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Abstract

Let G be a reductive, connected algebraic group over an algebraic closure of a finite
field. We define a tensor structure on the category of perverse sheaves on G which are
direct sums of unipotent character sheaves in a fixed two-sided cell; we show that this is
equivalent to the centre with a known monoidal abelian category (a categorification of the

J-ring associated to the same two-sided cell).

Introduction

0.1. Let k be an algebraically closed field. Let G be a reductive connected
group over k. Let W be the Weyl group of G and let ¢ be a two-sided cell of
W. Let C°G the category of perverse sheaves on GG which are direct sums of
unipotent character sheaves whose associated two-sided cell (see 1.5) is ¢ and
let C°B? be the category of semisimple G-equivariant perverse sheaves on B2
(the product of two copies of the flag manifold) which belong to c. Now C¢32
has a structure of monoidal category (truncated convolution) introduced in
HE] such that the induced ring structure on the Grothendieck group is the
J-ring attached to c, see ﬂﬂ, 18.3]. In this paper, we define and study a
structure of braided monoidal category (truncated convolution) on C°G in
the case where

(a) k is an algebraic closure of a finite field Fy,

thus proving a conjecture in ﬂﬁ] In the case where k has characteristic zero
such a monoidal structure was defined by Bezrukavnikov, Finkelberg and
Ostrik M] (in the language of D-modules), who also proved in that case
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(b) the existence of an equivalence between C°G and the centre of the
monoidal category C¢B?

and conjectured that (b) holds without restriction on the characteristic. Note
that (b) is made plausible by the fact that, as a consequence of a conjecture in
the last paragraph of [18, 3.2] and of the classification of unipotent character
sheaves in Nj, the simple objects of the centre of C°B? should be in bijection
with the simple objects of C°G. (The idea that the derived category of
character sheaves with unspecified c is equivalent to the centre of the derived
category of G-equivariant sheaves on B2 with unspecified ¢, appeared in Ben-
Zvi and Nadler’s paper E] and in M], again in characteristic zero; we refer
to this case as the “untruncated” case.)

In this paper we prove (b) in the case where k is as in (a), see Theorem
9.5. (In the remainder of this paper we assume that k, F, are as in (a).) Much
of the proof involves the definition and study of truncated versions y;, ¢, * of
several known functors y, ¢, * in the untruncated case. Here y is the known
induction functor from complexes on B2 to complexes on G which I used in
the 1980’s in the definition of character sheaves; ¢ is an adjoint of x which
I used in the late 1980’s to characterize the character sheaves (see 2.5); * is
the convolution of complexes of sheaves on G defined by Ginzburg [7]. The
truncated version  of x has been already used (but not named) in [15]. Note
that our definition of the truncated convolution * and truncated restriction
¢ involves in an essential way the weight filtrations; it is not clear how these
operations are related to the corresponding operations in characteristic zero
considered in M] where weight filtrations do not appear. (In our definition of
X the consideration of weight filtrations is not necessary.) Much of this paper
is concerned with establishing various connections between x,¢,*. One of
these connections, the adjointness of x and ¢ (of which the untruncated
version holds by definition) is here surprisingly complicated. We first prove
a weak form of it (§8) which we use in the proof of Theorem 9.5 and we then
use Theorem 9.5 to prove its full form (Theorem 9.8).

In §10 we discuss the possibility of a noncrystallographic extension of
some of our results, making use of [5].

Throughout this paper we assume that we have a fixed split F ;-structure

on G.

This paper contains several references to results in ﬂﬁ] which in loc.cit.
are conditional on the cleanness of character sheaves; these references are
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justified since cleanness is now available (see @] and its references). This
paper also contains several references to [19, §14]; these are justified by the
results in [19, §15].

We will show elsewhere that the methods and results of this paper extend
to non-unipotent character sheaves on G (at least when the centre of G is
connected).

I wish to thank Victor Ostrik for some useful comments.

0.2. Notation. Let B be the variety of Borel subgroups of G, with the
F ,-structure inherited from G. Let v = dim B, A = dim(G), p = rk(G). We
shall view T as an indexing set for the orbits of G acting on B2 := B x B by
simultaneous conjugation; let O,, be the orbit corresponding to w € W and
let O, be the closure of O, in B%. Note that O,, O,, are naturally defined
over Fy. For w € W we set |w| = dimO,, — v (the length of w). Define
War € W by the condition |wpes| = v.

For B € B, let Ug be the unipotent radical of B. Then B/Up is indepen-
dent of B; it is “the” maximal torus T" of G. It inherits a split F,-structure
from G. Let X be the group of characters of T

Let RepW be the category of finite dimensional representations of W
over Q; let IrrWW be a set of representatives for the isomorphism classes
of irreducible objects of RepW. For any E € IrrtW we denote by ET the
object of IrrW which is isomorphic to the tensor product of F and the sign
representation.

For an algebraic variety X over k we denote by D(X) the bounded
derived category of constructible Q;-sheaves on X (I is a fixed prime number
invertible in k); let M (X)) be the subcategory of D(X) consisting of perverse
sheaves on X. If X has a fixed F -structure Xy, we denote by D,,(X) what
in H, 5.1.5] is denoted by D%, (X0, Q;). Note that any object K € Dy, (X)
can be viewed as an object of D(X) which will be denoted again by K. For
K € D(X) and i € Z let H'K be the i-th cohomology sheaf of K, HLK its
stalk at € X, and let K’ be the i-th perverse cohomology sheaf of K. For
K € D(X) (or K € D, (X)) and n € Z we write K|[[n]] = K[n](n/2) where
[n] is a shift and (n/2) is a Tate twist; we write © (K) for the Verdier dual of
K. Let M,,(X) be the subcategory of D,,,(X) whose objects are in M(X).
If K € M,(X) and j € Z we denote by W’ K the subobject of K which
has weight < j and is such that K/W7K has weight > j, see ﬂ, 5.3.5]; let
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griK = WIK /WK be the associated pure perverse sheaf of weight j.
For K € D,,(X) we shall often write K1} instead of gr;(K)(i/2).

If K € M(X) and A is a simple object of M(X) we denote by (A : K)
the multiplicity of A in a Jordan-Holder series of K.

For i € Z and K € D,,,(X) let 7<;K € D,,,(X) be what in H] is denoted
by pTSZ'K.

Assume that C' € D,,(X) and that {C;;¢ € I} is a family of objects
of D, (X). We shall write C' = {C;;i € I} if the following condition is
satisfied: there exist distinct elements 41,19, ...,is in I, objects C’]’- € D (X)
(j =0,1,...,s) and distinguished triangles (C]’-_l,C]’-,CZ-j) forj=1,2,...,s
such that Cf = 0, C;, = C; moreover, C; = 0 unless i = i; for some j € [1, s].
(See [21], 32.15].)

We will denote by p the variety consisting of one point. For any variety
X let £x = a1Q; € D,,, X where a : X x T — X is the obvious projection.
We sometimes write £ instead of £x.

Let v be an indeterminate. For any ¢ € Q[v,v"!] and any k € Z we
write (k; ¢) for the coefficient of v* in ¢. Let A = Z[v,v™'].

Contents

Preliminaries and truncated induction.
Truncated restriction.

Truncated convolution on B2.

Truncated convolution on G.

Truncated convolution and truncated restriction.
Analysis of the composition (x.

Analysis of the composition (x (continued).

Adjunction formula (weak form).

© X N e o W e

Equivalence of C°G with the centre of CB2.

10. Remarks on the noncrystallographic case.



2015] TRUNCATED CONVOLUTION OF CHARACTER SHEAVES 5
1. Preliminaries and Truncated Induction

1.1. For y € W let L, € D,,(B?) be the constructible sheaf which is Q,
(with the standard mixed structure of pure weight 0) on O, and is 0 on
B? — Oy; let Lg € D,,(B?) be its extension to an intersection cohomology
complex of Oy (equal to 0 on B2 — O,). Let L, = Lg[ﬂy\ +v]] € D (B?).
Let r > 1. For w = (wy,wa,...,w,) € W" we set |w| = |wy|+ -+ |w,|.
For any i < i’ in [1,7] let p; s+ : B"™ — B2 be the projection to the i,
factors. From the definitions we see that

Ly = piy L, @ piaLh, ® ... @ piy L, € Dpn(BHY)
is the intersection cohomology complex of the projective variety
O = {(By, By,...,B,) € BV (B;_1, B;) € Oy,Vi € [1,7]}

extended by 0 on B! — ol (it has the standard mixed structure of pure
weight 0). For any J C [1,7] we set

O;]v = {(Bo,Bl, ... ,BT) € BT—H; (Bi—laBi) € @wZ\V/Z € J, (Bi—17Bi) c Owi
el - J)

Let iy : OF — oLl (resp. 7 : ol ol — O\[,‘l,’ﬂ) be the obvious open
(resp. closed) imbedding and let LY, € D,,,(B"*) (resp. L, € D, (B"1)) be
z'(*]LL},’T} (resp. if,*LL%/T]) extended by 0 on B+ — O (resp. B+ — (O —
0O7)); we have a distinguished triangle

(a) (L3 L L)
in D,,(B"*). We have the following result.

(b) For any h € Z, any composition factor of (L))" € M(B"™*1) is of the
form LL}/}T}HW/’ +v] for some w' = (wi,wh, ..., w.) € W such that w; = w)
for allie J.

By a standard argument this can be reduced to the case where r = 1.
We then use the fact that (LZ)" € M(B?) is equivariant for the diagonal

G-action and all G-equivariant simple perverse sheaves on 32 are of the form
L, for some y € W.
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We show:
(¢) (L [lw|+v —1))! =0 for any j > 0.

It is enough to show that dimsuppH" (L [|w| + v — 1]) < —h for any
h € Z. Assume first that h < —|w| — v. Since L&’T] is an intersection

cohomology complex, we have

dim supp’}-[h_l(LL},’ﬂHw] +v]) < —h+1,

hence
dimsuppH" LI [|w| +v]) < —h+1,
hence
dimsuppH" ! (L [[w| +v]) < —h,
hence
dim suppH" (L [|w| +v —1]) < —h.
Next we assume that h = —|w| — v + 1. Then

dim suppH" (LI [|w| + v]) < dim(OL\l,’T] 0y <|w|+v—1=—h,

hence dimsuppH” (L [|w| + v —1]) < —h. Now assume that h > —|w]| —
v+ 2. Then ’Hh_l(LL},’r]HW\ +v]) = 0 hence H" (L [|w| + v]) = 0 hence
HM(LI [[w| + v — 1]) = 0. This proves (c).

1.2. For 'L,%L,...,"L in D,,(B?) we set
'Le?Le...0"L=py(p5'L@p}°L®...@p5_ 1, L) € Dn(B?).
If w=(wy,ws,...,w,)is as in 1.1 we set
LY = pon L = 1% oLl e.. eLf €D, (B
If Jis asin 1.1, then
(a) porLl =1L e?Le...e"L cD,,(B%

where 'L = Lk, for i € J, 'L = Ly, for i € [1,7] — J.
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Using the decomposition theorem H] for the proper map py,., we see that
(b) L [1w) 2 Guew ez (L [k + [w]]) @V @0

in D(B?) where N(w, k) € N.

1.3 Let H be the Hecke algebra of W (see ﬂﬁ, 3.2] with L(w) = |w|) over A
and let {cy;w € W} be the “new” basis of H, see ﬂﬁ, 5.2]. Asin ﬂﬁ, 13.1],
for x,y € W we write c,cy = >, cyp P y,-c. where hy . € A. For z,z € W
we write z < x if there exists £ € He,H such that c, appears with # 0
coefficent in the expansion of ¢ in the new basis. This is a preorder on W.
Recall that the two-sided cells of W are the equivalence classes associated
to this preorder. For z,y € W we write x ~ y if x,y belong to the same
two-sided cell, that is z <y and y < . For z,y € W we write x ~ y if z,y
belong to the same left cell of W, see ﬂﬁ, 8.1]. If ¢ is a two-sided cell and
w € W we write w < ¢ (resp. ¢ < w) if w < w' (resp. w’ < w) for some
w' € ¢; we write w < ¢ (resp. ¢ < w) if w < ¢ (resp. ¢ < w) and w ¢ c.
If ¢, are two-sided cells we write ¢ < ¢’ (resp. ¢ < ¢) if w < w' (resp.
w < w') for some w € c,w’ € ¢/. Let a: W — N be the a-function in ﬂﬁ,
13.6].

If ¢ is a two-sided cell, then for all w € ¢ we have a(w) = a(c) where
a(c) is a constant. Note that the numbers N(w, k) in 1.2(b) satisfy:

(a) Cwy Cwy - - - Cupy = Z OwCw Where ¢, = Z N(w, k:)vk.

weWw kEZ

If x,y,z € W then
hey,. = hi, v 2% 4 higher powers of v,
hay. = h; 12 4 lower powers of v

"E7y?z

x7y7z

ﬂﬂ, P4));if bt . #0thenx ~ y ~ z (see ﬂﬁ, P8]) hence a(z) = a(y

x7y7z

where R}, , € N; moreover, if hy, . # 0 then a(z) < a(z), a(y) < a(z) (see
)

If ¢ is a two-sided cell of W then the subquotient

(@wGW;chQCw)/(@wEW;w<cQCw)
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of the group algebra Q[W] is naturally an object [c] of RepW. If A is a left

cell of W contained in ¢ then the subquotient

(@wGW;wEA or w<cQCw)/(@w€W;w<cQCw)

of the group algebra Q[WW] is naturally an object [A] of RepW.

For E € IrtW, there is a unique two-sided cell cg of W such that [cg]
contains E. (This differs from the usual definition of two -sided cell attached

to E by multiplication on the left or right by wqz-)

Until the end of §9 we fix a two-sided cell ¢ of W and we set a = a(c).

Since for w € ¢ we have (in (a)):

b = E , hwl,wmzzhzz,w&zs s hzrfl,wrv'u”

29,23, ,2r—1 In W

we see that

(b)
N(w,k) #0 = k> —(r—1)a;N(w,—(r —1)a) #0 = w; € c for all 7.

In addition, if w1y, ws, ..., w, are in ¢, then

*
(C) N(w 7" - 1 2 :hw1,W27Z2 22,W3,23 hzr 1,Wr,w
where the sum is taken over all 2o, 23,...,2-_1 in c.

Let J be the free Z-module with basis {¢,;z € W}. It is known (see ﬂﬁ,
18.3]) that there is a well defined structure of associative ring (with 1) on J
such that if z,y € W then t,t, = > _ hy, .t.. For each two-sided cell ¢/
let J¢ be the subgroup of J generated by {tz7 z€c}. ThenJ < is a subring
of J and we have J = @ J< (as rings) where ¢’ runs over the two-sided cells

of W.

If wq,ws, ..., w, above are in ¢ then clearly,

(d) bty - - =Y N(w,—(r — 1)a)ty

wece

where N(w,—(r —1)a) is as in (c).
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The unit element of J¢ is > deD,, ty where D¢ is the set of distinguished
involutions of ¢/. Let D = UgDer. We define v : H — A ® J by ¥(cy,) =
ZzeVV,deD;a(d):a(z) hg.d.-t.. From [19, 18.8] we see that ¢ is a homomorphism
of A-algebras with 1. Specializing v to 1 we get a ring homomorphism
Y1+ Z[W] — J where Z[W] is the group algebra of W. This becomes
an isomorphism 1/)9 after tensoring by Q (see ﬂﬁ, 20.1]). For E € IrrW
we denote by F the simple Q ® J-module which corresponds to E under
1/1?. Now the Q(v) ® J-module Q(v) ®q Ex can be regarded as a Q(v) ®4
H-module E(v) via the algebra homomorphism (actually an isomorphism)
Q(v) ®4 H = Q(v) ® J induced by .

Let IrrcW = {E € ItW;cg = c}. Let E € IrtW. From the definitions
we see that we have F € IrrW if and only if E, is a simple Q ® J®-module.
From the definitions, for any z € ¢ we have

(e) tr(cs, E(v)) = tr(t;, Ex)v® + lower powers of v.

Lemma 1.4. Let r > 1 and let w = (w1, wa,...,w,) € W',

(a) Assume that w; € c for some i € [1,7] and that w € W,k € Z are such
that N(w, k) in 1.2(b) is # 0. Then either w € ¢, k > —(r — 1)a or
w=<c;ifwecand k= —(r—1)a, then wj € c for all j € [1,7].

(b) Assume that w; € ¢ for somei € [1,r]. If j € Z (resp. j > v+ (r—1)a)
then (LS, [|wl|])’ is a direct sum of simple perverse sheaves of the form
L. where z € W satisfies z < ¢ (resp. z < c).

(c) Assume that w; < ¢ for some i € [1,r] and that w € W, k € Z are such
that N(w, k) in 1.2(b) is # 0. Then w < c.

(d) Assume that w; < c for some i € [1,r]. If j € Z then (L%[|w|])? is
a direct sum of simple perverse sheaves of the form L, where z € W
satisfies z < c.

We prove (a). If » = 1 the result is obvious (we have k = 0). We
now assume that » > 2. From the definitions we see that there exists a
permutation wi, w), ..., w) of wy,ws,...,w,, a sequence z1,29,...,2 in W
and a sequence fa, ..., f. in N[v,071] such that (i) 21 = w} € ¢, 2z, = w, (ii)
for any i € [2,7], c;, appears with coefficient f; in c., ¢, or in cyycz,, (iii)
(k; fafs... fn) # 0 (see 0.2). From the definition of < we have z, < z,_1 =<
... =29 2 z1. Hence z, < ¢, a(z,) > a(z—1) > - > a(z2) > a(zg) = a (see
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ﬂﬂ, P4]), v2#) f; € N[v] for i = 2,...,r. Hence v2(=2)t-+alz) g 3 f ¢
Nfv] so that k + a(z2) + --- 4+ a(z,) > 0. We also see that if z, € ¢ so that
a(z,) = athen a(z,) =a(z,—1) =--- =a(ze) =aand k+ (r—1)a > 0. Now
assume that z, € ¢ and k = —(r —1)a. Then v22)++aGr) £ 2 f e N[y
has # 0 constant term hence v2(*)f; € N[v] has # 0 constant term for

1=2,...,7r. Using ﬂﬁ, P8], we deduce that z;, z;_1,w, are in the same two-
sided cell for i = 2,...,7r. Hence wh,...,w). are in c. Since w] € ¢, we see
that wy,...,w, are in c. This proves (a).

Note that in (a) we have necessarily w < c¢. Replacing ¢ in (a) by the

two-sided cell containing w; in (¢) we deduce that (c) holds.

We prove (b). By 1.2(b) we have
() (La[wlY = Guewrez((Lu) ™) VN = @ e (Ly) #N ),

Hence if L, appears as a summand in the last direct sum then N(z,v—j) # 0.
Using (a) we see that z < ¢ and that z < ¢ if v — j < —(r —1)a. This proves
(b). The same proof, using (c) instead of (a) yields (d).

1.5. We consider the maps BQLX LG where
X={(B,B,9)€BxBxG;gBg =B}, f(B,B',9)=(B,B),n(B,B',g) =

Now L + x(L) = m f*L defines a functor D,,(B?) — D,,(G). Fori € Z,L €
Dy (B?) we write x*(L) instead of (y (L))"

The functor y is the main tool used in the definition ] of (unipotent)
character sheaves. For any z € W we set R, = X(LE) € D (G). A unipotent
character sheaf is a simple perverse sheaf A € M(G) such that (A : RL) #0
for some z € W,j € Z. Let CS(G) be a set of representatives for the

isomorphism classes of unipotent character sheaves.

By ﬂa, 14.11], for any A € CS(G), any z € W and any j € Z we have

(a) (A:R)=(j—A—[z[(=1)"% Y captr(c, E(v)))

EclrrW
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where E(v) is as in 1.3 and c4 g are uniquely defined rational numbers; for
E’' € Rep(W) we set

CAE = Z (multiplicity of E in E')ca p.
EelnrW
Moreover, given A, there is a unique two-sided cell c4 of W such that c4 g =
0 whenever E € IrrW satisfies cg # c4; this differs from the two-sided cell
associated to A in , 16.7] by multiplication on the left or right by waz-
Note that

(b) (A: R%) # 0 for some z € cq,j € Z and conversely, if (A : R%) # 0 for
zeW,j €Z, then ca = z;

see [2d, 41.8], [2d, 44.18].

For example, if G = GLa(k) and W = {1, s}, we have CS(G) = {4y, A1}
with A7 2 Ay = Q[A], and Ry = Ag[-A] @ Ai[-A], R, = Ag[-A] @
Ao[-A—2]. Thus R® = Ay Ay, R = 0if j # Aand R® = Ay, RA2 = 4,
R =0if j ¢ {A,A+2}. We have rtW = {E,, F;} where Ej is the unit

representation, F4 is the sign representation and
tr(cr, Eo(v)) = 1,tr(cy, By (v)) = 1,tr(cs, Eg(v)) = v+ v~ tr(es, By (v)) = 0.
It follows that ca; g;) = d; for i,5 € {0,1}. Hence ca, = cg, = {s} (resp.
€Ay = CE, = {1})

We return to the general case. For A € CS(G) let ag be the value of

the a-function on c4. If z € W, E € Irr(W) satisfy tr(c,, E(v)) # 0 then

cp = z; if in addition we have z € cg, then

tl“(cz, E(U)) = Z VZ,E,h'UaE_h
h>0

where 7y, g 5, € Z is zero for large h and ag is the value of the a-function on

cp. Hence from (a) we see that
(¢) (A: RL) =0 unless c4 = z and, if z € c4, then

(A:R)) = (—1)/"2( — A —|2; > ca, Bz m 0" ")
h>0,E€lrrWicgp=ca
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which is 0 unless j — A — |z| < aa.

For Y = G or Y = B2 let M®Y be the category of perverse sheaves on Y
whose composition factors are all of the form A € CS(G), when Y = G, or
of the form L, with z € W (when Y = B?). Let MZY (resp. M<Y) be the
category of perverse sheaves on Y whose composition factors are all of the
form A € CS(G) with c4 < ¢ (resp. c4 < ¢), when Y = G, or of the form
L. with z < ¢ (resp. z < c¢) when Y = B2 Let D*Y (resp. DY or DY)
be the category of all K € D(Y) such that K € M*Y (resp. K* € MY or
Kie MXY) foralli € Z. Let M®Y (or MY, or MY be the category
of all K € M,,Y which are also in M*Y (or M=Y or M<Y). Let DAY
(or DXY, or DY) be the category of all K € D,,Y which are also in D*Y
(or DZY or DZY). From (c) we deduce:

(d) If = < c then R, € M3G for allj € Z and. If z € c and j > a+A+|z,
then R. € M=G. If z < c then R € M=G for all j € Z.

Lemma 1.6. Letr > 1, J C [1,7], J # 0 and w = (w1, we, ..., w,) € W".

Let € = A +ra.

(a) Assume that w; € c for some i € [1,r]. If j € Z (resp. j > &) then
Xj(poT!LL}/T]HWH) is in M=G (resp. M=G).

(b) Assume that w; € c for some i € J. If j € Z (resp. j > &) then
X! (por L [|w]) is in MZG (resp. M=G).

(¢) Assume that w; € c for some i € J. If j > € then the cokernel of the
map

X o LL[w 1)) = X7 (por L[ w]])

associated to 1.1(a) is in M~G.

(d) Assume that w; € c for some i € J. If j € Z (resp. j > €) then
X (pori Ly [[wl]) is in MZG (resp. M~G).

(e) Assume that w; < c for some i € J. If j € Z then Xj(poﬂLL},ﬂHwH) €
MZG and X (pon LY [|wl]) € M7G.

We prove (a). Let A be a simple perverse sheaf on G and let j € Z be
such that A is a composition factor of y/ (poMLL},’T} [[wl]) = x/tIWI(L2,). Then
there exists A’ such that (A : xJTWI=R (L)"') # 0. By 1.2(b) we have

(L) = @pewpez((Lulk — [w| — )" EN@H
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_ @wew7kez((Lw)h’+k—\W\—V)€BN(w7k) — @wGW(Lw)®N(w7IW|+V_h,)'

Hence A is a composition factor of
Buew (O (L)) PNV,

Thus there exists z € W such that N(z,|w| + v — k') # 0 and (A :
YHWIZR (L)) # 0. From N(z,|w| +v — k') # 0 and 1.4(a) we see that
z = c. We also see that A € C'S(G) and c4 < z, see 1.5(b); hence c4 < c.
If 2z <corif cy < 2z then ¢4 < ¢. Assume now that z € c and 2z € cy4
so that c4 = c¢. From 1.4 we see that |w| +v —h > —(r — 1)a that is
B <|wl+v+(r—1)a.

We have (A : Rg_h/HWHVHZ') # 0 hence by 1.5(c) we have
J=W 4wl vtz - A=z <aa
that is j — A" + |w| + v — A < a. Combining this with the inequality
K <|w|+ v+ (r—1)a we obtain j < A + ra. This proves (a).

We prove (b). Let A be a simple perverse sheaf on G and j € Z
be such that (A : x7(ponLL[|w]])) # 0. There exists h such that (A :
39 (pon (B [IWI))P) [ ])) # 0. We have (£ [w]])* # 0 hence (E4[jw] + v —
1])h=¥+1 =£ 0 hence by 1.1(c), h — v +1 < 0. From 1.1(b) we see that there
exists w = (w],w),...,w.) € W" such that w; = w/ for all i € J and such
that A is a composition factor of

X (port (LW |+0]) [=R)) = X3 (pon (LS [[w'])) = I+ (L, [[W' ).

From (a) (for w' instead of w) we see that A € C'S(G), c4 = ¢ and that
ca<cifj+v—h>A+rathatis,if j>h+A—-v+4ra. If j>A+ra
then using h — v + 1 < 0 (that is 0 > h — v) we see that we have indeed
j>h+ A —v+ra. This proves (b).

We prove (c). From 1.1(a) we get a distinguished triangle

(X ort L [1w[1]), X (por L [[[w(1]), x(por 3, [[[w]1])

in D,,(G). This gives rise for any j to an exact sequence

® X oL W) = X o L Iw(]]) = x (por L [[[wl]])
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= X! (por Lig [[[W]]])

M (G). Using this and (b) we see that (c) holds.
Now (d) follows from the previous exact sequence using (a),(b).

Replacing ¢ in (a) and (d) by the two-sided cell containing w; in (e) we
deduce that (e) holds.

1.7. Let CS. = {A € CS(G);cyq = c}. For any z € c we set n, = a+A+|z|.
Let A€ CS. and let z € c. We have:

(a) (A:RP) = ()" 3" cqptr(ts, Ex).
Eelrrc W

Indeed, from 1.5(a) we have

(A:RP) = (—1)*"F 3" cqp(aitr(c., E(v)))
EclrreW

and it remains to use 1.3(e). We show:
(b) For any A € CS¢ there exists z € ¢ such that (A : R?*) # 0.

Assume that this is not so. Then, using (a), we see that

Z captr(ty, Ex) =0
Ee€lrrc W

for any z € c. This shows that the linear functions ¢, — tr(¢,, Ex) on J¢
(for various E as above) are linearly dependent. (It is known that c4 g # 0
for some E € Irr.W.) This is a contradiction since the E, form a complete
set of simple modules for the semisimple algebra Q ® J€.

Let c® = {z € ¢;2 ~ 271}, If 2 € c—c” and E € TrrcW, then
tr(ty, o) = 0 (see ﬂﬁ, 24.2]). From this and (a) we deduce

(c) If z € ¢ — Y, then R = 0.

1.8. For Y = G or B2 let C*Y be the subcategory of M*®Y consisting of
semisimple objects; let CO* Y be the subcategory of M,,Y consisting of those
K € M,,Y such that K is pure of weight 0 and such that as an object of
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M(Y), K belongs to C*Y. Let C°Y be the subcategory of M*Y consisting
of objects which are direct sums of objects in CS. (if Y = G) or of the form
L. with z € ¢ (if Y = B?). Let CSY be the subcategory of Co‘Y consisting
of those K € CO‘Y such that as an object of C*Y, K belongs to C°Y. For
K € CO‘Y, let K be the largest subobject of K such that as an object of
C*Y, we have K € C°Y.

Proposition 1.9. (a) If L € D=B? then x(L) € D=G. If L € D=B? then
x(L) € D=G.

(b) If L € M=B? and j > a+v + p then X/ (L) € M=G.

It is enough to prove the proposition assuming in addition that L = L,
where z < c¢. Then (a) follows from 1.6(a),(e). Im the setup of (b) we have
Y (L) =yt (L[[|2[]]) and this is in M=G since j +v > A+ a, see 1.6(a).

1.10. For L € C§B* we set
X(L) = (L) ((a + v +p)/2) = (L) ) e cG.

The functor x : C§B% — C§G is called truncated induction. For z € ¢ we
have

(a) x(L:) = R}*(n2/2).
Indeed,

X(L2) = XL ((a+ v+ p)/2) = ((EE[]2] + V)P ((a + v +7)/2)
= XL ((a + A+ 2))/2) = (LY (n2/2).

We shall denote by 7 : J¢ — Z the group homomorphism such that 7(t,) = 1
if z € D¢ and 7(t,) = 0, otherwise. For z,u € ¢ we show:

(b) dim Homeeg (X(Lz:), x(Lu)) = > 7(t,-1t.tyt,-1).
yee

Using (a) and the definitions we see that the left hand side of (b) equals

> (A:RE)(A: R,

AeCSc
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hence, using 1.7(a) it equals

Yo (DN el pea prtr(t, Boo)tr(ty, Eb)-

E,E'elrrcW AeCS.

Replacing in the last sum ZAGCSC capcap by 1if E = E' and by 0 if
E # E' (see ﬂﬂ, 13.12]) we obtain

> (=D (L, B )tr(ty, Exo)-

E€lrrc W

This is equal to (—1)‘Z‘+|“‘ times the trace of the operator & — t,&t,-1 on
J¢ ® C. The last trace is equal to the sum over y € ¢ of the coefficient of
ty in t tyt,-1; this coefficient is equal to 7(t,-1t.t,t,-1) since for y,y’ € c,
T(tyty) is 1ify =y~ L andis 0if y # y= ' (see ﬂﬁ, 20.1(b)]). Thus we have

dim Homeeg (x(Lz), x (Lu)) = ‘“"HZ‘Z y1tatyty,—1).
yee

Since dim Homee(x(L2), Xx(Ly)) € N and >° o 7(t,-1t:tyt,-1) € N, it
follows that (b) holds.

1.11. A version of the following result (at the level of Grothendieck groups)

appears in ] .

(a) Let L,L' € D,,,(B?). Assume that L' is a G-equivariant perverse sheaf.
We have canonically x(L e L") = x(L' o L).

Let Z = B? x G. Define ¢: Z — B? x B2 x G by
c((B1,B2), 9) = ((B1, B2). (B2, gB1g™"), 9)

and d: Z — G by d((By, Bz),g) = g. Define ¢ : Z — B? x B? x G by
¢((B1,B2),9) = ((B2,9B1g™ "), (B1, Ba), 9)-

We have

X(LeL')=dc"(LRL'KQ;), x(L'eL)=dd* (LKL XQ).
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Define t : Z — Z, u: B> x B2 x G by

t((B1,B2),9) = ((B2,9B1g™").9),
u((B1, Bs), (B3, Bs),g) = ((B1,B2),(9Bsg ", gBsg™"),9).

We have ct = uc/, dt = d. Since L’ is G-equivariant we have canonically
v (LR L XQ;) = LKL X Q. Hence

dic' (LRI RQ) = dtt*c" (LKL KQ)) =dcd*u* (LKL X Q)
= 4" (LR L'XQ).

This proves (a).

We will not use (a) in this paper; a characteristic zero analogue of (a)
plays a role in M]

Lemma 1.12. Let Y1,Y> be among G,B% and let X € D~Y;. Let ¢,c be
integers and let ® : DY, — D~Ys be a functor which takes distinguished
triangles to distinguished triangles, commutes with shifts, maps D;Y7 into
DS Y3 and maps complezes of weight < i to complezes of weight < (for any
i). Assume that (a),(b) below hold:

(a) (®(Xo))" € MZYs for any Xo € MZY1 and any h > ¢
(b) X has weight <0 and X' € M™Y for any i > c.
Then

(c) (®(X)) € M3Yy for any j > ¢+ ¢,

and we have canonically

(d) (@X)) = (@(x)){eret.

From the distinguished triangle (7-;X,7<;X,X%[—i]) we get a distin-
guished triangle (®(7<;X), ®(7<;X), ®(X*[—i]); hence we have an exact se-
quence

(X)) = (@ (1 X)) " = (@ (1 X)) = (B(X))" = (@7 X))
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From this and (a),(b) we see by induction on i that

(®(7<; X)) € MZYqifi+h > c+ (in particular, (®(X))* € M=V,
if k> ¢+ ¢ so that (c) holds);

(@(TSCIX))CJ“C/i((I)(XC/))C has kernel and cokernel in M™Y3;

(<I>(7'SZ-X))C+CIg(CI)(TSZ-HX))CJ“C, has kernel and cokernel in M~Y; for
i>d.

Here the maps 3, 3 come from the previous exact sequence. Now 3, 3’ are
strictly compatible with the weight filtrations (see H, 5.3.5]); we deduce that
the maps

Irere (®(r<e X)) = grepo(®(X))°,
grc+cl(<1>(7'§Z-X))C+cl — grc+cr(<1>(TSi+1X))C+cl (for i > )
induced by 3, 3" have kernel and cokernel in M=Y3. Since these are maps

between semisimple perverse sheaves we see that they induce isomorphisms

/

grc+c/(q)(7-§c/x))c+6, :> ng—i-c’((I)(Xc ))07

grere (P(r<X)H B grero(@(r<isa X)) (for i > ).

By composition we get a canonical isomorphism

(¢) gree (P(X)) grer o (B(X))

(note that gre, e (®(X)) ¢ = greio(®(1<; X))+ for i > 0).

For any j we have an exact sequence
0= W LX) - W/(X) = gr;X® =0
hence a distinguished triangle
(@O HX)), 2V (X)), ®(gr; X))
which gives rise to an exact sequence

(2(gr X)) = (@WTHX))" = (@OV (X))
= (B(gr;X))° — (@W LX)t
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and to an exact sequence

9rese(®(gr; X)) = grepe (@WTHXD)))E = grepe (@OV(XT)))°
= Greper (B(gr; X)) = grepo (BN THXE))H,

Now ®(W/(X)) is mixed of weight < j hence (®(W’(X)))¢ is mixed
of weight < ¢+ j so that grey o (®WI (X)) = 0if j < ¢. Moreover
Gt (®(gr; X)) = 0if j > ¢ since X is mixed of weight < ¢. Thus we

have an exact sequence
0= gree (ROWV (X)) = greqer (P(gro X)) = grepe (W1 (X))t
and we have

grere(@OV (X)) = greee(@OVTHX))" = grese (@ T(X))°

Thus we have an exact sequence
0= grese (D(X))" = grose (D(gro X)) = grose (BOV (X)),
By (a) we have (B(W~1(X)))*! € M=Y; hence
grere (@WVTHX)) T € MTYa.

Thus greso (®(X))¢ is a subobject of gre o (®(gr«X¢))¢ and the quotient
is in M~Y3. Since gre,o (®(gry X)) is semisimple in M (Y3) it follows that

/

Ireror(P(X))E = grey o (B(greX))C.

This, together with (e) gives

Ireser (®(graX))E = grepo (®(X))H.

It follows that

Ires e (®(greX9))E = gropo(®(X))H

so that (d) holds.
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1.13. Let L € C§B%. We have clearly D(L) € C§B?. We show that we have

canonically:

(a) X(®(L)) =D(x(L))-

By the relative hard Lefschetz theorem H, 5.4.10] applied to the projective
morphism 7 and to f*L[[v + p|] (a perverse sheaf of pure weight 0 on X,

notation of 1.5) we have canonically for any i:

(b) (mf*Lllv + pl]) ™" = (mf*Ll[v + pl])' (D).

We have used that f is smooth with fibres of dimension v + p. This also
shows that

() D(x(D(L))) = x(D)[[2v + 2p]].

Using (b),(c) we have

X(D)[lv + pll) " (=a/2))
XDl + pl)*(a/2)) = (L) ((a+ v +p)/2)) = xL.

This proves (a).

1.14. Let d € D¢ and let Ay be the left cell containing d. We show:
(a) (A:x(Lg)) = ca, for any A € CS.

For any E € Irr.WW we have tr(ty, Eo) = multiplicity of E in [A4]. Hence,
using 1.10(a) and 1.7(a), we have

(A:x(Lg) = (—1)otld Z ca, g ( multiplicity of E in [Ag4])
Eelrre W

= (—1)* ey n )
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It remains to show that
(b) |d| = amod 2.

If p1g € Zv1] is as in ﬂﬂ, 5.3], then v~* appears with nonzero coefficient
in py g, see ﬂﬁ, 14.1] hence by ﬂﬁ, 5.4(b)] we have —a = |d| —|1| mod 2. This
proves (b) hence (a).

1.15. Let m : {(B,g) € B x G;g € B} — G be the first projection. Let
¥ = 1 Q[[A]]. As observed in ], w1 is small, so that X is a perverse sheaf
on (G; moreover, X has a natural W-action so that ¥ = ®germw F® A where
Ap = Hompy (E,X) is a simple perverse sheaf. Since ¥ = x(L1)[[v + p]] we
have Ap € CO‘G for any E. It is known that Ap € M=G if and only if
cp < cand Ag € C°G if and only if cg = c. (A closely related statement
appears in ﬂﬁ, 12.6].) There is a unique E, € IrrcW such that Ei is a special

representation of W.
We show:

(a) Assume that (Ag, : X(Lq)) < 1 for any d € Dc. Then for any d € De
we have (Ag, : x(La )) 1.

For any d € D, we set d(d) = ca,_[a,- By 1.14 our assumption is that
d(d) € {0, 1} for any d € D, and we must prove that 6(d) = 1 for any d € De.

Since ca,_ (] = 2_aep, 9(d), it is enough to show that c4,, ¢ = |Del. Since
Cap, = € we have ¢y, () = 0 for any two-sided cell ¢’ # c. Hence it
is enough to show that » . ca, (] = [Dc| where ¢’ runs over the two-

sided cells in W. Let Reg be the regular representation of W. We have
Do CAp, [c] = CAp, Reg hence it is enough to show that c4 Reg = |Dc| where
A = Agc. From 1.5(a) we have

(A: RA Z ca pdim(E Z ca,pdim(E) = caReg
EEIrrW EelrrW
hence it is enough to show that (A : RY) = [Dc|. Recall that Ri[A] = X
hence it is enough to show that (A : ¥) = |D¢|. We have (A : ¥) = dim F,.
It remains to show that dim(F¢) = |D¢|. This is a well known property of

special representations.
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We will see in 6.4 that the assumption of (a) is in fact satisfied.

2. Truncated Restriction
2.1. The following result and its proof are similar to 1.6.

Lemma 2.2. Letr >1, J C [1,7], J # 0 and w = (w1, wo, ..., w,) € W".

Let §=v+ (r—1)a.

(a) Assume that w; € c for some i € [1,r]. If j € Z (resp. j > §) then
(Pon LY W]} is in MZB? (resp. M=<B2).

(b) Assume that w; € c for some i € J. If j € Z (resp. j > §) then
(por L [[w)? is in M=B? (resp. M=B?).

(¢) Assume that w; € ¢ for some i € J. If j > § then the cokernel of the
map

(pon LL[w))Y = (pon L jwl])?

associated to 1.1(a) is in M=B2.

(d) Assume that w; € c for some i € J. If j € Z (resp. j > §) then
(port LL[|wl])? is in MZB? (resp. M=B?).

(e) Assume that w; < c for some i € J. If j € Z then (pOT!LL}/T]HWH)j €
M=B? and (pop L3, [|wl])) € M=B>.

We prove (a). Let L = L., z € W and j € Z be such that L is a
composition factor of (pOT!LL}/T]HWH)j = (L2,[w])’. By 1.2(b) we have

(La WY = Swewrezeth—v=o(u) PN H
hence N(z,v —j) = 0. From N(z,v — j) # 0 and 1.4(a) we see that z < c.
Assume now that z € c. From 1.4 we see that v —j > —(r — 1)a that is
J<S.

We prove (b). Let L = L,, z € W and j € Z be such that L is
a composition factor of (po.LZ[|w|])?. There exists h such that L is a
composition factor of (po.1 (L [|w|]))")[—h])?. We have (L [|w|])" # 0 hence
(L [|w| 4+ v — 1])"=**1 £ 0 hence by 1.1(c), h — v +1 < 0. From 1.1(b) we
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see that there exists w' = (w),wh, ..., w.) € W" such that w; = w] for all

1 € J and such that L is a composition factor of
(oL W]+ VD[R] = (ona(L W/ )7 = (L w4

From (a) (for w' instead of w) we see that z < c and that z < cif j+v—h > §
that is,if j > h+F —v. If j > § then using h—v+1 <0 (that is 0 > h—v)
we see that we have indeed j > h + § — v. This proves (b).

We prove (c). From 1.1(a) we get a distinguished triangle

(por L [1w]]], por L [[[wl]]. port L2 [[[w]])

in D,,(B?). This gives rise for any j to an exact sequence
(f)
(pon L [Iw (1)~ = (pon LL W) — (pon L [wlI)? = (pora L3, [[w]])?
in M,,(B?). Using this and (b) we see that (c) holds.
Now (d) follows from the previous exact sequence using (a),(b).

Replacing c in (a) and (d) by the two-sided cell containing w; in (e) we
deduce that (e) holds.

2.3. Let r > 1 and let 21, z9,...,x, be elements of W such that at least one

of them is in ¢. We show:

(a) If (Ly, @ Ly, ... @ L, )J{=D@)} oL 0 then 2; € ¢ for all i € [1,7].

By assumption we have

(LE, [[la )] ® L&, [[lw2[]] o - . o LE, [[Jae DV 2 0,

Using 1.2(b) we see that there exists w € c¢ such that L, appears with

nonzero multiplicity in

> ((Ln+ [z Doty @l
zeWnez

(that is, Ny(w, —(r—1)a) # 0) where Ny(z,n) € N are given by the following
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identity in H:

j— n
CpyCag + - Cpyp = E Ny(z,n)v"c,.
zeWnez

From Ny(w, —(r — 1)a) # 0 we see using 1.3(b) that x; € c for all i.

2.4. In the setup of 2.3, we see using 1.3(d), that

(a) Ny(w',—(r —1)a) is the coefficient of t,, in ty, ty, .. .ty

T

2.5. Let 7, f be as in 1.5. Now K — ((K) = fir*K defines a functor
Dp(G) — Dyp(B?). For i € Z,K € Dp(G) we write (*(K) instead of
(C(K))".

A functor closely related to ¢ (in which a complex K on G was integrated
over the cosets of the unipotent radical of a Borel subgroup, rather than over
the cosets of a Borel subgroup as in ¢) was introduced in |27] and by the
author in 1987 (unpublished, but mentioned in , §5] and ﬂ, §0]) when I
found a criterion for K to be a character sheaf in terms of the cohomology
sheaves of the image of K under this functor. My proof of that criterion was
based in part on something close to the following result, a version of which
(at the level of Grothendieck groups) appears also in ﬂ§, (3.3.1)].

Proposition 2.6. For any L € D,,(B?) we have

(a)  <(x(L) = {®yew;y=kLy ® Lo L1 @ L[[2k — 20]];k € N},
(b)  C(x(D) = {Byewy—kly @ Lo Ly
®L[[2k — 2v — 2p]] ® AYX[[d]](d/2);k € N,d € [0, p]},

where £, X are as in 0.2.
Let
Y = {(By, B2, B3, By,9) € BxBxBxBxG;gBig" = By,gBag~' = Bs}.

For 7j = 14 or 23 we define h;j 1Y — X by (B1, Ba, Bs, By, g) — (B;, Bj, g)
and h;; : Y — B? by (By, Ba, Bs, By, g) — (B;, Bj). We have m*m = h, hhs*
hence

C(x(L)) = im*m f*(L) = fihiyhbs™ f*(L) = hiahis L.
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For k€ N let Y* = Uyew:|y|=kYy Where
Yy = {(B1, B2, B3, Bs,g) € Y;(B1,B2) € Oy, (B3, Bg) € Oy1}

and let Y2F .= Uk/;k/ZkYk/, an open subset of Y; let hfj (YR - B2, h?jk :
Y'=F — B2 be the restrictions of hi;j. For any k € N we have a distinguished

triangle
>k+17 >k+1% >k >kx k kx
(hip hag L), hiphss™ L hiyhs3L).

It follows that we have
C(x(L)) = {hiyhi; Lk € N}.
For k € N let ZF = Uyew:|y|=kZy Where
Zy = {(B1, B2, By, By) € B*(B1,Bs) € Oy, (B3, Bs) € Op1 };

for i,j € [1,4] we define hf; : Z¥ — B and hY; : Z, — B% by (By, By, Bs, By)
+ (B;, B;j). We have an obvious morphism u : Y* — Z* whose fibres are

isomorphic to k¥ % times the p-dimensional torus 7. We have a commutative

diagram
2 h§3 k h}fzx 2
B Y B
I 1|
g M M e
We have

hinh53L = Riguu*his L = By (551 @ wQy) = (RighiL) © £[[—2v + 2K]).
We deduce that

C(x(L)) = {(hiyhb5L) ® L[[~2v + 2K]); k € N}
Since Z* is the union of open and closed subvarieties Zy, ly| = k, we have

Tk 7kx1 __ 7Y Jy*
highys L = @yeW;Iy\:kh14lh23L'
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From the definitions we have

hYyhysL =Ly,eLeL, 1.
This completes the proof of (a). Now (b) follows from (a) using
(c) £li2p]] = {Qu @ AX[[d))(d/2); d € [0, pl}
which follows from the definitions.

Proposition 2.7. Let w € W and let j € Z. We set S = ((Ry)[[2p + 2v +
|w[] € Dy (B?).

(a) If w = c then S7 € M=B2.

(b) Ifw € c and j > v+ 2a then ST € M=B%

(c) If w < c then ST € M=B2.

(d) S7 is mized of weight < j.

(e) If j # v +2a and w € ¢ then gr, 2,57 € M~B2.

(f) If k > v+ 2a and w € c then gryS7 € M=B2.

Let J = {2} C [1,3]. Using 2.5 and 1.2(a) with = 3 we have

(&) S {posLy - [lwl +2[y[l]) © AX[[d]](d/2);d € [0,p],y € W}.

Using this and the definitions we see that to prove (a) it is enough to show
that for any y,d as above we have

(h) (poar L7, s [llw] + 2[y[]] © AX[[d))(d/2)) € MZB;

this follows from 2.2(d), (e). This proves (a).

At the same time we see that to prove (d) it is enough to show that
for any y,d as above, (h) is mixed of weight < j. Since Q[[d]](d/2) is
pure of weight —d < 0, to prove the last statement it is enough to show that

poggL;7w7y_1 [[Jw]+2|y]]] is mixed of weight < 0. Note that L;,my—l [[Jw|+2|y|]]

is obtained by (); under an open imbedding from LS’3] [ﬁlw| + 2|y|]] which

?w7 71
is pure of weight 0 hence it is mixed of weight < 0 ﬁsee , 5.1.14]), hence

posiL? i [[|w| + 2|y|]] is mixed of weight < 0 (see [1, 5.1.14]). This proves

Yy, w,y
(d).
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We prove (b). It is again enough to show that for any y,d as above
(Poar Ly, 4 1 [[[w] + 2yll) © ALxd([d])(d))
is in M~B?if j > v + 2a. This follows from 2.2(d) since j > v+ 2a, d > 0

implies j +d > v + 2a.

Now (c) follows from (a) by replacing ¢ by the two-sided cell containing

We prove (e). If j > v + 2a this follows from (b). If j < v 4 2a we have
gTu12457 = 0 by (a). This proves (e).

We prove (f). If j < k we have gryS7 = 0 by (d). If j > k we have
j > v+ 2a so that $7 € M=B? by (b). This proves (f).

Proposition 2.8. (a) If K € D=G then ((K) € D=B2. If K € D~G then
((K) e DB

(b) If K € M=G and j > p+v +a then (/(K) € M=B2.

It is enough to prove the proposition assuming in addition that K =
A € CS(G). By 1.7(b) we can find w € c4 such that (A : R}») # 0. Then
Al—ny] is a direct summand of R,,. Hence ((A) is a direct summand of
C(RW)[A + a + |w|] and ¢I(A) is a direct summand of (I+Atatlvl(R ) =
(=P Ry,[2p + 2v + |w|]). Using 2.7 we deduce that (a) holds and that, in
the setup of (b), ¢(/(A) € M=B? provided that j — p +a > v + 2a. Hence
(b) holds.

2.9. For K € C§G we set
C(K) = ()t e c§B2.

We say that ((K) is the truncated restriction of K.

2.10. We note the following result, a version of which was first stated in ﬂ,
9.2.1].

(a) Let K € Dy, (G) and let L € M,,(B?) be G-equivariant. Then there is a
canonical isomorphism L e ((K)=((K)e L.
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We have (K)o L =c¢d* (KX L), Le((K)=cd*(KXL)where

Z = {(9,B,B",B') € Gx Bx BxB;gBg~* = B"},
Z/ — {(g’B’B//’B/) c G X B % B % B;g_lB/g — B//},

d:Z — GxB%is (9,B,B",B') — (g,(B",B")),
d:7"—GxB%is (g,B,B",B") — (g,(B,B")),

c:Z—B% .7 — B%are (9,B,B",B') — (B,B').

We identify Z, 7' with G x B? by (g,B,B",B") — (g,(B,B")). Then d
becomes d : (g, (B, B')) + (g,(gBg~t, B')), d becomes d} : (g, (B, B'))
(9,(B,g~'B’g)) and ¢, become ¢ : (g,(B,B")) + (B,B’). It is enough
to show that di(K X L) = d}{*(K ® L). Define u : G x B> — G x B? by
(9,(B,B") = (g9,(¢gBg~',gB’g™')). By the G-equivariance of L we have
canonically u*(Q; X L) = Q; X L. We have d; = ud; hence di(K X L) =
di*u* (KK L) =d}*(KXL) and (a) follows.

Proposition 2.11. (a) If L € M=B? and j > 2a+2v+2p then (((x(L)))’ €
M=B2.

(b) If L € C§B?, we have canonically

Cx(D) = (L)) B2} e c§B%.

We apply 1.12 with ® = ¢ : D,,(G) = Dy, (B?) and with X = x(L),
(e,d)=(a+v+pa+v+p),see 2.8 1.9. The result follows.

3. Truncated Convolution on 52

3.1. We show that for L, L' € D*B2, (a) and (b) below hold.

(a) If L € D2B? or L' € D=B? then Le L' € D=B2. If L € DB or
L' € D=B? then L e L' € D12,

(b) Assume that L,L' € M*B? and that either L or L' is in M=B2. If
j>a—v then (Le L) € M=B2.

We can assume that L = L,, L' = L,/ with z < c or 2/ < ¢. Then (a) follows
from 1.4(b),(c). To prove (b) we can further assume that z € ¢ or 2’ € c.
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According to 1.4(b) we have (L!]|z|] oLﬁz,Hz’H)j/ € M=B?if j > v+a hence
(LE])2] + V] oLﬁz,[|z’| + vy € M=B?if j+2v > v +a that is if j > a —v;
this proves (b).

3.2. For L, L' € CSB?, we set
(a) Lel! = (Le L))o} e coB2.
Using 1.12 twice, we see that for L, L/, L" € C§3? we have canonically

(L!L,)!L” — (L.L/. L//){2a—2u}’
L!(L/!L//) — (L.L/. L//){2G_2V}.

Hence
(LeL')eL” = Le(L'eL").

We see that L, L' — LeL' defines an associative tensor product structure on
CSBQ. (A closely related result appears in E]) Hence if 'L,2L,...,"L are
in CEB? then 'Le?Le...e"L € C§B? is well defined. Using 1.12 repeatedly,

we have

(b) '1e°Le...o"L=("Le’Le.. o L)ir—1a=n}

3.3. Let L, L’ € C$B%. We show that we have canonically:
(a) D(LeL) = D(L)eD(L),

We can assume that L = Ly, , L' = Ly, where wy,wy € c. Let w = (w1, ws).

Let LL},’2] be the intersection cohomology complex of the projective variety
{(B07317 BQ) € 83’ (B07Bl) S @wla (BlyBQ) € @wg}

extended by 0 on the complement to this variety in B> and let pgs : B3 — B?
be the map (By, By, B2) — (By, B2). By definition we have

Lel' = poz!Llez’2][[|w1| + |wa| + 2v]].
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We must show that
(b) D((Le L) ((a-v)/2))) = (Le L) "((a—v)/2))

By the hard Lefschetz theorem H, 5.4.10] applied to the projective morphism
po2 and to LL‘I,’2][[|w1| + |wa| + v]] (a perverse sheaf of pure weight 0 on B3)
we have canonically for any i:

(o L[| + ] + 1)) ™" = (poan L [[[wn | + o] + 1)) (0)
that is (L e L'[[-v]])~% = (L e L'[[~v]])*(i), hence
(c) (Lo L)™' =(LeL)™"(i).
We have D(L e L') = L o L'[[-2v]] hence D((L e L')!) = (Lo L')~=2(—v).
Thus D((Le L')* V)= (Le L) " %—v)=(LeL) " (a—v). (The last
equality uses (c).) This proves (b), hence (a).

The following result is a truncated version of 2.10.

Proposition 3.4. Let K € C§G,L € C$B% There is a canonical isomor-
phism

(a) Le((K)S¢(K)eL.

Applying 1.12 with ® : D=B?> — D=B% L' — L' e L, X = ((K),
(e,d)=(a—v,a+ p+v) (see 3.1, 2.8), we deduce that we have canonically

(b) ()t o DI = (((K) o L) 7,

Using 1.12 with ® : DEB? — DaB2%, L' — Le L', X = ((K), (¢,d) =
(a —v,a+p+v) (see 3.1, 2.8), we deduce that we have canonically

© (Lo ()P = (L o ¢(10)) 201,

We now combine (b),(c) with 2.10(a); we obtain the isomorphism (a).



2015] TRUNCATED CONVOLUTION OF CHARACTER SHEAVES 31
4. Truncated Convolution on GG

4.1 Let p : G x G — G be the multiplication map. For K, K’ € D,,(G)
we define the convolution K « K’ € D,,(G) by K * K/ = (K X K’). For
K,K', K" in D,,(G) we have canonically (K« K')« K" = K (K'*K") (and
we denote this by K « K" x K").

Note that if K € D,,(G) and K’ € M,,(G) is G-equivariant for the
conjugation action of G then we have a canonical isomorphism

(a) K+ K'SK' % K.

Definer : GxG — G, p1 : GXG — G, p2 : GXG — Gbyr: (z,y) — 2 1y,
p1:(x,y) =z, po i (x,y) — y. Without any assumption on K’ we have

mpiK @ r'K') = m(ps K @ piK') = K"« K.
In our case we have canonically r* K’ = p3K’. Hence

mpiK @ r*K') = m(piK @ p3K') = K « K’
and (a) follows.

Lemma 4.2. Let K € D,,(G), L € D,,(B%). We have canonically K x
x(L) = x(L o ((K)).

Let Z = {(g1,92, B, B") € Gx G x B xB;gaBg,* = B'}. Define ¢ : Z —
G x B% by (91,92, B,B") ~ (g1,(B,B")) and d : Z — G by (g1, g2, B, B') —
g192. From the definitions we see that both K * x(L), x(L e ((K)) can be
identified with dic*(K X L). The lemma follows.

Proposition 4.3. For any L, L’ € D,,(B%) we have

X(L) * x(L")[[2p + 2v]]
< {x(L' e LyeLeL,1)[2lyl]] ® A’X[[d]](d/2):d € [0, p],y € W}.

From 2.6(b) we deduce

Lo C(x(L))[[2v + 20]]
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< (L' e Lye Le L, [2yl]] @ A’X[[d]](d/2);y € W,d € [0, p]}
and

X(L" e C(x(L)[[2v + 2p]]
< {X(L' e Lye Lo L,-1)[[2ly[]] ® A’X[[d]](d/2);y € W.d € [0, ]}

It remains to show that (L' e {(x(L))) = x(L) = x(L'). This follows from
4.2 with K, L replaced by x (L), L’.

Proposition 4.4. Let w,w' € W and let j € Z. We set C = Ry * Ry [[2p+
2v + |w| + [W']]] € D (G).

(a) If w = c or w' =< c then C7 € M=G.

(b) If j > A + 4a and either w € ¢ or w' € ¢ then C7 € M=G.

(c) If w < c orw' < c then C7 € M=G.

(d) C7 is mized of weight < j.

(e) If j # A+ 4a and either w € ¢ or w' € ¢ then gra;4,07 € M7G.

(f) If k > A +4a and w € ¢ or w' € ¢ then gri,C? € M7G.

Let J = {1,3} C [1,4]. Using 4.3 and 1.2(a) with » = 4 we have

()
C = {x(Pon Ly 4y w410’ +2lyll]) @ AX[[d])(d/2); d € [0, p],y € W}

Using this and the definitions we see that to prove (a) it is enough to show
that for any y,d as above,

(M) X (poaLy [l + '] + 20yl]] © ALX[[d])(d/2)) € MZG;

this follows from 1.6(d),(e). This proves (a). At the same time we see that
to prove (d) it is enough to show that for any y,d as above, (h) is mixed of
weight < j. Since Q; ® AYX[[d]](d/2) is pure of weight —d < 0, to prove the

last statement it is enough to show that x(poaL?, o yfl[[\w\ +|w'| +2|y|]])
is mixed of weight < 0. This follows from the fact that posL?, o [[|w|+

|w'| + 2|y|]] is mixed of weight < 0 (as in the proof of 2.7(d)). This proves
(d).

We prove (b). It is again enough to show that for any y,d as above

X (PoarLigy 1 [l + ']+ 2ly[]] © AYX([d])(d/2))’
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is in M=G if j > A + 4a. This follows from 1.6(d) since j > A +4a, d >0
implies j +d > A + 4a.

Now (c) follows from (a) by replacing ¢ by the two-sided cell containing
w (if w < ¢) or v (if W' < c).

We prove (e). If j > A+ 4a this follows from (b). If j < A+4a we have
gra+4aC? = 0 by (a). This proves (e).

We prove (f). If j < k we have grpC’ = 0 by (d). If j > k we have
j > A +4a so that C7 € M=G by (b). This proves (f).

Proposition 4.5. Let K, K' € DA(G).

(a) If K € DG or K' € D=G then K x K' € D=G; if K € DG or
K' € D2G then K * K' € DG.

(b) If K € M=G, K' € M=G and j > p+ 2a then (K * K'Y € M~G.

It is enough to prove the proposition assuming in addition that K =
Ae(CS(G), K =A € CS(G). By 1.7(b) we can find w € ca, w' € cu
such that (A : Rw) #0, (A" : R¥") # 0. Then A[—n,,] is a direct summand
of Ry, and A’[—n,y] is a direct summand of R,s. Hence A *x A’ is a direct
summand of Ry, * Ry [2A+a(w) +a(w’) + |w|+|w'|] and (Ax A') is a direct
summand of

(Ry * Ry [20 + 20 + | + [w]])TFalw)talw)+2v,

Using 4.4 we deduce that (a) holds and that (Ax A’)Y € M~ provided that
Jj+a(w) +a(w) +2v > A+ 4a. Hence (b) holds. (To prove (b) we can

assume, by (a), that w € c,w’ € ¢ hence a(w) = a(w') = a.)

4.6. For K, K’ € C§G we set
KxK' = (K « K'){?te} c ceq.

We say that KK’ is the truncated convolution of K, K'. Note that 4.1(a)

induces for K, K’ € C§G a canonical isomorphism

(a) KxK'SK'xK.
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We have also

(b) KxK' = ®jezgraas, (K * K'))((2a + p)/2).

This follows from 4.4(e).

Proposition 4.7. Let K, K', K" € C§G. There is a canonical isomorphism

(a) (KxK")xK"SKx(K'sK").

We use 1.12 with @ : D,,,(G) — D, (G), K1 — K1xK"”, with X = K«K’,
(¢,d) = (2a + p,2a + p) (see 4.5); we deduce that we have canonically

(b) (KxK"xK" = (K  K' « K"){4a+20}

Next we use 1.12 with ® : D,,(G) — Dy (G), K1 — K * K, with X =
K'«sK", (¢,d) = (2a+p, 2a+p) (see 4.5); we deduce that we have canonically

(c) Kx(K'sK") = (K % K"« K")t4a+20},

We combine (b),(c); (a) follows.

4.8. An argument similar to that in 4.7 shows that the associativity isomor-

phism provided by 4.7 satisfies the pentagon property.

5. Truncated Convolution and Truncated Restriction

5.1 The following proposition asserts a compatibility of truncated restriction

with truncated convolution.

Proposition 5.2 Let K, K’ € C§G. There is a canonical isomorphism (in
C§B2):
C(K")oC(K) S (K+K')

The proof is given in 5.6.
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Proposition 5.3. Let K, K’ € C§G. We have canonically

(a) C(K/):C(K) _ (C(K,) ° C(K)){3a+2p+y}'

We set L = ¢(K), L' = ¢((K'). Let °L € MZB2%. Applying 1.12 with
®:DB% - DB 'L LellL, X =L, (c,d) = (a—v,a+v+p), we see
that

(b) (°L e L) € M™B? for any °L € M=B? and any j > 2a + p.

Using 1.12 with ® : D=B? — D=B% 'L — 'Le L, X = L', (¢,d) =
(2a + p,a+ p+v) (see (b), 2.8), we deduce that we have canonically

L/{a+p+u} ol {2a+p} _ I el {3a+2p+1/}‘
() (LT e L) ( )

Let L}y = L'{otrH¥}  Applying 1.12 with @ : D3B? — DB, 'L+ L e 'L,
X =1L, (¢,d) =(a—v,a+ p+v) (see 3.1, 2.8), we deduce that we have

canonically

(Lje plotetvhyla—vk — (Lje L){2atel,

Combining with (c) we obtain

(Ly o Llatrivhylavh — (1 o [)Bat2rt)

and (a) follows.
Proposition 5.4. Let K, K’ € C§G. We have canonically

(a) CK*K') = (C(K * K'))Batv+2e},

We set K = K*K'. Applying 1.12 with ® : D=G — D~ B2, K1 — ((K1),
X =K, (¢,d)=(a+ p+rv,2a+ p) (see 2.8, 4.5), we deduce that we have

canonically

(C(/C{2a+p})){a+p+l/} — (C(K)){3a+2p+u}

and (a) follows.

A version of the following lemma goes back to ﬂ]
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Lemma 5.5. Let K,K' € D,,(G). There is a canonical isomorphism in
D, (B?):

(b) (K + K')=((K') o ((K)

5.6. We prove Proposition 4.2. Let K, K’ € C§G. We have canonically

(K)ol (K) = (C(K') o ((K))Br20td — (((K + K'))Bat20tv) — ((KxK').

(These equalities comes from 5.3(a), 5.5, 5.4(a).) Proposition 5.2 follows.

6. Analysis of the Composition (x

6.1. Let e, f, ¢’ be integers such that e < f < ¢’ —3 and let € = €' — e + 1;
we have € > 4. We set

Y ={((Be,Bet1,-.-,Ber), g) € B xG;ngg_l = Bf+3=QBf+19_1 = Bjio}.

Define ¥ : Y — B¢ by ((Be, Bet1s---,Ber),g9) — (Be, Bet1, ..., Ber). For i, j
in {e,e+1,...,€¢} let p;; : B¢ — B? be the projection to the i, j coordinate;
define h;; : Y — B2 by hij = pijU. Now G2 acts on ) by

(geu cee 7gf7gf+37 cee 796’) : ((Be7 Be-i—ly o 7Be')7g) —
(9eBege 'y ger1Ber19oiys - 971 Br195t 1, 9rBrgy ' 95 Brigy
95+3Bf 1297 L5 r48Brasgris 95 +aBriagris - 9o Bogl'), 9r3997);

this induces a G 2-action on B¢ so that ¥ is G 2-equivariant.

Let E={e,e+1,....¢ —1}—{f, f+2}. Assume that z,, € ¢ are given
for n € E. Let P = ®nepp}y py1La, € DmB, P = ®nephi, ,41La, = 9*P €
D,nY. In 6.1-6.7 we will study

heen P € D132,
Setting = = %Q; € D,,3¢, we have

hee’!P = pee!(E ® P)
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Clearly Z7 is G¢~2-equivariant for any j. For any y,y’ in W we set
Ly = {(Be, Bet1, - - -, Ber) € BS; (Bf,Bf-i-l) € Oya (Bf+27 Bf+3) € Oy’}-

These are the orbits of the G¢~2-action on B¢. Note that the fibre of ¥ over
a point of Z,, is isomorphic to T x k*~Wl if yy’ = 1 and is empty if yy’ # 1.
Thus

(a) Elz, ,, s 0if yy' # 1

and for any y € W we have

(b) H'Elz, ., = 0if h > 20 = 2Jy| + 2p, H>2WITPE|, = Q-

lyl = p).

The closure of Z, s in B¢ is denoted by Z,, ,,. We set ke = ev +2p. We have
the following result.

Lemma 6.2. (a) We have =/ = 0 for any j > ke. Hence, setting =/ =
T<k.—1Z, we have a canonical distinguished triangle (', =, Zk<[—k]).

(b ) If £ € Zy,y and i = 2v — |y| — Y| + 2p, the induced homomorphism
e — 7—[’ ke("kﬁ) is an isomorphism.

To prove (a) it is enough to show that dimsuppH*(Z[k.]) < —i for any
i. Now suppH'Z is a union of G 2-orbits hence of subvarieties Zy, and
dim Z, v = (e—2)v+|y[+|y’|. Thus it is enough to show that if ’Hé(E[ke]) #0
with £ € Z, . then (e —2)v + |y| + |¢/| < —i. From 6.1(a),(b) we see that
y =1y and i+ ev + 2p < 2v — 2|y| + 2p; the desired result follows.

We prove (b). We have an exact sequence
%Z =/ N H N HZ( [ ]) — r}_[z—l-l—\/

Hence it is enough to show that ’H?E’ — 0 if ¢/ > i. Assume that HLZ' £ 0
for some i’ > i. Then Z,, C suppH’E". We have (Z'[k. — 1])" = 0 for all
h > 0 hence dim suppH®” (Z'[k. —1]) < —i" for any i". Taking i’ =i’ —kc+1
we deduce that dim Z, ,y < —i'+k.—1hence? < 2v—|y|—|y/|+2p—1 =1i—1.
This contradicts i > i and proves (b).

6.3. For any y,y in W let Ey y be the intersection cohomology complex of

Z, ., extended by 0 on B — Z, s, to which [[(e — 2)v + |y| + |y/[]] is applied.
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Note that

(a) Tyy = p}kﬂfﬂLy ® p}kf+2,f+3Ly’ [[(e = 4)v]].
We have the following result.

=ke

Lemma 6.4. We have canonically gro(Z*(ke/2)) = @yewT, 1.

=ke

Since gro(Z"<(k./2)) is a semisimple G¢~2-equivariant perverse sheaf of
pure weight 0, we have canonically gro(Z¥(ke/2)) = Sy yew Vyy @ Tyy
where V, . are mixed Q,-vector spaces of pure weight 0. Using the definition
or by [1, 5.1.14], Z is mixed of weight < 0 hence Z¥¢(k,/2) is mixed of weight
< 0. Hence we have an exact sequence in M,,, B¢

(a) 0 = W HEF (ke /2)) — EF<(ke/2) — gro(EX(ke/2)) — 0
that is
0 — WL (Eke (k. /2)) = EF(ke/2) = @y yewVyy @ Fyy — 0.

Hence for any y,7' in W and any F,-rational point { € Z; 5 we have an
exact sequence of stalks of cohomology sheaves

(b)  HPWTH(ER (ke /2) SHLE (ke /2)
= ByyewViy @ HETyy — HETW T (ER (ke /2));

here we take h = —(e — 2)v — |g| — |#’|. Now the vector spaces in (b) are
mixed and the maps respect the mixed structures. From 6.2(b) and 6.1 we
see that Hf (EF (k/2)) = HL (ke /2) = Vo(—h/2) where Vj is 0 if 7 # 1
and is Q; if 7§ = 1. In particular Hé(Eke(kE/Z)) is pure of weight h. On the
other hand the mixed vector space H?W‘l(Ekf(k:eﬂ)) has weight < h — 1.
Hence the map « in (b) must be zero.

Assume that H?T%y/ # 0. Then Zj 4 is contained in the support of
”thyyy/ which has dimension < —h (resp. < —h if (y,vy') # (9,7')); hence
—h =dim Zy, 5 is < —h (resp. < —h); we see that we must have (y,y’) =
(7,9'). Note also that H?T%y/ = Qi(—h/2).

Assume that H?+1W_1(Ek€(ke/2)) # 0; then Zj gz is contained in the
support of HQHW_:[(E’“G) which has dimension < —h — 1; hence —h =
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dim Z;, v < —h — 1, a contradiction. We see that (b) becomes an isomor-

phism
Vo(=h/2)= Vg5 (—=h/2).

It follows that we have canonically Vj 5 = V. The lemma is proved.

6.5. Let y,y € W. Using the definitions and 1.2(a) we have

(2)  peen(Tyg @ PII(6 — 2€)r]])
:ijgclo...oijgcf_loLgoLﬁ oLgoLﬁ °. ..

Tf+1 Tf+3
oL (v +1yl+ 13l + D lznall]
nek
Lemma 6.6. The map = — ZF[—k] (coming from (2',Z,EF[—k]) in

6.2(a)) induces a morphism

(peen (B @ P))eDat6=wt20 _y (1) (=ke ) pyy(e=Dat(6-vt2p-ke
whose kernel and cokernel are in M B2.

It is enough to prove that

(peen (' @ P))? € M7 B? for any j > (e — 2)a + (6 — €)v + 2p.
We have =/ = {(E")"[~h]; h < k. — 1} hence
Pect(E'® P) = {peen(E)" ® P)[=hli b < ke — 1}
so that it is enough to show that
(Peet (B @ P)[=h]) € M B

for any j > (¢ — 2)a + (6 — €)v +2p and any h < k. — 1. Now ()" is G¢2-
equivariant hence its composition factors are of the form ¥, ,, with y,3’ in

W; hence it is enough to show that for any v, in W we have

(pee’!(gy,y’ ® P)[_h])] € M;BZ
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for any j > (e —2)a+ (6 — €)v + 2p and any h < k. — 1 or equivalently (see
6.5(a),(b)) that

(Lgﬂlo,,,oLﬁ oLgoLjj oLgoLﬁ o.. . oIf

Tf-1 T+t Ti+3 Tet

(126 = 5)v + [yl +[y/'| + ) lzall])/ " € M52

for any 7 > (e — 2)a+ (6 — €)v + 2p and any h < f. — 1. Using 2.2(a) it is
enough to show that j — h + (2¢ — 5)v > v + (¢ — 2)a. We have

j—h+2e=5)v > (e—2)a+(6—€)v+2p—ev—2p+1+(2¢—5)v = (e—2)a+v+1

and the lemma is proved.

Lemma 6.7. We have canonically

(hee/!p){(e—2)a+(6—e)u+2ﬁ} = DyecQy

where

Qy = (pee’!({{%y—l ®P)){(E_2)a+(6—26)y}

Tf_1 Tfi1 xf+3:' . -ﬂLme/-

From the exact sequence 6.4(a) we deduce a distinguished triangle in
D, 3%

(pee’!(W_l(Eke(kE/m) ® P,pee'!(Eke(ksﬂ) ® P)7pee’!(9T0(Ek€(kE/2)) ® P).
This induces an exact sequence in M,, 3%

(@) (Peet WL (EF (ke /2)) @ P))le=Dat (62
(peen (B¥ (k. /2) @ P))(cDat(6-20v
(Pee/!(gro(Ek€(l<;e/2)) ® p))(e—2)a+(6—2e)u
(pecr (W™ (B (e /2)) © P)) -2t 6-2w1,

L1l

We show that

(b) (Peen (W1 (EFe (ke /2)) @ )2t 07290+ € MEB2.
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We argue as in the proof of 6.6. Now W~ (Zke(k./2)) is G*~2-equivariant
hence its composition factors are of the form ¥, ,» with y,y" in W; hence it

is enough to show that for any y, 7y’ in W we have
(pee'!Ty y ® P))(e—2)a+(6—2e)l/+1 c M;ZBQ
or equivalently (see 6.5(a),(b)) that

i
(Lgﬂlo...oLjj oL?ﬁJoLﬁ oLgoLjj o... oL}

Tf-1 T+t Tf+3 Tet

[(2 = 5)v + [yl + /] + Y _ |wall]) (2ot E29H ¢ pMEB2.

Using 2.2(a) it remains to note that (¢ — 2)a + (6 — 2¢)v + 1 + (2¢ — 5)v >
v+ (e —2)a.

Next we show that
(C) gr(e—2)a—&-(6—26)zj(pee/!(V\)_l(Eke (ks/z)) ® P))(E_Q)CH_(G_%)V = 0.

Indeed, W™1(Z*¢(k,)) has weight < —1, P has weight 0 hence W~ (Zk<(k./2))
®P has weight < —1 and peet (W™ (EF (k. /2)) ® P) has weight < —1 so that
(Peet W L(EFe (ke /2)) @ P)) (€204 (6297 hag weight < (e—2)a+ (6—2¢)v—1

and (c) follows.

Using (b),(c) we see that (a) induces a morphism

gr(e—Z)a-Q—(6—26)1/(pee’!(‘Ek6 (k6/2) ® P))(E_Q)(H_(G_ZE)V
— gr(e—2)art (62 (Peert (970 (BN (ke /2)) @ P))(—2at (629

which has kernel 0 and cokernel in M, B?. Hence we have an induced

isomorphism

(d) gr(e—Z)a—Q—(ﬁ—?e)l/(pee’!(Ek6 (ke/z) & P))(6_2)a+(6_26)y((6_2)a+(6_26)1/)/2)
= 97"(6—2)a-§—(6—26)1/(peta’!(.grO(Ek6 (ke/2)) ® P))(6_2)a+(6_26)y((6 - 2)(1
+(6— 20))/2).

The left hand side of (d) can be identified (by 6.6) with

97 (20t (620w (Pectt (Eke) ® P)) T2+ OWH20 ((c—2)a (6-2¢)v)/2)
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= gr(c2)at (6120 (Pect(E @ PO (1 19) (e — 2)a

+(6 — 2¢)v)/2)
Z® p)){(ﬁ2)w+(6—6)V+2ﬂ};

= (pee’!(

the right hand side of (d) can be identified (by 6.4 and 6.5(a), (b)) with

Dyew @y where

Qy = gr(E—Q)a+(6—25)I/(p€8l'(‘Z -1 ® P))(e_z)a+(6_2€)y((e_2)a+(6_26)7/)/2)
= .970(5—2)(1-1—(6—25)1/(Lﬁ x1 - Lﬁ .Lﬁ .Lﬁ .Lﬁ .Lﬁ : '.Lg:e/

Tp_1 Tyl xf+3

[[(2¢ = 5)v + [yl + |@/|+Z [ ) (2O (e~2)a+(6-2€)v) /2).

n

Thus,

Qy = 9r(e—2)a+(6—2ew(Liz; ®... 0Ly, oL oL,  eLje
Loy, 0L, ) 2% 27 ((e — 4)/2)((e — 2)a + (6 — 2¢)v)/2)
201 @ Lge
2pag ® - 0Ly N (€ - 2)a + (€ — 2)v)/2)
— (Ly e...0L,, oL, oL,  eLjeL ..o L, )l Ham(e=2}

= gr(5—2)a+(2—e)u(LI1 e...0 fofl oeL,eL
L

Tp_q i1 Tr+3 ®

Thus we have canonically

(pee’!(E ® P)){(E—Q)a+(6—e)l/+2p} _ @yEWQy

where

Qy = (Peen(Tyy—1 ® P))ie=2)at(6-2c)}
= (Ly,e...0L eL,eL o LjeL

Tp_q Tpi Tpaz @ ® Lxﬁ/){(E—Q)a—(e—Q)y}‘

The expression following the last = sign is 0 if y ¢ ¢ (see 2.3) and is

L, e...0L oL oL oLjeL oLy,

zy12 zj12 LA

if y € ¢ (see 3.2). The lemma is proved.
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Theorem 6.8 Let x € c. We have canonically

(a) Q(X(Lx)) = @yecLy:Lx:Lny

In 6.1 we take e = f = 1,¢’ = 4 hence € = 4. In this case we have
Y = {((B1, Bz, B3, B),g) € B* x G;gB1g™" = By,gBag™" = Bs}.
Let z € c. From Lemma 6.7 we have canonically
(b) (h14!h§3Lx)){2a+2u+2p} = @yECLy!L:c!Ly’l'
By the proof of 2.6 we have
C(x(Lg)) = hiahisLy.
Hence, using 2.11(b), we have

Q(K(LI)) = (h14! hszr){QCH-?V—',-Qp} '

Substituting this into (b) we obtain (a).

6.9. Using 2.4 we see that 6.8(a) implies
(a) xLg = @ZGC(LZ)@%(Z)

in C°B? where 1),(z) € N are given by the following equation in J¢:

Ztytxty_l = Zq/)x(z)tz.

yee zEC

7. Analysis of the Composition (x (continued)

7.1. Let 3 = {((517527ﬂ3vﬁ4)7g) € ‘84 X G;gﬁ2g_1 = ﬁ3} Define da d, : 3 —

‘82 by d(517ﬁ27ﬂ37ﬁ4)7g) = (ﬁl)g_1ﬁ4g)7 d,(ﬁ17527ﬁ37ﬁ4)7g) = (gﬂlg_lvﬁ4)'
Let u € ¢. We set L, = d*L, = d"*L,, € Din(3); the last equality follows

from the G-equivariance of L,,. Define 9 : 3 — B* by ((81, B2, 33, 84),9) —
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(B1, B2, 43, B1). Now G? acts on 3 by

(91,92): ((B1, B2, b3, B4), 9) > (918197 915297 92b3g5 928195 1), 92991 1)

this induces a G?-action on B? so that ¥ is G?-equivariant. Note also that
G? acts on B% by (g1,92) : (B,B') — (91Bg; ', 91B'g;") and that d,d’ are
G2-equivariant. It follows that a shift of Ly, is G x G-equivariant perverse

sheaf and (01L,)7 is G?-equivariant for any j.

For 4,7 in {1,2,3,4} let p;; : B* — B? be the projection to the i, j

coordinates.

For any y, z in W we set

3y.. = {(B1, B2, B3, Ba) € B (B1, B2) € Oy, (Bs, 1) € O,}.

These are the orbits of the G2-action on B*. Let T, . be the intersection
cohomology complex of the closure 3%2 of 3, extended by 0 on B* — 3%2,
to which [[2v + |y| + |#]]] has been applied. We have T, . = p;,L, ® p3,L..

We denote by 'M=B* (resp. "M=B*) the category of perverse sheaves
on B* whose composition factors are all of the form T,.withy Zc,ze W
(resp. y € W, z < ¢). We denote by 'M=B* (resp. "M=B?) the category
of perverse sheaves on B* whose composition factors are all of the form T,.
with y < ¢, 2 € W (resp. y € W, z < ¢). Let M=B* (resp. M~B*) be the
category of perverse sheaves on B* whose composition factors are all of the
form T, . withy < ¢, 2 <c (resp. y < ¢,z <cory <c, z < c). Let DZB*
(resp. D;iB*) be the category consisting of all K € D,,B* such that for any
j € Z, K7 belongs to M=B* (resp. M~=B%).

Let C=B* be the subcategory of M=B* consisting of semisimple objects;
let COjB4 be the subcategory of M,,B* consisting of those K € M,,B* such
that K is pure of weight 0 and such that as an object of MB* K belongs
to C=B. Let C°B* be the the subcategory of M=B* consisting of objects
which are direct sums of objects of the form T, . with y € ¢, z € ¢. Let
C§B4 be the subcategory of C’OjB4 consisting of those K € C’OjB4 such that as
an object of C2B*, K belongs to C°B*. For K ¢ 6584, let K be the largest
subobject of K such that as an object of CZB*, we have K € C¢B*.
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We set o = a + 3v + 2p. We have canonically

(a) gro(01Lw)*(@/2)) = ByeewUy,. @ Ty

where U, . are well defined mixed Q, vector spaces of pure weight 0.

Lemma 7.2.

(a) For any j € Z we have (0\Ly,)) € MZB.

(b) If j > a then (0 L,) € ' M=Bn" M=B.

(c) Ify,z € c, we have canonically U, , = Homeege (Ly, Ly,oL,-1).
Y,z € ¢, we have canonically U, , = Homeepgz (L, L,-10L,,).

d) If h Iy U, .=H L., L, 1eL

The proof of (a) and (b) is given in 7.3 and 7.4. The proof of (c) is given
in 7.5. The proof of (d) is given in 7.6.

7.3. In this subsection we show that
(a) For any j € Z we have (9,L,)7 € 'M=B.
(b) If j > a then (9\L,)7 € 'M=B*.

In the setup of 6.1 (with e =0, f = 1,¢’ = 4 hence € = 5) we identify ),

3 via the isomorphism
'c: Y53, ((Bo,Bi, B2, Bs, Ba),g) = ((Bo, B2, B3, Bs), 9)-
Then 9 becomes the composition yiB‘:’iB‘L where 0 is (By, By, By, B3, By) —

(Bo, B2, Bs, By); ULy, becomes 6((pf; L) @ Z).
We have

6/((P51 L) © E) < {61((p§1 L) @ E"[=h]); h < ks}
where the inequality h < ks comes from the fact that Z" = 0 if h > ks, see
6.2(a). (Recall that ks = 5v + 2p.) Hence it is enough to show:

(c) For any j,h € Z, we have (6,((p}; L) ® Z"[—h]))! € 'M=B.
(d) For any j,h € Z such that j > a,h < ks, we have (61((pj;L.) ®
EM—n])) € ' M=B*.
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Note that in (d) we have j — h > a — 2v. Since Z" is G3-equivariant, its
composition factors are of the form ¥, ,» with y,’ € W. Hence it is enough
to show for any y,y' € W:

-/

(e) For any j' € Z, we have (((pjLu) ® Ty,))? €' M=ZB2

(f) For any j' € Z such that j' > a — 2v, we have (6i((pj;Lu) ® T,,)) €
'M=B2.

From the definitions we have

O (po1Lu) @ Tyyyr) = Pro(Liu @ Ly)[[V]] @ p3gLiy.

This can be viewed as (L, e Ly[[v]]) K L, € D,,(B* x B?). Since L is a

perverse sheaf on the second copy of B2, we have
(Ly o Ly[[v])) R Ly )" = (Ly o L) ™ B Ly (v/2).

It remains to observe that (L, e L,)7" " is in M=B? for any j' and is in
M=B%if j' + v > a — v (by 3.1). This proves (a),(b).

7.4. In this subsection we show that

(a) For any j € Z we have (0,Ly,) € " M=B*.
(b) If j > a then (9|Ly)? € "M=B*.

The arguments are almost a copy of those in 7.3. In the setup of 6.1

(with e =1, f = 1,€¢’ =5 hence € = 5) we identify ), 3 via the isomorphism
”C : y:}37 ((BlaB27B37B47B5)7g) — ((B17B27B37B5)7g)'

Then 9 becomes the composition y3>15’5i>84 where 0 is (By, By, Bs, By, Bs) —
(Bl,BQ,Bg,B5) 9Ly, becomes 0)((pisLy) © Z). We have 6)((pisLy) @ Z) <
{6i((pisLu) ® Z"[—h]); h < ks} where the inequality h < ks comes from the
fact that = = 0 if h > ks, see 6.2(a). Hence it is enough to show:

(c) For any j,h € Z, we have (6,((pjsL.) ® Z"[—h]))7 € "M=B%.
(d) For any j,h € Z such that j > a,h < ks, we have (6((pjsLy) ®
Er—h))) € "M=B.
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Note that in (d) we have j —h > a — 2v. Since =" is G3-equivariant, its
composition factors are of the form ¥, with v,y € W. Hence it is enough
to show for any y,y' € W:

(e) For any j' € Z, we have (6)((pisLy) ® Ty))? € " M=B
(f) For any j' € Z such that j' > a — 2v, we have (6)((psLu) ® T,,0)) €
"M=B2.

From the definitions we have

01((PisLlu) @ Ty yr) = P3a(Ly @ L) [[V] © piaLsy.

This can be viewed as L, X (L, o L,[[v]]) € D,,(B* x B?). Since Ly, is a
perverse sheaf on the first copy of B2, we have

(Ly X (Ly o Lu[[’”“))jl =Ly(v/2) W (Ly o Lu)jl+y-
It remains to observe that (L, e L,)7 ™ is in M=B? for any j/ and is in
M=B?if '+ v >a—wv (by 3.1). This proves (a),(b).
Combining (a),(b) with 7.3(a),(b) we see that 7.2(a),(b) hold.

7.5. We prove 7.2(c) using the isomorphism ’c : Y53 in 7.3. (We assume
again that we are in the setup of 6.1 with e =0, f = 1,¢’ = 4 hence e = 5.)
As in 7.3, we have ULy, = 0,((p§,L,) ® Z). Here 0 : B> — B* is as in 7.3.

From the exact triangle (', 2, 2% [—ks]) in 6.2(a) we get an exact tri-
angle

(0:((Ptr L) © ), ({1 L) © E), 01062 L) © E[k3]))

hence an exact sequence

[1]

)j

(@) (O((pir L) ® E)) — (01((p51 Lu) ® E)
61Lu) ® )7

)j
= (6((pf1 L) © EP]k3))) — (61((

=

Replacing Z by Z’ in the proof of 7.3(b) given in 7.3 and using that (£')" = 0
if h > k5 we see that

(6 ((po1 L) @ =) € M=B* for j > a.
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Hence the exact sequence (a) implies that

(6:((P51 L) ® 2))* = (B:((p5y L) @ E*[k5]))"

has kernel and cokernel in M~=B%. This induces a homomorphism

(b)  gro(0i((pfi L) © E))*(a/2)) = gro(6:((phi L) @ E¥[ks]))*(e/2))
= gro(61((P§1Lu) ® E))* % (a/2))

which has kernel and cokernel in M~<B%.

From the exact sequence 6.4(a) we get a distinguished triangle

(6:((P51Lu) ® W (EP (k5/2))) k3], 6106y L) @ B (k5/2))[—ks),
0:((P51 L) ® gro(E™ (k5/2)))[—ks))-

Hence we have an exact sequence

() (0:((PB1 L) @ WH(EN (k5/2))) [ks])®
= (0u((pf1 L) @ E" (ks /2)) [~ ks])*

= (61((p51 L) @ gro(E* (k5/2))) [~k5])*
= (61((por L

Replacing = by W™(
and using that (W ~Y(

k5 (ks/2))[—ks/2] in the proof of 7.3(b) given in 7.3
k5 (ks /2))[—ks/2])" = 0 if h > ks we see that

—_
—
—
—_
—
—

(d) (01((pi L) @ W™HERS (k5 /2))) [—ks]) 2t € M=BL.
Note that
(e) Ira—ks (O1(P1 L) @ WHER (k5 /2))))* > = 0.

This follows from the fact that W™1(Z*5(ks/2)) has weight < —1 hence
01((pgy L) @ WL(EF3(k5/2))) has weight < —1 and
(01((pfy L) @ WL (ER5(k5/2))))* 5 has weight < o — ks — 1.

Using (d),(e), we see that (c¢) induces a morphism

gra—]%(e!((p();lLu) !kf’(k‘ /2)))0‘_k5
= GTaks (O((Ph L) @ gro(EFs (ks /2))))> ks
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which has kernel 0 and cokernel in M=B%, hence a morphism

gro(i((py Lu) @ E7)* " (/2))
= gro(h((pi L) ® gro(E* (k5/2))))* " (o — k5)/2))

which has kernel 0 and cokernel in M=B*. Composing this with the mor-
phism (b) we obtain a morphism

gro(61((po1 L) ® E))*(er/2))
= gro(h((pi L) ® gro(E* (k5/2))))* " (o — k5)/2))

which has kernel and cokernel in M~B%. Using 7.1(a) and 6.4 this becomes
a morphism

(f) 69z7y’EWUz7y’ o @yEWQTO(H!((pSILU) ®Ty7y—1))a_k5 ((a—ks5)/2))

which has kernel and cokernel in M~B%. As in 7.3, the right hand side of
(f) is

Syew gro(Pra(Lu @ Ly) [V]] @ p3yLy-1)* " ((a — ks5)/2))

= @yewgro(Ly o L) [W])* 7 (o = k5)/2)) R Ly

= Gyew(Ly o Ly)) " M RL,

= @yec,zecHomeepe (L, LyoLy )L, KL, -1 @ Sy jam (W —c) U;7y_1LZ|XLy—1

where U ; -1 are well defined mixed Qj-vector spaces. It follows that we
have canonically

Uz,y’ = HOIIlCcBZ (Lz, Lu!Ly/—l)

whenever 3’ € ¢,z € ¢. This completes the proof of 7.2(c).

7.6. We prove 7.2(d) using the isomorphism ”¢ : Y3 in 7.4. (We assume
again that we are in the setup of 6.1 with e = 1,f = 1,¢/ = 5 hence
e = 5.) The arguments will be similar to those in 7.5. As in 7.4, we have
0Ly = 6i((pisLy) ® Z). Here 0 : B> — B is as in 7.4.

From the exact triangle (', Z,Z%5[—ks]) in 6.2(a) we get an exact tri-

angle

(0:((Pi5La) © ), (P35 La) © E), 01((pisLu) © E[ks]))
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hence an exact sequence
= (G((Pi5Lu) © )

(a) (01((pisLu) ® 2))
® EMks)))? = (0i((pisLu) ® E

= (61((PisLw)
Replacing = by Z’ in the proof of 7.4(b) given in 7.4 and using that (Z')" = 0

if h > ks we see that
(01((pisLy) ® Z)) € M™B* for j > a.

Hence the exact sequence (a) implies that

(0:((PisLu) @ E))* = (O1(Pi5 L) © EM[ks]))
has kernel and cokernel in M~B%. This induces a homomorphism

(b)  gro(@n((pisLa) ® £)*(a/2)) = gro(i((pisLu) ® E[ks]))* (/2))
= gro(0:((PisLu) ® E))* 7" (a/2))

which has kernel and cokernel in M=<B%.

From the exact sequence 6.4(a) we get a distinguished triangle

(6:((PisLu) ® W (EP (k5/2))) k3], 6r((pis L) @ ™ (k5/2))[—Fs]

0((PisLu) © gro(E™ (k5/2)))[ks))-

Hence we have an exact sequence

() (0:((PisLu) @ WTH(E" (k5/2)))[~k5))?

= (O((pisLu) ® E% (ks /2))[ks])*
= (O((pisLu) ® gro(E* (ks /2)))[~ks))
= (O((pisLu) @ WTH(E™ (k5/2))) [~ ks])* .

Replacing = by W™(Z¥5(k5 /2))[—ks/2] in the proof of 7.4(b) given in 7.4
and using that (W™ (2" (k5/2))[~k5/2])" = 0 if h > k5 we see that

(d) (0:((PisLu) @ WH(EM (k5/2)))[—ks))H € MTBY



2015] TRUNCATED CONVOLUTION OF CHARACTER SHEAVES 51

Note that

(e) 9Tty (01((Pis L) @ WH(ER (k5/2))))* ™ = 0.

This follows from the fact that W~'(2"5(ks/2)) has weight < —1 hence
0\((phsLu) @ W™ (E5(k5/2))) has weight < —1 and
(01 ((PisL) @ WH(EF (k5/2))))*F5 has weight < o — k5 — 1.

Using (d),(e), we see that (¢) induces a morphism

gra-rs (O1((PisL) @ (k5 /2)))* 7
= gra—ks (0((PisLu) ® gro(E" (k5/2))))* "

which has kernel 0 and cokernel in M~B%, hence a morphism

gro(6:((PisLu) © E%))* 7% (a/2))
= gro(h((pisLu) ® gro(E* (k5/2))))* " (o — k5)/2))

which has kernel 0 and cokernel in M=B*. Composing this with the mor-

phism (b) we obtain a morphism

gro(61((P15Lw) © =))*(a/2))
= gro(h((pisLu) ® gro(E* (k5/2))))* " (o — k5)/2))

which has kernel and cokernel in M=B*. Using 7.1(a) and 6.4, this becomes

a morphism

() ®y2ewUy,: @ Ty 2 = Dyewgro(@n(pisL) ®F, ;1) ((a —k5)/2))

which has kernel and cokernel in M=B%*. As in 7.4, the right hand side of
(f) is

@yew gro(P3a(Ly-1 @ L) [[V] © oLy )* ™ ((a — k5)/2))
= @yewLy ®gro(Ly-1 o L) [[V])* " (o = k3)/2))
= @yewLy K (L, 1 o L,))t*
= @yeczecHomeepe (Lz, Ly-10L,,) @ (Ly K L.) ® Oy yewx(w-c) Uy »
®(Ly W L.)
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where Uz/// . are well defined mixed Q-vector spaces. It follows that we have
canonically U, . = Homgepz(L,,L,-10L,) whenever y € ¢,z € c. This
completes the proof of 7.2(d). Lemma 7.2 is proved.

Proposition 7.7. For any y,z,u € ¢ we have canonically

(a) Homgepz (Ly, LyoL,-1) = Homgepe (L, Ly -10L,,).

Indeed both sides of (a) are identified in 7.2(c),(d) with U, ..

Proposition 7.8. Let u,x € c. In the setup of 7.1 we have canonically

(ﬁ14! (ﬁ'(f‘u) ® ]523Lx)){3a+u+2p} = @y,zech,z

where
Q%Z = HomC°B2 (Ly7 Lu!szl) & (LySLxQLz)
= HomCCBQ(LzaLy—lgLu)(Ly!Lm!Lz) c 6882

(The last equality comes from 7.7.)

Define ® : D= B* — D= B? by ®(K) = pra(K ® pisL,). This is well
defined and maps D;:B* to D82, (This can be deduced from 2.2(a), (e).)
Let (¢,d) = (2a — 2v,a + 3v + 2p). Let X = 9(L,). By 7.2(a) we have
X7 € M=B* for any j > ¢’. Note that X has weight < 0. If K € D5B* and
K € MZB* then (®(K))" € M=B* for any h > c. (This can be deduced
from 2.2(a) with 7 = 3.) Now the proof of Lemma 1.12 can be repeated

word by word and yield a canonical identification

(@XMt = (e(x)) e+

that is

(Dra (DL )20 @ pi Ly ) P02 = (pray(91(Lu) © L)) P 200,

Replacing here (9(L,)){e+3v+20} by

@y,zécUy,z ® Ty,z = @y,ZECUy,z & 17{2Ly ® I3§4Lz
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(see 7.1(a) and 7.2(a)) we obtain

(ﬁ14! (ﬁ'(iu) ® ﬁ;ng)){3a+V+2p} = @y,ZECQy,z

where

Qy,z = Uy, ® (pra1(p1aly @ p3y L. ® 13;311:0)){2&_2”} =U,,. ® (LysL,eL.).

This completes the proof. (We use 7.2(c),(d).)

7.9. Let

'Y = {((Bo, B1, B2, B3, By),g) € B’ x G;gB1g~" = By,gBag~ " = Bs},
"V = {((B1, Bz, B3, B4, Bs),9) € B’ x G;gB1g~" = By,gBa2g™" = Bs}.
Note that 'Y is what in 6.1 (with e = 0,f = 1,¢/ = 4) was denoted by Y
and ") is what in 6.1 (with e =1, f = 1,¢’ = 5) was denoted by Y. For i, j
in [0,4] define 'h;; : 'Y — B* by ((Bo, Bi1, B2, B3, Bs), g) — (B;, Bj). For i, j
in [1,5] define //hij : //y — B2 by ((Bl,BQ,Bg,B4,B5),g) — (BZ,BJ) Let
w,z € e. Let '€ = "hoy('hiy Ly @ 'hisLy) € DB2, "€ = "hig ("hisLy) @

"h}sLy) € D32 From Lemma 6.7 we obtain canonical identifications

(/5){3a+u+2p} = 69yec/Qy’ (”5){3a+y+2p} :@yecﬁQy,
where
/Qy = Lu!Lyle!Ly—ly //Qy = Ly!L:c:Ly—llLu-

Using Theorem 6.8 we have canonically

@yECIQy = Lu!C_X(Lm), @yec//Qy = C_X(Lm)gLu
hence
(/5){3a+1/+2p} — Lu!C_X(Lx)y (//5){3a+u+2ﬂ} — C_X(LJ:)!Lu-

From the definitions we see that the identification
in 3.4(a) (with L = L, K = x(L;)) is the same as the identification

(/5){3a+u+2p} _ (//5){3a+u+2p}
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obtained by identifying both sides with £t +20} where & = f41(9)(Ly) ®
D53Lg). (Note that '€ = £ = "€ via the isomorphisms Y535 see
7.3, 7.4, where 'Y,”Y are denoted by ).) Using these identifications and

Proposition 7.8 we obtain a commutative diagram

L,e(x(L,) ——— gBatri20t o = (y(L,)eL,

| | -

@yec/Qy #} @y,zechﬁz é @yGCHQy

where the upper horizontal maps yield the identification (a) and the lower
horizontal maps are the obvious ones: they map '@, onto @ZECQZ—17y—1 and
”Qy onto @ZECQy,z-

8. Adjunction Formula (Weak Form)
Proposition 8.1. Let L € C§B? K € C§G. We have canonically

(a) Kxx(L) = x(Le((K)).

Applying 1.12 with ® : DG — DG, K1 — K * K1, X = x(L),
(e,d) = (2a+p,a+p+v) (see 4.5, 1.9) we deduce that we have canonically

(K (L) lerrvh )y Reeel = (K x x(L))Bor2eer)

that is,

(b) Kxx(L) = (K % x(L)) P20+,

Applying 1.12 with ® : D=B? — DB 'L+ LelL, X = ((K), (¢,c) =

(a —v,a+ v+ p) (see 3.1, 2.8) we deduce that we have canonically

() (Lo (Uit = (Lo () 47

(d) (Le((K)) € MZB?if j > 2a+ p.
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Applying 1.12 with ® : D B8% — DG, 'L+ x(1L), X = Le ((K), (¢,d) =
(a+p+v,2a+ p) (see (d) and 1.9) we deduce that we have canonically

x((L e C(K)){2a+/)}){a+p+u} = (x(Le C(K))){3a+2p+1/}'

Combining this with (c) gives

X(Lel(K)) = (x(L o ((K))) a2ty

which together with (b) gives (a). (We use the equality K * x(L) = x(L e
((K)), see 4.2.)

The following lemma is a variant of 1.12.

Lemma 8.2. Let ¢ € Z and let Y be one of G,B%. Let ® : DZY — D,,p
be a functor which takes distinguished triangles to distinguished triangles,
commutes with shifts and direct sums and maps complexes of weight < i to
complezes of weight < i (for any i). Assume that

(a) (®(Ko))" =0 for any Ko € MZY and any h > c.
Then for any K € DZY of weight < 0 and any ¢ € Z we have canonically

() (@B (@(K))tre.

As in 1.12 for any i, h we have an exact sequence

(@K' = (D(riK))H = (D(r< K)) T — (9(K7))"
N ((I)(T<Z'K))i+h+1.
Assume first that i + h = c+c +1, h > ¢+ 2 hence i < ¢ — 1. Then
(R(K')h1 = 0,(2(K")" = 0 hence (®(7<;K))TH5(d(r<;K))et+1,

Thus we see by induction on i that (®(7<;K))*T¢*+!l =0 for i < ¢ —1; in
particular

(d) (@< K)) T = 0.

Next assume that ¢ + h = ¢+ ¢, h > ¢+ 2 hence ¢ < ¢ — 2. Then
(R(K')1 = 0,(@(K"))" = 0 hence (®(7<;K))TH5(d(r<;K))ete+1,
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Thus we see by induction on 7 that (®(7<;K))*t¢ = 0 for i < ¢ —2; in partic-
ular (®(7<y oK)t = 0. Now assume that i+h = c+c, h = c+1 hence i =
¢ —1. We have an exact sequence (®(1<y_oK))T¢ = (®(1<p 1K)t — 0
hence (®(7<1K))*t = 0. Now assume that i +h = ¢+ ¢, h = ¢ hence

1 = ¢’. We have an exact sequence
0 = (®(r<e K))H = (B(K))" = (@1 K)) T,
hence using (d) we have
() (@(7<e K)) T S(@(E))".
For any i, from the exact sequence
(@) (D)) (B(riK )+
we deduce an exact sequence
grerer (BT = grop o (B(riK)) ™ = greye (@(r<iK)) .

Now (®(K*%))“t¢' =1 is mixed of weight < ¢+ ¢ — 1 (by our assumptions)
hence gre o (®(K))eH¢ =1 = (. Thus for any i we have an imbedding

Ireser (D(TiK))H C gropo(®(r<iK))

Hence each gre o (®(7-;K))*T¢ becomes a subobject of grey e (®(7<;K))He

with large i, that is of gre, . (®(K))°t¢. In particular we have
() greve (D<) C grepo(B(K)) .

From the exact sequence 0 — Wo_1 K ¢ 5 K- gre K ‘50 (here we use

that K¢ has weight < ¢) we deduce an exact sequence
(B(We 1 K))* = (D(K))" = (D(gre K))° = (D(We 1 K))H!
hence an exact sequence

grc+0’(¢(WC/—1KCI))C — grc+c/(q)(KC/))c — grc—kc/(q)(grc/KC,))c
— grc+c/(<1>(WC/_1Kcl))C+1.
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Now (®(Wy_1K¢))¢ has weight < c+¢ —1 hence gre o (®(Wy_1K))¢ = 0;
by (a) we have (®(Wu_1K¢))*t = 0. Hence the previous exact sequence
yields

Irere (B(K)) Sgre o (®(gra K€))©.

Combining this with gre, o (®(7<o K))+¢ = grey o (®(K¢))¢ obtained from
(e) we see that

greve(@(gro K)E = grepe (@(ree K)).
Using this and (f) we obtain an imbedding
greve (@(greK))" C grero (@(K))™.

Since gro K¢ is canonically a direct summand of gro K¢ we see that the
previous imbedding restricts to an imbedding

Irese (®(gra K))¢ C grepe (®(K))T.

Applying ((¢ + )/2) to both sides we obtain (c).

8.3. Let ¢ : p = G be the map with image 1. We show:
(a) Let K € MZG. If j > —2a — p, then (1*(K))) = 0.

We can assume that K € C'S(G). From the cleanness of cuspidal character
sheaves we see that either (* K = 0 in which case there is nothing to prove,
or K = Ag for some E € IrrW which we now assume. We have ’HZiAE =
Homyy (E, H2(B,Q;))(A/2) where H'™2(B, Q;) has the natural TW-action.
It is known that the polynomial Y, -, dim Homy (E, H*(B,Q;))v* has de-
gree < 2v — 2a(cg). Hence ), dim(_’HZi(AE))v" € v=22ler)=rZ[y=1]. Since
cg = ¢, we have a(cg) > a and Y, dim(H}(Ag))v® € v™2PZ[v~1]. This
proves (a).

(b) If K = Ag,_, then we have canonically (v*K)~2¢~° = E((2a+p)/2) where

E is a well defined 1-dimensional Q;-vector space of pure weight 0.

Equivalently, ”Hl_za_p K is a one dimensional mixed Q-vector space of
pure weight —2a — p. (We use the fact that F. appears in the W-mdule
H~202v(B.Q,)(A/2) with multiplicity one and that H 222" (B, Q;)(A/2)
is pure of weight —2a — p.)
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(c) If K € C°G and Homeeg(Ag,, K) = 0 then (1*(K))722° = 0.

We can assume that K = Ap where F € IrrcW, E # E.. We then use
the fact that E does not appear in the W-module H =272 (B, Q;)(A/2).

8.4. Define 6 : B — B? by B — (B, B); let w : B — p be the obvious map.
From the definitions, for any L € D,,3? we have canonically

(a) (X(L)) = wd™(L).

We show:
(b) Let L € M7 B2. If j > —a then (6*L)7 = 0.

We can assume that L = L,, where w < c. It is enough to show that for
any k we have (H*(6*L)[—k]))? = 0 that is (HF(6* (LL[|lw| + v])))7* = 0 or
equivalently (H*(6*(Li,[Jw(])[¥])} k¥ = 0. Now H*¥+(6*(L5,[Jw(])[v] is

a perverse sheaf hence we can take k = j — v and it is enough to prove that
#9 (6% (LE,[Jw]])) = 0. Now

3 rk(H (6" L, [|wl])o' = prw € v 22
<0

with pj 4, as in ﬂﬂ, 5.3] (see ﬂﬁ, 14.2, P1]). Since a(w) > a it follows that
P1w € v °Z[vY]. This proves (b).

We show:
(c) If L € M3 B2 is pure of weight 0 and i € Z then (5* L) is pure of weight
i.
We can assume that L = L,, where w < c¢. We have (6*L)" = H*"¥(6*L) =
Hi+lel(5* LE,) (Jw|/2) hence it is enough to show that, setting j = i + |w],
H (5*L1ﬁu) is pure of weight j. This follows from the results in m]
(d) Assume that w € c. If w = d € D¢ then (6*Ly,)~* = By[[v]](a/2) for
a well defined one dimensional mized Q;-vector space By of pure weight 0,
noncanonically isomorphic to Q. If w ¢ D, then (6*Ly)~% = 0.
In view of (c), an equivalent statement is that the coefficient of v™% in pj 4,

is 1if w € De and is 0 if w ¢ De; this holds by [19, 14.2, P5].

8.5. (a) Assume that L € My,B is G-equivariant so that L = V @ Qq[[V]]
where V is a mized Q;-vector space. If j > v then (w L) = 0. We have
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(wL)” =V (-v).
We have H’(wL) = V @ H'™(B,Q,). Since dimB = v, this is zero if
Jj+v>2vandis V(—v) if j + v = 2v. This proves (a).

We show:
(b) If L € MZB?% and j > v — a then (w6*L)! = 0. Moreover, we have
canonically (w)0* L)Y~ = (wy * ((6*L)™%))".

We set X = §*L. As in the proof of 1.12 we have an exact sequence

(XD = (@ (X)) = (Wi X) T = (w(X))"

= (w (7’<Z'X))i+h+1.

From this we see by induction on ¢ (using 8.3 and (a)) that if j > v —a then
(wi(7<;X))? = 0 for any i. Hence the first assertion of (b) holds. Assume
now that ¢ + h = v — a. From the exact sequence above we see (using 8.3)
that

(wi(T<i X)) ™" (wi (< X))

when i > —a hence (wi(7<_4X))" ¢ (wX)*~% From the same exact

sequence we see by induction on i (using (a)) that (w(7<;X))! = 0 for
i < —a —1 hence (wi(7<_4—1X))? = 0. The exact sequence above with
i = —a,h = v becomes

0= (@X)"* = (wi(X™))” = (wi(T< o X))

Hence we obtain an isomorphism (wX)” =45 (w (X %)),

8.6. Let L € CSB?. Applying 8.2 with ® : DG — D,,p, K1 — (*Kj,
¢ = —2a — p (see 8.3), K replaced by x(L) and ¢ = a + v + p we see that

we have canonically
(D)2 (P (L) T = (e (L)) e
(The last equality comes from 8.4(a).) We set

1= @aep B @ Ly € 6882
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where B}, is the vector space dual to By. From 8.4(d), 8.5, we see that

(a) (@ (L) = (@ (8" L) ™))" (v — a)/2) = Homgepz (1, L).
Hence we have canonically

(b) (e (x(L)1 7277} € Homgep2 (1, L).

We show that the last inclusion is an equality:

(©) (r*(X(£))2#} = Homees (1, L).

To prove this we can assume that L = L, for some = € c. If x ¢ D, then
the right hand side of (b) is zero hence the left hand side of (b) is zero and
(c) holds. Assume now that z € D¢.. Then the right hand side of (b) has
dimension 1; to prove (c) it is enough to show that the left hand side of
(b) has dimension 1. By 8.3(b),(c), the left hand side of (b) has dimension
(Ag, : x(Lg)) which, as we already know from (b), has dimension 0 or 1.

Using 1.15(a) we see that this dimension is in fact 1. This proves (c).

The argument above shows also that the assumption of 1.15(a) is satis-

fied; hence we can now state unconditionally:

(d) For any d € D¢ we have (Ag, : x(Lq)) = 1.
The argument above shows also:

(e) For any x € ¢ — D¢ we have (Ag, : x(L;)) = 0.

Lemma 8.7. Let L,L' € C°B?. We have canonically
(a) Homgep (1, LoL') = Homgepe (D(L'T), L).

Here for 'L € C°B? or 'L € C$B? we set L1 = W*L where h' : B — B? is
(B, B) = (B, B).

We can assume that L = L,, L/ = L, with 2,2’ € c. We view L, L’ as
objects of CSB%. Using 8.4(a) we have

(b) Homgep (1, LeL') = (" (Le L)) 1=+,
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Applying 8.2 with ® : D= B? — D,,,p, L+ wo*L, (¢,d)=(v—a,a—v), see
8.5(b), K = Le L' we deduce that we have canonically

() (6" (LoL")) "~} C (wid™(L o L)1,

From ﬂﬂ, 7.4] we see that we have canonically

@ (@(Le L) = @I L) = Homees(D(L'), L),

Note that 6*(L e L') = L ® L'T. Hence by combining (b),(c),(d) we have

(e) Homgeg (1, LeL') C Homgepe (D(L'T), L).

The dimension of the left hand side of (e) is the sum over d € D, of the

coefficients of t; in t,t,y € J¢ and, by ﬂﬂ, 14.2], this sum is equal to 1 if

/=1 =z and 0 if 2/~ # x; hence it is equal to the dimension of the right

hand side of (e). It follows that (e) is an equality and (a) follows.

8.8. Let u : G — p be the obvious map. From , 7.4], we see that for
K,K' € M3 G we have canonically

(u (K @ K'))? = Hompyg(D(K),K'), (w(K ®K') =0if j > 0.

We deduce that if K, K’ are also pure of weight 0 then (uj(K ® K'))° is
pure of weight zero that is (u/(K ® K'))? = gro(w(K @ K'))°. From the
definitions we see that we have u)(K ® K') = *(K' * K') where Kt = h*K
and h: G — G is given by g — ¢g~!. Hence for K, K’ € CSG we have

(a) Homeeg(D(K), K') = (" (KT K)° = (" (KT« K)1.

Applying 8.2 with ® : D=G — D,,,p, K1 +— 1*K1, ¢ = —2a — p (see 8.3), K
replaced by Kt s K’ and ¢ = 2a + p we see that we have canonically

( (KK 20meh o (o (KT s K700,
In particular if L, L' € C§B? then we have canonically

(¢ (L)X (L)) (0 (el L) * X (L))
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Using the equality

(0 QLD (L)) 270 = (0 ((Lag (L)) )

which comes from 8.1 we deduce that we have canonically

(¢ (Lo (eI 2 (e (e (L) * x(L))) ™

or equivalently, using (a) with K, K’ replaced by x(L')T, x(L):

(" (X (LS (X (L)) 2P € Homee (D (x (L)1), x(L))
= HomccG(”}D(K(L)T),K(L')).

Using now 8.6(c) we deduce that we have canonically
Homgep (1, Lo¢x L") € Homeee (D (x (L)1), x(1'))
or equivalently (see 8.7)
Homgep: (D(LY), (xL') € Homeea(D(x(L)N), x(L)).

We now set 'L = D (L") and note that

D(X(L)N) =D(x(Lh) = x(D(L") = x('L),
see 1.13(a). We obtain
(b) Homgeepz ('L, (xL') C Homeee (x(*L), x (L))

for any 'L, L' € CSB2.

We have the following result which is a weak form of an adjunction
formula, of which the full form will be proved in 9.8.

Proposition 8.9. For any 'L, L’ € C§B? we have canonically
(a) Homgep: ('L, (x(L')) = Homeeg (x(' L), x(L))

We can assume that !L=L,, L' =L, where z,u€c. By 6.9(a) and 1.10
(b), both sides of the inclusion 8.8(b) have dimension ), . 7(t,-1t:tyt,—1).
Hence that inclusion is an equality. The proposition is proved.
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9. Equivalence of C°G with the centre of C°3?

9.1 In this section we assume that the Fj-rational structure on G in 0.1 is
such that

(a) any A € CS(G) admits a mized structure of pure weight 0.
(This can be achieved by replacing if necessary ¢ by a power of ¢.)

The bifunctor C§G x C§G — C§G, K,K' — KxK' in 4.6 defines a
bifunctor C°G x C°G — C°G denoted again by K, K’ — KxK' as follows.
Let K € C°G, K' € C°G; we choose mixed structures of pure weight 0 on
K, K’ (this is possible by (a)), we define KxK’ € C§G as in 4.6 in terms of
these mixed structures and we then disregard the mixed structure on KxK’.
The resulting object of C°G is denoted again by K*K'; it is independent of
the choices made.

In the same way, the bifunctor C§B? x C§B? — C$B?, L, L' — LelL/ gives
rise to a bifunctor C°B? x C*B? — C°B? denoted again by L, L' —+ LeL’; the
functor x : C§B* — C§G gives rise to a functor C°B* — C°G denoted again
by x (it is again called truncated induction); the functor ¢ : C§G — CSB?
gives rise to a functor C°G — C°B2 denoted again by ¢ (it is again called

truncated restriction).

The operation KxK' is again called truncated convolution. It has a
canonical associativity isomorphism (deduced from that in 4.7) which again
satisfies the pentagon property. Thus C°G becomes a monoidal category; it

has a braiding coming from 4.6(a).

The operation LeL' makes C°B? into a monoidal abelian category (see

also ﬂﬁ] ).

9.2. We set
1=34ep . Bg®Ly.
Here By is as in 8.4(d).

Let u,z € c. From 7.7(a) we have canonically for any d € Dp:

HOmCCB2 (Ld, Lu:Lz—l) = HOmCCB2 (L27 Ld!Lu)
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Hence
(a) Homgepz (1, LyoL.-1) = Homeepz (L, 1oLy).
From 8.7(a) we have
(b) Homgep2 (1, LyeL,-1) = Homeepz (L, Ly,).
From (a),(b) we deduce
Homgepz (L, 1eL,) = Homgepe (L, Ly,).

Since this holds for any z € ¢, we have canonically 1eL, = L,. Since this
holds for any u € ¢, we have canonically 1eL = L for any L € C°B>.
Applying T, we deduce that we have canonically Lel = L for any L € C°B.
We see that

1 is a unit object of the monoidal category C<B2.

9.3. For L € C°B? let L* = ®(LT). Note that L** = L. According to E],
the monoidal category C¢B? is rigid and the dual of an object L is L*. (I
thank V. Ostrik for pointing out the reference E]) The proof of rigidity
given in B] relies on the use of the geometric Satake isomorphism. Below we

will sketch a more self contained approach to proving the rigidity of C°B2.

For each d € B, we choose an identification By = Qy, so that 1 =1’ =
D(1).

As a special case of 8.7(a), for any L € C°B? we have canonically
(a) Homgepz (1, Le®(LT)) = Homgepe (L, L).

Let &7, € Homgepe (1, LoD (LT)) be the element corresponding under (a) to
the identity homomorphism in Homeeg2(L, L). Using 3.3(a) we have
Hormeess (1,D(L)eL1) = Homeeg: (D(D(L)e L), D(1))
= Homgepe (LoD (L), 1).
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Under these identifications, the element {o (1) € Homgeg2 (1,D(L)eLT) cor-
responds to an element &) € Homgeps (LoD (LT),1). The elements &, &7
define the rigid structure on C¢B2.

9.4. Let Z€ be the centre of the monoidal abelian category C¢B2. (The
notion of centre of a monoidal abelian category was introduced by Joyal and
Street @], Majid ] and Drinfeld, unpublished.)

If K € C°G then the isomorphisms 3.4(a) provide a central structure on
C(K) € C°B* so that ((K) can be naturally viewed as an object of Z¢
denoted by ((K). (Note that 3.4 is stated in the mixed category but, as
above, it implies the corresponding result in the unmixed category.) Then
K + ((K) is a functor C°G — Z€¢. The following result will be proved in
9.7.

Theorem 9.5. The functor C°G — Z°, K +— ((K) is an equivalence of

categories.

Note that the existence of an equivalence of categories C°G — Z°¢ was
conjectured by Bezrukavnikov, Finkelberg and Ostrik M], who constructed

such an equivalence in characteristic zero.

9.6. By a general result on semisimple rigid monoidal categories in ﬂa,
Proposition 5.4], for any L € C°B2 one can define directly a central structure
on the object I(L) := @®yecLyeLeoL,-1 of C°B* such that, denoting by I(L)
the corresponding object of Z€, we have canonically

(a) Homgep2 (L, L") = Homze(I(L), L")

for any L' € Z°. (We use that for y € c, the dual of the simple object L,
of C°B? is L,-1.) The central structure on I(L) can be described as follows:

for any 'L € C°B? we have canonically

'LeI(L) = @®yec' LoLyoLoL, 1 = @, .ccHomeepe (L., ' LoL,) ® L.eLeL,
= @y7ZECH0mC°B2 (Ly*1 s szlllL) b2y Lz!LQLyfl
= @.ecl,oleL, 10'L = I(L)e'L.

9.7. For x € ¢ we have canonically (xL, = I(L,) as objects of C°B?, see
Theorem 6.8. From the last commutative diagram in 7.9 we see that this
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identification is compatible with the central structures (see 9.4, 9.6), so that

(a) xLy = I(Lm)'
Using this and 9.6(a) with L' = C_Xﬂ, L € C°B?, we see that

Homeepe (L, (xL) = Homze (Cx Ly, (X L).
Combining this with 8.9 we obtain for L = L, (with 2’ € c):

(b) Am,m’ = A/

x,x’

where

A, . = Homeeq(x(Lz), x(Lar)), Af,c7x/ = Hom ze (Cx Lz, CxLiy).

Note that the identification (b) is induced by the functor K + ((K). Let
A=®; pccAp Al = @x@/ecA;&x,. Then from (b) we have A = A’. Note
that this identification is compatible with the obvious algebra structures of

A A
For any A € C'S; we denote by A 4 the set of all f € A such that for any

x,2', the (z,2")-component of f maps the A-isotypic component of x(Ly)
to the A-isotypic component of x(L,/) and any other isotypic component of
X(Lg) to 0. Then A = ©accs. A4 is the decomposition of A into simple
algebras (each A 4 is # 0 since, by 1.7(b) and 1.10(a), any A is a summand
of some x(Lg)).

From @], ﬂa], we see that Z¢ is a semisimple abelian category with
finitely many simple objects up to isomorphism. Let & be a set of rep-
resentatives for the isomorphism classes of simple objects of Z€. For any
o € & we denote by A’ the set of all f* € A’ such that for any z,2’, the
(x,2)-component of f" maps the o-isotypic component of @ to the o-
isotypic component of m and any other isotypic component of @
to 0. Then A’ = @, eaAl is the decomposition of A’ into a sum of simple
algebras (each Al is # 0 since any o is a summand of some @; indeed,
if L, is a summand of o viewed as an object of C°B? then by 9.6(a), o is a

summand of I(L,) hence of {x(L,)).
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Since A = A’, from the uniqueness of decomposition of a semisimple
algebra as a direct sum of simple algebras, we see that there is a unique
bijection C'S¢ <+ &, A <+ 04 such that Ay = A} for any A € CS.. From
the definitions we now see that for any A € C'S. we have Q_A = g 4. Therefore
Theorem 9.5 holds.

Theorem 9.8. Let L € C°B?, K € C°G. We have canonically
(a) Homeep: (L, ((K)) = Homeea(x (L), K).

Moreover, in C°B* we have ((K) = @,ccoLE™ where c° is as in 1.7 and

m, € N.

From 9.5, 9.7, we see that

HomccG(X(L), K)= Homzc(gx(L),_—K) = Homgc(I(L),g—K).

Using 9.6(a) we see that Homze(I(L),(K) = Homeep2(L,((K)) and (a)
follows. To prove the second assertion of the theorem it is enough to show
that for any z € ¢ — ¢ we have Homeepz (L., ((K)) = 0; by (a), it is enough
to show that x(L.) = 0 and this follows from 1.7(c).

9.9. We show that for K € C°G we have canonically

(a) D(C(D(K))) = ¢(K).

It is enough to show that for any L € C°32 we have canonically
Homgep: (L, D(¢(D(K)))) = Homeep: (L, ((K)).

Here the left side equals

Homgep: (((D(K)),D(L)) = Homeeq(D(K), x(D(L)))
= Homeeq(D(K),D(x(L)))

(we have used 9.8(a) and 1.13(a)) and the right hand side equals
HOmccg(X(L), K) = HOmccg(Q(K), @(X(L)))

(We have again used 9.8(a)). This proves (a).
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9.10. The monoidal structure on C°B? induces a monoidal structure on Z¢.
Using 5.2 and the definitions we see the equivalence of categories in 9.5 is
compatible with the monoidal structures. Since Z¢ has a unit object, it
follows that the monoidal category C°G also has a unit object, say A. We
show:

(a) AgAEC.

From 8.6(d),(e) we see that for = € ¢, (Ag, : X(Lg)) is 1 if z € D¢ and is 0
if z ¢ Dc. Using 9.8(a) we deduce that for = € ¢, dim Hompp: (L, ((AE,))
is 1if 2 € De and is 0 if ¢ De. Thus ((Ag,) is isomorphic in C°B? to
the unit object 1 of the monoidal category C¢32. Then ((Ag,) viewed as an
object of Z€ is also the unit object of Z¢ hence is isomorphic in Z€ to ((A).
Using Theorem 9.5 we deduce that (a) holds.

9.11. Let z,u € c. We have canonically

(a) X(L2)xx(Ly) = ©yecx(LyeLyoL oL, 1).

Indeed, by 8.1(a), it is enough to prove that we have canonically
X(Lu!C_X(LZ)) = @yGCX(Lu!Ly!Lz!Ly—l)

and this follows from 6.8(a). We see that

X(Lz)xx(Ly) & @TECOK(LT)®¢(T)

in C°G where ¥(r) € N are given by the following equation in J¢:

D tutytty1 = G(r)t..

yee rec

9.12. Let J§ be the subgroup of J¢ spanned by {t,;z € c%}. For &, ¢ € J§
we set

fof = thyg’tyfl e Je.

yec

We show that £o¢” € J§. We can assume that & = t,,, & = t,v with w,w’ € c°.
If t.(z € c) appears with nonzero coefficient in {o&’ then t,-1t,tyt,t, -1 # 0
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for some y € ¢ and tytytyt,y-1t,-1 # 0 for some 3’ € c. Using ﬂﬁ, P8| we

Dorpw™ w~p o/~ ¢/~ ~p 2. Since w ~p, w™!, it follows

1

deduce: z—

that z ~; 27", as claimed.

For £,¢,¢" in J§ we show that (§0&')o&” = £o (¢ 0&”). We can assume

that € = ty,, & = ty,&" = tyr where w,w’, w” are in c¢?. We must show:

D tutytuty-itutwrt,1 = Y tutyturtstyrteit, i,
Yy, ucc Y,8€C

or equivalently

SR tutyturtsturt, = B 1 atutyturtstent, o

Y, u,S€c Y,8,ucc

It remains to use the identity h2_17u,5 = h:_17y_17u_1 for y,u,s € c (see ﬂﬁ,
P7)).

We see that (J§, o) is an associative ring (without 1 in general). Let G
be the Grothendieck group of the category C¢G; this is an associative and
commutative ring under truncated convolution (see 9.1) and 9.11 shows that
tw + x(L2) is a ring homomorphism J§ — §.

10. Remarks on the Noncrystallographic Case

10.1 In this subsection we consider a not necessarily crystallographic Coxeter
group W’ with a fixed two-sided cell ¢’. The following discussion assumes the
truth of Soergel’s conjecture for W', recently proved by Elias and Williamson
ﬂﬂ] Let w — |w| be the length function of W’. For any w € W' we define
a(w) € N as in EE, 13.6]. (The assumption in loc.cit. that W' with w — |w|
is bounded in the sense of ﬂﬁ, 13.2] is not necessary for the definition of a(w);
to show that a(w) is well defined we use instead the inequality a(w) < |w|
which is proved by the argument in ﬂﬁ, 15.2], applicable in view of the
positivity results of [5].) In the remainder of this section we assume that W’
with w +— |w| is bounded; then the properties of a(w) stated in ﬂﬁ, 14.2]
hold by the arguments in [19, §15], using again the positivity results in ﬂﬂ]
Assuming further that W’ is either a finite Coxeter group or an affine Weyl
group, the ring J and its subring J¢ is defined as in ﬂﬁ, 18.3] in terms of
the a-function; both these rings have unit elements.
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We show that the definition of the monoidal category in 3.2 can be
adapted to the more general case of W', ¢’ by using Soergel bimodules @]
instead of perverse sheaves.

Let R be the algebra of regular real valued functions on a fixed (real)
reflection representation of W’. Then for each x € W', the indecomposable
Soergel graded R-bimodule B, is defined as in @, 6.16]. Let C (resp.
(') be the category of graded R-bimodules wich are isomorphic to finite
direct sums of graded R-bimodules of the form B, with shift (resp. without
shift). As shown by Soergel, C is a monoidal category under the usual
tensor product L, L' + Le L. If L € C and j € Z we write L’ € C
for what in B, 6.2] is denoted by H7(L). (The fact that L7 is well defined
follows from the results of @] and E]) Let C¢ be the category of graded R-
bimodules wich are isomorphic to finite direct sums of graded R-bimodules
of the form B, (z € ¢/) without shift. For any L € C there is a unique
direct sum decomposition L = L @& L' where L € Cw and L' is a direct
sum of graded R-bimodules of the form B, (z ¢ ¢’). (The uniqueness of
this direct sum decomposition follows from the results of [29] and [5].) Let
a’ be the value on ¢’ of the a-function W/ — N. By arguments parallel
to those in ME] and making use of the results of E] and the properties of
the a-function we see that for L, L' € Cy we have (Le L')) = 0if j > a
and L, L/ — LelL' := (L e L')* defines a monoidal structure on Cy (with a
unit object) such that the induced ring structure on the Grothendieck group
of C is isomorphic to the ring J¢. (For three objects L, L', L" in Cy we
have (LeL')eL” = Le(L'eL") = (Le L' e L")?% ) (Note that in the finite
crystallographic case, the objects of C should be thought of as perverse
sheaves on B rather than on B? as in 3.2; this accounts for our usage of a’
instead of the a — v in 3.2.) Let Z¢ be the centre of the monoidal category
(Ceryo). By ﬂE, 3.5,3.6], Z¢ is an R-linear category. Let G be the set of
isomorphism classes of objects of Z < which are indecomposable with respect
to direct sum. The objects of G can be called the character sheaves of
W', c; this is justified by Theorem 9.5.

Now assume further that W’ is finite, of type Hs or Hy4 or a dihedral
group. In this case ¢’ is uniquely determined by the number a’. Recall that
in ﬂﬁ] the “unipotent characters” associated to W’ were “described”. The
unipotent characters whose degree polynomial is divisible by ¢% but not by

/ . . .
g® 11 can be viewed as unipotent characters associated to ¢’; they form a set
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U. We expect that Uy and G¢ are in a natural bijection. This predicts for
example that, if ¢’ in type Hy has a’ = 6, then G has exactly 74 elements; if
¢’ for the dihedral group of order 4k+2 (resp. 4k+4) has ' = 1 then & has
exactly k2 (resp. k%24 k+2) elements. We expect that the monoidal category
Ce is rigid, so that (by a result of @], BT), Z¢ is a semisimple abelian
category and & is the same as the set of isomorphism classes of simple
objects of Z€. We also expect that Z€ is a modular tensor category whose
S-matrix is the matrix described in ﬁ], @], which transforms the fake
degrees polynomials of W’ corresponding to ¢’ to the unipotent character

degrees corresponding to c’.
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