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Abstract

We consider the Cauchy problem for the system of weakly coupled semilinear wave

equations with space or time dependent damping. Our aim is to determine the critical

exponents, when the coupled similinear terms are polynomial orders and the damping is

effective. In fact, the critical exponents are completely determined in the cases of only

space dependent damping and only time dependent damping. But, in the case of both

space and time dependent damping it remains open, in which the blow-up result is not

obtained even for the scalar damped wave equation.

1. Introduction

In this paper we consider the Cauchy problem for 2× 2 weakly coupled

system of wave equations with time or space dependent damping











utt −∆u+ b(t, x)ut = |v|p,

vtt −∆v + b(t, x)vt = |u|q, (t, x) ∈ R+ ×RN ,

(u, ut, v, vt)(0, x) = ε(u0, u1, v0, v1)(x), x ∈ RN ,

(1.1)
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where p, q > 1, ε > 0 and

b = b(t, x) =











b1(x) := 〈x〉−α (0 ≤ α < 1)

b2(t) := (t+ 1)−β (−1 < β < 1)

b3(t, x) := 〈x〉−α(t+ 1)−β (α, β ≥ 0, α+ β < 1).

(1.2)

with 〈x〉 = (1+ |x|2)1/2. Our main interest is to obtain the critical exponents

for (1.1). When b(t, x) is a positive constant (set b(t, x) = 1 without loss of

generality), (1.1) is reduced to











utt −∆u+ ut = |v|p,

vtt −∆v + vt = |u|q, (t, x) ∈ R+ ×RN ,

(u, ut, v, vt)(0, x) = ε(u0, u1, v0, v1)(x), x ∈ RN ,

(1.3)

and the critical exponents are given by

Λ =
N

2
, Λ := max(Λ1,Λ2) := max

(

p+ 1

pq − 1
,
q + 1

pq − 1

)

, (1.4)

in the sense that, if Λ < N
2 (supercritical exponents), then (1.3) has a unique

global-in-time solution for sufficiently small data, while, if Λ ≥ N
2 (critical

and subcritical exponents), then the solution to (1.3) blows up in a finite

time for suitable data.

For the scalar damped wave equations

{

utt −∆u+ b(t, x)ut = |u|ρ, (t, x) ∈ R+ ×RN ,

(u, ut)(0, x) = ε(u0, u1), x ∈ RN ,
(1.5)

with 1 < ρ < N+2
[N−2]+

= ∞ (N = 1, 2) and = N+2
N−2 (N ≥ 3), there are many

literatures to this topics. Refer [3, 4, 5, 6, 10, 11, 12, 15, 16, 19, 20, 31, 36]

for b = 1, [7, 8, 21] for b = b1(x), [14, 22, 24, 32, 34, 35] for b = b2(t), [13, 33]

for b = b3(t, x), and references therein.

Let us consider (1.5) from the viewpoint of the diffusion phenomena of

solutions of the damped wave equation. The solution of damped wave equa-

tion has been recognized to behave like that of the corresponding diffusive

equation. In [20] it is shown that the solution V (t, x) to

Vtt −∆V + Vt = 0, (t, x) ∈ R+ ×RN (N = 3) (1.6)
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with the data (V, Vt)(0, x) = (0, g)(x), x ∈ R3, has the form

V (t, x) = e−
t
2 ·

t

4π

∫

|ω|=1
g(x+ tω)dω+

∫

|z|≤t

e−
t
2

8πt

I1(
1
2

√

t2 − |z|2)
√

t2−|z|2
g(x+z)dz

=: e−
t
2 · [W3(t)g](x) + [J30(t)g](x), (1.7)

where Iν(y) is the modified Bessel function of order ν and W3(t)g is the

Kirchhoff formula of the solution to the 3-dimensional wave equation. More-

over, J30(t)g satisfies the following estimates

‖J30(t)g‖Lp ≤ C(t+ 1)−
3
2
( 1
q
− 1

p
)‖g‖Lq (t ≥ 0),

‖(J30(t)− et∆)g‖Lp ≤ Ct
− 3

2
( 1
q
− 1

p
)−1‖g‖Lq (t > 0)

for 1 ≤ q ≤ p ≤ ∞ (see [15] for N = 1, [5] for N = 2, and [28] in case of

general dimension). In the results, the solution of (1.6) behaves like that of

the corresponding diffusive equation, whose property is called the diffusion

phenomena. Note that V (t, x) still has the wave property from the first term

in the right hand side of (1.7) though this decays exponentially. Thus we

can expect that the critical exponent ρc(N) for (1.5) is the same as that for

the corresponding diffusive equation

−∆φ+ b(t, x)φt = |φ|ρ, (t, x) ∈ R+ ×RN (1.8)

if the damping term is effective. Note that, if it is not effective, then the

solution has the wave property. (See Mochizuki [18], Wirth [34, 35].) When

b(t, x) = 1, the damping term +b(t, x)ut is effective and the critical exponent

ρc(N) for (1.5) is the same as the critical exponent

ρF (N) = 1 +
2

N
(1.9)

for (1.8), which is called the Fujita exponent, named after his pioneering

work [2]. The critical exponent for (1.5) is known in the references listed

above as follows:

(i) b = b1(x) = 〈x〉−α (0 ≤ α < 1) ⇒ ρc(N,α) = 1 + 2
N−α ,

(ii) b = b2(t) = (t+ 1)−β (−1 < β < 1) ⇒ ρc(N,β) = 1 + 2
N (= ρF (N)).
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When b = b3(t, x), the critical exponent ρc(N,α, β) is not known. Though

there exists a unique global-in-time solution for small data if ρ > 1 + 2
N−α ,

the blow-up result is not yet known. Our conjecture is

(iii) b = b3(t, x) = 〈x〉−α(t+ 1)−β (α, β ≥ 0, α+ β < 1)

⇒ ρc(N,α, β) = 1 + 2
N−α .

We shall apply these considerations on the scalar damped wave equations

to the system (1.1). In fact, the system of diffusive equations

{

−∆φ+ φt = |ψ|p,

−∆ψ + ψt = |φ|q, (t, x) ∈ R+ ×RN ,
(1.10)

corresponding to (1.3), was considered in [1] and (1.4) was shown to be

critical. After [1], the critical exponents for (1.3) have been investigated to

be the same as for (1.4). Refer Sun and Wang [29], Narazaki [19], Nishihara

[23], Nishihara and Wakasugi [25], Takeda [30], Ogawa and Takeda [26, 27]

etc.

Our aim in this paper is to show that the critical exponents are given

by

(I) b = b1(x) = 〈x〉−α (0 ≤ α < 1) ⇒ Λ = N−α
2 ,

(II) b = b2(t) = (t+ 1)−β (−1 < β < 1) ⇒ Λ = N
2 ,

where Λ is given in (1.4). Note that in Case (II) the critical exponents are

independent of β. In Case (III) of b = b3(t, x) the critical exponents are not

obtained as same as the scalar case. But, we conjecture that Λ = N−α
2 gives

the critical exponents. In fact, we show that there exists a unique global-in-

time solution for suitably small data when Λ < N−α
2 , which also covers the

small data global existence of solutions in the supercritical exponent cases

in both Cases (I) and (II). While the blow-up result is not known in Case

(III).

We now define the solution to (1.1) and state our results. Some notations

can be referred at the end of this section.
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The function (u, v) ∈ [C([0, T ); H1) ∩ C1([0, T ); L2)]2 for T > 0 is said

to be a weak solution to (1.1) on [0, T ) if, for any ψ ∈ C∞
0 ([0, T )×RN ),

∫

[0,T )×RN

{u(ψtt −∆ψ − (bψ)t)(t, x) − |v|pψ(t, x)} dx dt

= ε

∫

RN

{(b(0, x)u0(x) + u1(x))ψ(0, x) − u0(x)ψt(0, x)} dx,
∫

[0,T )×RN

{v(ψtt −∆ψ − (bψ)t)(t, x) − |u|qψ(t, x)} dx dt

= ε

∫

RN

{(b(0, x)v0(x) + v1(x))ψ(0, x) − v0(x)ψt(0, x)} dx.

The local existence of the solution is obtained in a standard way (cf. [13, 33]).

Proposition 1.1. Assume b = b3(t, x) = 〈x〉−α(t + 1)−β (α, β ≥ 0, α +

β < 1), 1 < p, q ≤ N
[N−2]+

and (u0, u1, v0, v1) ∈ [H1 × L2]2 with compact

supports. Then there exists a unique weak solution (u, v) ∈ [C([0, T ; H1) ∩

C1([0, T ); L2)]2 to (1.1) for some T > 0.

Our main results are following two theorems.

Theorem 1.1 (Global-in-time solution). Under the assumptions in Propo-

sition 1.1, if ε > 0 is suitably small, then there exists a unique weak solution

(u, v) ∈ [C([0,∞); H1) ∩ C1([0,∞); L2)]2 to (1.1) when Λ < N−α
2 .

Theorem 1.2 (Blow-up of solutions). Under the assumptions in Proposition

1.1, let (u, v) ∈ [C([0, T ); H1) ∩C1([0, T ); L2)]2 (0 < T <∞) be the solution

to (1.1). Then the following two assertions hold.

(I) (Damping of space dependent coefficient) When b = b1(x) = 〈x〉−α

(0 ≤ α < 1) and Λ ≥ N−α
2 , if the data satisfy

∫

RN

(〈x〉−αu0(x) + u1(x)) dx > 0,

∫

RN

(〈x〉−αv0(x) + v1(x)) dx > 0,

then the solution (u, v) does not exist time-globally.

(II) (Damping of time dependent coefficient) When b = b2(t) = (t + 1)−β

(−1 < β < 1) and Λ ≥ N
2 , if the data satisfy

∫

RN

(u0(x) + g(0)u1(x)) dx > 0,

∫

RN

(v0(x) + g(0)v1(x)) dx > 0
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with g(0) =
∫∞
0 exp (−

∫ τ
0 b2(s) ds) dτ , then the solution (u, v) does not exist

time-globally.

Remark 1.1. Here we derive how to get

(

Λ1

Λ2

)

in (1.4), which will play

an important role in the proof of Theorem 1.1. Let P =

(

0 p

q 0

)

, where p, q

are the exponents of semilinear terms. Then P − I =

(

−1 p

q −1

)

is regular

and

(P − I)−1

(

1

1

)

=
1

1− pq

(

−1 −p

−q −1

)(

1

1

)

=

(

Λ1

Λ2

)

. (1.11)

Remark 1.2. In Theorem 1.2, if there exists a solution (u, v)∈ [C([0, T );H1)

∩C1([0, T );L2)]2 without the restriction on p, q, then the assertion (II) is still

true for any p, q > 1. However, when α > 0, for the assertion (I), we need

the condition

p, q ≤
N + 2− α

[N − 2]+
(1.12)

in addition to Λ ≥ N−α
2 . In other words, when N = 1, 2, this additional

restriction (1.12) is not necessary since any p, q(1 < p, q <∞) are admitted.

When N ≥ 3, for q ≥ p without loss of generality, Λ ≥ N−α
2 is equivalent to

q(p−
2

N − α
) ≤ 1 +

2

N − α
.

So, for (p, q) ∈ {(p, q)| 1 < p < 1+ α
N−α , q >

N+2−α
N−2 , q(p− 2

N−α) ≤ 1+ 2
N−α },

we don’t know whether the blow-up result holds or not. See Figure.
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p

q

q(p− 2
N−α) = 1 + 2

N−α

12
N−α 1 + 2

N−α

1 + 2
N−α

N+2−α
N−2

N+2−α
N−2−α

N
N−2

0

q = p

1 + α
N−α

Our plan of this paper is as follows. In Section 2 we prove Theorem

1.1. Theorem 1.2 will be shown in Section 3. In the final section we discuss

further problems.

We finish up this section by introducing some notations. By Lp =

Lp(RN ), H1 = H1(RN ), denote the usual Lebesgue space and Sobolev

space, respectively, equipped with the norms ‖f‖Lp = (
∫

RN |f(x)|pdx)1/p

(1≤p <∞), ‖f‖L∞ =ess. supx∈RN |f(x)|, and ‖f‖H1 =(
∑

|α|≤1 ‖D
αf‖2L2)

1/2.

For an interval I and Banach space X, define Cm(I; X) as the space of

m-times continuously differentiable map from I to X. Also, by C or Ci
(i = 1, 2, . . .) we indicate the positive constant which may change from

line to line. We write Ci(a, b, c, . . .) when we emphasize the dependence

on a, b, c, . . ..
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2. Existence of Global-in-time Solution in the Supercritcal

Exponents

Since Proposition 1.1 is shown in a standard way, in order to prove

Theorem 1.1, it suffices to derive the a priori estimates.

We first derive the linear estimate on a week solution u ∈ C([0, T ); H1)∩

C1([0, T ); L2) to the single damped wave equation (first equation of (1.1))

{

utt −∆u+ b(t, x)ut = f := |v|p, (t, x) ∈ R+ ×RN

(u, ut)(0, x) = ε(u0, u1)(x), x ∈ RN ,
(2.1)

where b(t, x) = b3(t, x) = 〈x〉−α(t+1)−β (α, β ≥ 0, α+β < 1). The derivation

of the following lemma is almost same as in Lin, Nishihara and Zhai [13] and

Wakasugi [33].

Lemma 2.1. Define ψ(t, x) = a1
〈x〉2−α

(1+t)1+β with a1 =
(1+β)

(2−α)2(2+δ)
(δ > 0), then

it holds that for a suitably small constant ε̄ > 0

(t+ 1)l1−ε̄Ē(t) +

∫ t

0
(τ + 1)l1−ε̄

{

E(τ) +
B − l1

τ + 1

∫

RN

b(τ, x)e2ψu2 dx

}

dτ

≤ Cε2I1 + C

∫ t

0

∫

RN

(τ + 1)l1−ε̄fe2ψ(|u|+ (τ + 1)α+β |ut|) dx dτ (2.2)

and

(t+ 1)l1+1−ε̄E(t) +

∫ t

0
(τ + 1)l1+1−ε̄

∫

RN

b(τ, x)e2ψu2tdx dτ

≤ Cε2I1 + C

∫ t

0

∫

RN

(τ + 1)l1−ε̄fe2ψ(|u|+ (τ + 1)|ut|) dx dτ (2.3)

for

l1 ≤ B :=
(1 + β)(N − α)

2− α
+ β, (2.4)

where

E(t) =

∫

RN

e2ψ(u2t + |∇u|2)(t, x) dx, (2.5)

Ē(t) = E(t) +

∫

RN

e2ψb(t, x)u2(t, x) dx, (2.6)

I1 = I(u0, u1) :=

∫

RN

e2ψ(0,x)(u21 + |∇u0|
2 + 〈x〉−αu20) dx. (2.7)

Remark 2.3. The estimates (2.2) and (2.3) with l1 = B are derived in

Section 2 in [33] together with the calculations of the right hand side. Here
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we have only estimated the left hand side and given the linear estimates.

Proof. We only sketch the proof following [33]. The details are referred in

[33]. Multiplying (2.1) by e2ψut and e
2ψu, we have

fe2ψut =
∂

∂t

[

1

2
e2ψ(u2t + |∇u|2)

]

−∇ · (e2ψut∇u)

+e2ψ(b(t, x) −
|∇ψ|2

−ψt
− ψt)u

2
t +

e2ψ

−ψt
|ψt∇u− ut∇ψ|

2

≥
∂

∂t

[

1

2
e2ψ(u2t + |∇u|2)

]

−∇ · (e2ψut∇u)

+e2ψ
{

(
1

4
b(t, x)− ψt)u

2
t +

1

5
(−ψt)|∇u|

2

}

(2.8)

and

fe2ψu =
∂

∂t

[

e2ψ(uut +
1

2
b(t, x)u2)

]

−∇ · (e2ψu∇u)

+e2ψ
{

|∇u|2+(−ψt+
β

2(t+1)
)b(t, x)u2+2u∇ψ · ∇u−2ψtuut−u

2
t

}

≥
∂

∂t

[

e2ψ(uut +
1

2
b(t, x)u2)

]

−∇ · {e2ψ(u∇u+ u2∇ψ)}

+δ3e
2ψ|∇u|2+e2ψ

(

δ3|∇ψ|
2+

δ

3
(−ψt)b(t, x)+(B−2δ1)

b(t, x)

2(t+1)

)

u2

+e2ψ(−2ψtuut − u2t ), (2.9)

where, by δi(i = 1, 2, . . .), we denote positive constants depending on δ

satisfying δi → 0 as δ → 0. Here we have used

−ψt = a1(1 + β)
〈x〉2−α

(t+ 1)2+β
, ∇ψ = a1

(2− α)〈x〉−αx

(t+ 1)1+β
,

(−ψt)b(t, x) = a1(1 + β)
〈x〉2−2α

(t+ 1)2+2β
≥

(1 + β)

(2− α)2a1
|∇ψ|2 = (2 + δ)|∇ψ|2,

∆ψ = a1(2− α)(N − α)
〈x〉−α

(t+ 1)1+β
+ a1(2− α)α

〈x〉−2−α

(t + 1)1+β

≥
1

2
(B − 2δ1)

b(t, x)

t+ 1
.

DividingRN into Ω(t; K, t0) := {x; (t+t0)
2 ≥ K+|x|2} and Ωc(t; K, t0)

= RN \Ω(t; K, t0) for suitable constants K, t0 > 0 and adding (2.8) to (2.9),
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we have

d

dt
[Ēψ(t; Ω) + Ēψ(t; Ω

c)] +Hψ(t; Ω) +Hψ(t; Ω
c)

≤ C

∫

RN

fe2ψ((t+ t0)
α+β + 〈x〉α+βK )|ut|+ |u|) dx, (2.10)

where

Ēψ(t; Ω) =

∫

Ω
e2ψ
((t+ t0)

α+β

2
u2t + νuut +

νb(t, x)

2
u2

+
(t+ t0)

α+β

2
|∇u|2

)

dx,

Ēψ(t; Ω
c) =

∫

Ωc

e2ψ

(

〈x〉α+βK

2
u2t + ν̂uut +

ν̂b(t, x)

2
u2 +

〈x〉α+βK

2
|∇u|2

)

dx,

Hψ(t; Ω) = c0

∫

Ω
e2ψ(1 + (t+ t0)

α+β(−ψt))(u
2
t + |∇u|2)dx

+ν(B − 2δ1)

∫

Ω

e2ψb(t, x)

2(t+ 1)
u2dx,

Hψ(t; Ω
c) = c0

∫

Ωc

e2ψ(1 + 〈x〉α+βK (−ψt))(u
2
t + |∇u|2)dx

+ν̂(B − 2δ1)

∫

Ωc

e2ψb(t, x)

2(t+ 1)
u2dx

with 〈x〉K =
√

K + |x|2, 0 < ν, ν̂ ≪ 1 and c0 > 0. Noting Ēψ(t; Ω) +

Ēψ(t; Ω
c) ≥ C−1Ē(t), and multiplying (2.10) by (t + t0)

l1−ε̄(ε̄ > 2δ1) we

have

(t+ t0)
l1−ε̄Ē(t) +

c2

2

∫ t

0
(τ + t0)

l1−ε̄E(τ) dτ

+µ(B − 2δ1 − l1 + ε̄)

∫ t

0
(τ + t0)

l1−1−ε̄

∫

RN

e2ψb(τ, x)u2dx dτ

≤ C(t0)ε
2I1+C

∫ t

0
(τ+t0)

l1−ε̄

∫

RN

fe2ψ((t+t0)
α+β|ut|+|u|)dxdτ, (2.11)

where µ = min{ν, ν̂}. Hence we obtain (2.2) by taking the constant C =

C(t0,K, ν, ν̂). To obtain (2.3), multiply (2.8) integrated over RN by (t +

t0)
l1+1−ε̄, we have

(t+ t0)
l1+1−ε̄E(t) +

∫ t

0
(τ + t0)

l1+1−ε̄

∫

RN

e2ψb(τ, x)u2t dx dt
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≤ Cε2I1 + C

∫ t

0
(τ + t0)

l1−ε̄

∫

RN

fe2ψ((τ + t0)|ut|+ |u|) dx dτ, (2.12)

since
∫ t
0 (τ + t0)

l1−ε̄E(τ) dτ is already estimated in (2.11). Hence (2.3)

is obtained by taking C = C(t0,K, ν, ν̂) as above and the proof is com-

pleted. ���

To treat the right hand side, we prepare the following lemma.

Lemma 2.2.

e2ψ|v|put ≤
1

2
b(t, x)e2ψu2t + C(λ)(t+ 1)β+α(1+β)/(2−α)e(2+λ)ψ |v|2p,

where λ > 0 is arbitrarily small.

Proof. By the Schwarz inequality,

e2ψ|v|put ≤
1

2
b(t, x)e2ψu2t +

1

2
b(t, x)−1e2ψ|v|2p.

Noting that for s ≥ 0, r ≥ 0, λ > 0 it is true that

sr ≤ C(λ)eλs,

and

〈x〉αe2ψ = (1 + t)α(1+β)/(2−α)
(

〈x〉2−α

(1 + t)1+β

)α/(2−α)

e2ψ

≤ C(λ)(1 + t)α(1+β)/(2−α)e(2+λ)ψ .

Hence
1

2
b(t, x)−1e2ψ|v|2p ≤ C(λ)(1 + t)β+α(1+β)/(2−α)e(2+λ)ψ |v|2p.

Therefore we obtain the desired estimate. ���

We now add (2.2) to (2.3), then the term
∫

RN b(t, x)e
2ψu2t dx is absorbed

into the second term in (2.3) by Lemma 2.2. Hence by α+ β < 1 we have

(t+ 1)l1+1−ε̄E(t) +
1

2

∫ t

0
(τ + 1)l1+1−ε̄

∫

RN

e2ψb(τ, x)u2t dx dt

≤ CI1 + C

∫ t

0
(τ + 1)l1+1−ε̄+β+α(1+β)/(2−α)

∫

RN

|f |2e2ψdx dτ

+C

∫ t

0
(τ + 1)l1−ε̄

∫

RN

e2ψ|f ||u| dx dτ. (2.13)
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We are now back to (1.1). Define the weighted energy of solutions by

W1(t) = (1+t)l1+1−ε̄
∫

RN

e2ψ(u2t+|∇u|2)dx+(1+t)l1−ε̄
∫

RN

e2ψb(t, x)u2dx (2.14)

W2(t) = (1+t)l2+1−ε̄
∫

RN

e2ψ(v2t +|∇v|2)dx+(1+t)l2−ε̄
∫

RN

e2ψb(t, x)v2dx.(2.15)

and

M(t) = sup
0≤s≤t

(W1(s) +W2(s)) ,

and also I1 = I(u0, u1) in (2.7), I2 = I(v0, v1) with I0 = I1 + I2.

By (2.13) and the application of Lemmas 2.1−2.2 to the second equation

of (1.1), we easily have the following lemma.

Lemma 2.3. For lj ≤ B = (1+β)(N−α)
2−α + β (j = 1, 2), it is true that

W1(t) ≤ Cε2I1 + CN1(t), W2(t) ≤ Cε2I2 + CN2(t),

where

N1(t) =

∫ t

0

[

(1 + τ)l1+1−ε̄+β+α(1+β)/(2−α)

∫

RN

e(2+λ)ψ |v|2pdx

+(1 + τ)l1−ε̄
∫

RN

e2ψ |v|p|u|dx
]

dτ

and

N2(t) =

∫ t

0

[

(1 + τ)l2+1−ε̄+β+α(1+β)/(2−α)

∫

RN

e(2+λ)ψ |u|2qdx

+(1 + τ)l2−ε̄
∫

RN

e2ψ |u|q|v|dx
]

dτ.

Here λ > 0 is an arbitrary small number.

We now estimate Ni(t) (i = 1, 2).

Lemma 2.4. Assume Λ < N−α
2 or Λj <

N−α
2 (j = 1, 2) and set

lj = −1− (1 + β)
N − 2

2 − α
+

(

2(1 + β)
2

2− α
− η

)

Λj (j = 1, 2) (2.16)

for a small constant η > 0. Then lj ≤ B (j = 1, 2) and

N1(t) +N2(t) ≤ C
(

M(t)p +M(t)q +M(t)(p+1)/2 +M(t)(q+1)/2
)

. (2.17)

To show (2.17) we use the lemma
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Lemma 2.5 (Gagliardo-Nirenberg inequality). When p ≤ N
[N−2]+

, it holds

that

‖h‖L2p ≤ C‖∇h‖
σ2p
L2 ‖h‖

1−σ2p
L2 , σ2p =

N(p − 1)

2p
,

‖h‖Lp+1 ≤ C‖∇h‖
σp+1

L2 ‖h‖
1−σp+1

L2 , σp+1 =
N(p− 1)

2(p+ 1)
.

Proof of Lemma 2.4. Choose λ in Lemma 2.2 satisfying 2+λ
2p < 1, then

∫

RN

e(2+λ)ψ |v|2p(s, x) dx = ‖e(2+λ)ψ/(2p)v(s)‖2p
L2p

≤ C‖∇(e(2+λ)ψ/(2p)v)(s)‖
2pσ2p
L2 ‖e(2+λ)ψ/(2p)v(s)‖

2p(1−σ2p)

L2 .

Here

|∇(e(2+λ)ψ/(2p)v)(s, x)|2 ≤ e(2+λ)ψ/p
(

2 + λ

2p
|∇ψ||v|+ |∇v|

)2

(s, x)

and, since

|∇ψ|2e(2+λ)ψ/pv2(s, x) = b(s, x)−1|∇ψ|2e(2+λ)ψ/pb(s, x)v2

≤ C〈x〉α(1 + s)β
〈x〉2(1−α)

(1 + s)2(1+β)
e(2+λ)ψ/pb(s, x)v2

≤ C(1 + s)−1 〈x〉2−α

(1 + t)1+β
e(2+λ)ψ/pb(s, x)v2 ≤ C(1 + s)−1e2ψb(s, x)v2,

for 0 ≤ s ≤ t

‖∇(e(2+λ)ψ/(2p)v)(s)‖
2pσ2p
L2

≤ C
(

(1 + s)−1/2‖eψ
√

b(s, ·)v‖L2 + ‖eψ∇v(s)‖L2

)2pσ2p

≤ C(1 + s)−2pσ2p(l2+1−ε̄)/2M(t)pσ2p .

Also, since

e(2+λ)ψ/pv2(s, x) = 〈x〉α(1 + s)βe(2+λ)ψ/pb(s, x)v2(s, x)

≤ C(1 + s)β+α(1+β)/(2−α)
(

〈x〉2−α

(1 + s)1+β

)α/(2−α)

e(2+λ)ψ/pb(s, x)v2(s, x)
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≤ C(1 + s)β+α(1+β)/(2−α)e2ψb(s, x)v2(s, x),

for 0 ≤ s ≤ t

‖e(2+λ)ψ/(2p)v(s)‖
2p(1−σ2p)

L2

≤ C(1 + s)2p(1−σ2p)(β+α(1+β)/(2−α))/2‖eψ
√

b(s, ·)v(s)‖
2p(1−σ2p)

L2

≤ C(1 + s)2p(1−σ2p)(β+α(1+β)/(2−α)−(l2−ε̄))/2M(t)p(1−σ2p).

Therefore
∫

RN

e(2+λ)ψ |v|2p(s, x) dx

≤ C‖∇(e(2+λ)ψ/(2p)v)(s)‖
2pσ2p
L2 ‖e(2+λ)ψ/(2p)v(s)‖

2p(1−σ2p)

L2

≤ C(1 + s)−2pσ2p(l2+1−ε̄)/2+2p(1−σ2p)(β+α(1+β)/(2−α)−(l2−ε̄))/2M(t)p.

The second term of N1(t) can be estimated in a similar fashion to the above,

and the following inequality holds:

N1(t) ≤ C

∫ t

0

[

(1 + s)γ11M(t)p + (1 + s)γ12M(t)(p+1)/2
]

ds,

where by simple calculations

γ11 = l1 + 1− ε̄+

(

β +
α(1 + β)

2− α

)

− 2pσ2p
1

2
(l2 + 1− ε̄)

−2p(1− σ2p)(l2 − ε̄) + 2p(1− σ2p)
1

2

(

β +
α(1 + β)

2− α

)

=

{

l1 − pl2 −
N

2
(p− 1) +

1

2
(2(p + 1)−N(p− 1))

(

β +
α(1 + β)

2− α

)}

+1 + (p− 1)ε̄,

γ12 =
1

2

{

l1 − pl2 −
N

2
(p − 1) +

1

2
(2(p + 1)−N(p− 1))

(

β +
α(1 + β)

2− α

)}

+
p− 1

2
ε̄

=
1

2
(γ11 − 1).
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Hence, we need γ11, γ12 < −1 or

{

l1 − pl2 −
N

2
(p− 1) +

1

2
(2(p+ 1)−N(p− 1))

(

β +
α(1 + β)

2− α

)}

< −2.

(2.18)

By the complete same way for N2(t) we need γ21, γ22 < −1 or

{

l2 − ql1 −
N

2
(q − 1) +

1

2
(2(q + 1)−N(q − 1))

(

β +
α(1 + β)

2− α

)}

< −2.

(2.19)

Therefore (2.18) and (2.19) are equivalent to the vector form of l = t(l1, l2)

−(P−I)l−
N

2
(P−I)

(

1

1

)

+
1

2
(2(P + I)−N(P−I))

(

β+
α(1+β)

2−α

)

(

1

1

)

= −(2 + η)

(

1

1

)

for η > 0 (see Remark 1.1) and, since P + I = (P − I) + 2I,

−(P−I)l−
N

2
(P−I)(1+β)

(

1+
α

2−α

)

(

1

1

)

+(P−I)

(

β+
α(1 + β)

2− α

)

(

1

1

)

= −

(

2(1 + β)

(

1 +
α

2− α

)

+ η

)

(

1

1

)

.

Multiplying this by (P − I)−1 and noting

(

Λ1

Λ2

)

= (P − I)−1

(

1

1

)

, we

obtain

l = −

(

1

1

)

− (1 + β)
N − 2

2− α

(

1

1

)

+

(

2(1 + β)
2

2− α
+ η

)

(

Λ1

Λ2

)

.

If Λ < N−α
2 or Λj <

N−α
2 (j = 1, 2), then

l = (β +
(1 + β)(N − α)

2− α
)

(

1

1

)

+ η

(

Λ1

Λ2

)

− 2(1 + β)
2

2− α

(

N−α
2 − Λ1

N−α
2 − Λ2

)

< B

(

1

1

)
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for sufficiently small η (“<” means that both components satisfy (“<”).

Thus, under the assumption Λ < N−α
2 , the decay rates lj ≤ B (j = 1, 2)

yield (2.18) and (2.19), which completes the proof. �

Proof of Theorem 1.1. By Lemma 2.4

M(t) ≤ Cε2I0 +CM(t)r

with r = min(2p, 2q, p+1
2 , q+1

2 ) > 1. Hence M(t) ≤ Cε2I0 for small ε > 0,

which is the desired a priori estimate.

3. Blow-up of Solutions in the Critical and Subcritical Exponents

For the proof of blow-up of solutions in a finite time we apply the test

function method, which has been developed for several evolution equations

by Mitidieri and Pohozaev [17]. Here the method by Zhang [36] for the

damped wave equation is used (cf. Ikeda and Wakasugi [9]).

For this, define the functions

η(t) =











1 (0 ≤ t ≤ 1
2),

e−1/(1−t2)

e−1/(t2−1/4)+e−1/(1−t2)
(12 < t < 1),

0 (t ≥ 1),

φ(x) = η(|x|), x ∈ RN , |x| =
√

x21 + · · ·+ x2N . (3.1)

Note that

|η′(t)| ≤ Cη(t)1/r, |η′′(t)| ≤ Cη(t)1/r for any r > 1 (3.2)

for some positive constant C.

Proof of Theorem 1.2 (I). We assume the non-trivial solution (u, v) ∈

[C([0,∞); H1) ∩C1([0,∞); L2)]2 satisfies

{

utt −∆u+ 〈x〉−αut = |v|p,

vtt −∆v + 〈x〉−αvt = |u|q, (t, x) ∈ R+ ×RN (3.3)
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and derive the contradiction. By (3.1) define the test function

ψR(t, x) = η(
t

R2−α
)φ(

x

R
) := ηR(t)φR(x) (3.4)

for a large R ∈ R, and set

VR =

∫

QR

|v|pψR(t, x) dx dt, UR =

∫

QR

|u|qψR(t, x) dx dt,

with

QR = {(t, x); 0 ≤ t ≤ R2−α, |x| ≤ R} =: [0, R2−α]×BR. (3.5)

By (3.3)1 (denote the first equation in (3.3))

VR + ε

∫

BR

(〈x〉−αu0(x) + u1(x))φR(x) dx

=

∫

QR

u{(ψR)tt −∆(ψR)− 〈x〉−α(ψR)t}(t, x) dx dt =: I1 + I2 + I3. (3.6)

Calculate Ii(i = 1, 2, 3). First,

I3 =

∫

QR

{−〈x〉−αuη′(
t

R2−α
)φ(

x

R
) ·R−(2−α)} dx dt

≤ CR−(2−α)
(

∫

Q̂R,t

|u|qψRdx dt
)

1
q
(

∫

Q̂R,t

〈x〉−αq
′

dx dt
)

1
q′
,

where 1
q +

1
q′ = 1 and Q̂R,t = [12R

2−α, R2−α]×BR. Since

∫

BR

〈x〉−αq
′

dx ≤











C αq′ > N,

C logR αq′ = N,

CRN−αq′ αq′ < N,

and αq′ = N is equivalent to q = 1 + α
N−α ,

CR−(2−α)(

∫

Q̂R,t

〈x〉−αq
′

dx dt)
1
q′

≤















CR
−(2−α)(1− 1

q′
)

q < 1 + α
N−α or αq′ > N,

CR
−(2−α)(1− 1

q′
)+δq q = 1 + α

N−α or αq′ = N,

CR
−(2−α)(1− 1

q′
)+N−αq′

q′ q > 1 + α
N−α or αq′ < N

=: CR−e(α,q),

(3.7)
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where 0 < δq ≪ 1. Hence,

I3 ≤ CR−e(α,q)(ÛR,t)
1
q (3.8)

with ÛR,t =
∫

Q̂R,t
|u|qψR(t, x) dx dt. By similar calculations on I1, I2,

I1 ≤ CR
−2(2−α)+N+2−α

q′ (ÛR,t)
1
q , (3.9)

I2 ≤ CR
−2+N+2−α

q′ (ÛR,x)
1
q , (3.10)

with ÛR,x =
∫

Q̂R,x
|u|qψR(t, x) dx dt, Q̂R,t = [0, R2−α] × (BR \ BR/2). Com-

bining (3.6) with (3.8)−(3.10), we have

VR + ε

∫

BR

(〈x〉−αu0(x) + u1(x))φR(x) dx

≤ CR
−2+N+2−α

q′ (ÛR,t + ÛR,x)
1
q + CR−e(α,q)(ÛR,t)

1
q (3.11)

since 2(2 − α) > 2. Moreover, by simple calculations, 2− N+2−α
q′ ≥ e(α, q).

In fact,

2−
N + 2− α

q′
− e(α, q) =











αq′−N
q′ > 0 (αq′ > N),

δq > 0 (αq′ = N),

0 (αq′ < N).

Hence, by (3.11)

VR+ε

∫

BR

(〈x〉−αu0(x)+u1(x))φR(x) dx ≤ CR−e(α,q)(ÛR,t+ ÛR,x)
1
q . (3.12)

By (3.3)2 (the second equation in (3.3)) we also obtain

UR + ε

∫

BR

(〈x〉−αv0(x) + v1(x))φR(x) dx ≤ CR−e(α,p)(V̂R,t + V̂R,x)
1
p ,(3.13)

where

V̂R,t =

∫

Q̂R,t

|v|pψR(t, x) dx dt, V̂R,x =

∫

Q̂R,x

|v|pψR(t, x) dx dt.

Since ÛR,t ≤ UR etc. and
∫

BR
(〈x〉−αu0(x) + u1(x))φR(x) dx > 0 for
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R≫ 1, both (3.12) and (3.13) yield

UR + ε

∫

BR

(〈x〉−αv0(x) + v1(x))φR(x) dx

≤ CR
−e(α,p)−

e(α,q)
p (ÛR,t + ÛR,x)

1
pq ≤ CR

−e(α,p)−
e(α,q)

p U
1
pq

R . (3.14)

Therefore, if

P := e(α, p) +
e(α, q)

p
> 0, (3.15)

then U
1− 1

pq

R → 0 and UR → 0 (R → ∞), which contradicts that the solution

(u, v) is non-trivial.

Assume q ≥ p without loss of generality, and the subcritical condition is

Λ = max (
p+ 1

pq − 1
,
q + 1

pq − 1
) =

q + 1

pq − 1
>
N − α

2
or

q(p−
2

N − α
) < 1 +

2

N − α
. (3.16)

Noting (3.16), we show (3.15) in each case.

(i) When q < 1 + α
N−α , also p < 1 + α

N−α . Hence,

P = (2− α)(1 −
1

p′
) +

1

p
(2− α)(1 −

1

q′
) > 0.

(ii) When q = 1 + α
N−α ,

P =

{

(2− α)(1 − 1
p′ ) +

1
p(2− α)(1 − 1

q′ )− δp −
1
pδq if p = 1 + α

N−α ,

(2− α)(1 − 1
p′ ) +

1
p(2− α)(1 − 1

q′ )−
1
pδq if p < 1 + α

N−α

> 0 (by taking δp, δq ≪ 1).

(iii) When q > 1 + α
N−α .

(iii)1,2 If p < 1 + α
N−α , then

P =
N + 2− α

p
(
1

q
−

N − 2

N + 2− α
)

(when p = 1 + α
N−α , P = N+2−α

p (1q −
N−2

N+2−α ) − δp). Hence, for N = 1, 2,

clearly P > 0. For N ≥ 3, P > 0 is equivalent to q < N+2−α
N−2 . Since
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q ≤ N
N−2 , P > 0.

(The discussion here is the reason why Remark 1.2 is necessary.)

(iii)3 p > 1 + α
N−α , then, by simple but tedious calculations,

P =
N − α

pq

(

1 +
2

N − α
− q(p−

2

N − α
)
)

> 0

by (3.16).

Thus, in the subcritical exponent we have had a contradiction.

Next, the critical exponent case is equivalent to P = 0 by (iii)3. Then,

back to (3.14), UR ≤ C and
∫∞
0

∫

RN |u|q(t, x) dx dt ≤ C by R → ∞. Hence,

thanks to the Lebesgue convergence theorem, both ÛR,t and ÛR,x tend to

zero as R→ ∞, which gives the contradiction by (3.14) again.

We have now completed the proof of Theorem 1.2 (I).

To apply the test function method to (3.3), the key points are that the

left-hand sides have divergence forms and that the right-hand sides are non-

negative. But, in the system of damped wave equations with time-dependent

damping

{

utt −∆u+ (t+ 1)−βut = |v|p,

vtt −∆v + (t+ 1)−βvt = |u|q, (t, x) ∈ R+ ×RN (3.17)

with b(t) = (t + 1)−β (−1 < β < 1) (for simplicity, drop the suffix 2 of b),

the left-hand sides are not divergence forms. To overcome this, we apply

the idea in Lin, Nishihara and Zhai [14]. Following [14], multiply (3.17) by

a suitable nonnegative function g(t):

{

(g(t)ut)t −∆(g(t)u) + (−g′(t) + b(t)g(t))ut = g(t)|v|p,

(g(t)vt)t −∆(g(t)v) + (−g′(t) + b(t)g(t))ut = g(t)|u|q .
(3.18)

We now choose g(t) as

−g′(t) + b(t)g(t) = 1, g(t) > 0. (3.19)

Solving (3.19), we define g(t) by

g(t) = exp (

∫ t

0
b(τ) dτ) ·

∫ ∞

t
exp (−

∫ τ

0
b(s) ds) dτ > 0 (3.20)
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with

g(0) =

∫ ∞

0
exp (−

∫ τ

0
b(s) ds) dτ > 0. (3.21)

Note that, by the l’Hôpital’s rule,

lim
t→∞

b(t)g(t) = lim
t→∞

∫∞
t exp (−

∫ τ
0 b(s) ds) dτ

(t+ 1)β exp (−
∫ t
0 b(τ) dτ)

= lim
t→∞

− exp (−
∫ t
0 b(s) ds)

(β(t+ 1)β−1 − (t+ 1)βb(t)) exp (−
∫ t
0 b(τ) dτ)

= 1,

and hence

C−1b(t)−1 ≤ g(t) ≤ Cb(t)−1, 0 ≤ t <∞. (3.22)

Thus, (3.18) is reduced to

{

(g(t)ut)t −∆(g(t)u) + ut = g(t)|v|p,

(g(t)vt)t −∆(g(t)v) + ut = g(t)|u|q, (t, x) ∈ R+ ×RN .
(3.23)

We are now ready to apply the test function method.

Proof of Theorem 1.2 (II). Define the test function by

ψR,β(t, x) = η(
t

R2/(1+β)
)φ(

x

R
) =: ηR,β(t)φR(x) (3.24)

and

VR,g =

∫

QR,β

g(t)|v|pψR,β(t, x) dx dt,

(3.25)
UR,g =

∫

QR,β

g(t)|u|qψR,β(t, x) dx dt,

with

QR,β = {(t, x)| 0 ≤ t ≤ R
2

1+β , |x| ≤ R} = [0, R
2

1+β ]×BR. (3.26)

By (3.23)1,

VR,g =

∫

QR,β

{(g(t)ut)t −∆(g(t)u) + ut}ψR,β(t, x) dx dt

=: J1 + J2 + J3

(This equation is interpreted that ψ is taken as ψ = g(t)ψR,β(t, x) in the
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definition (1.2) of the weak solution). By almost similar calculations of

Ii(i = 1, 2, 3), Jj(j = 1, 2, 3) are calculated as

J1 + ε

∫

BR

g(0)u1(x)φ(x) dx ≤ CR−ē(β,q)(ÛR,g,t)
1
q ,

J2 ≤ CR−ē(β,q)(ÛR,g,x)
1
q ,

J3 + ε

∫

BR

u0(x)φR(x)dx ≤ CR−ē(β,q)(ÛR,g,t)
1
q ,

where

ē(β, q) = 2−
N + 2

q′
(3.27)

and

ÛR,g,t =

∫

Q̂R,β,t

g(t)|u|qψR,β(t, x) dx dt,

(3.28)
ÛR,g,x =

∫

Q̂R,β,x

g(t)|u|qψR,β(t, x) dx dt

with Q̂R,β,t = [12R
2

1+β , R
2

1+β ] × BR, Q̂R,β,x = [0, R
2

1+β ] × (BR \ BR/2). In

fact, for an example,

J3 + ε

∫

BR

u0(x)φR(x) dx

=

∫

QR,β

{−uη′R,β(t)φR(x) · R
− 2

1+β } dx dt

≤ CR
− 2

1+β

(

∫

Q̂R,β

g(t)|u|qψR,βdx dt
)

1
q
(

∫

Q̂R,β

g(t)
− q′

q dx dt
)

1
q′

≤ CR
−(2−N+2

q′
)
,

since − 2
1+β + 1

q′ (N + 2
1+β − 2

1+β
βq′

q ) = −2 + N+2
q′ . Therefore, we have

VR,g + ε

∫

BR

(u0(x) + g(0)u1(x))φR(x) dx ≤ CR−ē(β,q)(ÛR,g,t + ÛR,g,x)
1
q .

(3.29)

By (3.2)2, we also have

UR,g + ε̄

∫

BR

(v0(x) + g(0)v1(x))φR(x) dx ≤ CR−ē(β,p)(V̂R,g,t + V̂R,g,x)
1
p ,

(3.30)

V̂R,g,t etc. are, respectively, defined in a similar fashion to ÛR,g,t etc.
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Noting V̂R,g,t ≤ VR,g etc., by (3.29)−(3.30) we get

UR,g + ε

∫

BR

(v0(x) + g(0)v1(x))φR(x) dx

≤ CR
−ē(β,p)− ē(β,q)

p (ÛR,g,t + ÛR,g,x)
1
pq

≤ CR
−ē(β,p)−

ē(β,q)
p (UR,g)

1
pq . (3.31)

Since ē(β, p) + ē(β,q)
p ≥ 0 is equivalent to

q(p −
2

N
) ≤ 1 +

2

N
,

and, when q ≥ p (WLOG), to

Λ =
q + 1

pq − 1
≥
N

2
.

Thus, (3.31) derives the contradiction in a similar way to the case of Theorem

1.2 (I).

4. Further Discussions

Let us state the motivations of our problems. From the viewpoint of the

diffusion phenomena of solutions of damped wave equations, compared with

the result [1] for (1.10), what are the critical exponents for (1.1)? This is

the first motivation. However, our final goal is to solve

Problem. What are the critical exponents for the system

{

utt −∆u+ ut = |v|p,

vtt −∆v = |u|q, x ∈ Rn, t > 0.
(4.1)

This problem was proposed to the authors by Professor Mitsuhiro Nakao,

Emeritus of Kyushu University, Japan. By the diffusion phenomena, the first

equation is quantitatively the diffusive equation, while the second one is the

wave equation. Of course, each solution of two equations has essentially

different properties from each other. The semilinear terms are coupled with

different properties. So, if we could determine the critical exponents, then

we may know in some sense or explain how both equations influence with
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each other. Therefore, we believe that Problem 1 is so interesting, but it

seems so difficult.

As a first step, we have considered the Cauchy problem (1.1) as our

Problem, which is another motivation. So, the next problem is

Problem 2. Determine the critical exponents for

{

utt −∆u+ b1(t, x)ut = |v|p,

vtt −∆v + b2(t, x)vt = |u|q,
(4.2)

where

b1(t, x) 6= b2(t, x) with bi(t, x) ∼ 〈x〉−αi(t+1)−βi , (αi, βi ≥ 0, αi + βi < 1)

(4.3)

that is, the case that both dissipations are effective. Here, f ∼ g means

C−1g ≤ f ≤ Cg for some positive constant C. The typical example in

Problem 2 is
{

utt −∆u+ 〈x〉−αut = |v|p (0 ≤ α < 1),

vtt −∆v + (t+ 1)−βvt = |u|q (0 ≤ β < 1).
(4.4)

If 0 ≤ b(t, x) ≤ C〈x〉−α(t + 1)−β (α, β ≥ 0, α + β > 1), then the

dissipation is non-effective, or the equation essentially becomes the wave

equation. Therefore, the third problem is

Problem 3. Determine the critical exponents for (4.2) with

bi(t, x) ∼ 〈x〉−αi(t+ 1)−βi , (αi, βi ≥ 0, α1 + β1 < 1, α2 + β2 > 1). (4.5)

The typical system is

{

utt −∆u+ 〈x〉−αut = |v|p (0 ≤ α < 1),

vtt −∆v + (t+ 1)−βvt = |u|q (β > 1).
(4.6)

Thus, the first equation is essentially parabolic and the second one hy-

perbolic, and we finally reach to Problem.



2015] CRITICAL EXPONENTS FOR THE CAUCHY PROBLEM 307

References

1. M. Escobedo and M. A. Herrero, Boundedness and blow up for a semilinear reaction-
diffusion system, J. Differential Equations, 89 (1991), 176-202.

2. H. Fujita, On the blowing up of solutions of the Cauchy problem for ut = ∆u+ u
1+α,

J. Fac. Sci. Univ. Tokyo, Sec. 1, 13 (1966), 109-124.

3. N. Hayashi, E. I. Kaikina and P. I. Naumkin, Damped wave equation with a critical
nonlinearity, Trans. Amer. Math. Soc., 358 (2006), 1165-1185.

4. N. Hayashi, E. I. Kaikina and P. I. Naumkin, On the critical nonlinear damped wave
equation with large initial data, J. Math. Anal. Appl., 334 (2007), 1400-1425.

5. T. Hosono and T. Ogawa, Large time behavior and L
p-Lq estimate of solutions of 2-

dimensional nonlinear damped wave equations, J. Differential Equations, 203(2004),
82-118.

6. R. Ikehata, Y. Miyaoka and T. Nakatake, Decay estimates of solutions for dissipative
wave equations in R

N with lower power nonlinearities, J. Math. Soc. Japan, 56 (2004),
365-373.

7. R. Ikehata, G. Todorova and B. Yordanov, Critical exponent for semilinear wave
equations with space-dependent potential, Funk. Ekvac., 52 (2009), 411-435.

8. R. Ikehata, G. Todorova and B. Yordanov, Optimal decay rate of the energy for wave
equations with critical potential, J. Math. Soc. Japan, 65 (2013), 183-236.

9. M. Ikeda and Y. Wakasugi, A note on the lifespan of solutions to the semilinear
damped wave equation, Proc. Amer. Math. Soc., 143 (2015), 163-171.

10. R. Karch, Selfsimilar profiles in large time asymptotics of solutions to damped wave
equations, Studia Math., 143 (2000), 175-197.

11. S. Kawashima, M. Nakao and K. Ono, On the decay property of solutions to the
Cauchy problem of the semilinear wave equation with a dissipative term, J. Math.

Soc. Japan, 47 (1995), 617-653.

12. T.-T. Li and Y. Zhou, Breakdown of solutions to �u + ut = u
1+α, Discrete Contin.

Dyn. Syst., 1 (1995), 503-520.

13. J. Lin, K. Nishihara and J. Zhai, Decay property of solutions for damped wave equa-
tions with space-time dependent damping term, J. Math. Anal. Appl., 374 (2011),
602-614.

14. J. Lin, K. Nishihara and J. Zhai, Critical exponent for the semilinear wave equation
with time-dependent damping, Discrete Contin. Dyn. Syst., 32 (2012), 4307-4320.

15. P. Marcati and K. Nishihara, The L
p-Lq estimates of solutions to one-dimensional

damped wave equations and their application to the compressible flow through porous
media, J. Differential Equations, 191(2003), 445-469.

16. A. Matsumura, Global existence and asymptotics of the solutions of the second-order
quasilinear hyperbolic equations with first-order dissipation, Publ. Res. Inst. Math.

Sci. Kyoto Univ., 13 (1977), 349-379.



308 KENJI NISHIHARA AND YUTA WAKASUGI [September

17. E. Mitidieri and S. I. Pohozaev, A priori estimates and the absence of solutions of
nonlinear partial differential equations and inequalities, Tr. Mat. Inst Steklova, 234
(2001), 1 - 384. Translation in Proc. Steklov Inst. Math., 234 (2001), 1-362.

18. K. Mochizuki, Scattering theory for wave equations with dissipative terms, Publ. Res.

Inst. Math. Sci. Kyoto Univ., 12 (1976), 383-390.

19. T. Narazaki, Lp-Lq estimates for damped wave equations and their applications to
semi-linear problem, J. Math. Soc. Japan, 56 (2004), 585-626.

20. K. Nishihara, L
p-Lq estimates of solutions to the damped wave equation in 3-

dimensional space and their application, Math. Z., 244 (2003), 631-649.

21. K. Nishihara, Decay properties for the damped wave equation with space dependent
potential and absorbed semilinear term, Commun. Partial Differential Equations, 35
(2010), 1402-1418.

22. K. Nishihara, Asymptotic profile of solutions for 1-D wave equation with time-
dependent damping and absorbing semilinear term, Asymptotic Analysis, 71 (2011),
185-205.

23. K. Nishihara, Asymptotic behavior of solutions for a system of semilinear heat equa-
tions and the corresponding damped wave system, Osaka J. Math., 49 (2012), 331-348.

24. K. Nishihara and J. Zhai, Asymptotic behaviors of solutions for time dependent
damped wave equations, J. Math. Anal. Appl., 360 (2009), 412-421.

25. K. Nishihara and Y. Wakasugi, Critical exponent for the Cauchy problem to the weakly
coupled damped wave system, Nonlinear Analysis, 108 (2014), 249-259.

26. T. Ogawa and H. Takeda, Global existence of solutions for a system of nonlinear
damped wave equations, Differential Integral Equations, 23(2010), 635-657.

27. T. Ogawa and H. Takeda, Large time behavior of solutions for a system of nonlinear
damped wave equations, J. Differential Equations, 251 (2011), 3090-3113.

28. S. Sakata and Y. Wakasugi, Movement of time-delayed hot spots in Euclidean space,
preprint.

29. F. Sun and M. Wang, Existence and nonexistence of global solutions for a nonlinear
hyperbolic system with damping, Nonlinear Anal., 66 (2007), 2889-2910.

30. H. Takeda, Global existence and nonexistence of solutions for a system of nonlinear
damped wave equations, J. Math. Anal. Appl., 360 (2009), 631-650.

31. G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with
damping, J. Differential Equations, 174 (2001), 464-489.

32. T. Yamazaki, Diffusion phenomenon for abstract wave equations with decaying dissi-
pation, Asymptotic analysis and singularities – hyperbolic and dispersive PDEs and
fluid mechanics, 363-381, Adv. Stud. Pure Math., 47-1, Math. Soc. Japan, Tokyo,
2007.

33. Y. Wakasugi, Small data global existence for the semilinear wave equation with space-
time dependent damping, J. Math. Anal. Appl., 393 (2012), 66-79.



2015] CRITICAL EXPONENTS FOR THE CAUCHY PROBLEM 309

34. J. Wirth, Wave equations with time-dependent dissipation. I. Non-effective dissipation,
J. Differential Equations, 222 (2006), 487-514.

35. J. Wirth, Wave equations with time-dependent dissipation. II. Effective dissipation,
J. Differential Equations, 232 (2007), 74-103.

36. Q. Zhang, A blow-up result for a nonlinear wave equation with damping: The critical
case, C. R. Acad. Sci. Paris, 333 (2001), 109-114.


	1. Introduction
	2. Existence of Global-in-time Solution in the Supercritcal Exponents
	3. Blow-up of Solutions in the Critical and Subcritical Exponents
	4. Further Discussions

