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Abstract

Wirsing’s theorem on approximating algebraic numbers by algebraic numbers of

bounded degree is a generalization of Roth’s theorem in Diophantine approximation. We

study variations of Wirsing’s theorem where the inequality in the theorem is strengthened,

but one excludes a certain easily-described special set of approximating algebraic points.

1. Introduction

Roth’s fundamental result in Diophantine approximation describes how

closely an algebraic number may be approximated by rational numbers:

Theorem 1.1 (Roth [9]). Let α ∈ Q be an algebraic number. Let ǫ > 0.

Then there are only finitely many rational numbers p
q ∈ Q satisfying
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Roth’s theorem can be extended [6, 8] to an arbitrary fixed number

field k (in place of Q) and to allow finite sets of absolute values (including

non-archimedean ones). A general statement of Roth’s theorem, using the

language of heights (see Section 2 for the definitions), is the following.

Theorem 1.2. Let S be a finite set of places of a number field k. Let

P1, . . . , Pq ∈ P1(k) be distinct points, D =
∑q

i=1 Pi, and ǫ > 0. Then for all
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but finitely many points P ∈ P1(k) \ SuppD,

mD,S(P ) =

q
∑

i=1

∑

v∈S

hPi,v(P ) < (2 + ǫ)h(P ).

We note that there is no loss of generality in the assumption that

P1, . . . , Pq are k-rational (see [13, Remark 2.2.3]).

Instead of taking the approximating elements from a fixed number field,

a natural variation on Roth’s theorem is to consider approximation by alge-

braic numbers of bounded degree. In this direction, Wirsing [14] proved a

generalization of Roth’s theorem, which we state in a general form.

Theorem 1.3 (Wirsing). Let S be a finite set of places of a number field

k. Let P1, . . . , Pq ∈ P1(k) be distinct points and let D =
∑q

i=1 Pi. Let

ǫ > 0 and let d be a positive integer. Then for all but finitely many points

P ∈ P1(k) \ SuppD satisfying [k(P ) : k] ≤ d,

mD,S(P ) < (2d+ ǫ)h(P ).

Taking d = 1 in Wirsing’s theorem recovers Roth’s theorem. For t ≤ 2d

and D, S, k, as in Theorem 1.3, the set

{P ∈ P1(k) | [k(P ) : k] = d,mD,S(P ) ≥ th(P )} (1.1)

may be infinite. A natural way to obtain algebraic points P ∈ P1(k) with

[k(P ) : k] = d is to pull back k-rational points via a degree d morphism

φ : P1 → P1. The following result may be used to classify those morphisms

φ which contribute infinitely many points in this way to the set (1.1).

Theorem 1.4. Let S be a finite set of places of a number field k containing

the archimedean places. Let P1, . . . , Pq ∈ P1(k) be distinct points and let

D =
∑q

i=1 Pi. Let φ : P1 → P1 be a morphism over k of degree d. Let

φ({P1, . . . , Pq}) = {Q1, . . . , Qr} and let

ni = |φ−1(Qi) ∩ {P1, . . . , Pq}|, i = 1, . . . , r.

Rearrange the indices so that n1 ≥ n2 ≥ · · · ≥ nr.
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1. Suppose that |S| > 1. For some constant C, the inequality

mD,S(P ) > (n1 + n2)h(P ) −C

holds for infinitely many points P ∈ φ−1(P1(k)).

2. Let ǫ > 0. The inequality

mD,S(P ) < (n1 + n2 + ǫ)h(P )

holds for all but finitely many points P ∈ φ−1(P1(k)) with [k(P ) : k] = d.

After composing φ with an automorphism, we can always assume in

Theorem 1.4 that Q1 = 0 and Q2 = ∞. Then Theorem 1.4 motivates

making the following definitions. Let k be a number field, P1, . . . , Pq ∈ P1(k)

be distinct points, and D =
∑q

i=1 Pi. Let d be a positive integer and let t be

a positive real number. Let Endk(P
1) be the set of k-morphisms φ : P1 → P1.

Define

Φ(D, d, t, k) = {φ ∈ Endk(P
1) | deg φ ≤ d, |φ−1({0,∞}) ∩ SuppD| ≥ t},

Z(D, d, t, k) =
⋃

φ∈Φ(D,d,t,k)

φ−1(P1(k)).

It is then natural to ask the following question.

Question 1.5. Does the inequality

mD,S(P ) < th(P ) (1.2)

hold for all but finitely many points P ∈ P1(k)\Z(D, d, t, k) satisfying [k(P ) :

k] ≤ d?

We will show that Question 1.5 has a positive answer when d = 2.

Theorem 1.6. Let S be a finite set of places of a number field k. Let

P1, . . . , Pq ∈ P1(k) be distinct points, let D =
∑q

i=1 Pi, and let t be a positive

real number. Then the inequality

mD,S(P ) < th(P )

holds for all but finitely many points P ∈ P1(k) \ Z(D, 2, t, k) satisfying

[k(P ) : k] ≤ 2.
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More generally, we will show that Question 1.5 has a positive answer if

either t ≤ d+ 1 (Lemma 4.5) or t > 2d− 1:

Theorem 1.7. Let S be a finite set of places of a number field k. Let

P1, . . . , Pq ∈ P1(k) be distinct points and let D =
∑q

i=1 Pi. Let d be a

positive integer and let t > 2d− 1 be a real number. Then the inequality

mD,S(P ) < th(P )

holds for all but finitely many points P ∈ P1(k) \ Z(D, d, t, k) satisfying

[k(P ) : k] ≤ d. Furthermore, in this case Φ(D, d, t, k) is a finite set and

Z(D, d, t, k) =
⋃

φ∈Φ(D,d,t,k) φ
−1(P1(k)) is a finite union of sets of the form

φ−1(P1(k)).

Thus, after excluding points of a special and easily described form, the

inequality in Wirsing’s theorem may be improved to

mD,S(P ) < (2d − 1 + ǫ)h(P ).

In general, we will see that Question 1.5 has a negative answer. By care-

fully studying the exceptional hyperplanes in the Schmidt Subspace Theorem

in dimension three, we obtain a precise answer to Question 1.5 when d = 3,

showing that in this case the question has a positive answer if t > 9
2 , but

(at least for some choices of the parameters) it has a negative answer when

4 < t < 9
2 .

Theorem 1.8. Let k be a number field. Let P1, . . . , Pq ∈ P1(k) be distinct

points and let D =
∑q

i=1 Pi. Let S be a finite set of places of k containing

the archimedean places and let t be a real number.

1. If t > 9
2 , then the inequality

mD,S(P ) < th(P )

holds for all but finitely many points P ∈ P1(k) \ Z(D, 3, t, k) satisfying

[k(P ) : k] ≤ 3.

2. If 4 < t < 9
2 , |S| > 2, and q = 6, then there are infinitely many points

P ∈ P1(k) \ Z(D, 3, t, k) satisfying [k(P ) : k] = 3 and

mD,S(P ) > th(P ).
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From another viewpoint, Question 1.5 may be viewed as asking a quan-

titative generalization of results in [7], where integral points of bounded de-

gree on affine curves were studied. In [7], affine curves with infinitely many

integral points of degree d (over some number field) were characterized as

follows.

Theorem 1.9. Let C ⊂ An be a nonsingular affine curve defined over a

number field k. Let C̃ be a nonsingular projective completion of C and let

(C̃ \ C)(k) = {P1, . . . , Pq}. Let d be a positive integer. Let Ok,S denote the

integral closure of Ok,S in k. Then there exists a finite extension L of k and

a finite set of places S of L such that the set

{P ∈ C(OL,S) | [L(P ) : L] ≤ d}

is infinite if and only if there exists a morphism φ : C̃ → P1, over k, with

degφ ≤ d and φ({P1, . . . , Pq}) ⊂ {0,∞}.

When C̃ = P1 the following stronger result was proven.

Theorem 1.10. Let S be a finite set of places of a number field k containing

the archimedean places. Let P1, . . . , Pq ∈ P1(k) be distinct points, let D =
∑q

i=1 Pi, and let C = P1 \ {P1, . . . , Pq}. Let d be a positive integer. For

any set of (D,S)-integral points R ⊂ {P ∈ C(k) | [k(P ) : k] ≤ d}, the set

R \ Z(D, d, q, k) is finite.

Note that Φ(D, d, q, k) is just the set of k-endomorphisms φ of P1 satis-

fying deg φ ≤ d and φ({P1, . . . , Pq}) ⊂ {0,∞}. In particular, Φ(D, d, q, k) is

empty if q ≥ 2d+1. From the definition, R is a set of (D,S)-integral points

if and only if

mD,S(P ) = (degD)h(P ) +O(1)

for all P ∈ R. For some finite set of places T ⊃ S, we even have (using

the definition of mD,T in Section 2) mD,T (P ) = (degD)h(P ) for all P ∈ R.

Thus, Theorem 1.10 is equivalent to Question 1.5 having a positive answer

for t = degD. In this sense, Question 1.5 asks a quantitative generalization

of Theorem 1.9 (for the projective line) and Theorem 1.10.

Similar to Question 1.5, the analogue of Theorem 1.9 for algebraic points

of bounded degree on curves holds only for small d (d ≤ 3) as we now
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discuss. Let C be a nonsingular projective curve defined over a number field

k. Faltings’ theorem asserts that C(L) is infinite for some finite extension

L of k if and only if the genus of C is zero or one. If C admits a degree

d morphism to the projective line or an elliptic curve, then by pulling back

k-rational points via this morphism one sees that, after possibly replacing k

by a larger number field, the set

{P ∈ C(k) | [k(P ) : k] ≤ d}

is infinite. Harris and Silverman [4] proved the converse in the case d = 2.

Theorem 1.11 (Harris, Silverman). Let C be a nonsingular projective curve

defined over a number field k. Then the set

{P ∈ C(k) | [L(P ) : L] ≤ 2}

is infinite for some finite extension L of k if and only if C is hyperelliptic

or bielliptic.

More generally, we have the following theorem of Abramovich and Harris

[1].

Theorem 1.12 (Abramovich, Harris). Let d ≤ 4 be a positive integer. Let

C be a nonsingular projective curve over a number field k with genus not

equal to 7 if d = 4. Then the set

{P ∈ C(k) | [L(P ) : L] ≤ d}

is infinite for some finite extension L of k if and only if C admits a map of

degree ≤ d, over k, to P1 or an elliptic curve.

Given Theorem 1.12, Abramovich and Harris naturally conjectured that

a similar result would hold for all d (this is the analogue of Theorem 1.9 for

algebraic points). However, Debarre and Fahlaoui [3] gave counterexamples

to the conjecture for all d ≥ 4. The failure of this conjecture and the failure

of Question 1.5 to always have a positive answer are somewhat analogous.

Debarre and Fahlaoui’s counterexamples rely on the fact that there may exist

an elliptic curve E in the Jacobian of a curve C that is not induced by any

morphism C → E. To every morphism φ ∈ Φ(D, d, t, k) of degree d, one may

associate a line in SymdP1 via the one-dimensional linear system associated
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to φ. Our examples rely on the fact that in a Diophantine approximation

problem on SymdP1 ∼= Pd related to Question 1.5, there are exceptional

hyperplanes in the Subspace Theorem that are not induced by the morphisms

in Φ(D, d, t, k), i.e., that are not a Zariski closure of a union of lines associated

to morphisms in Φ(D, d, t, k).

2. Diophantine Approximation on Projective Space:

Definitions and Background Material

Let k be a number field and let Ok denote the ring of integers of k.

Recall that we have a canonical set Mk of places (or absolute values) of k

consisting of one place for each prime ideal p of Ok, one place for each real

embedding σ : k → R, and one place for each pair of conjugate embeddings

σ, σ : k → C. If S is a finite set of places of k containing the archimedean

places, we let Ok,S, and O∗
k,S denote the ring of S-integers of k and the group

of S-units of k, respectively. If v is a place of k and w is a place of a field

extension L of k, then we say that w lies above v, or w|v, if w and v define

the same topology on k. We normalize our absolute values so that |p|v = 1
p

if v corresponds to p and p lies above a rational prime p, and |x|v = |σ(x)| if

v corresponds to an embedding σ. For v ∈Mk, let kv denote the completion

of k with respect to v. We set

‖x‖v = |x|[kv:Qv]/[k:Q]
v .

A fundamental equation is the product formula

∏

v∈Mk

‖x‖v = 1,

which holds for all x ∈ k∗.

For a point P = (x0, . . . , xn) ∈ Pn(k), we have the absolute logarithmic

height

h(P ) =
∑

v∈Mk

logmax{‖x0‖v, . . . , ‖xn‖v}.

Note that this is independent of the number field k and the choice of coor-

dinates x0, . . . , xn ∈ k. In general, one can define a height hD (and local

height hD,v, v ∈ Mk), unique up to a bounded function, with respect to
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any Cartier divisor D on a projective variety (in fact, this can even be done

with respect to an arbitrary closed subscheme [12]). If D and E are Cartier

divisors on a projective variety X, then heights satisfy the additive relation

hD+E(P ) = hD(P ) + hE(P ) +O(1).

Let SuppD denote the support of the divisor D. If φ : Y → X is a morphism

of projective varieties with φ(Y ) 6⊂ SuppD, then

hD(φ(P )) = hφ∗D(P ) +O(1).

Similar relations hold for local heights. We refer the reader to [2, 5, 6, 13]

for further details and properties of heights.

We will primarily use heights with respect to effective divisors on pro-

jective space. These can be explicitly described as follows. Let D be a

hypersurface in Pn defined by a homogeneous polynomial f ∈ k[x0, . . . , xn]

of degree d. For v ∈ Mk, we let |f |v denote the maximum of the absolute

values of the coefficients of f with respect to v. We define ‖f‖v similarly.

For v ∈Mk and P = (x0, . . . , xn) ∈ Pn(k)\SuppD, x0, . . . , xn ∈ k, we define

the local height function

hD,v(P ) = log
‖f‖v maxi ‖xi‖

d
v

‖f(P )‖v
.

Note that this definition is independent of the choice of the defining polyno-

mial f and the choice of the coordinates for P . Let hD(P ) =
∑

v∈Mk
hD,v(P ).

It follows from the product formula that hD(P ) = (degD)h(P ). Let S be

a finite set of places of k. For P ∈ Pn(k) \ SuppD we define the proximity

function mD,S(P ) by

mD,S(P ) =
∑

v∈S

∑

w∈Mk(P )

w|v

hD,w(P ).

We will also have occasion to use heights associated to points in projec-

tive space. If P = (x0, . . . , xn), Q = (y0, . . . , yn) ∈ Pn(k), xi, yi ∈ k, P 6= Q,

and v ∈Mk, we define

hQ,v(P ) = log
maxi ‖xi‖v maxi ‖yi‖v
maxi,j ‖xiyj − xjyi‖v

.
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If D1, . . . ,Dq are effective Cartier divisors on a projective variety X,

then we say that D1, . . . ,Dq are in m-subgeneral position if for any subset

I ⊂ {1, . . . , q}, |I| ≤ m + 1, we have dim∩i∈ISuppDi ≤ m − |I|, where we

set dim ∅ = −1. In particular, the supports of any m + 1 divisors in m-

subgeneral position have empty intersection. We say that the divisors are in

general position if they are in dimX-subgeneral position, i.e., for any subset

I ⊂ {1, . . . , q}, |I| ≤ dimX + 1, we have codim ∩i∈I SuppDi ≥ |I|.

We now recall three fundamental results in Diophantine approximation

on projective space: Roth’s theorem, Schmidt’s Subspace Theorem, and the

Ru-Wong theorem.

To begin, we give a slightly more general version of Roth’s theorem from

the introduction.

Theorem 2.1 (Roth’s theorem with multiplicities). Let S be a finite set of

places of a number field k. Let P1, . . . , Pq ∈ P1(k) be distinct points and let

c1, . . . , cq be positive real numbers with c1 ≥ c2 ≥ · · · ≥ cq. Let ǫ > 0. Then

q
∑

i=1

cimPi,S(P ) < (c1 + c2 + ǫ)h(P ) +O(1)

for all points P ∈ P1(k) \ {P1, . . . , Pq}.

Proof. For all P ∈ P1(k) \ {P1, . . . , Pq},

q
∑

i=1

cimPi,S(P ) ≤ (c1 − c2)mP1,S(P ) + c2

q
∑

i=1

mPi,S(P ) +O(1)

≤ (c1 − c2)h(P ) + c2

q
∑

i=1

mPi,S(P ) +O(1).

Let ǫ > 0. By the standard version of Roth’s theorem (Theorem 1.2),

q
∑

i=1

mPi,S(P ) ≤ (2 + ǫ)h(P ) +O(1)

for all P ∈ P1(k) \ {P1, . . . , Pq}. So

q
∑

i=1

cimPi,S(P ) ≤ (c1 − c2)h(P ) + c2(2 + ǫ/c2)h(P ) +O(1)
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≤ (c1 + c2 + ǫ)h(P ) +O(1)

for all P ∈ P1(k) \ {P1, . . . , Pq}. ���

Schmidt’s Subspace Theorem is a powerful generalization of Roth’s the-

orem to higher-dimensional projective space. We state a general version,

including improvements due to Schlickewei [11].

Theorem 2.2 (Schmidt Subspace Theorem). Let S be a finite set of places

of a number field k. For each v ∈ S, let H0,v, . . . ,Hn,v ⊂ Pn be hyperplanes

over k in general position. Let ǫ > 0. Then there exists a finite union of

hyperplanes Z ⊂ Pn such that the inequality

∑

v∈S

n
∑

i=0

hHi,v ,v(P ) < (n+ 1 + ǫ)h(P )

holds for all P ∈ Pn(k) \ Z.

If H1, . . . ,Hq are hyperplanes over k in general position, then the Sub-

space Theorem easily implies that there exists a finite union of hyperplanes

Z ⊂ Pn such that the inequality

q
∑

i=1

mHi,S(P ) < (n+ 1 + ǫ)h(P )

holds for all P ∈ Pn(k) \ Z. If one substitutes a weaker inequality, then

the exceptional hyperplanes may be replaced by smaller-dimensional linear

subvarieties. This is given in the Ru-Wong theorem [10], which we state

more generally for hyperplanes in m-subgeneral position.

Theorem 2.3 (Ru-Wong). Let S be a finite set of places of a number field

k. Let H1, . . . ,Hq ⊂ Pn be hyperplanes over k in m-subgeneral position. Let

t > 2m − n+ 1 be a real number. Then there exists a finite union of linear

subvarieties Z ⊂ Pn of dimension ≤ 2m+ 1− t such that

q
∑

i=1

mHi,S(P ) < th(P )

for all P ∈ Pn(k) \ (Z ∪H1 ∪ · · · ∪Hq).
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3. Points of Bounded Degree and Symmetric Powers

For a variety X, let SymdX denote the dth symmetric power of X. As

is well known, SymdP1 ∼= Pd. In this section we will explore the natural

relationship between degree d points on P1 and rational points on SymdP1 ∼=

Pd.

Let d be a positive integer. Let

d
∏

i=1

bix− aiy =

d
∑

i=0

pi(a1, . . . , ad, b1, . . . , bd)x
iyd−i,

where p0, . . . , pd are polynomials over Z. We can define a morphism

σ : (P1)d → Pd

(a1, b1)× · · · × (ad, bd) 7→ (p0(a1, . . . , ad, b1, . . . , bd), . . . ,

pd(a1, . . . , ad, b1, . . . , bd)).

The morphism σ is a realization of the natural map (P1)d → SymdP1 ∼= Pd.

To a point P = (a, b) ∈ P1(Q) we associate the hyperplane HP in Pd

defined by
∑d

i=0 a
ibd−ixi = 0. Since the relevant Vandermonde determinants

are nonzero, we find that

Lemma 3.1. If P1, . . . , Pq ∈ P1(Q) are distinct points, then the hyperplanes

HP1 , . . . ,HPq are in general position.

Let πi : (P1)d → P1 denote the natural projection map onto the ith

factor.

Lemma 3.2. Let P ∈ P1(Q). Then for any i, σ∗π
∗
i (P ) is the hyperplane

HP .

Proof. By symmetry, it suffices to the prove the lemma for i = 1. Let

P = (a, b). Setting x = a and y = b, for any a2, . . . , ad, b2, . . . , bd ∈ Q we

have

(bx− ay)

d
∏

i=2

bix− aiy =

d
∑

i=0

pi(a, a2, . . . , ad, b, b2, . . . , bd)a
ibd−i = 0.
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So σ((a, b) × (a2, b2)× · · · × (ad, bd)) ∈ HP . Conversely, if

d
∑

i=0

cia
ibd−i = 0,

then
d

∑

i=0

cix
iyd−i = (bx− ay)

d
∏

i=2

bix− aiy

for some a2, . . . , ad, b2, . . . , bd ∈ Q, and hence σ((a, b) × (a2, b2) × · · · ×

(ad, bd)) = (c0, . . . , cd). It follows that σ∗π
∗
1(P ) = HP . ���

Let k be a number field. For Q ∈ {P ∈ P1(k) | [k(P ) : k] = d},

let Q = Q1, . . . , Qd ∈ P1(k) be the d conjugates of Q over k (in some

order) and let ρ(Q) = (Q1, . . . , Qd) ∈ (P1)d. Let ψ = σ ◦ ρ : {P ∈ P1(k) |

[k(P ) : k] = d} → Pd(k). Explicitly, if P = (α, 1) and [k(P ) : k] = d,

then ψ(P ) = (c0, . . . , cd) where
∑d

i=0 cix
i is the minimal polynomial of α

over k. The next lemma relates Diophantine approximation on P1 with

respect to P1, . . . , Pq and Diophantine approximation on Pd with respect to

HP1 , . . . ,HPq .

Lemma 3.3. Let P1, . . . , Pq ∈ P1(k). Then for Q ∈ {P ∈ P1(k) | [k(P ) :

k] = d}, the point ψ(Q) is k-rational and

q
∑

i=1

mHPi
,S(ψ(Q)) = d

q
∑

i=1

mPi,S(Q) +O(1),

h(ψ(Q)) = dh(Q) +O(1).

Proof. Let Q ∈ {P ∈ P1(k) | [k(P ) : k] = d} and let Q = Q1, . . . , Qd ∈

P1(k) be the d conjugates of Q over k. It’s clear from the definitions (or the

remark before Lemma 3.3) that ψ(Q) is k-rational. We have, up to O(1),

q
∑

i=1

mHPi
,S(ψ(Q)) =

q
∑

i=1

mσ∗π∗

1(Pi),S(σ(ρ(Q)) =

q
∑

i=1

mσ∗σ∗π∗

1(Pi),S(ρ(Q))

=

q
∑

i=1

m∑d
j=1 π

∗

j
(Pi),S

(ρ(Q)) =

q
∑

i=1

d
∑

j=1

mπ∗

j (Pi),S(ρ(Q))
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=

q
∑

i=1

d
∑

j=1

mPi,S(πj(ρ(Q))) =

q
∑

i=1

d
∑

j=1

mPi,S(Qj)

= d

q
∑

i=1

mPi,S(Q).

A similar calculation shows that h(ψ(Q)) = dh(Q) +O(1). ���

We end by discussing the relationship between lines in SymdP1 and

morphisms φ : P1 → P1.

Lemma 3.4. Let P = (a0, . . . , ad), Q = (b0, . . . , bd) ∈ Pd, P 6= Q. Let L be

the line through P and Q and let φPQ =
∑d

i=0 aix
i

∑d
i=0 bix

i
. Then

ψ−1(L(k)) ⊂ φ−1
PQ(P

1(k)).

Proof. If d = 1 then the lemma is essentially trivial. Suppose that d > 1.

Let P ′ ∈ L(k), P ′ 6= Q. Then

P ′ = (a0 + tb0, . . . , ad + tbd)

for some t ∈ k. Let f(x) =
∑d

i=0(ai + tbi)x
i. If P ′ is in the image of

ψ, then f must be irreducible over k and ψ−1(P ′) = {α1, . . . , αd} is the

set of roots of f (identifying A1 ⊂ P1 as usual). We finish by noting that

{α1, . . . , αd} = φ−1
PQ(−t). ���

4. Proof of Theorems 1.4, 1.6, 1.7

We begin by proving Theorem 1.4.

Proof. [Proof of Theorem 1.4] We first prove part (1). After an automor-

phism of P1, we can assume that Q1 = 0 and Q2 = ∞. Let R = φ−1(O∗
k,S).

Since |S| > 1, the set R is infinite. From the definitions, for all P ∈ R,

mQ1+Q2,S(φ(P )) = 2h(φ(P )),

and by functoriality,

mφ∗(Q1)+φ∗(Q2),S(P ) = 2dh(P ) +O(1).
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For any point Q ∈ P1(k), mQ,S(P ) ≤ h(P ) + O(1). It follows that for any

point Q ∈ φ−1({Q1, Q2}), mQ,S(P ) = h(P ) + O(1) for all P ∈ R (i.e., R is

a set of (φ∗(Q1) + φ∗(Q2), S)-integral points). Thus,

mD,S(P ) ≥ (n1 + n2)h(P ) +O(1)

for all P ∈ R, proving part (1).

We now prove part (2). We note the symmetry hP,v(Q) = hQ,v(P ) for

P,Q ∈ P1(k), P 6= Q, and v ∈Mk. Let P
′ ∈ φ−1(P1(k)) with [k(P ′) : k] = d.

Let P ′
1, . . . , P

′
d be the d conjugates of P ′ over k. Let i ∈ {1, . . . , q} and let

φ(Pi) = Qj . Then

mPi,S(P
′) =

1

d

d
∑

j=1

mPi,S(P
′
j) =

1

d

d
∑

j=1

mP ′

j ,S
(Pi) =

1

d
mφ∗(φ(P ′)),S(Pi) +O(1)

=
1

d
mφ(P ′),S(φ(Pi)) +O(1) =

1

d
mφ(P ′),S(Qj) +O(1)

=
1

d
mQj,S(φ(P

′)) +O(1).

Note also that h(φ(P ′)) = dh(P ′) +O(1). Let ǫ > 0. Then by Theorem 2.1,

mD,S(P
′) =

1

d

r
∑

j=1

njmQj ,S(φ(P
′)) +O(1) ≤

n1 + n2 + ǫ

d
h(φ(P ′)) +O(1)

≤ (n1 + n2 + ǫ)h(P ′) +O(1).

���

The proof of Theorem 1.7 proceeds by first transporting the problem to

SymdP1 ∼= Pd. We then use the Ru-Wong theorem to reduce to considering

lines in Pd, where Roth’s theorem is applicable.

Proof. [Proof of Theorem 1.7] Let t > 2d − 1 be a real number. If t > 2d,

then the statement in the theorem is an immediate consequence of Wirs-

ing’s theorem. Assume now that 2d − 1 < t ≤ 2d. By Wirsing’s theorem,

inequality (1.2) holds for all but finitely many points P ∈ P1(k) \ SuppD

satisfying [k(P ) : k] < d. So we need only consider points P ∈ P1(k) with

[k(P ) : k] = d. Let

R = {P ∈ P1(k) | [k(P ) : k] = d,mD,S(P ) ≥ th(P )}.
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By Lemma 3.3, for some constant C we have

q
∑

i=1

mHPi
,S(ψ(P )) ≥ th(ψ(P )) +C

for all points P ∈ R. Let ǫ > 0 be such that 2d−1+ ǫ < t. By the Ru-Wong

theorem,

q
∑

i=1

mHPi
,S(Q) < (2d− 1 + ǫ)h(Q) + C

for all Q ∈ Pd(k) \ (Z ′ ∪HP1 ∪ · · · ∪HPq), where Z
′ is a finite union of lines

and points in Pd not contained in any of the hyperplanes HPi
, i = 1, . . . , q.

If P ∈ P1(k) and [k(P ) : k] = d, then ψ(P ) 6∈ HPi
for all i. Thus, ψ(R) ⊂ Z ′

and we need only analyze the set Z ′. Let L be a line in the exceptional set

Z ′. If L is not defined over k, then L(k) is finite and may be replaced by a

finite number of points in Z ′. Assume now that L is defined over k. Let D =
∑q

i=1HPi
|L =

∑s
i=1 ciQi, a divisor on L ∼= P1, where Q1, . . . , Qs ∈ L(k) are

distinct points. Since the hyperplanes HPi
are in general position, ci ≤ d for

all i. By Theorem 2.1, if there are not two distinct indices j, j′ ∈ {1, . . . , s}

with cj = cj′ = d, then for all Q ∈ L(k) \ SuppD,

q
∑

i=1

mHPi
,S(Q) = mD,S(Q) +O(1) <

(

2d− 1 +
ǫ

2

)

h(Q) +O(1).

It follows that again L may be replaced in Z ′ by a finite number of points.

So assume now that cj = cj′ = d for distinct j, j′ ∈ {1, . . . , s}.

Let

I1 = {i ∈ {1, . . . , q} | Qj ∈ HPi
},

I2 = {i ∈ {1, . . . , q} | Qj′ ∈ HPi
}.

Then by our assumptions, |I1| = |I2| = d. Let Pi = (ai, bi), i = 1, . . . , q. Let

Qj = (c0, . . . , cd) and Qj′ = (c′0, . . . , c
′
d). Let f1(x, y) =

∑d
i=0 cix

iyd−i and

f2(x, y) =
∑d

i=0 c
′
ix

iyd−i. Since Qj ∈ ∩i∈I1HPi
,

f1(ai, bi) =

d
∑

l=0

cla
l
ib

d−l
i = 0
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for all i ∈ I1. Similarly, f2 vanishes at Pi for all i ∈ I2. Thus, if φ = (f1, f2),

then φ ∈ Φ(D, d, t, k). It follows from Lemma 3.4 that if ψ(P ) ∈ L(k), then

P ∈ φ−1(k). Therefore R \ Z(D, d, t, k) is a finite set.

Finally, we note that Z(D, d, t, k) admits a simple description. If degD

= q < 2d then Z(D, d, t, k) = ∅. Otherwise, let I = (I1, I2), where I1 and I2
are nonempty disjoint subsets of {1, . . . , q} of cardinality d. Then we define

φI = (
∏

i∈I1
bix − aiy,

∏

i∈I2
bix − aiy). Let I be the set of all such I. If

2d− 1 < t ≤ 2d, then

Z(D, d, t, k) =
⋃

I∈I

φ−1
I (P1(k)).

Note that |I| =
( q
d,d,q−2d

)

= q!
d!d!(q−2d)! and I is a finite set. ���

Finally, we note that Theorem 1.6 is an immediate consequence of The-

orem 1.7 and the following lemma showing that Question 1.5 has a positive

answer for trivial reasons when t ≤ d+ 1.

Lemma 4.5. Let k be a number field. Let P1, . . . , Pq ∈ P1(k) be distinct

points, let D =
∑q

i=1 Pi, and let t be a positive real number.

(1) Let S be a finite set of places of k. If degD < t, then

mD,S(P ) < th(P )

for all but finitely many points P ∈ P1(k).

(2) If t ≤ d+ 1 and t ≤ degD, then

Z(D, d, t, k) = {P ∈ P1(k) | [k(P ) : k] ≤ d}.

Proof. Part (1) follows from the trivial observation that if degD < t, then

mD,S(P ) ≤ hD(P ) +O(1) = (degD)h(P ) +O(1) < th(P )

for all but finitely many P ∈ P1(k).

To prove (2), suppose now that t ≤ d + 1 and t ≤ degD. Without

loss of generality we can assume that t is a positive integer. One of the

set inclusions in the statement is trivial. For the other, let P ∈ P1(k) with

[k(P ) : k] ≤ d. Let Pi = (αi, 1) and P = (α, 1), where αi ∈ k, i = 1, . . . , t,

and α ∈ {x ∈ k | [k(x) : k] ≤ d} (after an automorphism, we can assume
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that none of the points are the point at infinity). If α ∈ {α1, . . . , αt}, then

it is easy that P ∈ Z(D, d, t, k). Otherwise, let φ0 =
∏t−1

i=1 x−αi

x−αt
. Since

[k(α) : k] ≤ d and φ0(α) ∈ k(α), we can write φ0(α) =
∑d−1

i=0 ciα
i with

ci ∈ k, i = 0, . . . , d − 1. If [k(α) : k] < d, then we have some freedom

in choosing the ci. In any case, we can ensure that none of α1, . . . , αt are

roots of
∑d−1

i=0 cix
i. Now let φ = φ0/

∑d−1
i=0 cix

i. Then φ(α) = 1, deg φ ≤ d,

φ ∈ Endk(P
1), and |φ−1({0,∞}) ∩ SuppD| ≥ t. So φ ∈ Φ(D, d, t, k) and

P ∈ Z(D, d, t, k). ���

5. Exceptional Subspaces in P3

In order to prove Theorem 1.8 we need to study the exceptional hy-

perplanes that appear in the Schmidt Subspace Theorem for hyperplanes

H1, . . . ,Hq in P3 in general position. If H1, . . . ,Hq are hyperplanes in P3

in general position and H is a hyperplane in P3 distinct from H1, . . . ,Hq,

then H1∩H, . . . ,Hq ∩H are lines in H ∼= P2 in 3-subgeneral position. Thus,

we are reduced to studying Diophantine approximation in the plane with

respect to lines in 3-subgeneral position.

Let L1, . . . , Lq be lines in P2 in 3-subgeneral position. We say that

L1, . . . , Lq is of:

1. Type I if q > 4 and

(a) Li = Lj for some i 6= j.

(b) There is a point in P2 that is contained in three distinct lines in

{L1, . . . , Lq}.

2. Type II if q > 4 and

(a) The lines L1, . . . , Lq are distinct.

(b) There are at least three noncollinear points in P2 that are each con-

tained in three distinct lines in {L1, . . . , Lq}.

3. Type III otherwise.

Define

c(L1, . . . , Lq) =















5 if L1, . . . , Lq is of Type I,
9
2 if L1, . . . , Lq is of Type II,

4 if L1, . . . , Lq is of Type III.
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Theorem 5.1. Let k be a number field and let S be a finite set of places

of k. Let L1, . . . , Lq ⊂ P2 be lines over k in 3-subgeneral position. Let

c = c(L1, . . . , Lq) and let ǫ > 0. Then there exists a finite union of lines Z

in P2 such that
q

∑

i=1

mLi,S(P ) ≤ (c+ ǫ)h(P )

for all points P ∈ P2(k) \ Z.

Proof. By the Ru-Wong theorem, there exists a finite union of lines Z in

P2 such that
q

∑

i=1

mLi,S(P ) ≤ (5 + ǫ)h(P )

for all points P ∈ P2(k) \ Z. So if L1, . . . , Lq is of Type I we are done.

Suppose now that L1, . . . , Lq is of Type II. Since the lines L1, . . . , Lq are in

3-subgeneral position, any point can be v-adically close to at most three of

the lines L1, . . . , Lq. It follows that

q
∑

i=1

mLi,S(P ) =
∑

v∈S

q
∑

i=1

hLi,v(P ) ≤
∑

v∈S

3
∑

i=1

hLi,v ,v(P ) +O(1),

where for each v ∈ S, L1,v, L2,v, L3,v are some choice of distinct lines in

{L1, . . . , Lq}. Then by the Schmidt Subspace Theorem, for all ǫ > 0, there

exists a finite union of lines Z in P2 such that

∑

v∈S

hL1,v ,v(P ) + hL2,v ,v(P ) ≤ (3 + ǫ)h(P ),

∑

v∈S

hL1,v ,v(P ) + hL3,v ,v(P ) ≤ (3 + ǫ)h(P ),

∑

v∈S

hL2,v ,v(P ) + hL3,v ,v(P ) ≤ (3 + ǫ)h(P ),

for all P ∈ P2(k) \ Z. Adding the three equations and dividing by 2 yields

that for all ǫ > 0, there exists a finite union of lines Z in P2 such that

q
∑

i=1

mLi,S(P ) ≤

(

9

2
+ ǫ

)

h(P )
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for all P ∈ P2(k) \ Z, as desired.

Finally, suppose that L1, . . . , Lq is of Type III. If q ≤ 4, then it is trivial

that
q

∑

i=1

mLi,S(P ) ≤ (4 + ǫ)h(P ).

Suppose now that q > 4. Suppose that some line appears twice in L1, . . . , Lq.

Then there must be exactly one such line (from 3-subgeneral position) and

since L1, . . . , Lq is not of Type I, no three distinct lines in {L1, . . . , Lq} meet

at a point. After reindexing, we may assume that Lq−1 = Lq. Then it follows

that the lines L1, . . . , Lq−1 are in general position. Let ǫ > 0. Then by the

Schmidt Subspace Theorem, there exists a finite union of lines Z in P2 such

that

q
∑

i=1

mLi,S(P ) =

q−1
∑

i=1

mLi,S(P ) +mLq,S(P ) ≤

q−1
∑

i=1

mLi,S(P ) + h(P )

≤ (4 + ǫ)h(P )

for all P ∈ P2(k) \ Z.

We now assume that L1, . . . , Lq are distinct lines. Let P1, . . . , Pn be the

points in P2 that are contained in three distinct lines in {L1, . . . , Lq}. Then

since L1, . . . , Lq is not of Type II, P1, . . . , Pn all lie on a line L. Let v ∈ S

and P ∈ P2(k) \ ∪q
i=1Li. For simplicity, rearrange the indices so that

hL1,v(P ) ≥ hL2,v(P ) ≥ · · · ≥ hLq ,v(P ).

If L1 ∩ L2 6= {Pi}, i = 1, . . . , n, then

q
∑

i=1

hLi,v(P ) ≤ hL1,v(P ) + hL2,v(P ) +O(1).

If L1 ∩L2 ∩Lj = {Pi} for some i ∈ {1, . . . , n} and j ∈ {3, . . . , q}, then from

the theory of heights associated to closed subschemes [12], we have

min{hL1,v(P ), hL2,v(P ), hLj′ ,v(P )} =

{

hPi,v(P ) +O(1) if j′ = j,

O(1) if j′ 6∈ {1, 2, j},



704 AARON LEVIN [December

and if P 6∈ L,

hPi,v(P ) ≤ hL,v(P ) +O(1).

Then if P 6∈ L,

q
∑

i=1

hLi,v(P ) ≤ hL1,v(P ) + hL2,v(P ) + hPi,v(P ) +O(1)

≤ hL1,v(P ) + hL2,v(P ) + hL,v(P ) +O(1).

It follows that if P 6∈ L,

q
∑

i=1

mLi,S(P ) =
∑

v∈S

q
∑

i=1

hLi,v(P ) ≤
∑

v∈S

2
∑

i=1

hLi,v,v(P ) +
∑

v∈S

hL,v(P ) +O(1)

for some lines Li,v, v ∈ S. Then by the Schmidt Subspace Theorem and

the trivial estimate
∑

v∈S hL,v(P ) ≤ h(P ) + O(1), we find that there exists

a finite union of lines Z in P2 such that

∑

v∈S

q
∑

i=1

hLi,v(P ) ≤ (4 + ǫ)h(P )

for all P ∈ P2(k) \ Z. ���

We now show that the previous theorem is essentially sharp.

Theorem 5.2. Let k be a number field and let S be a finite set of places of k

containing the archimedean places. Let L1, . . . , Lq ⊂ P2, q > 3, be lines over

k in 3-subgeneral position, but not in general position. Let c = c(L1, . . . , Lq).

Suppose that

{

|S| > 1 if L1, . . . , Lq is of Type I or III,

|S| > 2 if L1, . . . , Lq is of Type II.

Then there exists a Zariski dense set of points R ⊂ P2(k) such that

q
∑

i=1

mLi,S(P ) ≥ (c− ǫ)h(P )

for all P ∈ R.
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Proof. Suppose first that L1, . . . , Lq is of Type I. Then after reindexing, we

can assume that L1∩L2∩L3 = {Q} is nonempty and L4 = L5. Let L be a k-

rational line through Q distinct from L1, . . . , Lq. Then ∪5
i=1L∩Li = {Q,Q′}

consists of two points. Since |S| > 1, there exists an infinite set R of k-

rational (Q+Q′, S)-integral points on L, i.e.,

mQ+Q′,S(P ) = 2h(P ) +O(1)

for all P ∈ R. Then for all P ∈ R,

q
∑

i=1

mLi,S(P ) ≥
5

∑

i=1

mLi,S(P ) +O(1) = 3mQ,S(P ) + 2mQ′,S(P ) +O(1)

= 5h(P ) +O(1).

Thus, there are infinitely many points P ∈ L(k) satisfying

q
∑

i=1

mLi,S(P ) ≥ (5− ǫ)h(P ).

Since the union of k-rational lines L through Q is Zariski dense in P2, this

proves the result in the Type I case.

Suppose now that L1, . . . , Lq is of Type III. Since L1, . . . , Lq are not in

general position, after reindexing we can assume that L1 ∩L2 ∩L3 = {Q} is

nonempty. Let L be a k-rational line through Q distinct from L1, . . . , Lq and

let {Q′} = L ∩ L4. Then by the same argument as above, taking R ⊂ L(k)

to be an infinite set of (Q + Q′, S)-integral points on L, for all P ∈ R we

have

q
∑

i=1

mLi,S(P ) ≥
4

∑

i=1

mLi,S(P ) +O(1) = 3mQ,S(P ) +mQ′,S(P ) +O(1)

= 4h(P ) +O(1).

Thus, there are infinitely many points P ∈ L(k) satisfying

q
∑

i=1

mLi,S(P ) ≥ (4− ǫ)h(P ).
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Since the union of such lines L is Zariski dense in P2, this proves the result

in the Type III case.

Finally, suppose that L1, . . . , Lq is of Type II. Let Q1, Q2, and Q3 be

three noncollinear points in P2(k) that are each contained in three distinct

lines in {L1, . . . , Lq}. After an automorphism of P2 we may assume that

Q1 = (1, 0, 0), Q2 = (0, 1, 0), and Q3 = (0, 0, 1). Let S = {v1, . . . , vs}, where

by assumption s ≥ 3. By the Dirichlet unit theorem, the image of O∗
k,S

under the map

O∗
k,S → Rs,

u 7→ (log ‖u‖v1 , . . . , log ‖u‖vs),

is a (full) lattice in the subspace of Rs defined by x1+ · · ·+xs = 0. It follows

that for each positive integer m, there exist units u1,m, u2,m ∈ O∗
k,S such

that

log ‖u1,m‖v1 = m+O(1), log ‖u1,m‖v2 = O(1),

log ‖u1,m‖vi = −
m

s− 2
+O(1), i = 3, . . . , s,

log ‖u2,m‖v1 = O(1), log ‖u2,m‖v2 = m+O(1),

log ‖u2,m‖vi = −
m

s− 2
+O(1), i = 3, . . . , s.

Let Pm = (u1,m, u2,m, 1) ∈ P2(k). Let Lx, Ly, and Lz be the three lines in

P2 defined by x=0, y=0, and z=0, respectively. Then h(Pm)=2m+O(1)

and

hLx,v1(Pm) = O(1), hLx ,v2(Pm) = m+O(1),

hLx,vi(Pm) =
m

s− 2
+O(1), i = 3, . . . , s,

hLy ,v1(Pm) = m+O(1), hLy ,v2(Pm) = O(1),

hLy ,vi(Pm) =
m

s− 2
+O(1), i = 3, . . . , s,

hLz ,v1(Pm) = m+O(1), hLz ,v2(Pm) = m+O(1),

hLz ,vi(Pm) = O(1), i = 3, . . . , s.

For v ∈ S, we have (see [12])

hQ1,v = min{hLy ,v, hLz ,v}+O(1),
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hQ2,v = min{hLx,v, hLz ,v}+O(1),

hQ3,v = min{hLx,v, hLy ,v}+O(1),

where the functions are defined. It follows that

hQ1,v1(Pm) = m+O(1), hQ1,v2(Pm) = O(1),

hQ1,vi(Pm) = O(1), i = 3, . . . , s,

hQ2,v1(Pm) = O(1), hQ2,v2(Pm) = m+O(1),

hQ2,vi(Pm) = O(1), i = 3, . . . , s,

hQ3,v1(Pm) = O(1), hQ3,v2(Pm) = O(1),

hQ3,vi(Pm) =
m

s− 2
+O(1), i = 3, . . . , s.

Then for all m such that Pm 6∈ L1 ∪ · · · ∪ Lq,

q
∑

i=1

mLi,S(Pm) ≥ 3
∑

v∈S

3
∑

i=1

hQi,v(Pm) = 9m+O(1) =
9

2
h(Pm) +O(1).

To complete the proof, it remains to show that the set R = {Pm | m ∈ N}

is Zariski dense in P2. Suppose that there exists a homogeneous polynomial

p ∈ k[x, y, z] that vanishes on R. Looking at the valuations of ui1,mu
j
2,m

with respect to v1 and v2, this is plainly impossible. Thus, we arrive at a

contradiction and the set R is Zariski dense in P2. ���

6. Proof of Theorem 1.8

Using the results of the previous section we now prove Theorem 1.8.

Proof of Theorem 1.8. We first prove part (1). If t > 5, then part (1)

follows immediately from Theorem 1.7. Suppose now that 9
2 < t ≤ 5. By

Wirsing’s theorem, the set of points P ∈ P1(k) \ SuppD satisfying [k(P ) :

k] ≤ 2 and

mD,S(P ) ≥ th(P )

is finite, and so we may ignore such points. Let R be the set

R = {P ∈ P1(k) | [k(P ) : k] = 3,mD,S(P ) ≥ th(P )}.
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Then by Lemma 3.3,

q
∑

i=1

mHPi,S
(ψ(P )) ≥ th(ψ(P )) +O(1)

for all P ∈ R. Let R′ = ψ(R). Since t > 4, by the Schmidt Subspace

Theorem, R′ lies in a finite union of hyperplanes of P3. Let H be one of the

hyperplanes.

Suppose first that HP1 |H , . . . ,HPq |H is not of Type I. Then by Theorem

5.1, R′∩H lies in a finite union of lines (with no line contained in any of the

hyperplanesHP1 , . . . ,HPq ). Let L be one of these lines and let
∑q

i=1HPi
|L =

∑r
i=1 ciQi, where Q1, . . . , Qr ∈ L(k) are distinct points and c1 ≥ c2 ≥ · · · ≥

cr. Then for all P ∈ R′ ∩ L,

r
∑

i=1

cimQi,S(P ) ≥ th(P ) +O(1).

If R′ ∩ L is infinite, then by Theorem 2.1, we must have c1 + c2 ≥ t > 9
2 .

Since c1 and c2 are integers and c1, c2 ≤ 3, we must have that c1 = 3 and

c2 ≥ 2. After reindexing, we can assume that HP1 ∩HP2 ∩HP3 ∩ L = {Q1}

and HP4 ∩ HP5 ∩ L = {Q2}. By Lemma 3.4, ψ−1(L(k)) ⊂ φ−1
Q1Q2

(P1(k)).

From the definitions, φ−1
Q1Q2

(0) = {P1, P2, P3} and φ−1
Q1Q2

(∞) ⊃ {P4, P5}.

Thus, since t ≤ 5, φQ1Q2 ∈ Φ(D, 3, t, k) and ψ−1(L(k)) ⊂ Z(D, 3, t, k). It

follows that all but finitely many points of ψ−1(R′ ∩ H) are contained in

Z(D, 3, t, k).

Suppose now that HP1 |H , . . . ,HPq |H is of Type I. After reindexing, we

can assume that HP1 ∩HP2 ∩HP3 ∩H = {Q}, for some point Q ∈ H(k), and

HP4 ∩H = HP5 ∩H. Let P ∈ H(k) \ (HP1 ∪HP2 ∪HP3), and let L be the

line through P and Q. Let L ∩H4 ∩H = L ∩H5 ∩H = {Q′}. By Lemma

3.4, ψ−1(L(k)) ⊂ φ−1
QQ′(P1(k)). From the definitions, φ−1

QQ′(0) = {P1, P2, P3}

and φ−1
QQ′(∞) ⊃ {P4, P5}. Thus, since t ≤ 5, φQQ′ ∈ Φ(D, 3, t, k) and

ψ−1(L(k)) ⊂ Z(D, 3, t, k). Since P ∈ H(k)\(HP1∪HP2∪HP3) was arbitrary,

in particular ψ−1(R′ ∩ H) ⊂ Z(D, 3, t, k). Combining this fact with the

previous case above, we have shown that R \ Z(D, 3, t, k) is a finite set,

proving part (1).
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Suppose now that 4 < t < 9
2 , |S| > 2, and q = 6. Let

{Q1} = HP1 ∩HP2 ∩HP3 ,

{Q2} = HP1 ∩HP4 ∩HP5 ,

{Q3} = HP2 ∩HP4 ∩HP6 .

The line through Q1 and Q2 lies in HP1 . Since the hyperplanes HPi
are

in general position, Q3 6∈ HP1 and it follows that Q1, Q2, and Q3 are not

collinear. Let H ⊂ P3 be the unique hyperplane through Q1, Q2, and Q3.

Since the hyperplanes HPi
are in general position, it follows easily that all

of the lines HPi
|H are distinct (otherwise there would be four hyperplanes

HPi
containing some point Qj). Then HP1 |H , . . . ,HP6 |H is of Type II. Let

0 < ǫ < 1
4 be such that t < 9

2 − ǫ. By Theorem 5.2, there exists a set of

points R′ ⊂ H(k) that is Zariski dense in H and such that

6
∑

i=1

mHPi,S
(P ) >

(

9

2
− ǫ

)

h(P )

for all P ∈ R′. Let P ∈ R′ and let σ((Q′
1, Q

′
2, Q

′
3)) = P . Then by the same

calculation as in the proof of Lemma 3.3, we have

6
∑

i=1

3
∑

j=1

mPi,S(Q
′
j) >

(

9

2
− ǫ

) 3
∑

j=1

h(Q′
j) +O(1).

If [k(Q′
j) : k] ≤ 2 for some j (and hence all j), then byWirsing’s theorem,

∑6
i=1mPi,S(Q

′
j) < (4 + ǫ)h(Q′

j) + O(1). It follows that for all but finitely

many points P ∈ R′, P ∈ imψ. Let R = ψ−1(R′). By Lemma 3.3,

6
∑

i=1

mPi,S(P ) >

(

9

2
− ǫ

)

h(P ) +O(1) > th(P )

for all but finitely many P ∈ R. From the definitions and the proof of

Lemma 3.4, every point in ψ(R ∩ Z(D, 3, t, k)) lies on a line L through

points P and Q in P3, where P lies in the intersection of three distinct

hyperplanes HPi1
,HPi2

,HPi3
, and Q lies in the intersection of two other

distinct hyperplanesHPi4
andHPi5

. The set of such lines L does not intersect

H in a Zariski dense set in H. It follows that R \ Z(D, 3, t, k) is infinite. ���
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