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Dedication

With best wishes to Tai-Ping on his seventieth birthday. In recognition and apprecia-

tion for years of comradeship in the search to understand the propagation of waves in the

natural world and the structure of solutions of hyperbolic partial differential equations.

Abstract

In analogy with D’Alembert’s analysis of the one dimensional wave equation, the

solutions of the linearized equations describing the perturbations of the 1d horizontal

interface between 2d water and air are sums of rightward and leftward moving waves.

This paper introduces and analyses the qualitative behavior of the corresponding one way

equations. The one way equations are the core elements in an efficient numerical algorithm.

1. Introduction

Our papers [6], [7], and [8] introduce a numerical method for construct-

ing approximate solutions of the linearized water wave equation on the entire

real line

utt +
∣∣D
∣∣u = 0, D :=

1

i
∂x. (1.1)
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The key difficulty addressed is the infinite domain of x ∈ R. Most approxi-

mate methods, including ours, truncate the domain to be finite and compute

an approximate solution on the finite domain. The goal is to obtain accurate

values on a subdomain that is not too much smaller.

For differential equations such truncations are challenging. It is more

difficult for (1.1) since the the operator |D| is nonlocal. The time derivative

utt at each point (t, x) depends on the values of u(t, ·) on the whole real line.

With truncation many values of u(t, ·) are not available. Another peculiarity
of the water wave equation is that the group velocities tend to infinity as

ξ → 0. Waves reach artificial boundaries instantly. There is no short reprieve

as there would be for problems with finite propagation speed.

Figure 1: Computational domain [−L,L] and interest domain [−a, a].

The method involves a computational domain −L ≤ x ≤ L containing

the domain of interest [−a, a]. The domain of interest contains the support

of initial data. The strategy is based on the observation that solutions of

(1.1) are sums of essentially leftward and rightward going waves that are

solutions of one way equations. A wave initially supported in [−a, a] that
reaches the right layer [a, L] is essentially rightward moving. The numerical

algorithm replaces the water wave equation by the rightward equation in the

layer a < x < L. The values in the layer are advanced using the rightward

equation rather than the water wave equation. An advantage is that errors

committed in the layer tend to be swept rightward away from the domain of

interest. A second advantage is that the rightward equation is easily damped

without generating backward moving waves. Damping reduces the size of

waves reaching the external boundary x = L. It is as if the layers are in wind
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tunnels with the wind driving the flow away from the domain of interest. The

rightward boundary is treated so as to be essentially transparent to rightward

waves. Errors from the boundary tend not to reenter the domain thanks

to the same wind tunnel effect. The left hand layer is treated similarly.

The leftward and rightward one way equations are the key elements in this

strategy. Their analysis is the subject of this article. The numerical method

and the details of high order implementation are discussed in the pair of

articles [7], and [8].

Plane waves ei(ξx−ωt) satisfy the linearized water wave equation (1.1) if

and only if they satisfy the dispersion relation

ω2 = |ξ|. (1.2)

Definition 1.1. Denote by ω(ξ) the unique non decreasing function that

satisfies (1.2), that is

ω(ξ) = sgn(ξ)
√

|ξ|. (1.3)

The function ω(ξ) is called the smart square root.

Figure 2: The smart square root ω(ξ) plotted against ξ.

The group velocities defined by

vgroup(ξ) := ω′(ξ) = |ξ|−1/2
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are positive exactly because ω is nondecreasing. The operator ω(D) is de-

fined by F−1ω(ξ)F where F is the Fourier Transform. Such multiplication

operators are discussed in §2. The plane waves

ei(ξx−ω(ξ)t) (1.4)

generate the solutions of vt+iω(D)v = 0 so this equation describes essentially

rightward motion. Similarly, vt − iω(D)v = 0 describes leftward motion.

These equations are called the one way water wave equations.

§4 shows that the one way Cauchy problems are well set. §5 proves

an analogue of D’Alembert’s analysis of the one dimensional wave equation

showing that solutions the water wave equation are sums of solutions of the

leftward and rightward one way equations.

§6, and §7, contain precise asymptotic descriptions as t→ ∞, as x→ ∞,

and, also along lines in space time. These estimates are important since the

tails at infinity in x represent data that is not available to the truncated

numerical algorithm.

In §8 the well posedness of the spatially truncated problem that corre-

sponds to our numerical method is proved for smooth truncations.

Acknowledgments

Peter Miller gave us an important shove in the right direction when

considering the asymptotics as x → ∞, and, Sijue Wu helped us in many

ways. A counterexample of Mike Taylor steered us away from dangerous

shoals. The thesis of Jennifer Beichman [2] stimulated several refinements.

We thank the referee for calling [1] to our attention.

2. Multiplication Operators

In this paper, in contrast to its siblings [7] and [8], the Fourier transform

and its inverse are defined by

f̂(ξ) =
1√
2π

∫ ∞

−∞
f(x) e−ixξ dx, so, f(x) =

1√
2π

∫ ∞

−∞
f̂(ξ) eixξ dξ.
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The Fourier transform is unitary on L2(R), and the usual partial derivative

∂x and the operator D := 1
i ∂x are given by

∂̂xf(ξ) = iξf̂(ξ), and, D̂f(ξ) = ξf̂(ξ).

Next define Fourier multiplication operators.

Definition 2.1. The Weiner algebra A0 consists of the tempered distribu-

tions on R whose Fourier transform belongs to L1(R). More generally, for

any s ∈ R define

As :=
{
φ ∈ S ′(R) : 〈ξ〉sφ̂ ∈ L1(R)

}
.

A∞(R) := ∩s∈R As(R), and A−∞(R) := ∪s∈R As(R).

Definition 2.2. For a measurable G(ξ) ∈ L∞
loc(R) growing at most polyno-

mially as |ξ| → ∞, define an operator G(D) from A∞(R) to itself and also

A−∞(R) to itself by

Ĝ(D)f := G(ξ)f̂(ξ).

Example 2.3. The operators |D|, |D|1/2, and the Hilbert Transform H :=

−i sgn(D) are given by

̂|D|1/2f(ξ) = |ξ|1/2f̂(ξ), |̂D|f(ξ) = |ξ|f̂(ξ),
and,

(̂Hf)(ξ) = −i sgn(ξ)f̂(ξ). (2.1)

The Hilbert transform is anti self adjoint on L2(R). The formulas

F
(
P.V.

1

x

)
= i

√
π

2
sgn ξ and, f̂ ∗ g =

√
2π f̂ ĝ

imply that the Hilbert transform is given by

(Hf)(x) :=
1

π
P.V.

∫
f(y)

x− y
dy. (2.2)

Multiplication operators commute regardless of their symbols. They are

translation invariant. Each is a convolution operator. When there is a c so
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that |G(ξ)| ≤ c〈ξ〉m, then G(D) is continuous from Hs(R) → Hs−m(R) and

from As(R) → As−m(R) for all s ∈ R.

3. The One Way Water Wave Equations

Consider the non steady incompressible inviscid irrotational infinitely

deep two dimensional Euler equation in a time dependent domain Ω(t). The

boundary of the domain is an interface with fluid below and a massless

medium of constant pressure above. Linearizing these equations at the flat

interface, small perturbations are described by solutions of the scalar equa-

tion (1.1).

It follows that for any measurable solution ω(ξ) of (1.2),

∂2t + |D| = ∂2t + ω(D)2 = (∂t − iω(D))(∂t + iω(D))

= (∂t + iω(D))(∂t − iω(D)). (3.1)

Make the choice ω(ξ) that is the unique non decreasing solution from

Definition 1.1. From here on, ω(ξ) denotes this solution. One has

iω = i sgn(ξ)
√

|ξ|, so, ω(D) = −H |D|1/2. (3.2)

The function ω(ξ) is odd and strictly monotone increasing.

The superpositions in ξ of the plane waves (1.4) satisfy ∂tv+iω(D)v = 0.

The opposite choice of sign ei(ξx+ω(ξ)t) satisfies ∂tv − iω(D)v = 0.

Thanks to (3.1) it follows that solutions of the one way equations are

solutions of the linearized water wave equation. Like D’Alembert’s analysis

of utt−uxx = 0, Proposition 5.2 below shows that the general solution of the

linearized equation is equal to a sum v+ + v− of solutions of the rightward

and leftward one way equations.

4. The Cauchy Problem for the One Way Equations

The formula v(t) = e−itω(D)v(0) involving the Fourier multiplier e−itω(D)

is the natural candidate solution of vt + iω(D)v = 0 with initial value v(0).

The next proposition shows that under suitable assumptions of regularity in

time and decay at infinity it is the only solution.
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Begin by showing that the Cauchy problem for the differential equation

vt + i ω(D)v = 0 (4.1)

makes sense when v ∈ L1
loc(R ; As(R)) for some s ∈ R, possibly very neg-

ative. In this case v is a well defined distribution and vt = −iω(D)v ∈
L1
loc(R ; As−1/2(R)). Thus the left hand side of the differential equation

makes sense as a distribution. The definition of a solution is that this dis-

tribution is equal to zero.

For such a solution, both v and vt belong to L1
loc(R ; As−1/2(R)). There-

fore v ∈ C(R ; As−1/2(R)). In particular, the value v(t) is well defined for all

t.

Proposition 4.1. i. If s ∈ R and v ∈ L1
loc(R ; As(R)) satisfies (4.1) then

for all t, v(t) = e−itω(D)v(0).

ii. Conversely, if f ∈ As(R) then v(t) := e−itω(D)f belongs to (L∞ ∩
C)(R ; As(R)) and satisfies (4.1) with initial value v(0) = f . In addition for

all 0 ≤ k ∈ N, ∂kt v ∈ (L∞ ∩ C)(R ; As−k/2(R)).

Proof. The remarks before the Proposition show that v ∈ C(R ; As−1/2(R)).

An induction shows that ∂kt v = (−iω(D))kv ∈ C(R ; As−k/2(R)).

Take the Fourier transform of the equation to find

∂tv̂ + iω(ξ)v̂ = 0.

Therefore

∂t
(
ei t ω(ξ) v̂

)
= 0, (4.2)

proving that v must be given by formula in i. Part ii is immediate. ���

Example 4.2. i. Because e−itω(D) is L2 unitary, the theory of the water

wave equation is dominated by L2 methods. The results above in the spaces

As suffice to get the ball rolling. For example, if v ∈ L1
loc(R;H

s(R)) then

v ∈ L1
loc(R;A

σ(R)) for all σ < s− 1/2 so the one way equation makes sense

and solutions are given by the formula e−itω(D)v(0).
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ii. In contrast, if

f̂ ∈ L1
comp is compactly supported with

∫
|f̂ |2 dξ = ∞,

then f ∈ A∞ is smooth and v = e−itω(D)f is a smooth solution covered by

Proposition 4.1. However, f /∈ H−∞ so this solution is not amenable to an

L2 Sobolev analysis. This greater generality explains the choice of the As

setting over the Hs setting.

Remark 4.3. i. The solution formula shows that for all ξ ∈ R, |v̂(t, ξ)|2 is

independent of t. Therefore for all σ ≤ s, the Sobolev norms ‖v(t)‖2Hσ(R) are

independent of time.

ii. The evolution is a unitary group on Hs(R) whose generator is the anti self

adjoint operator iω(D) with domain equal to the set of functions f ∈ Hs(R)

such that ω(D)f ∈ Hs(R).

iii. The Fourier transform intertwines this operator with multiplicaiton by

ω(ξ) whence the spectrum is absolutely continuous and equal to R.

A pair of cousin equations with ω positive homogeneous of degree 1/2

are

∂tu+ eiπ/4 ω(D )u = 0, with ω2 = ξ/i. (4.3)

They occur in the construction of absorbing boundary conditions for the one

dimensional Schrödinger equation (see [1]). With t and x interchanged it is

the Dirichlet to Neumann operator of Schrödinger equation. The operator

ω(D) is an Abel fractional integral operator with kernel supported in a half

line. Because of the ξ in place of |ξ|, the values of ω(ξ) for ξ ∈ R lie on a pair

of orthogonal rays. The dispersion relation ω is not real valued. The initial

value problem for (4.3) is ill posed either toward the future or the past. The

analysis of the absorbing boundary condition has elements in common with

this paper.

5. A D’Alembert Formula for The Linearized Water Wave

Equation

The analysis of the initial value problem for the linearized water wave

equation is analogous. The proof of the next proposition is omitted.
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Proposition 5.1. If s ∈ R, f ∈ Hs(R) and g ∈ Hs−1/2(R) then there is a

unique solution

u ∈ C(R ; Hs(R)) with ut ∈ C(R ; Hs−1/2(R))

to the initial value problem

utt + |D|u = 0, u
∣∣
t=0

= f, ut
∣∣
t=0

= g.

There is an analogue of D’Alembert’s formula for the one dimensional

wave equation.

Proposition 5.2. If f, g, s, u are as in the preceding proposition with g ∈
|D|1/2Hs(R) then there are solutions v+ and v− in C

(
R ; Hs(R)

)
satisfying

the rightward and leftward one way equations respectively and so that u =

v+ + v−. The v+ and v− are uniquely determined by u.

Proof. It is sufficient to find the initial values of v±. In order that v+ + v−

and ∂t(v
+ + v−) match the corresponding initial values for u it is necessary

and sufficient that

v+(0) + v−(0) = f, and, −iω(D)v+(0) + iω(D)v−(0) = g. (5.1)

Multiplying the first relation by iω(D) then adding and subtracting yields

2iω(D)v−(0) = ω(D)f + g, 2iω(D)v+(0) = ω(D)f − g.

These formulas uniquely determine v±(0) ∈ Hs(R) thanks to the hypothesis

g ∈ |D|1/2Hs(R). Defining v+ and v− to be the solutions of the rightward

and leftward one way equations with these initial values proves the proposi-

tion. ���

6. Asymptotics of the One Way Equations as x→ ±∞

Proposition 6.1. i. Suppose that v = e−itω(D)f with f satisfying

f̂(ξ) ∈ C2(R) and
∂j f̂(ξ)

∂ξj
∈ L1(R) for 0 ≤ j ≤ 2.
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Then v(t, x) = O(x−3/2) as x → +∞ uniformly on compact time intervals.

More precisely there is a c 6= 0 computed in the proof so that uniformly on

bounded time intervals as x→ +∞

v(t, x) = c t
f̂(0)

x3/2
+O(|x|−2).

ii. An analogous result with a different c holds for x → −∞. Analogous

results hold for the leftward equation.

Remark 6.2. i. When all the derivatives of f̂ belong to L1(R), there is a

complete asymptotic expansion
∑∞

j=3 cj x
−j/2 as x→ ∞ whose leading term

is given in i.

ii. When f̂ vanishes to order k at the origin, the decay rate is x−(3+k)/2.

Proof. The solution is

1√
2π

∫ ∞

−∞
eixξe−iω(ξ)tf̂(ξ)dξ. (6.1)

Choose χ(ξ) ∈ C∞
0 (R) with χ identically equal to 1 on a neighborhood of

ξ = 0. The integral is equal to

∫ ∞

−∞
eixξe−iω(ξ)t(1− χ(ξ))f̂ (ξ)dξ +

∫ ∞

−∞
eixξe−iω(ξ)tχ(ξ)f̂(ξ)dξ := J1 + J2.

(6.2)

The integral J1 is estimated to be O(1/x2) by the method of non stationary

phase as follows. Use

eixξ =
( 1

ix
∂ξ

)2
eixξ

to find
( 1

ix

)2 ∫
eixξ ∂2ξ

(
e−iω(ξ)t (1− χ(ξ)) f̂(ξ)

)
dξ.

Using the fact that ω′, ω′′ are bounded on the domain of integration together

with the integrablility hypothesis on ∂jξ f̂ shows that the integral is bounded

uniformly for bounded t and all x.

It remains to analyze J2. Thanks to the factor χ, it suffices to treat

the case of f ∈ C2
0 (R). Introduce the bijective change of variables on R,
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y = ω(ξ). Then,

y2 = |ξ|, sgn(y) = sgn(ξ), 2ydy = sgn(ξ) dξ, ξ = y2 sgn(y).

The integral J2 is equal to

∫ ∞

0
f̂(y2) e−iyt eixy

2

2ydy +

∫ 0

−∞
f̂(−y2) e−iyt e−ixy2 (−2y)dy := I1 + I2

In this integral t and y are bounded. The interest is |x| → ∞. Each integral

has a point of stationary phase at the endpoint y = 0. The behavior is

determined by the Taylor expansions of f̂(y2)e−iyt and f̂(−y2)e−iyt at y = 0.

The formal computation is straightforward. See [4] for the justification.

Expand about y = 0 to find

f̂(y2) e−iyt = f̂(0)
(
1−iyt

)
+O(y2), f̂(−y2)e−iyt = f̂(0)

(
1−iyt

)
+O(y2).

The leading term in I1 + I2 comes from the two constant terms in the

Taylor expansions to give f̂(0) times the sum of oscillatory integrals in the

sense of Hörmander,

∫ ∞

0
eixy

2

2ydy +

∫ 0

−∞
e−ixy

2

(−2y)dy. (6.3)

Next show that the sum (6.3) vanishes. Perform the computation for x > 0.

Make the change of variable

ρ :=
√
xy, y = ρ/

√
x, dρ =

√
xdy (6.4)

to find

∫ ∞

0
eiρ

2

2
ρ√
x

dρ√
x
+

∫ 0

−∞
e−ρ

2

(−2
ρ√
x
)
dρ√
x
=

2

x

(∫ ∞

0
eiρ

2

ρdρ−
∫ 0

−∞
e−iρ

2

ρdρ

)
.

Write e±iρ
2

using DeMoivre’s idententity the sin(±ρ2) contributions of the

last two integrals cancel by parity. This leaves

∫ ∞

0
cos(ρ2)ρdρ−

∫ 0

−∞
cos(−ρ2)ρdρ.
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Each of these oscillatory integrals vanish. For example with ψ ∈ C∞
0 (R)

with ψ(0) = 1,

∫ ∞

0
cos(ρ2)ρdρ := lim

ε→0

∫ ∞

0
ψ(ερ) cos(ρ2)ρdρ.

Compute using an integration by parts that

2

∫ ∞

0
ψ(ερ) cos(ρ2)ρdρ =

∫ ∞

0
ψ(ερ)

d

dρ
sin(ρ2)dρ

= −ε
∫ ∞

0
ψ′(ερ) sin(ρ2)dρ

with boundary contributions that vanish. The integral on the right is O(1)

showing that the desired limit as ε→ 0 is equal to zero.

The next term in the asymptotics is itf̂(0) times

∫ ∞

0
eixy

2

2y2dy +

∫ 0

−∞
e−ixy

2

(−2y2)dy. (6.5)

The change of variables (6.4) writes the first term for x > 0 as

∫ ∞

0
eiρ

2 ρ2

x

dρ√
x

= x−3/2

∫ ∞

0
eiρ

2

ρ2 dρ.

Continuing, write

∫ ∞

0
eiρ

2

ρ2 dρ =
1

i

d

dx

∫ ∞

0
eixy

2

dy
∣∣∣
x=1

=
1

i

d

dx

( 1√
x

∫ ∞

0
eiρ

2

dρ
)∣∣∣
x=1

.

The last term is i/2 times the nonzero Fresnel integral
∫∞
0 eiρ

2

dρ. Treating

the second term in (6.5) the same way verifies that (6.5) is a nonzero constant

times x−3/2 as x→ +∞. ���

Example 6.3. The rightward equation is not strictly rightward moving.

The solution of the initial value problem with supp f(x) ⊂ {x ≥ 0} is not

usually supported in {x ≥ 0} for t > 0. In fact, for t > 0 and x → −∞ one

has v(t, x) ≈ c f̂(0)x−3/2 with c 6= 0. This shows that the solution has a tail

that extends all the way to −∞ whenever f̂(0) 6= 0. There is an analogous

non vanishing tail whenever f̂ is smooth in a neighborhood of ξ = 0 and

vanishes there at most to finite order.
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7. Asymptotics of the One Way Equations as t→ ∞

7.1. Decay uniform in x

The next proposition yields t−1/2 decay. There are two L1 → L∞ decay

estimates. The first when supp f̂ ⊂ {|ξ| ≤ 2} the second when supp f̂ ⊂
{Λ/2 ≤ |ξ| ≤ 2Λ}. The first result concerns the small frequency contribution.

Proposition 7.1. There is a constant C so that if f ∈ L1 with f̂ supported

in |ξ| ≤ 2, then for |t| ≥ 1,

∥∥e±iω(D)tf
∥∥
L∞(R)

≤ C

|t|1/2 ‖f‖L1 .

Proof. Step I. The plus and minus signs are nearly identical. Treat only

the sign plus. Denote w(t) := eiω(D)tf . The first step is to prove that if f̂ is

in addition absolutely continuous, then

∥∥w(t)
∥∥
L∞(R)

≤ C

|t|1/2
∫ 2

−2

∣∣∣∂f̂(ξ)
∂ξ

∣∣∣dξ.

Treat only t→ +∞. Define f ε to be the function whose Fourier Trans-

form is equal to f̂ on |ξ| ≥ ε and equal to zero on |ξ| ≤ ε. Denote by wε :=

eiω(D)tf ε. It is sufficient to prove that ‖wε(t)‖L∞ ≤ Ct−1/2
∫
|ξ|≥ε |∂f̂ ε/∂ξ|dξ

with a constant independent of ε ∈]0, 1].
The support of f̂ ε is contained in the union of two closed intervals, one

in ]0,∞[ and the other in ] − ∞, 0[. Treat the first. The second is nearly

identical.

For each t > 0,

max
x∈R

|wε(t, x)| = max
c∈R

|wε(t, ct)|, wε(t, ct) =

∫ 2

ε
eictξeiω(ξ)tf̂(ξ)dξ. (7.1)

Van der Corput’s lemma (see for example [10]), asserts for phase func-

tions φ that are real valued and C2 in [ε, 2] with |φ′′(x)| ≥ λ on [ε, 2] one

has

∣∣∣∣
∫ b

a
eiφ(x)ψ(x)dx

∣∣∣∣ ≤
8

λ1/2

(
|ψ(b)| +

∫ b

a
|ψ′(x)|dx

)
. (7.2)
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Take

φ(ξ, c) := t
(
ω(ξ) + cξ

)
.

On [ε, 2], φ′′ is bounded below by a strictly positive constant times t. Esti-

mate (7.2) with b = 2 ψ = f̂ , and, ψ(2) = 0, completes the proof.

Step II. Next suppose that f ∈ L1 with f̂ supported in [−2, 2]. Choose χ

with χ̂ ∈ C∞
0 (R) and χ̂ = 1 on −2 ≤ ξ ≤ 2 so χ̂f̂ = f̂ . Then

ŵ(t) = eiω(ξ)tf̂ = eiω(ξ)tf̂ χ̂ =
(
eiω(ξ)t χ̂

)
f̂

Taking the inverse Fourier transform yields a convolution representation

w = c
(
eiω(D)tχ

)
∗ f.

The proof of Step I shows that

‖eiω(D)tχ‖L∞ . t−1/2.

Young’s inequality yields

‖w(t)‖L∞ . ‖eiω(D)tχ‖L∞‖f‖L1

completing the proof. ���

Proposition 7.2. There is a constant C so that for all Λ ≥ 1 and f ∈ L1

with

supp f̂ ⊂
{
Λ

2
≤ |ξ| ≤ 2Λ

}

one has

∥∥e±iω(D)tf
∥∥
L∞(R)

≤ C Λ1/2

|t|1/2
∥∥f
∥∥
L1(R)

. (7.3)

Proof. Denote w(t) := eiω(D)tf . Define z(t, x) := v(t/(Λ)1/2, x/Λ). Then

z = eiω(D)tg, with g(x) := f(x/Λ).

The function g ∈ L1 with Fourier transform supported in 1/2 ≤ |ξ| ≤ 2

so Proposition 7.1 applies. Using that proposition to estimate z yields for
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t ≥ 1,

‖w(t)‖L∞ =
∥∥z
(
(Λ)1/2t

)∥∥
L∞

. (Λt)−1/2‖g‖L1 =
Λ

(Λt)1/2
‖f‖L1 =

Λ1/2

t1/2
‖f‖L1 .

���

Example 7.3. Denote by f =
∑
fn a standard Littlewood-Paley decom-

position with f0 supported in |ξ| ≤ 2, and, for n ≥ 1 f̂n supported in

Λ/2 < |ξ| < 2Λ with Λ = 2n. Then

‖Dsfn‖L1 . 2ns‖fn‖L1 . 2ns‖f‖L1 .

Applying (7.3) with Λ = 2n shows for s > 1/2, one has for |t| ≥ 1,

‖e±itω(D)f‖L∞ . |t|−1/2
(∥∥f‖L1 + ‖Dsf‖L1

)
.

Corollary 7.4. If f ∈ Hs(R) and φ ∈ C∞
0 (R) then, φ(x) e±itω(D) f tends

strongly to zero in Hs(R) as |t| → ∞.

Proof. The family of maps indexed by t, f 7→ φ(x)e±itω(D)f , are uniformly

bounded from Hs(R) to itself. Therefore it suffices to prove the conclusion

for f belonging to a dense subset of Hs(R). Take the dense set consisting

of f so that f̂ ∈ C∞
0 (R \ 0). For these data the solution v := e±itω(D)f is

smooth and for all j, lim|t|→]∞ ∂jxv → 0 uniformly on compact subsets of x

from the previous propositions applied to ∂jxv. ���

Remark 7.5. The estimates of Propositions 7.2 and 7.1 are sufficient as

inputs to yield Strichartz estimates following, for example, [5].

7.2. Large time asymptotics on lines x = x+ vt

The results of the preceding section do not reveal the one way character

of the equation. This is remedied by computing the large time behavior on

lines x = x+vt moving with velocity v. For the rightward equation there is

faster decay for v < 0. The analysis is straight forward when f̂ is compactly

supported and vanishes in a neighborhood of ξ = 0.

Proposition 7.6. Suppose that 2 ≤ k ∈ N and f̂ ∈ Ck0 (R \ 0) and that

v = e−itω(D)f . Define the set of active group velocities as

Γ(f) :=
{
ω′(ξ) : ξ ∈ supp f̂

}
⊂⊂ ]0,∞[. (7.4)
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i. If v /∈ Γ(f) then as t→ +∞

v(t, x+ vt) = O(t−k).

The estimate is uniform for (x,v) in compact subsets of R× (R\Γ(f)). The

hypothesis v /∈ Γ(f) holds for all v ≤ 0.

ii. If 0 < v ∈ Γ(f) then there is a unique ξ ∈ supp f so that ω′(ξ) = v. As

t→ +∞

v(t, x+ vt) =
ei(ξx−ω(ξ)t)

(ω′′(ξ)t)1/2
f̂(ξ) +O(t−1).

The estimate is uniform for x in compact sets and v ∈ Γ.

iii. Analogous results hold for t→ −∞ and also for the leftward equation.

Remark 7.7. i. Following part ii of Proposition 7.1 one can find a slightly

slower decay applicable for f that are not compactly supported but decay

at infinity.

ii. The solution is a familiar dispersive wave packet with all group velocities

strictly positive because of the compact support of f .

iii. There is a complete asymptotic expansion
∑∞

j=1 cj t
−j/2. If f̂ vanishes

to order k at ξ the decay in ii becomes O(t−(1+k)/2).

Proof. The solution is equal to 1/
√
2π times (6.1).

i. Follows from the principal of non stationary phase. The exponential term

in the integral is equal to

ei(ξ(x+vt)−ω(ξ)t) = eiξxeit(ξv−ω(ξ)).

The first factor has derivatives uniformly bounded and v − ω(ξ) is smooth

with non vanishing derivative on the compact region of integration. The

lower bound on the derivative is uniform for x in compact sets and v bounded

away from Γ(f). The only subtlety is when v = 0 where ω′ approaches zero

as ξ → ∞. But ξ is limited to supp f̂ so the region near ξ = ∞ does not

appear in the integral.

ii. Follows upon applying the stationary phase formula. ���
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There are three singular points. At ξ = 0 the function ω(ξ) is Hölder 1/2

and not better. As ξ → ±∞ the integration domain becomes non compact.

The next two propositions estimate the decay of solutions when the support

of f̂ reaches these singular points. When applying the results of this section

the function f̂ is typically split into pieces corresponding to a neighborhood

of the stationary point ξ to which part ii of Proposition 7.6 applies, a neigh-

borhood of ∞ to which Proposition 7.10 applies, a neighborhood of 0 where

the next proposition applies, and, a function to which the result of part i of

Proposition 7.6 applies. The next result concerns the neighborhood of the

origin.

Proposition 7.8. Suppose that f̂ ∈ C2
0 (R) and that 0 ∈ supp f̂ . Then

Γ(f) defined by (7.4) is of the form [α,∞[ for some α > 0. If v < α then

v = e−itω(D)f satisfies

v(t, x+ vt) =
4f̂(0)√
2π t2

+
o(1)

t2
.

The estimate is uniform for (x,v) belonging to compact subsets of R×] −
∞, α[.

Proof. The solution is a constant multiple of (6.1). The proof is by the

method of non stationary phase. The subtlety is that the phase is singular

at ξ = 0. Write the integral as
∫ 0
−∞+

∫∞
0 and treat first

∫∞
0 .

Must estimate
∫ ∞

0
eixξ f̂(ξ) eitφ(ξ) dξ, φ(ξ) := ξv− ω(ξ).

The hypothesis on v guarantees that the phase is non stationary in ξ > 0

so the asymptotic behavior is dominated by contributions from ξ = 0 where

the phase is singular. Make the change of variables ξ = y2. For ξ < 0 the

appropriate change would have been ξ = −y2. Use dξ = 2ydy to find,

∫ ∞

0
a(y) eitψ(y)dy, a(y) := eixy

2

f̂(y2)2y, ψ(y) := y2v − y.

Note that a(0) = 0 and a′(0) = 2f̂(0). Introduce the differential operator L
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and its transpose L†

L :=
1

itψ′(y)

∂

∂y
, so, Leitψ = eitψ, L†v := − ∂

∂y

( 1

itψ′
v
)
. (7.5)

The hypothesis on v implies that ψ′ 6= 0 on the domain of integration so L

has smooth coefficients.

An integration by parts without boundary terms because a(0) = 0 yields

∫ ∞

0
a(y)eitψ(y)dy =

∫ ∞

0
a(y)Leitψ(y)dy =

∫ ∞

0
L†a(y)eitψdy

=

∫ ∞

0
L†a(y)Leitψ dy = −

∫ ∞

0

1

itψ′
L†a(y)

∂

∂y
eitψdy.

(7.6)

Integrate by parts with a nonvanishing boundary contribution to find

∫ ∞

0
a(y) eitψ(y)dy =

[−eitψ
itψ′

L†a(y)
]
y=0

+

∫ ∞

0
(L†)2a(y)eitψdy. (7.7)

The integral on the right of (7.7) is of the form

1

t2

∫ ∞

0
g(y)eitψ(y)dy, g ∈ L1(]0,∞][.

This is o(1)/t2. Indeed, for any ε > 0 choose gε ∈ C∞
0 (]0,∞[) with ‖g −

gε‖L1 < ε. The corresponding integral with gε is O(t−∞) and the difference

is ≤ ε.

Therefore

∫ ∞

0
eixξf̂(ξ)eitφ(ξ) dξ =

∫ ∞

0
a(y)eitψ(y)dy =

−a′(0)
(it)2

+
o(1)

t2
=

2f̂(0)

t2
+
o(1)

t2
.

(7.8)

An entirely analogous computation shows that

∫ 0

−∞
eixξ f̂(ξ)eitφ(ξ)dξ =

2f̂(0)

t2
+
o(1)

t2
. (7.9)
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In fact, changing variable to ξ = −y2 with dξ = −2y yields

∫ 0

−∞
eixξ f̂(ξ) eitφ(ξ) dξ =

∫ 0

−∞
b(y) eitγ(y) dy, b(y) := e−ixy

2

f(−y2)(−2y),

γ(y) := ξx− ω(ξ) = −y2x− y.

Introduce M := (itγ′)−1∂y and its transpose M † with Meitγ = eitγ . An

integration by parts with vanishing boundary term yields

∫ 0

−∞
b(y) M2eitγ(y)dy =

∫ 0

−∞
M †b(y) Meitγ(y)dy

=

∫ 0

−∞

1

itγ′
M †b(y)∂ye

itγ(y)dy.

A final integration by parts yields

∫ 0

−∞
eixξ f̂(ξ) eitφ(ξ)dξ =

[
1

itγ′
M †b(y)eitγ(y)

]

y=0

+

∫ 0

−∞
(M †)2b(y)eitγ(y)dy.

The second term is o(1)/t2 proving (7.9).

Adding (7.8) and (7.9) proves the Proposition. ���

Remark 7.9. i. There is a complete asymptotic expansion in negative

powers of t if f̂ ∈ C∞
0 (R).

ii. If f̂ vanishes to order k ≥ 0 at the origin, the decay rate of v(t, x + vt)

is O(1/t2+k).

Proposition 7.10. i. Suppose that f̂ ∈ Ck(R), 0 /∈ supp f̂ , and that for all

0 ≤ j ≤ k, ∂jξ f̂ ∈ L1(R). Then Γ(f) =]0, α] for some α. If v /∈ [0, α], Then

as t→ ∞, v = e−itω(D)f satisfies

v(t, x+ vt) = O(t−k).

The estimate is uniform for x,v belonging to compact subsets of R × (R \
[0, α]).

ii. The analogous result is valid for t→ −∞ and for the leftward equation.
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Proof. With L from (7.5), the function
√
2π v(t, x+ vt) is equal to

∫
eixξ f̂(ξ)eitφ(ξ)dξ =

∫
eixξ f̂(ξ)Lk

(
eitφ(ξ)

)
dξ

=
1

(it)k

∫
eixξf̂(ξ)

( 1

φ′(ξ)

∂

∂ξ

)k(
eitφ(ξ)

)
dξ.

The coefficient 1/φ′ is smooth on the support of the integrand and has

an expansion

1

φ′(ξ)
=

∞∑

j=0

cj ξ
−j/2 (7.10)

near ξ = ∞. There is an analogous expansion at −∞. It follows that each

derivative of the coefficient 1/φ′ is uniformly bounded on the support of the

integrand. The integrability hypothesis on f̂ implies that one can integrate

by parts to find

ctkv(t, x + vt) =

∫ (
− ∂

∂ξ

1

φ′(ξ)

)k[
eixξ f̂(ξ)

](
eitφ(ξ)

)
dξ,

(
− ∂

∂ξ

1

φ′(ξ)

)k[
eixξ f̂(ξ)

]
∈ L1(R)

implying the desired estimate. ���

8. Spatially Truncated One Way Equations

In our numerical algorithms, we compute approximate values of u in an

interval I := [−L,L] ⊂ Rx. Denote by 1I(x) the indicator function of I.

The algorithms march forward by computing the restriction to I of ω(D)

applied to the restriction of u to I. This is equivalent to marching forward

in discrete time steps approximating the equation

ut + 1I(x)iω(D)1I(x)u = 0. (8.1)

If the initial data are supported in I then the solution remains supported in

that interval for all t > 0. The evolution equation with the discontinuous

cutoff 1I is singular. We can prove a good existence result if this cutoff is

replaced by a cutoff function a(x) that is Hölder 1/2. Rather than give that

slightly harder result we prove existence for a smooth cutoff.
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Proposition 8.1. Suppose that a ∈ C∞(R) and for each j, ∂jxa ∈ L∞(R).

If s ∈ R and g ∈ Hs(R) then there is exactly one solution u ∈ C(R ; Hs(R))

of the initial value problem

ut + a(x) i ω(D) a(x)u = 0, u(0) = g. (8.2)

In addition for all j ∈ N,

∂jxu ∈ C
(
R : Hs−j/2(R)

)
.

If s ≥ 0, then ‖u(t)‖L2(R) is independent of t.

Sketch of proof. The essential step is to derive Hs(Rd) a priori es-

timates. Treat only 0 ≤ s ∈ N. The L2 conservation for a solution

u ∈ C(R;H1/2(R)) ∩ C1(R;L2(R)) is proved by computing

d

dt
‖u‖2 =

d

dt
(u, u) = (ut, u) + (u, ut) = (−iaω(D)au, u) + (u,−iaω(Da)u)

= −i
(
(ω(D)au, au) − (au, ω(D)au)

)
= 0.

The key is derivative estimates. Estimate the L2(R) norm of ∂xu. The

equation satisfied by ∂u is

(∂t + i a ω(D) a)∂u = [∂, a iω(D)a]u.

The key is that [∂, aω(D)a] is a bounded operator from H1 to L2. To prove

the boundedness, write the commutator as

[∂, a]ω(D)a + aω(D)[∂, a]

Since [∂, a] is multiplication by a′ it is bounded. This is the step that fails

when a = 1I .
Using the L2 estimate in Duhamel’s formula yields

‖∂u(t)‖L2 ≤ ‖∂u(0)‖L2 + C

∫ t

0
‖[∂, aω(D)a]u(σ)‖L2dσ.

Insert

‖[∂, aω(D)a]u(σ)‖L2 ≤ C‖u(σ)‖H1
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to find an integral inequality

‖u(t)‖H1 ≤ ‖u(0)‖H1 + C

∫ t

0
‖u(σ)‖H1dσ.

Gronwall’s inequality implies that

‖u(t)‖H1 ≤ eC |t|‖u(0)‖H1 .

One gets an Hs(R) estimate for integer s ≥ 0 in the same way.

Denote by δh is the centered finite difference approximation to ∂x. In-

troduce the family of operators

ωh(D) :=
δh

|D|1/2 , ωh(ξ) =
sin(hξ)

h |ξ|1/2 .

For h fixed, the operator ωh(D) is bounded from Hs(R) to itself. As

h → 0 the operator converges to ω(D). Choose gh ∈ S(R) with gh → g in

Hs(R). A sequence of approximate solutions is defined as the solutions of

∂tu
h + a(x) i ωh(D) a(x)uh = 0, uh(0) = −gh.

Hs estimates for uh uniform on compact time intervals and 0 < h < 1 are

proved as for the case h = 0. As in §2.2 of [9], passage to the limit h → 0

proves existence.

For uniqueness observe that a solution in C(R ; Hs(R)) is automatically

C1(R ; Hs−1/2(R)). This regularity is sufficient to prove the Hs−1/2 a priori

estimate and therefore uniqueness. This completes the sketch of proof. ���
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