
Bulletin of the Institute of Mathematics
Academia Sinica (New Series)
Vol. 10 (2015), No. 3, pp. 349-373

FINITE ENERGY GLOBAL SOLUTIONS TO A

TWO-FLUID MODEL ARISING IN SUPERFLUIDITY

PAOLO ANTONELLI1,a AND PIERANGELO MARCATI2,b

Dedicated to Professor Tai-Ping Liu on the occasion of his 70th birthday

1Gran Sasso Science Institute, v.le F. Crispi, 7 L’Aquila, Italy.
aE-mail: paolo.antonelli@gssi.infn.it
2DISIM, University of L’Aquila, via Vetoio, Coppito, L’Aquila, Italy

AND Gran Sasso Science Institute, v.le F. Crispi, 7 L’Aquila, Italy.
bE-mail:pierangelo.marcati@univaq.it

Abstract

In this paper we study a hydrodynamic system describing two interacting fluids,

which can be seen as a toy model to start an investigation on the so called two-fluid models

arising in superfluidity and Bose-Einstein condensates at finite temperatures. We show

global existence of finite energy weak solutions, by using a fractional step argument which

combines the study of a Cauchy problem for an appropriate nonlinear Schrödinger equation

and the polar factorisation techinque. The convergence of the sequence of approximate

solutions is then proved by using the dispersive properties of the nonlinear Schrödinger

equation.

1. Introduction

In this paper we consider a class of hydrodynamic systems describing

a two-fluid model. Such models arise in various physical phenomena, e.g.

superfluidity [14], or Bose-Einstein at finite temperatures [11, 28].

In the Landau-Khalatnikov two-fluid formulation the system describes

a dilute Bose condensed gas at temperature lower than the critical conden-

sation temperature, but not very close to absolute zero, so that the gas

has a condensate and non-condensate fraction. It turns out that the con-

densate part is described by a frictionless, quantum fluid, whereas the non-

condensate part is considered as a viscous classical fluid. Hereafter we will
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refer to the condensate part as the superfluid and to the non-condensate

one as the normal fluid. The two fluids interact by exchanging mass and

momentum. If ρs, vs denote the superfluid mass density and velocity field,

respectively, and ρn, vn the analogous quantities for the normal fluid, then

the class of two-fluid models we are interested in can be written in the fol-

lowing way, in its most general formulation1 ,



















































∂tρs + div(ρsvs) = −Γ12

∂t(ρsvs) + div(ρsvs ⊗ vs) +∇Ps(ρs) + ρs∇Vext =
1

2
ρs∇

(

∆
√
ρs√
ρs

)

−Q12

∂tρn + div(ρnvn) = −Γ21

∂t(ρnvn) + div(ρnvn ⊗ vn)

+∇Pn(ρn) + ρn∇Vext = div

(

2η

(

Dvn − 1

3
1 trace Dvn

))

−Q21.

(1.1)

where Ps and Pn are the self-consistent pressure terms for the superfluid

and the normal fluid, respectively, Vext is a given external potential, η is the

viscosity in the equation for the normal fluid, and in general it could depend

on the unkown variables. Dvn denotes the symmetric part of the gradient

of vn. Furthermore Γij = Γij(ρs, ρn, vn, vs) are the terms accounting for the

mass exchange, Qij = Qij(ρs, ρn, vs, vn) for the momentum exchange, and

they are nonlinear operators, depending on the unknown variables. Various

models of this type were derived in the physics literature, see for example

[21, 28, 11, 20] and references therein. Here in this paper we consider a toy

model in this class of systems. A more general and physically senseful class

of two-fluid models will be the subject of future investigations. The main

assumptions we make in the model presented here are as follows. First of

all we assume the two gas populations don’t interact by exchanging mass,

i.e. we fix Γ12 = Γ21 = 0. Furthermore Q21 = 0, that is we consider

a system where the dynamics of the normal fluid is not influenced by the

superfluid part. On the other hand the superfluid interacts with the normal

fluid through the collision term Q12, which we will assume to be linear in

the two velocity fields vs, vn. This means we want Q12 =
1
τ ρs(vs−vn), where

1Many models consider also a dynamical equation for the energy density, or the entropy.
However this is beyond the scope of our study and will be the subject of future investigations
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τ > 0 is the average collision time between particles of the two populations.

However, to keep some physical features of the superfluid we will assume

Q12 =
1

τ
ρs(vs −Qvn), (1.2)

where Q = −(−∆)−1∇div is the Helmholtz projection operator. Indeed, we

want the superfluid velocity to be irrotational (in ρs dx almost everywhere):

this is one of the main properties for superfluids, strictly related to the

quantization of vortices. Thus we fix (1.2) to be the collision operator in the

equation for the current density, so to have a toy model which nevertheless

conserves the main physical features of general two-fluid models. Moreover,

we will assume the viscosity coefficient to be constant. This assumption is

physically reasonable in this context and it will not be further discussed here.

Finally we assume that there is no external potential, Vext = 0 and that the

self-consistent pressure terms are given by the usual γ−law,

Ps(ρs) =
γs − 1

γs
ργs , Pn(ρn) =

γn − 1

γn
ργn , (1.3)

where 1 ≤ γs < 3, γn > 3
2 . Those two final assumptions are only for the

simplification of the exposition of the result, as it is of no difficulty to extend

the study to a class of more general potentials and pressure terms than the

ones we are considering here.

We want to study the Cauchy problem for the system above in the space

of energy, namely we deal with minimal regularity solutions such that the

physical quantities, like the total mass and the total energy, are well defined

at any time along the flow of solutions. Our goal is to prove the existence of

global in time, finite energy weak solutions to the system (1.1).

Since the early days of quantum mechanics it is well-known [18] that the

Quantum Hydrodynamics (QHD) system











∂tρ+ divJ = 0

∂tJ + div

(

J ⊗ J

ρ

)

+ ρ∇V +∇P (ρ) = 1

2
ρ∇

(

∆
√
ρ

√
ρ

)

(1.4)

is strictly related to the nonlinear Schrödinger equation

i∂tψ = −1

2
∆ψ + V ψ + f ′(|ψ|2)ψ, (1.5)
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where f is such that ρf ′′(ρ) = P ′(ρ). This can be shown by using the so

called WKB ansatz, i.e. by assuming the wave function ψ can be expressed

in terms of its amplitude
√
ρ and its phase S, ψ =

√
ρeiS . In this way

we may formally see that, if ψ solves (1.5), then the pair (ρ, J), where

J := ρ∇S, solves the QHD system (1.4). Unfortunately this analogy is valid

only in the region where ρ > 0. Indeed in the nodal region {ρ = 0} the

phase is not well-defined. As the authors proved in [1], [2], it is possible to

overcome the WKB ansatz in order to define a finite energy weak solution

to (1.4), given a wave function ψ, solution to the NLS (1.5). This is made

rigorous by a polar factorization techinque, which avoids the definition of

the (superfluid) velocity field in the vacuum regions. On the other hand,

the presence of dissipative terms in the QHD system, as in (1.1) destroys

somehow the analogy with nonlinear Schrödinger equations. Thus we need

to proceed by constructing a sequence of approximate solutions, through a

fractional step argument.

Since we are going to work in the same framework as [1, 2], we rewrite

the system we are going to study in the following way:







































∂tρ1 + divJ1 = 0

∂tJ1 + div

(

J1 ⊗ J1
ρ1

)

+∇P1(ρ1) =
1

2
ρ1∇

(

∆
√
ρ1√
ρ1

)

− 1

τ
(J1 − ρ1Qv2)

∂tρ2 + div(ρ2v2) = 0

∂t(ρ2v2) + div(ρ2v2 ⊗ v2) +∇P2(ρ2) = η∆v2 +
1

3
η∇divv2,

(1.6)

where the superscripts 1 and 2 stand for the quantities associated to the

superfluid and the normal fluid, respectively. That is, here the superfluid

is described in terms of its mass and current densities, and we do not deal

with the superfluid velocity. More precisely, we will show it is possible to

study the superfluid part in terms of the square root of the superfluid mass

density and of a vector field which represents the quantity J1/
√
ρ1, see the

definition below. Furthermore, without loss of generality we fix τ = 1 in

(1.2), since at present we are not dealing with singular limits for the system

(1.6).

We prescribe initial data for (1.6) as

ρ1(0) = ρ1,0, J1(0) = J1,0, ρ2(0) = ρ2,0, (ρ2v2)(0) = J2,0 in R3, (1.7)
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where J2 = ρ2v2, and we will assume they satisfy the following assumptions



































∃ ψ0 ∈ H1(R3) such that ρ0,1 = |ψ0|2, J0,1 = Im(ψ̄0∇ψ0),

ρ2,0 ≥ 0 a. e. in R3, ρ2,0 ∈ L1(R3) ∩ Lγ2(R3),

J2,0 ∈ L
2γ2
γ2+1 (R3), J2,0 = 0 a.e. in {ρ2,0 = 0}

|J2,0|2
ρ2,0

∈ L1(R3),
|J2,0|2
ρ2,0

= 0 on {ρ2,0 = 0}.

(1.8)

The total mass of the system

∫

R3

ρ1(t, x) + ρ2(t, x) dx

is conserved along the flow of solutions to (1.6). Moreover, each species total

mass
∫

ρ1 and
∫

ρ2 is conserved. For the total mass energy we have

E(t) = E1(t) + E2(t),

where














E1(t) =

∫

R3

1

2
|∇√

ρ1|2 +
1

2
|Λ1|2 +

1

γ1
ργ11 dx,

E2(t) =

∫

R3

1

2
ρ2|v2|2 +

1

γ2
ργ22 dx,

(1.9)

and formally we have

E(t) +

∫ t

0

∫

|Λ1|2 dxdt′ −
∫ t

0

∫

J1 ·Qv2 dxdt′

+ η

∫ t

0

∫

|∇v2|2 +
1

3
|divv2|2 dxdt′ = E(0).

Definition 1. Let 0 < T < ∞. we say the quadruple (ρ1, J1, ρ2, J2) is a

finite energy weak solution for the system (1.6) with initial data (1.7) on the

space-time strip [0, T ] ×R3 if

• there exist two functions
√
ρ1 ∈ L2(0, T ;H1(R3)) ∩ C([0, T ];H1

loc(R
3)),

Λ1 ∈ L2(0, T ;L2(R3)) ∩ C([0, T ];L2
loc(R

3)) such that ρ1 := (
√
ρ1)

2 and

J1 :=
√
ρ1Λ1;

• ρ2 ∈ L∞(0, T ;Lγ2(R3)) ∩ C([0, T ];Lp(R3)), for 1 ≤ p < γ2, ρ2 ≥ 0 a. e.;
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• ∇v2 ∈ L2(0, T ;L2(R3)), ρ2|v2|2 ∈ L∞(0, T ;L1(R3)), ρ2v2 ∈ C([0, T ];
L

2γ2
γ2+1 (R3));

• ∀ η1 ∈ C∞
0 ([0, T ) ×R3),

∫ T

0

∫

R3

ρ1∂tη + J1 · ∇η dxdt+
∫

R3

ρ1,0(x)η(0, x) dx = 0;

• ∀ζ ∈ C∞
0 ([0, T ) ×R3;R3),

∫ T

0

∫

R3

J1 · ∂tζ + Λ1 ⊗ Λ1 : ∇ζ + P1(ρ1)divζ +∇√
ρ1 ⊗∇√

ρ1 : ∇ζ

− 1

4
ρ1∆divζ + (J1 − ρ1Qv2) · ζ dxdt+

∫

R3

J1,0(x) · ζ(0,X) dx = 0;

• the Navier-Stokes equation for (ρ2, v2) in (1.6) holds in D′([0, T ] ×R3);

• (generalized irrotationality condition) for almost every t ∈ (0, T )

∇∧ J1 = 2∇√
ρ1 ∧ Λ1, (1.10)

holds in the sense of distributions.

We say that (ρ1, J1, ρ2, J2) in a global in time finite energy weak solution to

(1.6) with initial data (1.7) if the above conditions hold for any 0 < T <∞.

Remark 1. Let us consider (1.10) more closely. If we have a sufficiently

smooth solution to (1.6), so that we may write J1 = ρ1v1, where v1 is

the superfluid velocity, then it is straightforward to check that (1.10) is

equivalent to

ρ1∇∧ v1 = 0,

i.e. the superfluid velocity is irrotational almost everywhere ρ1 dx. The

condition (1.10) is naturally satisfied by the solutions constructed in this

paper. On the other hand, as we already noticed before, condition (1.10)

has a very strong physical interpretation, being related to the existence of

quantized vortices in a superfluid, see for example [3], [25] and references

therein.

Condition (1.10) in particular implies that the solutions we deal with

are more general than the ones given through a WKB analysis. Indeed for

such solutions one has v1 = ∇S, where S is the phase of the wave function.
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Hence, the velocity field is everywhere irrotational, ruling out completely the

presence of quantized vortices.

We also remark that formula (1.2) is consistent with the generalized

irrotationality condition: if we don’t consider the normal velocity projected

with Q in the collision operator Q12, then in general we could not expect a

solution which satisfies condition (1.10).

As it is clear from the system itself, the dynamics of the normal fluid

is not affected at all by the superfluid, whereas the latter interacts with

the former through the collision term. Thus we may solve separately the

dynamics for the normal fluid and consider it as given in the equation for

the superfluid current density.

The classical fluid is described by the Navier-Stokes system for a com-

pressible fluid, with a constant viscosity coefficient:



















∂tρ2 + div(ρ2v2) = 0

∂t(ρ2v2) + div(ρ2v2 ⊗ v2) +∇P2(ρ2) = η∆v2 +
1

3
η∇divv2

ρ2(0) = ρ2,0, (ρ2v2)(0) = J2,0,

(1.11)

with P2(ρ2) =
γ2−1
γ2

ργ2 , γ2 >
3
2 , and ρ2,0, J2,0 which satisfy the assumptions

in (1.8).

The compressible Navier-Stokes system is well studied, see for example

[17, 9, 23] and references therein. Here we only state a global existence result

for weak solutions to (1.11) which will be useful to our analysis. It is proved

in [8] in a more general case, namely for our purposes we set λ = −2
3µ and

G = 0 in the main theorem there.

Theorem 1. Under the assumptions in (1.8) for ρ2,0, J2,0, there exists a

finite energy weak solution to the Cauchy problem (1.11) in [0, T ], for any

T > 0. Furthermore, the solution satisfies

• ρ2 ∈ L∞([0, T ];L1 ∩ Lγ2(R3)), ρ2 ≥ 0;

• v2 ∈ L2([0, T ]; Ḣ1(R3));

•

E2(t) + η

∫ t

0

∫

|∇v2|2 +
1

3
|divv2|2 dxdt′ ≤ E2(0),

where the energy E2(t) is defined as in (1.9).
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Once we solve the Cauchy problem for the normal fluid part of the gas,

we may regard it as a source term appearing in the equation for the superfluid

current density. That is, we need to solve the following Cauchy problem































∂tρ1 + divJ1 = 0

∂tJ1 + div(Λ1 ⊗ Λ1) +∇P1(ρ1)

=
1

4
∇∆ρ1 − div(∇√

ρ1 ⊗∇√
ρ1)− (J1 − ρ1Qv2)

ρ1(0) = ρ1,0, J1(0) = J1,0,

(1.12)

in accordance with the Definition 1. Here the initial data are given as in

(1.8): ρ1,0 = |ψ0|2, J1,0 = Im(ψ̄0∇ψ0), for some ψ0 ∈ H1(R3).

In analogy with the WKB analysis (see also [1, 2]), we see that (1.12) is

formally equivalent to the following NLS equation







i∂tψ = −1

2
∆ψ + Ṽ ψ +Wψ + |ψ|2(γ1−1)ψ

ψ(0) = ψ0,
(1.13)

where W = 1
2i log

(

ψ/ψ̄
)

and Ṽ = (−∆)−1divv2, v2 being the normal fluid

velocity, solution to the Navier-Stokes system (1.11), see Theorem 1. The

self-consistent potentialW is ill-posed and to the best of our knowledge there

is no satisfactory theory for the Cauchy problem for NLS equations with such

potentials. For this reason we will avoid studying (1.13) and we will overcome

this difficulty by using a fractional step argument, in order to construct

a sequence of approximate solutions for the hydrodynamic problem (1.12).

That is, (1.13) cannot be studied in the framework we are considering, but we

will show the existence of a finite energy weak solution to the hydrodynamic

system related to (1.13), namely (1.12).

On the other hand, we can study the term (−∆)−1divv2 in the frame-

work of NLS equations. For this purpose we actually need a further assump-

tion on v2, namely we will assume that

v2 ∈ L∞([0, T ]; Ḣ1(R3)), (1.14)

for any 0 < T <∞. By this assumption and Theorem 1 we know then

v2 ∈ L2([0, T ]; Ḣ1(R3)) ∩ L∞([0, T ]; Ḣ1(R3)). (1.15)
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By means of this information, we are going to give a precise meaning to

(−∆)−1divv2 in the NLS equation. Indeed, by (1.15) we only know that

∇Ṽ = −Qv2 ∈ (L2 ∩ L∞)tL
6
x. We are going to use a result on a note by

Ortner, Süli [19]. Here we only state the result we are going to use for our

analysis, for a more general statement we refer the reader to Theorem 2.2 in

[19].

Theorem 2. Let Ṽ be such that ∇Ṽ ∈ L∞([0, T ];L6(R3)). Then there exist

two functions V∞ ∈ L∞
loc([0, T ] ×R3), Vp ∈ L∞([0, T ];W 1,6(R3)), such that

(i) V∞(t) ∈ C∞(R3), for a.a. t ∈ [0, T ];

(ii) Ṽ = V∞ + Vp;

(iii) ‖Vp‖L∞

t W 1,6
x

≤ C‖∇Ṽ ‖L∞

t L6
x
;

(iv) ‖∇V∞‖L∞

t L6
x
+ ‖∇V∞‖L∞

t,x
≤ C‖∇Ṽ ‖L∞

t L6
x
;

(v) |V∞(t, x)| ≤ C|x|5/6‖∇Ṽ ‖L∞

t L6
x
for a.a. t ∈ [0, T ];

(vi) ‖∂αV∞‖L∞

t L6
x
≤ C‖∇Ṽ ‖L∞

t L6
x
, for any α ∈ N3, |α| ≥ 1.

Remark 2. The result stated in Theorem 2 is slightly different from The-

orem 2.2 in [19], namely in [19] the result is for time independent functions

and property (vi) is not stated. However, those modification can be easily

inferred from the proof in [19].

Given the above Theorem we may then study the following Cauchy

problem






i∂tψ = −1

2
∆ψ + V∞ψ + Vpψ + |ψ|2(γ1−1)ψ

ψ(0) = ψ0.
(1.16)

In particular, let us notice that we have a NLS equation with a smooth po-

tential V∞, growing at infinity and whose derivatives are uniformly bounded

for a.e. time. For this reason we need to study the above Cauchy problem

in the space

Σ(R3) = {ψ ∈ H1(R3) : | · |ψ ∈ L2(R3)}.

We will show that (1.16) is globally well-posed in Σ(R3). Then, by using this

well-posedness result and the polar factorisation technique we will set up a
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fractional step argument in order to construct a sequence of approximate

solutions for the system (1.12). The main result we are going to prove in

this paper is the following

Theorem 3. Let (ρ2, v2) be a finite energy weak solution to the Navier-

Stokes system as in Theorem 1 and let us assume v2 further satisfies (1.14).

For any ψ0 ∈ Σ(R3) let us define ρ1,0 = |ψ0|2, J1,0 = Im(ψ̄0∇ψ0). Then

for any 0 < T < ∞ there exists a finite energy weak solution for the QHD

system (1.12). Furthermore, the energy satisfies

E1(t) + c

∫ t

0

∫

|Λ(t′, x)|2 dxdt′ ≤ C
(

E1(0) + ‖ρ1,0‖L1‖v2‖4L2
t Ḣ

1
x([0,T ]×R3)

)

,

for t ∈ [0, T ].

Corollary 1. Let us assume ρ1,0, J1,0, ρ2,0, J2,0 satisfy conditions (1.8) and

let us furthermore assume that ψ0 in (1.8) satisfies ψ0 ∈ Σ(R3) and that the

normal velocity v2 satisfies v2 ∈ L∞([0, T ]; Ḣ1(R3)), for any 0 < T < ∞.

Then there exists a global in time finite energy weak solution to the two-fluid

model (1.6).

The paper is organised as follows. In Section 2 we are going to study

the Cauchy problem (1.16) in the space of energy Σ(R3), in Section 3 we

will recall the polar factorisation technique and we will give an intermediate

result for our study of the system (1.12). In Section 4 we will set up the

fractional step argument to define the sequence of approximate solutions

for (1.12) and then Section 5 we will prove some a priori estimates for this

sequence, showing the convergence to a finite energy weak solution to (1.12).

2. The Cauchy Problem for the NLS Equation

In this Section we are going to study the following Cauchy problem







i∂tψ = −1

2
∆ψ + V∞ψ + Vpψ + |ψ|2(γ1−1)ψ

ψ(0) = ψ0,
(2.1)

where Ṽ = V∞ + Vp is such that ∇Ṽ = (−∆)−1divv2 ∈ L∞
t L

6
x([0, T ] ×

R3) and is well defined by Theorem 2. In particular we have that V∞
is a potential which for almost every time is smooth, growing at infinity
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and whose derivatives are uniformly bounded. As we already remarked this

requires we study the Cauchy problem (1.16) in the space of energy

Σ(R3) = {ψ ∈ H1(R3) : | · |ψ ∈ L2(R3)}.

The energy we associate to problem (1.16) is the following2

E1(t) =

∫

1

2
|∇ψ|2 + 1

γ1
|ψ|2γ1 .

Along the flow of solutions to (1.16) we have

d

dt
E1(t) = −

∫

J1 ·Qv2 dx,

where J1 = Im(ψ̄∇ψ). From the bound v2 ∈ L∞
t Ḣ

1
x and the conservation

of mass for (1.16) we have the following Gronwall-type inequality for the

energy

E1(t) ≤ eCtE1(0). (2.2)

Proposition 1. For any ψ0 ∈ Σ(R3) there exists a unique global solution

ψ ∈ C(R; Σ(R3)) such that

ψ,∇ψ, |·|ψ∈Lq([0, T ];Lr(R3)),∀ (q, r)Strichartz admissible pairs, 0<T <∞.

Moreover the solution depends continuously on the initial data and the energy

satisfies (2.2).

To study the Cauchy problem (1.16) we first define the semigroup asso-

ciated to the linear equation

i∂tψ = −1

2
∆ψ + V∞ψ. (2.3)

Let U(t, s)f be the solution to the above linear equation with initial datum

ψ(s) = f . By [10] and Theorem 2 we know it is well defined and moreover

‖U(t, s)f‖L∞ . |t|− 3

2 ‖f‖L1 , for |t| < δ.

2There is no ambiguity in denoting the energy E1 as the one in (1.9) as in Section 3 we shall
indeed prove they are the same object.
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From [13] we may infer the Strichartz estimates for the semigroup U(t, s),

see also [5]. For this purpose we recall that the pair of exponents (q, r) is

called admissible is 2 ≤ q ≤ ∞, 2 ≤ r ≤ 6 and 1
q = 3

2

(

1
r − 1

2

)

. For a

more detailed introduction to Strichartz estimates we refer to [13] and the

references therein.

Proposition 2. For any (q, r), (q̃, r̃) arbitrary admissible pairs we have

‖U(t, 0)f‖Lq
tL

r
x(I×R3) ≤C(|I|)‖f‖L2

‖
∫ t

0
U(t, s)F (s) ds‖Lq

tL
r
x(I×R3) ≤C(|I|)‖F‖

Lq̃′

t Lr̃′
x (I×R3)

.

We may now use the Strichartz estimates for the semigroup U(t, s) to

prove the existence of local in time solutions by a fixed point argument.

Fixed ψ0 ∈ Σ(R3), we define the space

E ={ψ ∈ L∞([0, T ]; Σ(R3)) : ψ,∇ψ, | · |ψ ∈ Lq
tL

r
x([0, T ]×R3), ∀ (q, r)

admissible, ‖ψ‖Lq
tL

r
x
+ ‖∇ψ‖Lq

tL
r
x
+ ‖| · |ψ‖Lq

tL
r
x
≤M},

where M,T will be chosen depending on ‖ψ0‖Σ(R3). It is standard now to

prove there exists a unique solution ψ ∈ C([0, Tmax); Σ(R
3)) to

ψ(t) = U(t, 0)ψ0 − i

∫ t

0
U(t, s)

(

Vpψ + |ψ|2(γ1−1)ψ
)

(s) ds,

see for example [5], [6] and references therein. Furthermore we also have the

following blow-up alternative for (2.1),

Tmax <∞ ⇔ lim
t→Tmax

‖∇ψ(t)‖L2 = ∞.

By combining this with the energy inequality (2.2) we then infer that the

solution is global in time, indeed.

3. Polar Factorisation and an Intermediate Result

In this Section we review the polar factorisation technique introduced in

[1, 2], establishing its main properties. By using this, we will then provide

an intermediate result for our analysis of system (1.12).
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The main advantage of the polar factorization is that vacuum regions are

allowed in the theory. More precisely, we write the wave function ψ in terms

of its amplitude
√
ρ := |ψ| and its unitary factor φ, namely a function taking

its values in the unitary disk of the complex plane, such that ψ =
√
ρφ. In

the WKB setting the polar factor would be φ = eiS/~, however this equality

holds only in the case of a smooth, nowhere vanishing, wave function. The

idea of polar factorization is similar in spirit to the one used by Brenier in

[4] to decompose a vector-valued function by means of a gradient of a convex

function and a measure preserving map. Our case is much simpler than [4]

and it can be studied directly. Given any function ψ ∈ H1(R3) we define

the set

P (ψ) := {φ ∈ L∞(R3) : ‖φ‖L∞ ≤ 1, ψ =
√
ρφ a.e. in R3},

where
√
ρ := |ψ|. For any polar factor φ ∈ P (ψ), we have |φ| = 1

√
ρ dx a.e.

in R3 and φ is uniquely defined
√
ρ dx a.e. in R3.

The next Lemma uses the polar factor to define the hydrodynamic quan-

tities in terms of the underlying wave function, in the framework of finite

energy states. It shows then how this structure is stable in H1(R3) in a

sense which will be specified below. Moreover we see that any current den-

sity originated from a wave function in H1(R3) satisfies the generalized

irrotationality condition.

Lemma 1. Let ψ ∈ H1(R3),
√
ρ := |ψ| its amplitude and let φ ∈ P (ψ) be

a polar factor associated to ψ. Then
√
ρ ∈ H1(R3) and we have ∇√

ρ =

Re(φ̄∇ψ). Moreover, if we define Λ := Im(φ̄∇ψ), then Λ ∈ L2(R3) and the

following identity holds

Re(∇ψ̄ ⊗∇ψ) = ∇√
ρ⊗∇√

ρ+ Λ⊗ Λ, a.e. in R3. (3.1)

Furthermore, if {ψn} ⊂ H1(R3) is a strongly converging sequence in H1,

say ψn → ψ, then we have

∇√
ρn → ∇√

ρ, Λn → Λ, in L2(R3),

where
√
ρn := |ψn|,Λn := Im(φ̄n∇ψn), φn being a unitary factor for ψn.

Finally the current density

J := Im(ψ̄∇ψ) = √
ρΛ,
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satisfies

∇∧ J = 2∇√
ρ ∧ Λ, a.e. in R3.

Proof. For the proof, we refer to [1, 2] ���

In view of Lemma 1, we may now prove an intermediate result for our

analysis of the system (1.12).

Proposition 3. let v2 be given by Theorem 1 and which satisfies (1.14).

Let ψ0 ∈ Σ(R3) and let ψ ∈ C(R; Σ(R3)) be the solution to (2.1) with initial

datum ψ(0) = ψ0. Then (
√
ρ,Λ), defined by

√
ρ = |ψ|, Λ = Im(φ̄∇ψ), φ

being a polar factor for ψ, determine a finite energy weak solution to the

following hydrodynamic system







∂tρ+ divJ = 0

∂tJ + div(Λ⊗ Λ) +∇P1(ρ) =
1

4
∇∆ρ− div(∇√

ρ⊗∇√
ρ)− ρQv2,

(3.2)

with initial data ρ(0) = |ψ0|2, J(0) = Im(ψ̄0∇ψ0). Moreover, the energy

E1(t) =

∫

1

2
|∇√

ρ|2 + 1

2
|Λ|2 + 1

γ1
ργ1 dx

satisfies the Gronwall-type inequality

E1(t) ≤ eCtE1(0).

The last Proposition provides the rigorous correspondence between so-

lutions to the NLS equation (1.16) in the space of energy and finite energy

weak solutions to (3.2). It generalises the WKB approach, which is valid

only for regular enough solutions and only where the wave function does not

vanish.

Proof. Let ψ ∈ C(R; Σ(R3)) be the solution to (1.16) with initial datum

ψ(0) = ψ0. By defining the mass density ρ = |ψ|2 it is straightforward to

see that is satisfies the continuity equation

∂tρ+ divJ = 0,
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where the current density is given by J = Im(ψ̄∇ψ). By differentiating J

with respect to time we find, after some calculations,

∂tJ + div(Re(∇ψ̄ ⊗∇ψ)) + ρ∇(V∞ + Vp) +∇P1(ρ) =
1

4
∇∆ρ.

Now remember that Ṽ = V∞ + Vp and that ∇Ṽ = (−∆)−1∇divv2 = −Qv2.

Furthermore by the polar decomposition Lemma we have

Re(∇ψ̄ ⊗∇ψ) = ∇√
ρ⊗∇√

ρ+ Λ⊗ Λ,

where Λ = Im(φ̄∇ψ), φ being a polar factor for ψ.

The above argument is rigorously justified for regular enough ψ. If we

want to consider an arbitrary ψ ∈ C(R; Σ(R3)) it suffices to use a density

argument, the propagation of regularity for solutions to the NLS equation

(2.1) and the stability in H1 of the polar factorisation. This proves the

Proposition. ���

We conclude the Section by stating a Lemma which is a direct conse-

quence of the polar factorisation Lemma 1, but it will be useful as a building

block for our fractional step and the derivation of a priori estimates for the

approximate solutions.

Lemma 2. Let ψ ∈ H1(R3) and let τ > 0 be an arbitrary (small) parameter.

Then there exists ψ̃ ∈ H1(R3) such that

√

ρ̃ =
√
ρ

Λ̃ =(1− τ)Λ

∇ψ̃ =∇ψ − iτ φ̂Λ +Rτ ,

ψ̃ =ψ + rτ

where
√
ρ,Λ,

√
ρ̃, Λ̃ are the hydrodynamic quantities associated to ψ, ψ̃, re-

spectively, and we have

‖φ̂‖L∞ ≤1,

‖Rτ‖L2 .τ‖∇ψ‖L2 ,

‖rτ‖L2 .τ‖ψ‖L2 .
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Proof. Let ψ ∈ H1(R3) and let us consider a sequence of smooth compactly

supported functions which converge to ψ in H1(R3), {ψn} ⊂ C∞
0 (R3), ‖ψn−

ψ‖H1 → 0, as n→ ∞. Then for such smooth functions we may write

ψn(x) =
√
ρn(x)e

iθn(x),

where θn : suppψn → [0, 2π] is a piecewise smooth function. For any n ∈ N

we define

ψ̃n(x) =
√
ρn(x)e

i(1−τ)θn(x).

Then clearly we have
√

ρ̃n(x) =
√
ρn(x)

Λ̃n(x) =(1− τ)Λn(x),

and

∇ψ̃n(x) =e
−iτθn(x)∇ψn(x)− iτ ψ̃n(x)∇θn(x)

=∇ψn(x)− iτei(1−τ)θn(x)Λn(x) +
(

e−iτθn(x) − 1
)

∇ψn(x).

For the last term we have

e−iτθn(x) − 1 =

∫ t

0

d

ds
e−isθn(x) ds = −iθn(x)

∫ τ

0
e−isθn(x) ds

and by the properties of θn we have

∣

∣

∣
e−iτθn(x) − 1

∣

∣

∣
≤ 2πτ.

Now let us recall the polar factorisation Lemma, from ‖ψn − ψ‖H1 → 0 we

infer that ‖Λn −Λ‖L2 → 0. This implies that {ψ̃n} is uniformly bounded in

H1(R3), hence ψ̃n ⇀ ψ̃ in H1(R3) for some ψ̃ ∈ H1(R3). Moreover we have

∇ψ̃ = ∇ψ − iτ φ̂Λ+Rτ ,

where φ̂, Rτ are the weak limits for ei(1−τ)θn , (ei(1−τ)θn − 1), respectively,

whence ‖φ̂‖L∞ ≤ 1 and ‖Rτ‖L2 . τ‖∇ψ‖L2 . In the same way we have

ψ̃n(x) = ψn(x)− iτθn(x)

∫ τ

0
e−isθn(x) dsψn(x).
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By passing to the limit we obtain the analogue inequality for ψ̃. The Lemma

is thus proved. ���

The last Proposition 3 is an intermediate step for our problem (1.12),

since it shows the existence of finite energy solutions for the hydrodynamic

system (1.12) without the collision term −J in the current density. As

we already pointed out we are not able to treat this term at the level of

wave function dynamics. Thus to overcome this difficulty we need to use a

fractional step argument which allows us to define a sequence of approximate

solutions. Then by the compactness properties of approximate solutions we

will show that they converge to a finite energy weak solution to (1.12). In

the next section we will set up the fractional step argument and derive some

properties for the approximate solutions.

4. The Fractional Step

After having recalled the polar factorisation technique and the corre-

spondence between finite energy solutions to (2.1) and finite energy weak

solutions to (3.2), we now turn our attention to the QHD system (1.12). In

this Section we are going to set up the fractional step argument we need in

order to define a sequence of approximate solutions. We will split the evolu-

tion into two parts: the first one which will be solved by means of the NLS

equation (2.1) and the second one which will take into account the collision

term −J in the superfluid current density. To implement this idea we pro-

ceed as follows: having fixed a small time step τ > 0, we divide the positive

time semi-axis into subintervals [kτ, (k + 1)τ), k = 0, 1, . . . . Then on each

subinterval we solve the QHD system (3.2) and at the end of those subin-

tervals we update the quantities in order to take into account the collision

term.

More precisely, let ψ0 ∈ Σ(R3), we then consider the solution ψ to

(2.1) with initial datum ψ(0) = ψ0 in the spacetime slab [0, τ) × R3. By

Proposition 3 we know that (
√
ρ,Λ) = (|ψ|, Im(φ̄∇ψ)) determine a weak

solution to (3.2) in [0, τ) × R3. Now we need to update the quantities in

order to take into account the collisions, i.e. we want

{

ρ(τ+) =ρ(τ−)

J(τ+) =(1− τ)J(τ−).
(4.1)
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On the other hand, when we start again in [τ, 2τ)×R3 we would then need

an initial datum for (2.1), thus we need to translate (4.1) at a wave function

level. For this purpose we are going to use Lemma 2.

Thus, assume we already constructed our approximate solution in the

space-times slab [(k − 1)τ, kτ) × R3. We then apply Lemma 2 with ψ =

ψ(kτ−) and we shall define ψ(kτ+) = ψ̃. In this way by the statement of

the Lemma, we have that the hydrodynamic quantities satisfy (4.1), and

we can start again with (2.1) on the spacetime slab [kτ, (k + 1)τ) ×R3 by

considering ψ(kτ+) as initial datum.

In this way, for any fixed τ > 0 small enough we define ψτ on the

whole [0,∞) × R3. We may now define our aproximate solutions through

the hydrodynamic quantities
√
ρτ = |ψτ |,Λτ = Im(φ̄τ∇ψτ ).

First of all, we show that (
√
ρτ ,Λτ ) is indeed a sequence of approximate

solutions for (1.12).

Lemma 3. Let (
√
ρτ ,Λτ ) be given by the construction above, then for any

η, ζ ∈ C∞
0 ([0,∞) ×R3) we have

∫

R3

ρ1,0(x)η(0, x) dx+

∫ ∞

0

∫

R3

ρτ∂tη + Jτ · ∇η dxdt = 0

∫

R3

J1,0(x) · ζ(0, x) dx+
∫ ∞

0

∫

R3

Jτ · ∂tζ + (Λτ ⊗ Λτ +∇
√
ρτ ⊗∇

√
ρτ ) : ∇ζ

+ P1(ρ
τ )divζ − 1

4
ρτ∆divζ

− (Jτ − ρτQv2) · ζ dxdt = o(1), as τ → 0,

(4.2)

where ρ1,0 = |ψ0|2, J1,0 = Im(ψ̄0∇ψ0)

The proof is straightforward and a simple consequence of the construc-

tion above and it will be left to the reader. As a consequence from this

Lemma we obtain a consistence property for the approximate solutions.

Lemma 4. Let (
√
ρτ ,Λτ ) be the sequence of approximate solutions con-

structed above. If we have

√
ρτ →√

ρ, in L2([0, T ];H1
loc(R

3))

Λτ →Λ, in L2([0, T ];L2
loc(R

3)),
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for some
√
ρ ∈ L2([0, T ];H1

loc(R
3)), Λ ∈ L2([0, T ];L2

loc(R
3)), then (

√
ρ,Λ)

is a finite energy weak solution to (1.12).

It thus remains to prove that the sequence of approximate solutions in-

deed converge strongly in the spaces specified in the Lemma above, that is we

need to derive some compactness properties for the approximate solutions.

5. Compactness for the Sequence of Approximate Solutions

In this Section we are going to derive some a priori estimates for the

sequence of approximate solutions we constructed in the previous Section.

More precisely we are going to show some compactness estimates for the

sequence {ψτ}τ>0, which will then yield the boundedness for (
√
ρτ ,Λτ ) in

the right spaces. The first estimates we are going to prove is a uniform

estimate for {ψτ} in the space of energy.

Formally for a solution to (1.12) we would have

E1(t)−
∫ t

0

∫

|Λ|2 dxdt′ +
∫ t

0

∫

J ·Qv2 dxdt′ = E1(0).

Now recall that by Theorem 1 we have v2 ∈ L2
t Ḣ

1
x([0, T ] × R3) for any

0 < T < ∞. Then by using Hölder’s inequality and Sobolev embedding we

have

∫ t

0

∫

J ·Qv2 dxdt′ ≤C‖√ρ‖L∞

t L3
x
‖Λ‖L2

t,x
‖v2‖L2

t Ḣ
1
x

≤C(ε)‖√ρ‖L∞

t L2
x
‖∇√

ρ‖L∞

t L2
x
‖v2‖2L2

t Ḣ
1
x
+ ε‖Λ‖2L2

t,x

≤C(ε)‖ρ1,0‖L1‖v2‖4L2
t Ḣ

1
x
+ ε‖∇√

ρ‖2L∞

t L2 + ε‖Λ‖2L2
t,x
.

By resuming we have

E1(t)−(1−ε)
∫ t

0

∫

|Λ|2dxdt′ ≤ E1(0)+ε‖∇
√
ρ‖2L∞

t L2+C(ε)‖ρ1,0‖L1‖v2‖4L2
t Ḣ

1
x
.

Now, let us take the supremum in time on the left hand side. For ε > 0

small enough we then get

sup
t

(

E1(t)− c

∫ t

0

∫

|Λ|2 dxdt′
)

. E1(0) + ‖ρ1,0‖L1‖v2‖4L2
t Ḣ

1
x([0,t]×R3)

,
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which in particular implies the following inequality

E1(t)− c

∫ t

0

∫

|Λ|2 dxdt′ . E1(0) + ‖ρ1,0‖L1‖v2‖4L2
t Ḣ

1
x([0,T ]×R3)

, (5.1)

for t ∈ [0, T ]. Our aim is to give a discrete version of (5.1) which holds for

approximate solutions

Lemma 5. Let τ > 0 be sufficiently small. Then

Eτ
1 (t) + cτ

[t/τ ]
∑

k=1

∫

|Λτ (kτ−)|2 dx . E1(0) + ‖ρ1,0‖L1‖v2‖4L2
t Ḣ

1
x

(5.2)

Proof. First of all we see that because of the updating procedure in the

previous Section, we have

Eτ
1 (kτ+)− Eτ

1 (kτ−) = −
(

τ − τ2

2

)
∫

|Λτ (kτ−)|2 dx.

Hence we have

Eτ
1 (t) = −

(

τ − τ2

2

) [t/τ ]
∑

k=1

∫

|Λτ (kτ−)|2 dx+

∫ t

0

∫

Jτ ·Qv2 dxdt′ + E1(0).

Now we argue as before to estimate

∫ t

0

∫

Jτ ·Qv2 dxdt′ ≤ C(ε)‖ρ1,0‖L1‖v2‖4L2
t Ḣ

1
x
+ ε‖∇

√
ρτ‖2L∞

t L2
x
+ ε‖Λτ‖2L2

tL
2
x
.

For τ > 0 sufficiently small and by the continuity of ‖Λτ (t)‖L2 on each of

the subintervals [kτ, (k + 1)τ) we have

‖Λτ‖L2
t,x

= τ

N
∑

k=1

∫

|Λτ |2 dx+

∫ t

Nτ

∫

|Λτ |2 dxdt′ + o(1),

as τ → 0, where N = [t/τ ]. By resuming we have

Eτ
1 (t) + τ

(

1− τ

2
− ε

)

[t/τ ]
∑

k=1

∫

|Λτ (kτ−)|2 dx

≤ C(ε)‖ρ1,0‖L1‖v2‖4L2
t Ḣ

1
x
+ ε

(

‖∇
√
ρτ‖L∞

t L2
x
+ ‖Λτ‖L∞

t L2
x

)

+ E1(0).
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Now we use the same trick as before to incorporate ‖∇√
ρτ‖2L∞

t L2+‖Λτ‖2L∞

t L2

in the left hand side and get

sup
t

(

Eτ
1 (t) + cτ

[t/τ ]
∑

k=1

∫

|Λτ (kτ−)|2 dx
)

. E1(0) + ‖ρ1,0‖L1‖v2‖4L2
t Ḣ

1
x
,

which proves the desired bound. ���

The Lemma above implies the sequence of approximate solutions {ψτ}τ>0

is uniformly bounded in L∞
t H

1
x([0, T ] × R3) for any 0 < T < ∞. We can

thus infer there exists a weak−⋆ limit for the sequence in L∞
t H

1
x,

ψτ ⇀ ψ, ⋆− L∞
t H

1
x([0, T ] ×R3).

Unfortunately the energy estimate is not sufficient to pass to the limit the

quadratic terms in (4.2). We thus need to derive further compactness prop-

erties for {ψτ}. For this purpose we are going to fully exploit the dispersive

properties inherited by the nonlinear Schrödinger equation we used in the

fractional step. Recall the semigroup U(t, s) defined by (2.3). We are going

to write a formula for ψτ in terms of this linear evolution operator.

Lemma 6. We have

ψτ (t) = U(t, 0)ψ0 − i

∫ t

0
U(t, s)

(

Vpψ
τ + |ψτ |2(γ1−1)ψτ

)

(s) ds

+

[t/τ ]
∑

k=1

U(t, kτ)rτk (5.3)

and

∇ψτ (t) = U(t, 0)∇ψ0 − i

∫ t

0
U(t, s)∇

(

Vpψ
τ + |ψτ |2(γ1−1)ψτ

)

(s) ds

−i
∫ t

0
U(t, s) (∇V∞ψτ ) (s) ds

+

[t/τ ]
∑

k=1

U(t, kτ)
[

−iτ φ̂τkΛτ (kτ−) +Rτ
k

]

. (5.4)

Proof. We will prove (5.4), formula (5.3) can be proved in a similar way.

Let t ∈ [Nτ(N +1)τ), then since ψτ is a solution to (2.1) on [Nτ, (N +1)τ),
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we have

∇ψτ (t) = U(t,Nτ)∇ψτ (Nτ+)−i
∫ t

Nτ
U(t, s)∇

(

Vpψ
τ+|ψτ |2(γ1−1)ψτ

)

(s)ds

−i
∫ t

Nτ
U(t, s) (∇V∞ψτ ) (s)ds.

The last term in the formula is due to the commutator between the Schrödinger

operator −1
2∆+ V∞ and the gradient. By Lemma 2 we have

∇ψτ (kτ+) = ∇ψτ (kτ−)− iτ φ̂τkΛ
τ (kτ−) +Rτ

k

for any k. By plugging it into the formula for ∇ψτ and by interating the

argument we then find (5.4). ���

Now we may use Strichartz estimates on (5.3) and (5.4) to obtain a

priori bounds for {ψτ} in the Strichartz spaces.

Proposition 4. For any 0 < T < ∞ and for any admissible pair (q, r) we

have

‖∇ψτ‖
Lq
tW

1,r
x ([0,T ]×R3)

≤ C(‖ψ0‖Σ, T, ‖v2‖L2
t Ḣ

1
x
), (5.5)

uniformly in τ > 0.

The proof of the above Proposition is similar to the proof of existence

of local solutions for NLS equations. Let us define the Strichartz norm

‖f‖S1([0,T ]) = sup
(q,r)

‖f‖Lq
tW

1,r
x ([0,T ]×R3),

where the sup is taken over all admissible pairs (q, r). Let us first consider

a small time interval [0, T1], by using formulas (5.3), (5.4) and Strichartz

estimates we obtain

‖ψτ‖S1([0,T1]) . ‖ψ0‖Σ+Tα
(

‖Vp‖L∞

t W 1,6
x

‖ψτ‖S1 + ‖ψτ‖2γ1−1
S1

+‖∇V∞‖L∞

t L6
x
‖ψτ‖S1 + ‖ψτ‖S1

)

,

for some positive α > 0. If T1 is sufficiently small depending on ‖ψ0‖Σ,
‖Vp‖L∞

t W 1,6
x

, ‖∇V∞‖L∞

t L6
x
, then we have

‖ψτ‖S1([0,T1]) . ‖ψ0‖Σ.
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Now we may divide any bounded time interval [0, T ] into many small subin-

tervals over we can argue as before. The details are left to the reader and

we refer to [1] for a similar calculation.

Now we can use the above Strichartz estimates to obtain further reg-

ularity properties for the sequence of approximate solutions. Indeed, it is

a common feature of dispersive equations that solutions are more regular

than their initial data, see for example [12], [7]. Here we will use a result by

Yajima [26] which shows that U(t, s) has the same local smoothing property

which holds for the free Schrödinger propagator, at the price of having a

constant depending on the length of the considered time interval. The re-

sults in [26] hold for a more general class of Hamiltonian, anyway here we

will state the result only for the case of our interest.

Theorem 4. For any 0 < T <∞

‖U(t, 0)f‖
L2([0,T ];H

1/2
loc (R3))

+ ‖
∫ t

0
U(t, s)F (s) ds‖

L2([0,T ];H
1/2
loc (R3))

≤ C(T )
(

‖f‖L2 + ‖F‖L1
tL

2

)

.

Now we can use the above Theorem, combined with the Strichartz

bounds (5.5) and formulas (5.3), (5.4) to infer that

‖ψτ‖
L2([0,T ];H

3
2
loc(R

3))
≤ C(T, ‖ψ0‖Σ, ‖v2‖L2

t Ḣ
1
x
),

for any 0 < T < ∞. This inequality is proved in the same way as the

Strichartz bounds (5.5), i.e. by using a bootstrap argument. Finally we have

the sufficient compactness for the approximate solutions to yield the conver-

gence to a finite energy weak solution to (1.12). More precisely, we may

prove by an Aubin-Lions type lemma that, up to passing to subsequences,

{ψτ} converges strongly. We will use the following result by Rakotoson and

Temam [24].

Theorem 5. Let (V, ‖ · ‖V ), (H; ‖ · ‖H) be two separable Hilbert spaces.

Assume that V ⊂ H with a compact and dense embedding. Consider a

sequence {uε}, converging weakly to a function u in L2([0, T ];V ), T < ∞.

Then uε converges strongly to u in L2([0, T ];H), if and only if

1. uε(t) converges to u(t) weakly in H for a.e. t;
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2. lim|E|→0,E⊂[0,T ] supε>0

∫

E ‖uε(t)‖2H dt = 0.

We can apply now this Theorem to our sequence by choosing V =

H
3/2
loc (R

3), H = H1
loc(R

3). Indeed by (5.2) we know that ψτ (t) converges

weakly to ψ(t) for almost every t ∈ [0, T ], so that the first condition is

satisfied. On the other hand, the second one is a consequence of the bound

‖ψτ‖
L2([0,T ];H

3/2
loc (R3)

.

Resuming, we may prove that, up to passing to subsequences

ψτ → ψ, in L2([0, T ];H1
loc(R

3)),

for any 0 < T <∞. This in particular implies that

√
ρτ → √

ρ in L2([0, T ];H1
loc(R

3))

Λτ → Λ in L2([0, T ];L2
loc(R

3)).

By Lemma 4 we then infer that (
√
ρ,Λ) is a finite energy weak solution to

the QHD system (1.12) and thus Theorem 3 is proved.
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