bolicity of (2.29) in any direction, the matrix −ξu+A(u) and −ηu+B(u)

are singular. This means that each characteristic curve has a singularity

point that can be regarded as the end point, which corresponds to the bi-

characteristic curve. There are two subcases:

The first one is defined through the equation

−ζ · β + λℓ(β,u0) = (−ζ + κℓ(u0)) · β = 0, β = (−dη, dξ). (2.36)

Each of this family of characteristics has a singularity point ζ0 = (ξ0, η0) if

it carries the value u0. We can orient this characteristic line from infinite to

this singularity point. This family of characteristics are usually degenerate

and correspond to particle trajectories (flow characteristics).

The second one is defined as

(−ζ · β,β) θℓ(u0) (−ζ · β,β)⊤ = 0, β = (−dη, dξ). (2.37)

Each of them are tangential to the sonic ellipse

Cℓ : (1, ζ)θ
−1
ℓ (u0)(1, ζ)

⊤ = 0, (2.38)

which is just the wave cone in the (t,x)-space following (2.9) or the projection

of wave cone (2.9) onto the ζ-plane. All characteristic lines defined by (2.35)

with such β are straight and tangent to Cℓ. We illustrate these two sub-cases

in Figure 2.2.
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Figure 2.2: Characteristics for the pseudo-steady wave equation or linearized Euler
equations.

(ii) Mixed-type of systems. Once there are wave-characteristics defined

by (2.37), the system (1.7) must be of mixed-type due to Proposition 2.1.

Then we have to solve mixed-type problems subject to boundary dada im-

posed at infinity in general. In the far field, the system (2.32) is purely

hyperbolic, thanks again to Proposition 2.1.

The typical example is the linearized Euler equations in two dimensions,

ρt + ρ0∇ · v = 0,

vt +
c2
0

ρ0
∇ρ = 0,

(2.39)

where v = (u, v), c20 = P ′(ρ0). This system is obtained by linearizing the

Euler equations around the background state u0 = (ρ0,0). In terms of the

self-similarity variable ζ = (ξ, η), (2.39) is written as

−ξρξ − ηρη + ρ0(uξ + vη) = 0,

−ξuξ − ηuη +
c2
0

ρ0
ρξ = 0,

−ξvξ − ηvη +
c2
0

ρ0
ρη = 0.

(2.40)

The symbol is

qζ(β,u0) = (−ζ · β)((β · ζ)2 − c20|β|2), (2.41)
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which defines characteristics

ξdη − ηdξ = 0,

(ξ2 − c20)(dη)
2 − 2ξηdξdη + (η2 − c20)(dξ)

2 = 0.
(2.42)

The sonic curve is C : {(ξ, η); ξ2 + η2 = c20}. (2.40) is hyperbolic for (ξ, η) is
outside C and of mixed-type inside C. This distribution of characteristics is

displayed in Figure (2.2).

3. Elliptic-Hyperbolic Mixed-type Problems

Proposition 2.1 tells that we have to deal with elliptic-hyperbolic mixed-

type problems when pseudo-steady flows (1.7) are considered. As we all

know, the study of elliptic-hyperbolic problems has a long history and the

pioneering work may be attributed to Tricomi [35]. There are two fun-

damental families of mixed-type problems: Tricomi-type and Keldysh-type

problems. In between, the Lavrentiev-Bitsatze equation may be useful in

the treatment of transonic shocks. We would like to review them below.

Useful books highly recommended are [14] and [22], which summarize many

interesting pictures reflecting mixed-type problems.

3.1. The Tricomi equation

The Tricomi equation was named after Tricomi [35] and reads

yuxx + uyy = 0. (3.1)

It can be derived from the isentropic irrotational Euler equations using the

holograph transformation [22]. Obviously, this equation is elliptic in the

upper-plane y > 0; hyperbolic in the lower plane y < 0 and parabolically

degenerate (sonic) on the line y = 0. See Figure 3.1.

In the hyperbolic region y < 0, the characteristics are defined as

y(dy)2 + (dx)2 = 0. (3.2)
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Integrating it yields

C± : x± 2

3
(−y)3/2 = C, (3.3)

where C is an arbitrary constant.

Figure 3.1: Characteristics in the hyperbolic region for the Tricomi equation.

The two families of characteristics coincide and are vertical to y = 0.

The formulation of boundary value problem for (3.1) can be found in [24].

A common approach is to transform a boundary value problem into the

problem finding a solution of a singular integral equation. The study about

its fundamental solution can be found in [1].

A typical example of self-similar solutions whose characteristics are tan-

gential to sonic curves in the type of Tricomi is the propagation of planar

rarefaction waves. In Figure 4.8 below, we see the Tricomi structure in the

propagation of planar rarefaction waves.

3.2. The Keldysh equation

There is another type of mixed-type equation named after Keldysh,

which was proposed in [20] to study a class of degenerate elliptic equations

on the boundary of a domain and it reads

uxx + yuyy = 0. (3.4)

This equation is still elliptic in the upper plane y > 0 and hyperbolic in

the lower plane y < 0, with the transition line y = 0. The characteristic

equations are

(dy)2 + y(dx)2 = 0, (3.5)
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which gives

C± : 2
√−y ± x = C. (3.6)

Substantially different from those in (3.3) for the Tricomi equation (3.1),

the characteristic curves in (3.6) are all tangent to y = 0. Therefore the

solution behavior is substantially different too. It is pointed out in [11] by

investigating the fundamental solution that the behavior of solution near

y = 0 is more singular than that for the Tricomi equation.

Figure 3.2: Characteristics in the hyperbolic region for the Keldysh equation.

In Figure 2.2, the characteristic lines are tangential to the sonic circle

in the type of Keldysh.

3.3. The Lavrentiev-Bitsatze equation

The Lavrentiev-Bitsatze equation was proposed in 1950s [3, 4, 23] and

takes the form

uyy + sgn(y)uxx = 0. (3.7)

In the upper plane it is the Laplace equation and in the lower plane it is the

wave equation. The characteristic lines are

x± y = C. (3.8)

We can mimic the approach for the Tricomi equation (3.1) to study

the boundary value problem of (3.7). In order to make such a kind of
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Figure 3.3: Characteristics in the hyperbolic region for the Lavrentiev-Bitsatze
equation.

study possibly more applicable for nonlinear problems, Chen proposed the

following nonlinear equation in [12] and studied similar problems,

uyy + sgn(u)uxx = 0. (3.9)

This type of problems may be often present in the study of a transonic

shock problem in which a transonic shock separates a supersonic state from

a subsonic state.

The above three examples belong to linear theory. Just as pointed out in

[14, Page 6]: For technical applications it would be useful if linear theory gave

a good approximation...... Unfortunately, linearized theory cannot give the

correct answer in the transonic range. Hence we have to develop nonlinear

theory for nonlinear mixed-type problems (transonic flows).

4. Pseudo-steady Euler Equations

Undoubtedly, the most important model in the context of conservation

laws is the Euler system (1.2). For the two-dimensional case, the velocity v =

(u, v). Denote the pseudo-velocity (U, V ) = (u−ξ, v−η), the velocity relative

to the spatial location at a fixed time. Then we compute the eigenvalues,

λ01 = λ02 =
V

U
, λ± =

UV ± c
√
U2 + V 2 − c2

U2 − c2
, λ =

dη

dξ
. (4.1)

Hence this pseudo-steady Euler equations are:

(1) purely hyperbolic or supersonic if U2 + V 2 − c2 > 0;
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(2) of mixed-type or subsonic if U2 + V 2 − c2 < 0.

The curve {(ξ, η);U2 + V 2 − c2 = 0} is a sonic curve. Generally speaking,

the pseudo-steady Euler equations are of mixed-type but they are purely

hyperbolic in the far field since the pseudo-velocity is very large there. In-

deed, only planar elementary waves are present in the far field. One of main

missions of 2-D Riemann problems is to investigate how the planar waves

coming from far field interact to produce new flow patterns and establish

corresponding mathematical theories.

Due to extremely difficulties of the pseudo-steady Euler equations, it is

plausible to proceed our study from simplified models. Two examples we

choose are the pressure-gradient equations and the potential equation.

4.1. Pressure-gradient flows

As a ladder step, we may think of a flow by ignoring the influence of

inertial effect, which is achieved through some asymptotic approximation as

follows; or through the first moment closure of the Boltzmann equation by

ignoring the transport effect. Assume that the flow is almost stationary

(u, v) ∼ (0, 0). (4.2)

Then we formally have

ρv ≪ ρ; ρv ⊗ v ≪ ρv; vρE ≪ ρE. (4.3)

Thus the system of Euler equations reduces to



















ρt = 0,

(ρv)t +∇p = 0,

(ρE)t +∇ · (vp) = 0.

(4.4)

We can make a further assumption that ρ ≡ 1. Then we derive the pressure-

gradient system






vt +∇p = 0,

Et +∇ · (vp) = 0.
(4.5)
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where E = u2+v2

2 + p. This system does not produce new swirls. In other

words, if the flow is vorticity-free initially, so is it always. Then we can

focus on the study of nonlinear shock waves or rarefaction waves. More

interestingly, the pressure variable p can be decoupled from the system (4.5)

to satisfy a quasi-linear wave equation

(

pt
p

)

t

− (pxx + pyy) = 0. (4.6)

This equation is very analogous to the 2-D wave equation, just adding a

slight nonlinearity. Using this equation, we can understand the flow patterns

related to shocks or rarefaction waves quite thoroughly.

The self-similar form of (4.6) is

(p− ξ)2pξξ − 2ξηpξη + (p− η2)pηη +
(ξpξ + ηpη)

2

p
− 2(ξpξ + ηpη) = 0. (4.7)

The eigenvalues are

λ± =
ξη ±

√

p(ξ2 + η2 − p)

ξ2 − p
, λ =

dη

dξ
. (4.8)

Even though (4.7) is still a nonlinear mixed-type equation, it is much easier

to handle. Hence the pressure-gradient system can be regarded as a ladder

model to investigate compressible fluid flows (of course it is on its own an

important model).

In recent years, a lot of progresses were made using the pressure-gradient

model (4.5). In [38], the authors mimicked [41] to analyze the two-dimensional

Riemann problem for (4.5). The solution structures are strikingly analogous

to those of Euler equations except those involving contact discontinuities.

Then the analysis was followed by numerical simulations. It is observed

that there are numerous problems involving the study of (4.7) in a domain

with degeneracy on the boundary. Then Zheng in [43] proved the following

theorem concerning the existence of solutions in subsonic-sonic regions.

Theorem 4.2 (Existence of subsonic solutions,[43]). Consider (4.7) inside

the domain Ω with the boundary data p|∂Ω = ξ2 + η2. Then there exists

a positive weak solution p ∈ H1
loc(Ω) with p ∈ C0,α

loc (Ω). It takes on the

boundary value in the sense [p− (ξ2 + η2)]3/2 ∈ H1
0 (Ω). Furthermore, it has
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(i) maximum principle: min∂Ω(ξ
2 + η2) ≤ p(ξ, η) ≤ max∂Ω(ξ

2 + η2);

(ii) interior ellipticity: p(ξ, η)− (ξ2 + η2) > 0 in Ω.

In hyperbolic regions ξ2+η2 > p, the equation (4.7) has characteristic de-

compositions. In fact, we let r =
√

ξ2 + η2, θ = arctan(η/ξ), λ =
√

p
r2(r2−p

,

and ∂± = ∂θ ± 1
λ∂r. Then we have







∂+∂−p = mpr∂−p,

∂−∂+p = −mpr∂+p,
(4.9)

where m = λr4

2p2
. We can use the coordinates (ξ, η) to derive similar charac-

teristic decompositions. Using these decompositions, we are able to discuss

the solution to (4.7) in hyperbolic regions. Dai and Zhang solved the prob-

lem of planar rarefaction wave interaction in [16] with a vacuum bubble near

the origin, and then Lei and Zheng in [25] showed that the vacuum bubble

is imaginary and does not exist in reality.

Theorem 4.3 (Existence, [16, 25]). There is a classical smooth solution to

the interaction of planar rarefaction waves for the pressure gradient equations

(4.5). See Figure 4.1. This also applies to the case 0 < θ ≤ π/2.

Figure 4.1: Interaction of binary planar rarefaction waves for pressure gradient
equations

These two theorems are interesting on their own, but they work sepa-

rately in a purely elliptic region and a purely hyperbolic region. It is in-
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teresting to see how to combine them to construct a global structure in

elliptic-hyperbolic mixed regions.

For the Riemann problem involving shocks, we have to solve transonic

problem with shocks as free boundaries. Along this direction Zheng in [45]

provided a global solution to the case that has initially two contact discon-

tinuities plus two shocks. That is just Configuration H in [29, Page 206].

Then Zheng in [46] proved the existence of solutions to the regular reflection

problem of shocks. As for the solution behavior near sonic curves, Tianyou

Zhang and Yuxi Zheng recently made an interesting study on the solution

behavior near sonic curves via the pressure gradient equation (4.7) in [39].

4.2. Unsteady potential flows

As the flow is vorticity-free, we consider the unsteady potential equation,

φtt +2φxφtx +2φyφty − (c2 −φ2
x)φxx+2φxφyφxy − (c2 −φ2

y)φyy = 0, (4.10)

where φ is the potential function, such that

φx = u, φy = v. (4.11)

As usual, (4.10) is closed with the Bernoulli law

φt +
φ2
x + φ2

y

2
+

c2

γ − 1
= 0. (4.12)

Introduce the pseudo-potential function,

Φ(ξ, η) =
1

t
φ(t, x, y)− ξ2 + η2

2
, (4.13)

which satisfies

Φξ = u− ξ, Φη = v − η. (4.14)

Then in terms of Φ we arrive at the pseudo–potential flow equation

(c2 − Φ2
ξ)Φξξ − 2ΦξΦηΦξη + (c2 − Φ2

η)Φηη = Φ2
ξ +Φ2

η − 2c2, (4.15)
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and the Bernoulli law becomes

Φ +
Φ2
ξ +Φ2

η

2
+

c2

γ − 1
= 0. (4.16)

It is clear that (4.15) is of mixed-type,

(c2 − Φ2
ξ)(dη)

2 + 2ΦξΦηdξdη + (c2 − Φ2
η)(dξ)

2 = 0. (4.17)

Using the pseudo-potential equation (4.15), many interesting works have

been done. For example, Elling and Liu use it for proving the stability of

weak shock when a strong supersonic upstream flow moves against a sharp

wedge [18]; Chen and Feldman adopt it for the study of the regular reflection

of shock [9]; Kim proves the existence of solutions in a subsonic domain

[21]. Morawetz had done the pioneering works on the steady counterpart

of (4.10) using the compensated compactness framework and constructed a

non-smooth transonic solution around a blunt airfoil in [34]. Let’s go to next

section for more details.

4.3. Some doable problems

There are lots of progresses in recent years on mixed-type problems

although this field is still pre-mature compared to purely elliptic or one-

dimensional hyperbolic problems. The existing results are sporadic mostly

on specific physics-based problems. It seems that we can only work in this

way at the present stage. We will propose some doable problems and mainly

concern about the following points regarding existence of solutions and so-

lution structures:

(1) Supersonic-sonic problems;

(2) Subsonic-sonic problems;

(3) Full transonic (mixed-type) problems;

(4) Regularity and solution details near sonic curves.

The useful governing equations may be one of the Euler system (1.2), the

pressure-gradient equations (4.5) and the potential equation (4.15).
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4.3.1. Transonic nozzles or airfoil flows

There are three typical (steady) flow patterns for the Laval nozzle. We

denote by M the local Mach number; M ′ some critical Mach number less

than 0.8 experimentally; Min the Mach number of upstream flows. We refer

to [22] for more structures.

1. Min < M ′ ≪ 1. For this case, the upstream flow is slow and it will flow

through the whole nozzle smoothly without shocks. The existence of

smooth solution was established in 1950s by Bers [2] and others using 2-

D steady isentropic irrotational Euler equations or 2-D steady potential

flow equations. See Figure 4.2.

Figure 4.2: Subsonic smooth solutions for Laval nozzle.

2. 0 < M ′ < Min < M ′′ < 1. As the Mach number of subsonic upstream

flow is larger than a critical number M ′, the situation is extremely com-

plicated. Usually, a supersonic bubble is observed to separate from a

downstream flow by a shock. See Figure 4.3.

Figure 4.3: Transonic nozzle flows.

3. Min > 1. As the upstream flow is supersonic, shocks are produced in

the process of the flow passing through the nozzle. A simplest case is

that only a shock is produced to separate the upstream flow from a

downstream flow. See Figure 4.4.
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Figure 4.4: A shock separates the upstream flow from a downstream flow.

Figure 4.5: Airfoil problem (Downloaded from Google).

Many contributions were made for the nozzle flow. For example, Morawetz

uses the framework of compensated-compactness to show the nonexistence

of smooth solutions [34]; Chen et al. show (also use the framework of

compensated-compactness) the existence of weak solutions [7, 8]; Xie and

Xin adopt a stream function formulation to prove the existence of solutions

in a subsonic-sonic part of the nozzle [37]. Recently, Tianyou Zhang and

Yuxi Zheng give more insight into detailed structures of the solution near

the sonic curves [40]. A question is how to construct a global weak solution

involving shocks. The results by Chen et al. did not resolve this issue be-

cause their solutions are constructed, respectively, in a supersonic region and

in a subsonic region. In [15] there are some explicit examples of transonic
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solutions , e.g, the Ringleb flow. However, it is quite difficult to apply them

for practical uses.

Similar situations occur as a flow passes over an airfoil. We sketch

several cases in Figure 4.5. We can use the steady Euler equations, or the

potential flow equation to study this class of problems.

4.3.2. A supersonic flow over a blunt body

As a supersonic upstream flow goes over a blunt body, a transonic shock

usually forms, as shown in Figure 4.6.

Figure 4.6: A supersonic flow over a blunt body.

There is an extreme case that the blunt body becomes a sharp wedge.

Then as a strong supersonic flow goes over it, two symmetric shocks attach

at the tip of the wedge. We can use a shock polar to find the existence

of such shocks: a strong shock or a weak shock. The downstream flow is

supersonic for the weak shock; while it may be supersonic or subsonic for the

strong shock. A simple algebraic entropy criterion cannot select out which

shock is physically admissible. Prandtl and Meyer conjectured that the weak

shock is stable under some perturbations. However, this issue has not been

settled down yet although there are various beautiful arguments available.

For example, Chen, Xin and Yin show the local structural stability of weak

shock near the tip of wedge [13] with many extensions afterwards; Elling and

Liu study the asymptotic stability of weak solution [18]. The strong shock
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may be transonic and is much harder to be investigated. See Elling’s recent

works (eg. [17]).

Figure 4.7: A supersonic flow over a solid wedge.

4.3.3. A wedge-shaped gas expansion problem

The expansion problem of a wedge-shaped gas into a vacuum has a long

history and it can be hydraulically interpreted as a dam collapse problem. As

the half angle of the wedge is less than π/2, it is completely solved recently.

In [16, 25], the pressure-gradient model (4.5) is used; and in [26, 27, 30, 31,

32, 28, 42] the system of Euler equations is used. In this context, an approach

of characteristic decomposition is developed to handle the interaction of

simple waves. This approach can be even used to extend the supersonic

solution to sonic boundaries and construct a so-called semi-hyperbolic patch

that exists extensively in gas dynamics [36, 33],.

An obvious problem remains: What happens as the half wedge angle is

larger than π/2? We can formulate this problem for the Euler or pressure

gradient equations. For example, we consider the latter. The initial data is

set to be

p(x, y, 0) =







0, for x < 0, y > 0,

1, otherwise.
(4.18)

The initial velocity could be imposed properly. The solution structure is

roughly described in Figure 4.8. In order to depict a global picture, we may



2015] 2-D COMPRESSIBLE EULER EQUATIONS 417

have to use all ingredients including semi-hyperbolic patches, the theory of

degenerate elliptic equations and something else.

Figure 4.8: A wedge-shaped gas expansion into a vacuum with obtuse angle.

4.3.4. Symmetric shock interaction

If one checks all cases of 2-D Riemann problems simulated by our very

delicate scheme in [19], he finds that one case that could be promisingly

worked out rigorously is the regular interaction of symmetric shocks. See

Figure 4.9. The picture is very clean. Related to this pattern is the regular

reflection of oblique shock against a rigid wall, which is solved in [9], and

the stability of Mach reflection of shocks in [10].

Figure 4.9: Regular reflection resulting from 2–D Riemann problem for Euler system
by the GRP scheme.
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For this problem, we may start from the pressure-gradient model and

adjust the interaction angle of shocks, as shown in Figure 4.10. There are

already some ladder results for this problem [45, 46].

Figure 4.10: Regular interaction of shocks sketched from 2–D Riemann problem for
pressure-gradient system
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