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Abstract

We consider a general system of hyperbolic balance laws in m space dimensions

(m ≥ 1). Under a set of conditions we establish the existence of global solutions for

the Cauchy problem when initial data are small perturbations of a constant equilibrium

state. The proposed assumptions in this paper are different from those in literature for

the system. Instead, our assumptions are parallel to those used in the study of hyperbolic-

parabolic systems. In one space dimension our assumptions are natural extensions of those

used in the study of the Green’s function of the linearized system. They are also sufficient

to the study of large time behavior in the pointwise sense for the nonlinear system, carried

out in a different paper.

1. Introduction

We consider a general system of hyperbolic balance laws

ut +
m
∑

i=1

fi(u)xi = r(u), m ≥ 1, (1.1)

where u, fi, r ∈ R
n. Here u is the unknown density function, representing

mass density, momentum density, etc; fi, 1 ≤ i ≤ m, are the flux functions;

and r represents external force, relaxation, chemical reactions and so forth.

We assume fi and r are given smooth functions of u, while u is a function
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of the space variable x = (x1, . . . , xm)t ∈ R
m and time variable t ∈ R

+. A

constant state ū is an equilibrium state if r(ū) = 0. We consider the Cauchy

problem of (1.1) with initial data u0(x):

u(x, 0) = u0(x), (1.2)

where u0 is a small perturbation of the constant equilibrium state ū.

There is an extensive literature about (1.1), on structural conditions,

wave patterns, energy estimates, existence of global solutions, large time

behavior, etc, for one dimensional and multidimensional general systems

or special systems. See [15, 12, 7, 2, 6, 19, 1, 10, 11, 18, 20, 21, 22] and

references therein. In this paper we propose a different set of hypotheses,

which lead to the global existence of solution to (1.1), (1.2). As to be seen

in the remarks following the hypotheses, they are parallel to those used to

study the global existence of solution for hyperbolic-parabolic systems in [9]

and other references by energy estimates. In the case of one space dimension,

they are natural extensions to those used to study the Green’s function of

the linearized system of (1.1) in [20]. They are also sufficient to the study

of large time behavior of (1.1), (1.2) in the pointwise sense in space and in

time (a recent joint work with J. Chen). Our hypotheses in fact are slightly

weaker than those proposed in [10] and in a more concise form, see Section

2 for details. We perform the energy estimate under the new assumptions

to obtain a parallel result as stated in Theorem 3.2 of [11]. This gives us

global existence, see Theorem 1.5. It is likely that the L2 decay estimates in

[11] and the global existence with critical regularity in [18] are still available

under the new assumptions. These topics, however, are left for future study.

Now we prepare to state our assumptions. Since we are interested in

small solutions, we consider a neighborhood of ū, denoted by O. Thus fi,

1 ≤ i ≤ m, and r are smooth functions of u in O. Define the equilibrium

manifold E as

E = {u ∈ O|r(u) = 0}. (1.3)
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Assumption 1. (i) Equation (1.1) can be written in the form

(

u1
u2

)

t

+

m
∑

i=1

(

fi1
fi2

)

(u)xi =

(

0

r2

)

(u), (1.4)

where u1, fi1 ∈ R
n1, u2, fi2, r2 ∈ R

n2, n1 + n2 = n with n2 > 0 , and

(r2)u2 ∈ R
n2×n2 is nonsingular.

(ii) There exists a strictly convex entropy function U (a scalar function

of u) such that U ′′f ′i, 1 ≤ i ≤ m, are symmetric in O while U ′′r′ is

symmetric, semi-negative definite on E. Here U ′′ is the Hessian of U

with respect to u, and f ′i and r′ are the Jacobian matrices of fi and r

with respect to u.

(iii) The null space of r′(ū) contains no eigenvectors of

A(ω) =

m
∑

i=1

ωif
′
i(ū) (1.5)

for all unit vectors ω = (ω1, . . . , ωm)t ∈ R
m.

Remark 1.1. Assumption 1(i) is natural since many physical models come

with a certain number of conservation laws. Here we set explicitly this

number as n1. For physical relevance n1 > 0 although we have no need of

such an assumption. (In fact, the case n1 = 0 is an easier one since the

solution decays exponentially in time.) However, we do need n2 > 0 with

(r2)u2 nonsingular. Otherwise, (1.1) becomes n hyperbolic conservation laws

and we do not expect global existence of classical solutions even when the

initial data are smooth and small.

Remark 1.2. Assumption 1(ii) is an extension of the classical Lax entropy

condition for hyperbolic conservation laws (r = 0 or n2 = 0) to include

the source term r. The Lax entropy condition states: There exists an

entropy pair (U,F ), where U = U(u) ∈ R is strictly convex in u, and

F = (F1(u), . . . , Fm(u))t ∈ R
m satisfies

U ′f ′i = F ′
i , 1 ≤ i ≤ m. (1.6)

Such a condition implies that U ′′f ′i , 1 ≤ i ≤ m, are symmetric, [5]. On the

other hand, if U ′′f ′i , 1 ≤ i ≤ m, are symmetric, then there exists an F (u) ∈

R
m such that (1.6) is satisfied, see Lemma 3.2 below. The symmetrization of
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f ′i by U
′′ in O gives us the well-posedness of (1.1), (1.2). This is a classical

result, e.g., see [4, 8], etc.

Remark 1.3. As the Lax entropy condition is extended to include the source

term r, however, in Assumption 1(ii) we require that U ′′ symmetrizes r′ on

E rather than in O. This is demanded by physics since for several important

models such as the dynamics of real gases, U ′′r′ is symmetric only on E but

not in O. On the other hand, it might not be sufficient to require U ′′r′ to be

symmetric at ū only for the purpose of global existence, see more discussion

after Theorem 1.5.

Remark 1.4. Assumption 1(iii) is known as Shizuta-Kawashima condition,

originally introduced for hyperbolic-parabolic systems, which may include

lower order terms. The Assumption implies the strong coupling between

the source term and the flux functions. Thus even n1 > 0, the source term

induces dissipation to the whole solution and gives decay in time. This

is clear through the study of Green’s function in one space dimension: In

conjunction with a linear version of Assumption 1(ii), Assumption 1(iii)

implies that the Green’s function of the linearized system consists of heat

kernels and exponentially decaying δ-functions, [17, 20].

We introduce the following notations to abbreviate the norms of Sobolev

spaces with respect to x:

‖ · ‖s = ‖ · ‖Hs(Rm), ‖ · ‖ = ‖ · ‖L2(Rm). (1.7)

Theorem 1.5. Let ū be a constant equilibrium state, Assumption 1 (i)−(iii)

hold, s > m
2 + 1 (m ≥ 1) be an integer, and u0 − ū ∈ Hs(Rm). Then there

exists a constant ε > 0 such that if ‖u0 − ū‖s ≤ ε, the Cauchy problem

(1.1), (1.2) has a unique global solution u. The solution satisfies u − ū ∈

C([0,∞);Hs(Rm)) ∩ C1([0,∞);Hs−1(Rm)), Dxu ∈ L2([0,∞);Hs−1(Rm)),

r(u) ∈ L2([0,∞);Hs(Rm)), and

sup
t≥0

‖u− ū‖2s(t) +

∫ ∞

0
[‖Dxu‖

2
s−1(t) + ‖r2(u)‖

2
s(t)] dt ≤ C‖u0 − ū‖2s, (1.8)

where C > 0 is a constant. Here Dxu denotes first partial derivatives of u

with respect to x.
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Theorem 1.5 is parallel to Theorem 3.2 in [11], which was obtained under

a slightly stronger set of assumptions, originally proposed in [10]. In Section

2 we discuss the relation between our set of hypotheses and the one in [11].

We see that ours is more concise. We want to point out that under slightly

weaker assumptions, i.e., the symmetrization of r′ by U ′′ is at ū rather than

on E, an energy estimate that implies global existence has been obtained

for the case m ≥ 3, [9]. The energy estimate in [9], however, contains the

integral of ‖u − ū‖2(t) with respect to t, which is unbounded for m < 3.

Therefore, it seems that it is necessary to assume U ′′r′ to be symmetric,

semi-negative definite on E, not just at ū. This is in any case a natural

assumption. In Section 3 we have preliminaries for the proof of Theorem 1.5.

In this section we also slightly relax Assumption 1(ii) to a weaker version,

Assumption 3(ii′). Assumption 1(ii) is more concise in its statement. See

Section 3 for details. In Section 4 we give the proof of Theorem 1.5 under

Assumptions 1(i), 3(ii′) and 1(iii). Throughout this paper we use C for a

universal positive constant.

2. Structural Conditions

As mentioned in Section 1, Theorem 1.5 is parallel to Theorem 3.2 in

[11], which was obtained under a set of assumptions proposed in [10]. In

this section we compare the two sets of hypotheses. For this we introduce

the following notation used in [10]:

M = {ψ ∈ R
n|ψtr(u) = 0, ∀u ∈ O}. (2.1)

Assumption 2 ([10]). (a) There exists a strictly convex entropy function U

such that f ′i(U
′′)−1, 1 ≤ i ≤ m, are symmetric in O, and r′(U ′′)−1 is

symmetric, semi-negative definite on E.

(b) On E the null space of r′(U ′′)−1 coincides with M .

(c) The null space of [r′(U ′′)−1](ū) contains no eigenvectors of

−U ′′(ū)A(ω)(U ′′)−1(ū), where A(ω) is defined in (1.5).

(d) In O a state u is an equilibrium state (u ∈ E) if and only if U ′(u)t ∈M .

Proposition 2.1. Under Assumption 2 (a)−(c), there exists a constant or-

thogonal matrix Q ∈ R
n×n such that the linear transformation ũ = Qu
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converts (1.1) into an equivalent system

ũt +

m
∑

i=1

f̃i(ũ)xi = r̃(ũ) (2.2)

that satisfies Assumption 1 (i)−(iii) in a small neighborhood of E.

Proof. Note that M is a subspace of R
n, independent of u. By Gram-

Schmidt process, there is an orthonormal basis {q1, . . . , qn1} of M , which

can be further extended to an orthonormal basis {q1, . . . , qn} of Rn. Clearly,

{qn1+1, . . . , qn} is an orthonormal basis of M⊥.

Let

Qt = (q1 · · · qn).

Then Q is a constant orthogonal matrix. Define the linear transformation

ũ = Qu, or u = Qtũ. (2.3)

Multiply (1.1) by Q from the left we have

ũt +

m
∑

i=1

f̃i(ũ)xi = r̃(ũ), (2.4)

where

f̃i(ũ) = Qfi(Q
tũ), 1 ≤ i ≤ m, r̃(ũ) = Qr(Qtũ). (2.5)

Our goal is to prove that under Assumption 2 (a)−(c), (2.4), (2.5) satisfy

Assumption 1 (i)−(iii).

Consider the first n1 components of r̃. For 1 ≤ i ≤ n1, by (2.5)

r̃1i = qtir(u) = 0

since qi ∈M . Therefore, (2.4) can be written as

(

ũ1
ũ2

)

t

+

m
∑

i=1

(

f̃i1
f̃i2

)

(ũ)xi =

(

0

r̃2

)

(ũ),

where ũ1, f̃i1 ∈ R
n1 , ũ2, f̃i2, r̃2 ∈ R

n2 , n1 + n2 = n. Here n2 > 0 unless
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M = R
n or r = 0. Noting

r̃2(ũ) = (qn1+1 · · · qn)
tr(Qtũ),

we have

(r̃2)ũ2 = (qn1+1 · · · qn)
tr′(u)(qn1+1 · · · qn). (2.6)

To prove that (2.6) is nonsingular we first consider u ∈ E. For this we

set (r̃2)ũ2v = 0 for v ∈ Rn2 and argue that v = 0. From (2.6) and noting

{qn1+1, . . . , qn} is a basis of M⊥, we conclude that if (r̃2)ũ2v = 0 then

r′(u)(qn1+1 · · · qn)v ∈M.

By Assumption 2 (b), we further conclude that

r′(u)[U ′′(u)]−1r′(u)(qn1+1 · · · qn)v = 0. (2.7)

Since r′(u)[U ′′(u)]−1 is symmetric on E by Assumption 2 (a), (2.7) becomes

[U ′′(u)]−1[r′(u)]tr′(u)(qn1+1 · · · qn)v = 0.

This further implies

vt(qn1+1 · · · qn)
t[r′(u)]tr′(u)(qn1+1 · · · qn)v = 0,

hence

r′(u)[U ′′(u)]−1U ′′(u)(qn1+1 · · · qn)v = 0.

Now Assumption (b) implies U ′′(u)(qn1+1 · · · qn)v ∈M . Since (qn1+1 · · · qn)v

∈M⊥ we have

vt(qn1+1 · · · qn)
tU ′′(u)(qn1+1 · · · qn)v = 0. (2.8)

Noting U ′′(u) is symmetric, positive definite from Assumption 2 (a), (2.8)

implies (qn1+1 · · · qn)v = 0. Since {qn1+1, . . . , qn} is a linearly independent

set, we must have v = 0. Therefore, we have proved that (r̃2)ũ2 is nonsingular

on E. As its determinant is a continuous function, it is nonsingular in a small

neighborhood of E as well. This proves that (2.4), (2.5) satisfy Assumption

1(i) in a small neighborhood of E.
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To verify that (2.4), (2.5) satisfy Assumption 1(ii) we set

Ũ(ũ) = U(u) = U(Qtũ).

By Assumption 2 (a), U ′′(u) is symmetric, positive definite in O. Thus

Ũũũ = QU ′′(Qtũ)Qt (2.9)

is symmetric, positive definite in Õ = {Qu|u ∈ O}. From (2.5) and (2.9),

Ũũũ(f̃i)ũ = QU ′′(Qtũ)f ′i(Q
tũ)Qt,

which is symmetric in Õ since f ′i(U
′′)−1 is symmetric in O by Assumption 2

(a). Similarly,

Ũũũr̃ũ = QU ′′(Qtũ)r′(Qtũ)Qt

is symmetric, semi-negative definite on Ẽ = {Qu|u ∈ E} by Assumption 2

(a). Thus we have verified that (2.4), (2.5) satisfy Assumption 1(ii).

For Assumption 1(iii), by (2.5) the matrix A(ω) corresponding to (2.4)

is

Ã(ω) =

m
∑

i=1

ωiQf
′
i(ū)Q

t = QA(ω)Qt,

where A(ω) is defined in (1.5). Also from (2.5) the null space of r̃ũ(Qū) =

Qr′(ū)Qt is the null space of r′(ū)Qt. If there exist λ ∈ R and η ∈ R
n such

that

r′(ū)Qtη = 0, QA(ω)Qtη = λη,

then

r′(ū)[U ′′(ū)]−1U ′′(ū)Qtη = 0, A(ω)Qtη = λQtη. (2.10)

The second equation in (2.10) is equivalent to

−U ′′(ū)A(ω)[U ′′(ū)]−1U ′′(ū)Qtη = −λU ′′(ū)Qtη. (2.11)

By Assumption 2 (c), the first equations of (2.10) and (2.11) imply

U ′′(ū)Qtη = 0.
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Therefore, η = 0 and Assumption 1(iii) is satisfied by (2.4), (2.5). ���

Proposition 2.1 shows that Assumption 2 (d) is redundant to obtain the

global existence of small solutions and the energy estimate (1.8). Although

Assumption 2 (d) may not be a true restriction as it is satisfied by some

physical examples, Assumption 1 (i)−(iii) are more concise than Assumption

2 (a)−(d). This could help when we extend the study to more general

systems, such as those violating the Shizuta-Kawashima condition.

3. Preliminaries

In this section we prove some lemmas to prepare for the proof of our

main result, Theorem 1.5. First we introduce new variables:

v ≡

(

u1
r2(u)

)

= v(u) =

(

v1
v2

)

(u). (3.1)

It is straightforward to calculate the Jacobian matrices of the transformation,

vu =

(

In1×n1 0n1×n2

(r2)u1 (r2)u2

)

,

uv = (vu)
−1 =

(

In1×n1 0n1×n2

−[(r2)u2 ]
−1(r2)u1 [(r2)u2 ]

−1

)

.

(3.2)

As mentioned in Section 1, Theorem 1.5 is to be proved with Assumption

1(ii) slightly relaxed to the following weaker version:

Assumption 3. (ii′) There exists a strictly convex entropy function U of u

such that U ′′f ′i, 1 ≤ i ≤ m, are symmetric in O and U ′′(ū)r′(ū) is symmetric,

semi-negative definite. Besides, if we partition the skew symmetric part of

U ′′(u)r′(u) as n1 + n2 in rows and columns:

S(u) =
1

2
[U ′′r′ − (U ′′r′)t](u) =

(

S1(u) S2(u)

−St
2(u) S3(u)

)

, (3.3)

then in a small neighborhood of ū we have

S2(u) = O(1)|r2(u)|, S3(u) = O(1)|r2(u)|. (3.4)
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Lemma 3.1. Under Assumption 1(i), Assumption 1(ii) implies Assumption

3(ii′).

Proof. Assumption 1(i) implies that u → v is a diffeomorphism because

(r2)u2 is invertible. Thus we write

S = S(u) = S(u(v)) = S(u(v1, v2)) = S(u(v1, 0)) +O(1)|v2| (3.5)

by Taylor expansion at (v1, 0). From (3.1) we see that v2 = r2(u) = 0

implies u ∈ E if u is in O. That is, in a small neighborhood of ū we have

u(v, 0) ∈ E. Assumption 1(ii) then implies S(u(v1, 0)) = 0, hence (3.5)

becomes S(u) = O(1)|v2| = O(1)|r2(u)|. This further implies (3.4). The

other statements in Assumption 3(ii′) are already included in Assumption

1(ii). ���

For hyperbolic conservation laws (r = 0) it is a classical result that if

there exist an entropy function U and entropy flux functions Fi, 1 ≤ i ≤ m,

such that

U ′f ′i = F ′
i , 1 ≤ i ≤ m,

then U ′′f ′i , 1 ≤ i ≤ m, are symmetric, [5]. Conversely, we have the following

lemma.

Lemma 3.2. If U and fi are smooth functions of u such that U is strictly

convex and U ′′f ′i are symmetric, 1 ≤ i ≤ m, then there exist smooth func-

tions Fi of u such that

U ′f ′i = F ′
i , 1 ≤ i ≤ m. (3.6)

Proof. A proof of Lemma 3.2 can be found in [10]. For completeness we

include the proof here. Since U is strictly convex, u → η = [U ′(u)]t is a

diffeomorphism. Thus we may consider

[fi(u(η))]η = f ′i(u)uη = f ′i(u)[U
′′(u)]−1, 1 ≤ i ≤ m. (3.7)

For each i by the assumption U ′′f ′i is symmetric, which implies that f ′i(U
′′)−1

is symmetric. Therefore, the left-hand side of (3.7) is symmetric. Conse-

quently,

∇η × fi(u(η)) = 0,
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and fi(u(η)) is conservative. That is, there exists a scalar function F̃i(η)

such that f ti (u(η)) = ∇ηF̃i(η). Set

Fi(u) = ηt(u)fi(u)− F̃i(η(u)).

Then

F ′
i (u) = f ti (u)U

′′(u) + U ′(u)f ′i(u)−∇ηF̃i(η(u))U
′′(u) = U ′(u)f ′i(u). ���

By direct calculation we have

U ′′(u)r′(u) =

(

Uu2u1(r2)u1 Uu2u1(r2)u2

Uu2u2(r2)u1 Uu2u2(r2)u2

)

, (3.8)

r′(u)tU ′′(u) =

(

(r2)
t
u1
Uu1u2 (r2)

t
u1
Uu2u2

(r2)
t
u2
Uu1u2 (r2)

t
u2
Uu2u2

)

. (3.9)

Lemma 3.3. If U ′′(ū)r′(ū) is symmetric then

[Uu2u2(r2)u1 ](ū) = [(r2)
t
u2
Uu1u2 ](ū), (3.10)

[Uu2u2(r2)u2 ](ū) = [(r2)
t
u2
Uu2u2 ](ū). (3.11)

If U ′′(ū)r′(ū) is semi-negative definite as well then [Uu2u2(r2)u2 ](ū) is semi-

negative definite.

Proof. This is a direct consequence of (3.8) and (3.9). ���

With (3.2) by direct calculation we also have

U ′′(u)uv(v) = U ′′(u)v−1
u (u)

=

(

Uu1u1 − Uu2u1(r2)
−1
u2

(r2)u1 Uu2u1(r2)
−1
u2

Uu1u2 − Uu2u2(r2)
−1
u2

(r2)u1 Uu2u2(r2)
−1
u2

)

. (3.12)

Lemma 3.4. If U ′′(ū)r′(ū) is symmetric then

U ′′(ū)uv(v̄) =

(

Uu1u1 − Uu2u1(r2)
−1
u2

(r2)u1 Uu2u1(r2)
−1
u2

0 Uu2u2(r2)
−1
u2

)

(ū), (3.13)
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where v̄ =

(

ū1
0

)

.

Proof. From (3.10) and (3.11), when u = ū we have

Uu1u2 − Uu2u2(r2)
−1
u2

(r2)u1

=
[

(r2)
−1
u2

]t[
(r2)

t
u2
Uu1u2 − (r2)

t
u2
Uu2u2(r2)

−1
u2

(r2)u1

]

=
[

(r2)
−1
u2

]t[
Uu2u2(r2)u1 − Uu2u2(r2)u2(r2)

−1
u2

(r2)u1

]

= 0.

Equation (3.13) follows from (3.12). ���

Lemma 3.5. Under Assumption 3(ii′), in a small neighborhood of ū we have

Uu1u2 − Uu2u2(r2)
−1
u2

(r2)u1 = O(1)|r2(u)|. (3.14)

Proof. We write the left-hand side of (3.14) as

[

(r2)
−1
u2

]t[
(r2)

t
u2
Uu1u2 − (r2)

t
u2
Uu2u2(r2)

−1
u2

(r2)u1

]

=
[

(r2)
−1
u2

]t
{

[

(r2)
t
u2
Uu1u2 − Uu2u2(r2)u1

]

+
[

Uu2u2(r2)u2 − (r2)
t
u2
Uu2u2

]

(r2)
−1
u2

(r2)u1

}

.

From (3.8) and (3.9), and using the notations in (3.3), the right-hand side is

2
[

(r2)
−1
u2

]t{
St
2(u) + S3(u)(r2)

−1
u2

(r2)u1

}

.

Thus by Assumption 3 (ii′), in a small neighborhood of ū we have (3.14). ���

Lemma 3.6. If U ′′(ū)r′(ū) is symmetric then

(utvU
′′r′uv)(ū) =

(

0 0

0
[

(r2)
−1
u2

]t
Uu2u2

)

(ū) =

(

0 0

0 Uu2u2(r2)
−1
u2

)

(ū). (3.15)

Proof. We write

utvU
′′r′uv = (U ′′uv)

tr′uv.

Applying (3.13) and (3.2), and noting r =

(

0

r2

)

, (3.15) is verified by direct

calculation. ���
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Let Dl
x be the partial derivatives (∂/∂x)α with a multi index α such

that |α| = l. For D1
x we write Dx, which has been introduced in Theorem

1.5. The following lemma states the two special cases of Gagliardo-Nirenberg

inequality needed later.

Lemma 3.7 ([14]). If w ∈ Hs(Rm) with s > m/2 then

‖w‖L∞ ≤ C1‖w‖s, (3.16)

where C1 is a constant depending on m and s only. If w ∈ L∞(Rm) and

Dl
xw ∈ L2(Rm), then for 1 ≤ i ≤ l,

‖Di
xw‖L2l/i ≤ C2‖w‖

1−i/l
L∞ ‖Dl

xw‖
i/l, (3.17)

with C2 depending only on i, l and m.

The following lemmas are Moser-type calculus inequalities, e.g. see [9,

13] and references therein. Here for completeness we include their proofs.

Lemma 3.8. Let w be a given smooth function of u in a neighborhood of ū.

If u− ū ∈ Hs(Rm) with ‖u− ū‖s ≤ ε and s > m/2 then

‖Dxw‖s−1 ≤ C‖Dxu‖s−1, (3.18)

where C is a constant depending only on m, s and ε.

Proof. We only need to prove

‖Dl
xw‖ ≤ C‖Dl

xu‖, 1 ≤ l ≤ s. (3.19)

By the chain rule

|Dl
xw| ≤ C

∑

α1,...,αl

|Dxu|
α1 · · · |Dl

xu|
αl ,

where α1, . . . , αl ≥ 0 are integers satisfying

α1 + 2α2 + · · ·+ lαl = l, (3.20)

and the constant C depends on l and the partial derivatives of w with respect

to u, thus on s,m and ε if we apply (3.16) to u−ū. By the triangle inequality
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and the generalized Hölder’s inequality, with

pi =
l

iαi
,

1

p1
+ · · · +

1

pl
= 1,

we have

‖Dl
xw‖ ≤ C

∑

α1,...,αl

‖|Dxu|
α1 · · · |Dl

xu|
αl‖ ≤ C

∑

α1,...,αl

‖Dxu‖
α1

L2l/1 · · · ‖D
l
xu‖

αl

L2l/l .

Applying (3.17) to the right-hand side and using (3.20) we have

‖Dl
xw‖ ≤ C

∑

α1,...,αl

‖u− ū‖
(1− 1

l
)α1+···+(1− l

l
)αl

L∞ ‖Dl
xu‖

α1
l
+···+

lαl
l

= C
∑

α1,...,αl

‖u− ū‖α1+···+αl−1
L∞ ‖Dl

xu‖.

Noting the assumption ‖u− ū‖s ≤ ε and by (3.16) we obtain (3.19). ���

Lemma 3.9. If Dxw1 ∈ H l−1(Rm)∩L∞(Rm) and w2 ∈ H l−1(Rm)∩L∞(Rm)

then

‖Dl
x(w1w2)− w1D

l
xw2‖ ≤ C(‖Dxw1‖L∞‖Dl−1

x w2‖+ ‖Dl
xw1‖‖w2‖L∞),

(3.21)

where C > 0 is a constant depending only on m and l.

Proof. By the product rule

|Dl
x(w1w2)− w1D

l
xw2| ≤ C

∑

1≤i≤l

|Di
xw1||D

l−i
x w2|

= C
∑

0≤i≤l−1

|Di
xDxw1||D

l−1−i
x w2|.

Let p = l−1
i and q = l−1

l−1−i and apply Hölder’s inequality. We have

‖Dl
x(w1w2)− w1D

l
xw2‖ ≤ C

∑

0≤i≤l−1

‖|Di
xDxw1||D

l−1−i
x w2|‖

≤ C
∑

0≤i≤l−1

‖Di
xDxw1‖L2(l−1)/i‖Dl−1−i

x w2‖L2(l−1)/(l−1−i) .
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Applying (3.17), which is also true for i = 0, to the right-hand side, we

obtain

‖Dl
x(w1w2)− w1D

l
xw2‖

≤ C
∑

0≤i≤l−1

‖Dxw1‖
1− i

l−1

L∞ ‖Dl
xw1‖

i
l−1‖w2‖

i
l−1

L∞ ‖Dl−1
x w2‖

1− i
l−1 .

By comparing ‖Dxw1‖L∞‖Dl−1
x w2‖ with ‖Dl

xw1‖‖w2‖L∞ , we obtain (3.21).���

Lemma 3.10. Let A ∈ R
n×n be a given smooth function of u in a neigh-

borhood of ū, and w be an n-vector valued function. If u− ū ∈ Hs(Rm) with

‖u− ū‖s ≤ ε, s > m/2 + 1, and w ∈ Hs−1(Rm), then for 1 ≤ l ≤ s we have

∥

∥Dl
x[A(u)w] −A(u)Dl

xw
∥

∥ ≤ C‖Dxu‖s−1‖w‖s−1, (3.22)

where C > 0 is a constant depending only on m, s and ε.

Proof. Equation (3.22) is a direct consequence of (3.21), (3.18) and

(3.16). ���

The next lemma concerns the symmetric linear system

A0wt +

m
∑

j=1

Ajwxj = Bw, (3.23)

where

A0 = (utvU
′′uv)(ū), Aj = (utvU

′′f ′juv)(ū), B = (utvU
′′r′uv)(ū). (3.24)

Under Assumptions 1(i) and 3(ii′) A0 is symmetric, positive definite, B is

symmetric, semi-negative definite, and Aj , 1 ≤ j ≤ m, are symmetric. Set

Ã(ω) =

m
∑

j=1

ωjAj = utv(ū)U
′′(ū)A(ω)uv(ū), (3.25)

where ω = (ω1, . . . , ωm)t is a unit vector in R
m. Here A(ω) is defined in

(1.5). Clearly, Assumption 1(iii) is equivalent to the following statement:

The null space of B contains no eigenvectors of A−1
0 Ã(ω) for all unit vectors

ω ∈ R
m. The following lemma is a special case of Theorem 1.1 in [16].



158 YANNI ZENG [June

Lemma 3.11. Assume that A0 is symmetric, positive definite, B is sym-

metric, semi-negative definite, and Aj , 1 ≤ j ≤ m, are symmetric. Also as-

sume that the null space of B contains no eigenvectors of A−1
0 Ã(ω), Ã(ω) =

∑m
j=1 ωjAj, for all unit vectors ω = (ω1, . . . , ωm)t ∈ R

m. Then there exists

a compensating matrix K(ω) for the system (3.23), satisfying

(i) K(ω) is smooth on the unit sphere S
m−1, and K(−ω) = −K(ω) for

each ω ∈ S
m−1.

(ii) K(ω)A0 is skew symmetric for each ω ∈ S
m−1.

(iii) 1
2 [K(ω)Ã(ω)+ Ã(ω)tK(ω)t]−B is symmetric, positive definite for each

ω ∈ S
m−1.

4. Energy Estimate

In this section we prove our main result, Theorem 1.5. By Lemma 3.1

we may replace Assumption 1(ii) by Assumption 3(ii′). Thus throughout

this section we assume Assumptions 1(i), 3(ii′) and 1(iii).

Local existence of solutions for symmetric hyperbolic systems with small

Cauchy data is classical. For instance, see Theorem 5.1.1 in [3] and references

in Section 5.6 therein. Here we cite Theorem 2.9 in [9]:

Theorem 4.1. Suppose that in O there is a symmetric, positive definite

matrix A0 ∈ R
n×n such that A0(u)f

′
i(u), 1 ≤ i ≤ m, are symmetric. Let

m ≥ 1 and s > m
2 + 1 be integers. If u0 − ū ∈ Hs(Rm) and u0(x) takes

value in a compact subset of O for all x ∈ R
m, then there exists a positive

constant T such that the Cauchy problem (1.1), (1.2) has a unique solution

u satisfying

u− ū ∈ C([0, T ];Hs(Rm)) ∩ C1([0, T ];Hs−1(Rm)).

Clearly, under Assumption 3(ii′) and by setting A0(u) = U ′′(u) we have

local existence theory for (1.1), (1.2). To prove Theorem 1.5 we need to

perform a priori energy estimates. We introduce the following notation:

N2
s (t) = sup

0≤τ≤t
‖u− ū‖2s(τ) +

∫ t

0

[

‖Dxu‖
2
s−1(τ) + ‖r2(u)‖

2
s(τ)

]

dτ. (4.1)
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By standard continuity argument, all we need is to prove the following propo-

sition.

Proposition 4.2. Let Assumptions 1(i), 3(ii′) and 1(iii) hold, s > m
2 + 1

(m ≥ 1) be an integer, and T > 0 be a constant. Let u be a solution to (1.1),

(1.2), satisfying u − ū ∈ C([0, T ];Hs(Rm)) ∩ C1([0, T ];Hs−1(Rm)), Dxu ∈

L2([0, T ];Hs−1(Rm)), and r2(u) ∈ L2([0, T ];Hs(Rm)). If Ns(T ) is bounded

by a small positive constant independent of T , then Ns(T ) ≤ C‖u0 − ū‖s,

where C is a constant independent of T .

Proof. We set 0 ≤ t ≤ T . Let

E (u) = U(u)− U(ū)− U ′(ū)(u− ū). (4.2)

Differentiating (4.2) with respect to t and substituting (1.1) into the result,

we have

Et = [U ′(u)− U ′(ū)]ut

= −U ′(u)
m
∑

i=1

f ′i(u)uxi + U ′(ū)
m
∑

i=1

fi(u)xi + [U ′(u)− U ′(ū)]r(u). (4.3)

Now we apply Lemma 3.2 to the right-hand side of (4.3) to obtain

Et =

m
∑

i=1

[−Fi(u) + U ′(ū)fi(u)]xi + [U ′(u)− U ′(ū)]r(u). (4.4)

For the second term on the right-hand side of (4.4) we consider u as a

function of v defined in (3.1). Setting

v̄ ≡ v(ū) =

(

v̄1
v̄2

)

=

(

ū1
0

)

, (4.5)

we write

[U ′(u)− U ′(ū)]r(u) = rt(u)

∫ 1

0

d

dθ
U ′(u(v̄ + θ(v − v̄)))tdθ

= rt(u)

∫ 1

0
U ′′(u(v̄ + θ(v − v̄)))uv(v̄ + θ(v − v̄)) dθ(v − v̄)

= T1 + T2, (4.6)
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where

T1 = rt(u)U ′′(ū)uv(v̄)(v − v̄), (4.7)

T2 = rt(u)

∫ 1

0

[

U ′′(u(v̄+θ(v−v̄)))uv(v̄+θ(v−v̄))−U
′′(ū)uv(v̄)

]

dθ(v−v̄).

Under Assumption 3(ii′) we may apply (3.13) to T1:

T1 = rt2(u)
[

Uu2u2(r2)
−1
u2

]

(ū)r2(u). (4.8)

From Lemma 3.3
[

(r2)
t
u2
Uu2u2

]

(ū) is symmetric, semi-negative definite, while

from Assumptions 1(i) and 3(ii′) (r2)
t
u2

and Uu2u2 are nonsingular. Therefore,
[

(r2)
t
u2
Uu2u2

]

(ū) is symmetric, negative definite. This implies
[

Uu2u2(r2)
−1
u2

]

(ū)

is symmetric, negative definite as well. Thus (4.8) implies that there exists

a constant c1 > 0 such that

T1 ≤ −c1|r2(u)|
2. (4.9)

From (3.12), (3.13), (3.1), (4.5) and Assumption 1(i),

rt(u)
[

U ′′(u(v̄ + θ(v − v̄)))uv(v̄ + θ(v − v̄))− U ′′(ū)uv(v̄)
]

(v − v̄)

= rt2(u)
[

Uu1u2 − Uu2u2(r2)
−1
u2

(r2)u1

]

(u(v̄ + θ(v − v̄)))(u1 − ū1)

+rt2(u)
{

[

Uu2u2(r2)
−1
u2

]

(u(v̄ + θ(v − v̄)))−
[

Uu2u2(r2)
−1
u2

]

(ū)
}

r2(u).(4.10)

By Gagliardo-Nirenberg inequality, Lemma 3.7, if Ns(T ) is bounded by a

sufficiently small positive constant (independent of T ), then u is in a small

neighborhood of ū, and we may apply Lemma 3.5. Thus (3.14) implies that

the right-hand side of (4.10) is reduced to

O(1)|r2(u)||r2(u(v̄ + θ(v − v̄)))||u1 − ū1|+O(1)|r2(u)|
2|u− ū| (4.11)

for 0 ≤ θ ≤ 1. From (4.7) we integrate (4.11) with respect to θ to obtain

T2 = O(1)|r2(u)||u1 − ū1|

∫ 1

0
|r2(u(v̄ + θ(v − v̄)))| dθ

+O(1)|r2(u)|
2|u− ū|. (4.12)

From (3.1) and since u → v is a diffeomorphism, see the proof of Lemma
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3.1,

(

ū1+θ(u1−ū1)

θr2(u)

)

= v̄+θ(v−v̄) = v(u(v̄+θ(v−v̄))) =

(

u1(v̄ + θ(v − v̄))

r2(u(v̄+θ(v−v̄)))

)

.

That is,

r2(u(v̄ + θ(v − v̄))) = θr2(u). (4.13)

Substituting (4.13) into (4.12) we have

T2 = O(1)|r2(u)|
2|u− ū|. (4.14)

Equations (4.4), (4.6), (4.9) and (4.14) give us

Et =
m
∑

i=1

[−Fi(u) + U ′(ū)fi(u)]xi + T1 + T2

≤

m
∑

i=1

[−Fi(u) + U ′(ū)fi(u)]xi − c1|r2(u)|
2 +O(1)|r2(u)|

2|u− ū|

≤

m
∑

i=1

[Fi(ū)− Fi(u) + U ′(ū)fi(u)− U ′(ū)fi(ū)]xi −
c1
2
|r2(u)|

2 (4.15)

if |u − ū| is sufficiently small, or if Ns(T ) is sufficiently small. Integrating

(4.15) on R
m × [0, t], we have

∫

Rm

E (u(x, t)) dx +
c1
2

∫ t

0

∫

Rm

|r2(u)|
2(x, τ) dxdτ ≤

∫

Rm

E (u(x, 0)) dx.

(4.16)

From (4.2), E (u) = 1
2U

′′(ū+ θ(u− ū))(u− ū, u− ū) for some 0 ≤ θ ≤ 1. By

Assumption 3(ii′), there exist constants c2 > c3 > 0 such that

c3|u− ū|2 ≤ E (u) ≤ c2|u− ū|2. (4.17)

Substituting (4.17) into (4.16) gives us

‖u− ū‖2(t) +

∫ t

0
‖r2(u)‖

2(τ) dτ ≤ C‖u0 − ū‖2, (4.18)

where C > 0 is a constant independent of t.

Next we consider derivatives of u. This part is similar to the proofs of



162 YANNI ZENG [June

Lemma 3.1 and Lemma 3.2 in [9], and the corresponding part in the proof

of Proposition 3.1 in [11]. We include this part for completeness.

For 1 ≤ l ≤ s we applyDl
x to (1.1) and multiply the result by (Dl

xu)
tU ′′(u).

This gives us

(Dl
xu)

tU ′′(u)Dl
xut + (Dl

xu)
tU ′′(u)

m
∑

i=1

Dl
xfi(u)xi = (Dl

xu)
tU ′′(u)Dl

xr(u).

(4.19)

Noting U ′′(u) is symmetric, we have

(Dl
xu)

tU ′′(u)Dl
xut =

1

2

[

(Dl
xu)

tU ′′(u)Dl
xu
]

t
−

1

2
(Dl

xu)
tU ′′(u)tD

l
xu. (4.20)

Similarly, U ′′(u)f ′i(u) , 1 ≤ i ≤ m, are symmetric by Assumption 3(ii′).

Thus

(Dl
xu)

tU ′′(u)Dl
xfi(u)xi

= (Dl
xu)

tU ′′(u)f ′i(u)D
l
xuxi + (Dl

xu)
tU ′′(u)

{

Dl
x[f

′
i(u)uxi ]− f ′i(u)D

l
xuxi

}

=
1

2

[

(Dl
xu)

tU ′′(u)f ′i(u)D
l
xu
]

xi
−

1

2
(Dl

xu)
t[U ′′(u)f ′i(u)]xiD

l
xu

+(Dl
xu)

tU ′′(u)
{

Dl
x[f

′
i(u)uxi ]− f ′i(u)D

l
xuxi

}

. (4.21)

For the right-hand side of (4.19), since l ≥ 1 we may write Dl
x =

Dl−1
x Dxk

for some 1 ≤ k ≤ m. Thus

(Dl
xu)

tU ′′(u)Dl
xr(u)

= (Dl
xu)

t(U ′′r′)(u)Dl
xu+ (Dl

xu)
tU ′′(u)

{

Dl−1
x [r′(u)uxk

]− r′(u)Dl
xu
}

.

For the first term on the right-hand side we change variables and use v as

defined in (3.1), and linearize the leading term around ū. This gives us

(Dl
xu)

tU ′′(u)Dl
xr(u)

=
[

Dl−1
x (uvvxk

)
]t
(U ′′r′)(u)Dl−1

x (uvvxk
)

+(Dl
xu)

tU ′′(u)
{

Dl−1
x [r′(u)uxk

]− r′(u)Dl
xu
}

= (Dl
xv)

t(utvU
′′r′uv)(ū)D

l
xv + (Dl

xv)
t
[

(utvU
′′r′uv)(u)− (utvU

′′r′uv)(ū)
]

Dl
xv

+
{

[

Dl−1
x (uvvxk

)
]t
(U ′′r′)(u)Dl−1

x (uvvxk
)− (Dl

xv)
t(utvU

′′r′uv)(u)D
l
xv
}

+(Dl
xu)

tU ′′(u)
{

Dl−1
x [r′(u)uxk

]− r′(u)Dl
xu
}

. (4.22)
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We apply (3.15) to the first term on the right-hand side, and note (3.1).

Then we compare the result with (4.8) and follow the argument that leads

to (4.9) to obtain

(Dl
xv)

t(utvU
′′r′uv)(ū)D

l
xv = [Dl

xr2(u)]
t
[

Uu2u2(r2)
−1
u2

]

(ū)Dl
xr2(u)

≤ −c1|D
l
xr2(u)|

2, (4.23)

where c1 > 0 is the same constant as in (4.9).

Now we integrate (4.19) on R
m × [0, t] and apply (4.20)−(4.23):

1

2

∫

Rm

[

(Dl
xu)

tU ′′(u)Dl
xu
]

(x, t) dx + c1

∫ t

0

∫

Rm

|Dl
xr2(u)|

2(x, τ) dxdτ

≤
1

2

∫

Rm

[

(Dl
xu0)

tU ′′(u0)D
l
xu0
]

(x)dx+T3+T4+T5+T6+T7+T8, (4.24)

where

T3 =
1

2

∫ t

0

∫

Rm

[

(Dl
xu)

tU ′′(u)tD
l
xu
]

(x, t) dxdτ,

T4 =
1

2

∫ t

0

∫

Rm

{ m
∑

i=1

(Dl
xu)

t
[

U ′′(u)f ′i(u)
]

xi
Dl

xu

}

(x, τ) dxdτ, (4.25)

T5 = −

∫ t

0

∫

Rm

{ m
∑

i=1

(Dl
xu)

tU ′′(u)
[

Dl
x(f

′
i(u)uxi)− f ′i(u)D

l
xuxi

]

}

(x, τ) dxdτ,

T6 =

∫ t

0

∫

Rm

{

(Dl
xv)

t
[

(utvU
′′r′uv)(u)− (utvU

′′r′uv)(ū)
]

Dl
xv
}

(x, τ) dxdτ,

T7 =

∫ t

0

∫

Rm

{

[

Dl−1
x (uvvxk

)
]t
(U ′′r′)(u)Dl−1

x (uvvxk
)

− (Dl
xv)

t(utvU
′′r′uv)(u)D

l
xv
}

(x, τ) dxdτ,

T8 =

∫ t

0

∫

Rm

{

(Dl
xu)

tU ′′(u)
[

Dl−1
x (r′(u)uxk

)− r′(u)Dl
xu
]

}

(x, τ)dxdτ.

Applying (1.1) we have

T3 = O(1)

∫ t

0

∫

Rm

[

|Dl
xu|

2(|Dxu|+ |r(u)|
]

(x, τ) dxdτ

= O(1)

∫ t

0
‖Dl

xu‖
2(τ)

(

‖Dxu‖L∞(τ) + ‖r(u)‖L∞(τ)
)

dτ.
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Noting ‖r(u)‖L∞ = ‖r(u)− r(ū)‖L∞ = O(1)‖u− ū‖L∞ , and by Lemma 3.7,

‖Dxu‖L∞(τ) + ‖u− ū‖L∞(τ) ≤ C‖u− ū‖s(τ) ≤ CNs(τ), we have

T3 = O(1)Ns(t)

∫ t

0
‖Dl

xu‖
2(τ) dτ = O(1)N3

s (t). (4.26)

Similarly,

T4 + T6 = O(1)N3
s (t) +O(1)Ns(t)

∫ t

0
‖Dl

xv‖
2(τ) dτ = O(1)N3

s (t), (4.27)

where we have applied (3.18).

For T5 we use Lemma 3.10 to bound the commutator. From (4.25),

(3.16) and (3.22), and by Hölder’s inequality,

T5 = O(1)

∫ t

0

m
∑

i=1

‖Dl
xu‖
∥

∥Dl
x[f

′
i(u)uxi ]− f ′i(u)D

l
xuxi

∥

∥(τ) dτ

= O(1)

∫ t

0
‖Dl

xu‖‖Dxu‖
2
s−1(τ) dτ = O(1)N3

s (t). (4.28)

Similarly,

T7 =

∫ t

0

∫

Rm

{

[

Dl−1
x (vtxk

utv)− (Dl−1
x vxk

)tutv
]

(U ′′r′)(u)Dl
xu
}

(x, τ) dxdτ

+

∫ t

0

∫

Rm

{

(Dl
xv)

t(utvU
′′r′)(u)

[

Dl−1
x (uvvxk

)− uvD
l−1
x vxk

]

}

(x, τ)dxdτ

= O(1)

∫ t

0

[

‖Dl
xu‖‖Dxu‖s−1‖Dxv‖s−1+‖Dl

xv‖‖Dxu‖s−1‖Dxv‖s−1

]

(τ)dτ

= O(1)N3
s (t), (4.29)

where we have noted that (3.22) is trivial when l = 0, and we have used

(3.18). T8 is similar to T7 hence

T8 = O(1)N3
s (t). (4.30)

Combining (4.24) and (4.26)-(4.30), and noting U ′′ is symmetric, posi-

tive definite by Assumption 3(ii′), we obtain

‖Dl
xu‖

2(t) +

∫ t

0
‖Dl

xr2(u)‖
2(τ) dτ ≤ C‖Dl

xu0‖
2 + CN3

s (t) (4.31)

for 1 ≤ l ≤ s. By taking summation of (4.31) with respect to l and (4.18)
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we further obtain

‖u− ū‖2s(t) +

∫ t

0
‖r2(u)‖

2
s(τ) dτ ≤ C‖u0 − ū‖2s + CN3

s (t). (4.32)

To obtain the other term in the integral for N2
s (t) we consider the equa-

tion for v. Thus we multiply (1.1) by u−1
v from the left:

vt +

m
∑

j=1

u−1
v f ′j(u)uvvxj = u−1

v r(u(v)). (4.33)

Next we linearize (4.33) around v̄ = v(ū), and set w = v − v̄:

wt +
m
∑

j=1

(u−1
v f ′juv)(ū)wxj = (u−1

v r′uv)(ū)w + R̃,

where

R̃ =
m
∑

j=1

[

(u−1
v f ′juv)(ū)− (u−1

v f ′juv)(u)
]

vxj

+
[

(u−1
v r)(u)− (u−1

v r′uv)(ū)(v − v̄)
]

. (4.34)

This further gives us

(utvU
′′uv)(ū)wt +

m
∑

j=1

(utvU
′′f ′juv)(ū)wxj = (utvU

′′r′uv)(ū)w +R,

or

A0wt +

m
∑

j=1

Ajwxj = Bw +R, (4.35)

where A0, Aj and B are as defined in (3.24) and

R = (utvU
′′uv)(ū)R̃. (4.36)

Note that under Assumptions 1(i), 3(ii′) and 1(iii) we may apply Lemma

3.11 to (4.35), see the discussion above Lemma 3.11. That is, there exists a

compensating matrix K(ω), which is smooth on ω ∈ S
m−1, K(ω)A0 is skew

symmetric on S
m−1, and 1

2

[

K(ω)Ã(ω) + Ã(ω)tK(ω)t
]

− B is symmetric,

positive definite on S
m−1. Recall that Ã(ω) =

∑m
j=1 ωjAj .

We take Fourier transform of (4.35) with respect to x, and denote the
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transform of w as ŵ. Then we multiply the result by −i|ξ|ŵ∗K(ω) from the

left, where ξ is the Fourier variable, ŵ∗ is the conjugate transpose of ŵ, and

ω = ξ/|ξ| ∈ S
m−1:

−i|ξ|ŵ∗K(ω)A0ŵt + |ξ|2ŵ∗K(ω)Ã(ω)ŵ = −i|ξ|ŵ∗K(ω)(Bŵ + R̂). (4.37)

Noting K(ω)A0 is real, skew symmetric, we take the real part of (4.37) to

arrive at

−
i

2
|ξ|
[

ŵ∗K(ω)A0ŵ
]

t
+ |ξ|2ŵ∗

{1

2

[

K(ω)Ã(ω) + Ã(ω)tK(ω)t
]

−B
}

ŵ

= −|ξ|2ŵ∗Bŵ − Re
{

i|ξ|ŵ∗K(ω)Bŵ
}

− Re
{

i|ξ|ŵ∗K(ω)R̂
}

. (4.38)

Next we multiply the equation by |ξ|2l, 0 ≤ l ≤ s − 1, and integrate the

result over Rm× [0, t]. Since 1
2

[

K(ω)Ã(ω) + Ã(ω)tK(ω)t
]

−B is symmetric,

positive definite on S
m−1, there exists a constant c4 > 0 such that the second

term on the left-hand side of (4.38) is bounded below by c4|ξ|
2|ŵ|2. Thus

we have

c4

∫ t

0

∫

Rm

|ξ|2l+2|ŵ|2(ξ, τ) dξdτ ≤ T9 + T10 + T11 + T12, (4.39)

where

T9 =
i

2

∫ t

0

∫

Rm

|ξ|2l+1
[

ŵ∗K(ω)A0ŵ
]

t
(ξ, τ) dξdτ,

T10 = −

∫ t

0

∫

Rm

|ξ|2l+2
(

ŵ∗Bŵ
)

(ξ, τ) dξdτ,
(4.40)

T11 = −

∫ t

0

∫

Rm

Re
{

i|ξ|2l+1ŵ∗K(ω)Bŵ
}

(ξ, τ) dξdτ,

T12 = −

∫ t

0

∫

Rm

Re
{

i|ξ|2l+1ŵ∗K(ω)R̂
}

(ξ, τ) dξdτ,

Now we estimate each term in (4.40). Clearly

T9 =
i

2

∫

Rm

|ξ|2l+1
[

ŵ∗K(ω)A0ŵ
]

(ξ, t) dξ

−
i

2

∫

Rm

|ξ|2l+1
[

ŵ∗K(ω)A0ŵ
]

(ξ, 0) dξ

= O(1)

∫

Rm

|ξ|2l+2|ŵ|2(ξ, t) dξ +O(1)

∫

Rm

|ξ|2l|ŵ|2(ξ, t) dξ
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+O(1)

∫

Rm

|ξ|2l+2|ŵ|2(ξ, 0) dξ +O(1)

∫

Rm

|ξ|2l|ŵ|2(ξ, 0) dξ

= O(1)
[

‖Dl+1
x w‖2(t) + ‖Dl

xw‖
2(t) + ‖Dl+1

x w‖2(0) + ‖Dl
xw‖

2(0)
]

.(4.41)

From (3.24), (3.15) and the definition of w,

T10 = −

∫ t

0

∫

Rm

|ξ|2l+2
{

r̂∗2
[

Uu2u2(r2)
−1
u2

]

(ū)r̂2

}

(ξ, τ) dξdτ,

= O(1)

∫ t

0

∫

Rm

|ξ|2l+2|r̂2|
2(ξ, τ) dξdτ

= O(1)

∫ t

0
‖Dl+1

x r2(u)‖
2(τ) dτ. (4.42)

Similarly,

T11 ≤ C

∫ t

0

∫

Rm

|ξ|2l+1
(

|ŵ||r̂2|
)

(ξ, τ) dξdτ

≤
c4
4

∫ t

0

∫

Rm

|ξ|2l+2|ŵ|2(ξ, τ) dξdτ + C

∫ t

0

∫

Rm

|ξ|2l|r̂2|
2(ξ, τ) dξdτ

≤
c4
4

∫ t

0

∫

Rm

|ξ|2l+2|ŵ|2(ξ, τ) dξdτ + C

∫ t

0
‖Dl

xr2(u)‖
2(τ) dτ, (4.43)

T12 ≤ C

∫ t

0

∫

Rm

|ξ|2l+1
(

|ŵ||R̂|
)

(ξ, τ) dξdτ

≤
c4
4

∫ t

0

∫

Rm

|ξ|2l+2|ŵ|2(ξ, τ) dξdτ + C

∫ t

0
‖Dl

xR‖
2(τ) dτ. (4.44)

From (4.34) and (4.36) we write

R = R1 +R2 +R3, (4.45)

where

R1 = (utvU
′′uv)(ū)

m
∑

j=1

[

(u−1
v f ′juv)(ū)− (u−1

v f ′juv)(u)
]

vxj ,

(4.46)
R2 = (utvU

′′uv)(ū)(u
−1
v r)(u), R3 = −(utvU

′′uv)(ū)(v − v̄).

For 0 ≤ l ≤ s− 1, from (3.22), (3.16), (3.19) and (3.15),

‖Dl
xR1‖

2 ≤C

m
∑

j=1

∥

∥Dl
x

(

u−1
v f ′juvvxj

)

−
(

u−1
v f ′juv

)

(u)Dl
xvxj

∥

∥

2
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+ C

m
∑

j=1

‖u− ū‖2L∞‖Dl
xvxj‖

2

≤C‖Dxu‖
2
s−1‖Dxv‖

2
s−1 + C‖u− ū‖2s‖Dxv‖

2
s−1

≤C‖u− ū‖2s‖Dxu‖
2
s−1,

‖Dl
xR2‖

2 ≤C
∥

∥Dl
x

(

u−1
v r
)

(u)
∥

∥

2

≤C
∥

∥Dl
x

(

u−1
v r
)

(u)− u−1
v (u)Dl

xr(u)
∥

∥

2
+ C‖Dl

xr(u)‖
2

≤C‖Dxu‖
2
s−1‖r2(u)‖

2
s−1 + C‖r2(u)‖

2
l ,

‖Dl
xR3‖

2 =
∥

∥

[

Uu2u2(r2)
−1
u2

]

(ū)Dl
xr2(u)

∥

∥

2
≤ C‖Dl

xr2(u)‖
2 ≤ C‖r2(u)‖

2
l .

Therefore,

‖Dl
xR‖

2 ≤ C
(

‖u− ū‖2s
(

‖Dxu‖
2
s−1 + ‖r2(u)‖

2
s−1

)

+ C‖r2(u)‖
2
s−1.

Equation (4.44) becomes

T12 ≤
c4
4

∫ t

0

∫

Rm

|ξ|2l+2|ŵ|2(ξ, τ) dξdτ + CN4
s (t) + C

∫ t

0
‖r2(u)‖

2
s−1(τ) dτ.

(4.47)

Combining (4.39), (4.41)-(4.43) and (4.47), and noting 0 ≤ l ≤ s − 1,

we arrive at

∫ t

0

∫

Rm

|ξ|2l+2|ŵ|2(ξ, τ) dξdτ ≤ C
[

‖w‖2s(t) + ‖w‖2s(0) +

∫ t

0
‖r2(u)‖

2
s(τ) dτ

]

+CN4
s (t). (4.48)

Since the left-hand side can be replaced by
∫ t
0 ‖D

l+1
x w‖2(τ) dτ , we have

∫ t

0
‖Dxw‖

2
s−1(τ) dτ ≤ C

[

‖w‖2s(t) + ‖w‖2s(0) +

∫ t

0
‖r2(u)‖

2
s(τ) dτ

]

+CN4
s (t).

(4.49)

Noting w = v(u)− v̄ and u = u(v) = u(v̄ + w), form (3.19) we have

‖w‖s ≤ C‖u− ū‖s, ‖Dxu‖s−1 ≤ C‖Dxw‖s−1. (4.50)

Applying (4.50) to (4.49) we obtain

∫ t

0
‖Dxu‖

2
s−1(τ) dτ
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≤ C1

[

‖u− ū‖2s(t) +

∫ t

0
‖r2(u)‖

2
s(τ) dτ

]

+C1‖u0 − ū‖2s + C1N
4
s (t), (4.51)

where C1 > 0 is a constant independent of t.

We multiply (4.51) by a small positive constant c, and add it to (4.32):

‖u− ū‖2s(t) +

∫ t

0
‖r2(u)‖

2
s(τ) dτ + c

∫ t

0
‖Dxu‖

2
s−1(τ) dτ

≤ C‖u0 − ū‖2s +CN3
s (t) + cC1

[

‖u− ū‖2s(t) +

∫ t

0
‖r2(u)‖

2
s(τ) dτ

]

.

We choose c > 0 such that cC1 ≤
1
2 . This gives us

‖u−ū‖2s(t)+

∫ t

0
‖r2(u)‖

2
s(τ) dτ+

∫ t

0
‖Dxu‖

2
s−1(τ) dτ ≤ C‖u0−ū‖

2
s+CN

3
s (t).

Noting 0 ≤ t ≤ T and the definition of Ns(t) in (4.1), we have

N2
s (T ) ≤ C‖u0 − ū‖2s + CN3

s (t),

which implies that if Ns(T ) is bounded by a small positive constant inde-

pendent of T , then

N2
s (T ) ≤ C‖u0 − ū‖2s. ���
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