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Abstract

In this short note, we extend the Second Main Theorem established by Min Ru [20]

to holomorphic curves into algebraic varieties intersecting numerically equivalent ample

divisors.

1. Introduction

In recent years, there has been some significant progress in the study

of both qualitative and quantitative aspects of the geometric and arithmetic

properties of the complement of divisors in an algebraic projective variety.

For recent qualitative results, where the divisors are not necessarily linearly

equivalent, see [3], [5], [15], [13], and [11]; for recent quantitative results,

see [4], [6],[7], [8], [19] and [20]. The qualitative results began from the Lit-

tle Picard theorem in the geometric (complex analysis) side, and Siegel’s

theorem in the arithmetic side, while the quantitative aspect started from

Nevanlinna’s Second Main Theorem for meromorphic functions (as well as

H. Cartan’s theorem in the higher dimensions), and Roth’s theorem in Dio-

phantine approximation (as well Schmidt’s subspace theorem in the higher

dimensions). The quantitative results, in the spirit of Nevanlinna-Roth-

Cartan-Schmidt, extend and strengthen the qualitative results.
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The above mentioned progress was essentially initiated by the break-

through method introduced by Corvaja and Zannier [3], where they used

Schmidt’s subspace theorem to give a new proof of the classical result of

Siegel on integral points on affine curves. In their Annals paper [5], they

applied the method to study integral points on the complement of divi-

sors in the surface, where the divisors are not necessarily linear equivalent.

Later, Aaron Levin [13] significantly improved their results and obtained

the sharp result in the surface case, as well as extended the results to higher

dimensions. However, all results obtained are of qualitative-type. One of

the main results in [5](see Theorem 1 in [5]) is stated as follows: Let X

be a geometrically irreducible nonsingular algebraic surface and D1, . . . ,Dq

be distinct irreducible divisors located in general position on X, both defined

over a number field. Assume that there exist positive integers n1, . . . , nq such

that (niDi).(njDj) is a positive constant (i.e independent of i, j for all pairs

1 ≤ i, j ≤ q). If q ≥ 4, then the S-integral points of X\{D1, . . . ,Dq} is

degenerate, i.e. there is a curve on X containing all the S-integral points in

X(k). In that paper they made a further remark (see the last three lines on

Page 706, [5]) that one may prove that the condition that (niDi).(njDj) is

constant amounts to the njDj , 1 ≤ j ≤ q, being numerically equivalent. This

is indeed an easy consequence of the Hodge Index Theorem, as shown in this

manuscript (see Corollary 2.4). Nevertheless, it gives a strong motivation to

study Schmidt’s subspace theorem and the Second Main-type Theorem in

Nevanlinna theory for numerically equivalent divisors.

On the other hand, on the quantitative side, J.H. Evertse and R. Ferretti

[6], [7], by using a different method, established a Schmidt’s subspace-type

Theorem for the complement of divisors in an arbitrary projective variety

X ⊂ P
N where the divisors are coming from hypersurfaces in P

N . By a

slight reformulation, one actually only needs to assume that the divisors are

linearly equivalent on X to an ample divisor. The discussion above thus

naturally leads to the question whether the result still holds for divisors

which are only numerically equivalent. Such result in arithmetic part was

just established by Aaron Levin in his recent preprint [14]. We note that the

extension of Evertse and Ferretti’s result to numerically equivalent divisors

immediately implies the result of Corvaja and Zannier in [5] mentioned ear-

lier, using Corollary 2.4. Moreover, it indeed gives a quantitative extension

of their result. The counterpart of Evertse and Ferretti’s result (see also [4])

in Nevanlinna theory is due to Min Ru [20] (see also [19]), where he proved
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a Second Main Theorem for algebraically non-degenerate holomorphic map

f : C → X intersecting D, where X ⊂ P
N is an arbitrary smooth projec-

tive variety, and D is the union of divisors coming from hypersurfaces in

P
N . The purpose of this short note is to extend Min Ru’s result to numer-

ically equivalent divisors, following the argument of Levin. We note that

the counterpart of Corvaja and Zannier ([5]) in Nevanlinna theory is due to

Liu-Ru [15], and the result obtained in this paper again gives a quantitative

extension of Liu-Ru’s result.

It is also worth noting that, as being mentioned in Corvaja and Zannier’s

paper ([5], paragraph spanning pages 708-709), Theorem 1 in [5] intersects

the results due to Vojta on semi-abelian varieties (see [23]). Indeed, Corol-

lary 0.3 in [23] generalizes the Corvaja-Zannier result [5] to all dimensions

(with 4 in the surface case replaced by dim X+2 in general). This requires a

slight bit of extra work (e.g., the Picard number ρ in Vojta’s result needs to

be replaced by the (free) rank of the subgroup of the Neron-Severi group gen-

erated by the irreducible components of D; one must also use that numerical

equivalence and algebraic equivalence agree up to torsion). Similarly, one

has the corresponding analytic qualitative result (using Bloch’s conjecture

and its generalizations). We also refer the readers to the related paper [17]

of Noguchi and Winkelmann, where some further results along these lines

are discussed. Thus, the main result of this paper more generally gives a

quantitative generalization of these results (in all dimensions).

2. Some Background Material

In this section, we briefly recall some definitions and facts, especially the

definition of the Weil and height (characteristic) functions that will be used

throughout the paper. Let X be a smooth complex projective variety and

L → X be a positive line bundle. Denote by ‖ · ‖ a hermitian fiber metric

in L and by ω its Chern form. Let f : C → X be a holomorphic map. We

define

Tf,L(r) =

∫ r

1

dt

t

∫

|z|<t

f∗ω,

and call it the characteristic (or height) function of f with respect to L. It

is independent of, up to bounded term, the choices of the metric on L. The

definition can be extended to arbitrary line bundle. Indeed, since any line
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bundle L can be written as L = L1 ⊗ L−1
2 with L1, L2 are both positive,

we define Tf,L(r) = Tf,L1(r)− Tf,L2(r). For an effective divisor D on X, we

define

Tf,D(r) := Tf,O(D)(r). (2.1)

If X = P
n(C) and L = OPn(C)(1), then we simply write Tf,OPn(C)(1)(r) as

Tf (r). The characteristic (or height) function Tf,L(r) (or Tf,D(r)) satisfies

the following properties (see [22]):

(a) Additivity: If L1 and L2 are two line bundles on X, then

Tf,L1⊗L2(r) = Tf,L1(r) + Tf,L,2(r) +O(1).

(b) Funtoriality: If φ : X → X ′ is a morphism and if L is a line bundle on

X ′, then

Tf,φ∗L(r) = Tφ◦f,L(r) +O(1).

(c) Base locus: If the image of f is not contained in the base locus of L,

then Tf,L(r) is bounded from below.

(d) Globally generated line bundles: If L is a line bundle over X, and

is generated by its global sections, then Tf,L(r) is bounded from below.

Let D = (s) be a divisor on X with s ∈ H0(X,L), whereH0(X,L) is the

set of holomorphic sections of L. Assume that image of f is not contained

in the support of D. The proximity function for f relative to D is the

function

mf (r,D) =

∫ 2π

0
log

1

‖s(f(reiθ))‖

dθ

2π
.

The counting function is defined as

Nf (r,D) =

∫ r

1

nf (t,D)

t
dt

where nf (t,D) is the number of zeros of f∗s inside {|z| < t}, counting

multiplicities.
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By the First Main Theorem, we have

Tf,D(r) = mf (r,D) +Nf (r,D) +O(1).

Below, we give an alternative definition of the proximity functionmf (r,D)

using the notion of Weil-function.

Definition 2.1. Let D be a Cartier divisor on X. A local Weil function for

D is a function λD : (X\SuppD) → R such that for all x ∈ X there is an

open neighborhood U of x in X, a nonzero rational function f on X with

D|U = (f), and a continuous function α : U → R such that

λD(x) = − log |f(x)|+ α(x)

for all x ∈ (U\Supp D).

Note that a continuous (fiber) metric ‖ · ‖ on the line sheaf OX(D)

determines a Weil function for D given by λD(x) = − log ‖s(x)‖ where s

is the rational section of OX(D) such that D = (s). An example of Weil

function for the hyperplanes H = {a0x0 + · · ·+ anxn = 0} is given by

λH(x) = log
max0≤i≤n |xi|max0≤i≤n |ai|

|a0x0 + · · ·+ anxn|
.

We define, for any holomorphic map f : C → X whose image is not contained

in the support of D,

mf (r,D) =

∫ 2π

0
λD(f(re

iθ))
dθ

2π
.

This definition agrees, up to a bound term, with the definition given earlier.

Weil functions λD satisfy analogues of properties which the height func-

tions carry (see (a)-(d) above) for all P ∈ X where the relevant Weil-

functions are defined (see [22]):

(a) Additivity: If λ1 and λ2 are Weil functions for Cartier divisors D1 and

D2 on X, respectively, then λ1 + λ2 extends uniquely to a Weil function for

D1 +D2.
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(b) Functoriality: If λ is a Weil function for a Cartier divisor D on X, and

if φ : X ′ → X is a morphism such that φ(X ′) 6⊂ SuppD, then x 7→ λ(φ(x))

is a Weil function for the Cartier divisor φ∗D on X ′.

(c) Normalization: If X = P
n, and if D = {x0 = 0} ⊂ X is the hyperplane

at infinity, then the function

λD([x0 : · · · : xn]) := log
max{|x0|, . . . , |xn|}

|x0|

is a Weil function for D.

(d) Uniqueness: If both λ1 and λ2 are Weil functions for a Cartier divisor

D on X, then λ1 = λ2 +O(1).

(e) Boundedness from below: If D is an effective divisor and λ is a Weil

function for D, then λ is bounded from below.

(f) Principal divisors: If D is a principal divisor (f), then − log |f | is a

Weil function for D.

Hence we have

Proposition 2.2. Let f : C → X be a holomorphic map. The proximity

function and counting function of f have the following properties.

(a) Additivity: If D1 and D2 are two divisors on X, then

mf (r,D1 +D2) = mf (r,D1) +mf (r,D2) +O(1)

Nf (r,D1 +D2) = Nf (r,D1) +Nf (r,D2) +O(1).

(b) Funtoriality: If φ : X → X ′ is a morphism and D′ is a divisor on X ′

whose support does not contain the image of φ ◦ f , then

mf (r, φ
∗D′) = mφ◦f (r,D

′) +O(1) and Nf (r, φ
∗D′) = Nφ◦f (r,D

′) +O(1).

(c) Effective divisors: If D is effective, then mf (r,D) and Nf (r,D) are

bounded from below.

In each of the above cases, the implied constants in O(1) depends on the

varieties, divisors, and morphisms, but not on f and r.



2014] A NOTE ON THE SECOND MAIN THEOREM 677

We also recall some notations and results in algebraic geometry. Let

X be a smooth projective variety. Two divisors D1 and D2 are said to be

linearly equivalent on X, denoted by D1 ∼ D2, if D1 − D2 = (f) for some

meromorphic function f on X. This is the same as saying there is a sheaf

isomorphismOX(D1) ∼= OX(D2), 1 7→ f . Two divisorsD1 andD2 are said to

be numerically equivalent on X, denoted by D1 ≡ D2, if D1.C = D2.C for all

irreducible curves C on X. Obviously, linearly equivalence implies numerical

equivalence. Recall that the intersection numbers are defined as follows:

According to the result of Kleiman, let F be a coherent sheaf and L1, . . . , Lt

be t line bundles over X, then χ(X,Ln1
1 ⊗ · · · ⊗ Lnt

t ⊗ F ) is a numerical

polynomial in n1, . . . , nt of total degree dim(supp(F )) (i.e. a polynomial

with rational coefficients which assumes integer values whenever n1, . . . , nt

are integer). Let D1, . . . ,Dt be effective divisors on X and Li = OX(Di).

Let Y be a closed subscheme of X of dimension t. Then the intersection

number of D1, . . . ,Dt with Y , denoted by (D1 · · ·Dt · Y ) is defined as the

coefficient of the monomial n1 · · ·nt in χ(X,Ln1
1 ⊗ · · · ⊗ Lnt

t ⊗ F ).

We need the following result (see [1], page 120).

Theorem 2.3 (Hodge Index Theorem). Let X be a smooth complex projec-

tive surface. Let h ∈ H
1,1
R

(X) with h2 > 0. Then the cup product form is

negative definite on h⊥ ⊂ H
1,1
R

(X).

It gives the following corollary (compare with (2.15) Corollary in [1],

page 120).

Corollary 2.4. Let X be a non-singular complex projective surface. Let

D1,D2 be two distinct effective divisors. Assume that D1.D2 = D2
1 = D2

2 >

0. Then D1 and D2 are numerically equivalent.

Proof. Let h = [D1]. Then h2 = D2
1 > 0. Moreover, D1.(D1 − D2) =

D2
1 −D1.D2 = 0 and (D1 −D2)

2 = D2
1 − 2D1.D2 +D2

2 = 0. So the above

Hodge Index Theorem implies that [D1 −D2] = 0 ∈ H
1,1
R

(X) which means

that D1 and D2 are numerically equivalent. ���
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3. The Second Main Theorem for Numerically Equivalent Ample

Divisors

We first recall the result of Ru [20] on the Second Main Theorem for

holomorphic curves into projective varieties. Let X be a smooth complex

projective variety of dimension n ≥ 1. Let D1, . . . ,Dq be effective divisors

on X with q > n. D1, . . . ,Dq are said to be in general position (on X) if for

any subset of n+ 1 elements {i0, . . . , in} ⊂ {1, . . . , q},

suppDi0 ∩ · · · ∩ suppDin = ∅,

where supp(D) means the support of the divisor D. A map f : C → X is

said to be algebraically non-degenerate if the image of f is not contained in

any proper subvarieties of X. The result of Ru [20] is stated as follows.

Theorem A (Ru’s Second Main Theorem). Let X ⊂ P
N(C) be a smooth

complex projective variety of dimension n ≥ 1. Let D1, . . . ,Dq be hypersur-

faces in P
N (C) of degree dj , located in general position on X. Let f : C → X

be an algebraically non-degenerate holomorphic map. Then, for every ǫ > 0,

q
∑

j=1

d−1
j mf (r,Dj) ≤ (n+ 1 + ǫ)Tf (r) ‖E ,

where “ ‖E” means the inequality holds for all r ∈ (0,+∞) except for a

possible set E with finite Lebesgue measure.

We first give a slight reformulation of the above result.

Theorem B (Ru’s Second Main Theorem, reformulated). Let X be a smooth

complex projective variety of dimension n ≥ 1. Let D1, . . . ,Dq be effective

divisors on X, located in general position. Suppose that there exists an ample

divisor A on X and positive integers dj such that Dj ∼ djA (i.e. Dj is

linearly equivalent to djA) for j = 1, . . . , q. Let f : C → X be an algebraically

non-degenerate holomorphic map. Then, for every ǫ > 0,

q
∑

j=1

d−1
j mf (r,Dj) ≤ (n+ 1 + ǫ)Tf,A(r) ‖E .
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Proof. Let N be a positive integer such that NA is very ample and N is

divisible by dj for j = 1, . . . , q. Let φ : X → P
m(C) be the canonical embed-

ding ofX into Pm(C) associated toNA, wherem = dimH0(X,OX (NA))−1.

Then N
dj
Dj = φ∗Hj for some hyperplanesHj in P

m(C). From the assumption

that D1, . . . ,Dq are in general position on X, H1, . . . ,Hq are in general posi-

tion onX ⊂ P
m(C) (or more precisely on the image of X under φ). Moreover

from the functoriality and additivity of Weil functions, for P ∈ X\SuppDj ,

we have

λHj
(φ(P )) =

N

dj
λDj

(r) +O(1),

so

mφ◦f (r,Hj) =
N

dj
mf (r,Dj) +O(1).

Also, from the functoriality of height (characteristic) functions, we have

NTf,A(r) = Tf,NA(r) = Tφ◦f (r) +O(1),

where Tφ◦f (r) := Tφ◦f,OPm (1)(r). Applying Theorem A to the map φ ◦ f and

the hyperplanes Hj for j = 1, . . . , q, we have

q
∑

j=1

mφ◦f (r,Hj) ≤ (n+ 1 + ǫ)Tφ◦f (r) ‖E .

The result then follows by substituting the identities above(we note that here

the exceptional set E might change, nevertheless it is still of finite Lebesgue

measure). ���

The main result of this short note is the following result,which says that

Theorem B above remains true if we replace linear equivalence by numerical

equivalence.

Main Theorem. Let X be a smooth complex projective variety of dimension

n ≥ 1. Let D1, . . . ,Dq be effective divisors on X, located in general position.

Suppose that there exists an ample divisor A on X and positive integers dj

such that Dj ≡ djA for j = 1, . . . , q. Let f : C → X be an algebraically

non-degenerate holomorphic map. Then, for every ǫ > 0,

q
∑

j=1

d−1
j mf (r,Dj) ≤ (n+ 1 + ǫ)Tf,A(r) ‖E .
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To prove the theorem, the following result in algebraic geometry, due to

Matsusaka [16] (see also [12]), plays an important role.

Theorem 3.1 (Matsusaka). Let A be an ample Cartier divisor on a pro-

jective variety X. Then there exists a positive integer N0 such that for all

N ≥ N0, and any Cartier divisor D with D ≡ NA, D is very ample.

Lemma 3.2 (See also (d) of Proposition 1.2.9 in [22]). Let A be an ample

Cartier divisor on a projective variety X. Let f : C → X be a holomorphic

map. Then, for any ǫ > 0 and any effective divisor D with D ≡ A,

Tf,D(r) ≤ (1 + ǫ)Tf,A(r) +O(1),

where O(1) is a constant which is independent of f and r.

Proof. Let N0 be the integer in Theorem 3.1 for the given ample divisor

A. Then NA − (N − N0)D is very ample for any N ≥ N0. Thus, by the

additivity property of the height (characteristics function) functions,

Tf,NA(r)− Tf,(N−N0)D(r) = Tf,NA−(N−N0)D(r) ≥ O(1).

That is

(N −N0)Tf,D(r) ≤ NTf,A(r) +O(1).

With N being taken as N = (1+ǫ)N0

ǫ
, it gives the desired result. ���

We are now ready to prove our main result.

Proof of the Main Theorem. By replacingDj with
d
dj
Dj with d = lcm{d1, . . .,

dq}, A by dA, and using the additivity of Weil functions and heights (up to

bounded functions), we see that it suffices to prove the case where we can

assume that d1 = d2 = · · · = dq = 1, i.e. Dj ≡ A for j = 1, . . . , q. For the

given ǫ > 0, let N0 be the integer in Theorem 3.1 for our given A. Take N

with

N0 <
ǫ

4q
N.

By the choice of N0, we have that NA − (N − N0)Dj is very ample for

j = 1, . . . , q. Since the divisors D1, . . . ,Dq are in general position and NA−

(N − N0)Dj is very ample for all j, there exist effective divisors Ej such

that (N − N0)Dj + Ej is linearly equivalent to NA for all 1 ≤ j ≤ q, and



2014] A NOTE ON THE SECOND MAIN THEOREM 681

the divisors (N −N0)D1 +E1, . . . , (N −N0)Dq +Eq are in general position.

Applying Theorem B to the linearly equivalent divisors (N − N0)Dj + Ej

(which are all linearly equivalent to NA), j = 1, . . . , q, we get

q
∑

j=1

mf (r, (N −N0)Dj + Ej) ≤
(

n+ 1 +
ǫ

2

)

Tf,NA(r) ‖E .

Using additivity and that the Weil functions λEj
are bounded from below

outside of the support of Ej and Tf,NA(r) = NTf,A(r), we obtain

q
∑

j=1

(

1−
N0

N

)

mf (r,Dj) ≤
(

n+ 1 +
ǫ

2

)

Tf,A(r) ‖E ,

i.e.
q

∑

j=1

mf (r,Dj) ≤
N0

N

q
∑

j=1

mf (r,Dj) +
(

n+ 1 +
ǫ

2

)

Tf,A(r) ‖E .

Note that in the above inequality, the exceptional set E might change, nev-

ertheless it is still of finite Lebesgue measure. On the other hand, by Lemma

3.2 with ǫ = 1 and the First Main Theorem, we get

mf (r,Dj) ≤ Tf,Dj
(r) +O(1) ≤ 2Tf,A(r) +O(1).

Thus, by the choice of N that N0 <
ǫ
4qN , we obtain

q
∑

j=1

mf (r,Dj) ≤
2qN0

N
Tf,A(r)+

(

n+ 1 +
ǫ

2

)

Tf,A(r) ≤ (n+1+ǫ)Tf,A(r) ‖E .

This finishes the proof of the Main Theorem.

Corollary 3.3. Let X be a complex smooth projective surface and D1, . . . ,Dq

be distinct irreducible ample divisors located in general position on X (i.e.

no three of them share a common point). Assume that there exist positive

integers n1, . . . , nq such that (niDi).(njDj) is a positive constant (i.e inde-

pendent of i, j for all pairs 1 ≤ i, j ≤ q). Let f : C → X be an algebraically

non-degenerate holomorphic map. Then, for every ǫ > 0,

q
∑

j=1

njmf (r,Dj) ≤ (3 + ǫ)
(1

q

q
∑

j=1

njTDj ,f (r)
)

‖E .
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In particular, with the same assumptions about the divisors D1, . . . ,Dq, if

q ≥ 4, then every holomorphic map f : C → X\∪q
j=1Dj must be algebraically

degenerate.

Proof. From Corollary 2.4, we know that njDj , 1 ≤ j ≤ q, are numerically

equivalent. Therefore applying the Main Theorem to the divisors njDj,

together with the additivity property of Weil functions and heights (up to

bounded functions), gives

q
∑

j=1

njmf (r,Dj) ≤ (3 + ǫ)
(1

q

q
∑

j=1

njTf,Dj
(r)

)

‖E .

Now assume that f : C → X\ ∪q
j=1 Dj and that f is algebraically non-

degenerate. Since njDj and Dj share the same support and the image of f

omits the support of Dj , we have Nf (r, nDj) = 0, thus from the First Main

Theorem,

mf (r, njDj) = Tf,njDj
(r) +O(1).

Thus, we get

q
∑

j=1

njTf,Dj
(r) +O(1) =

q
∑

j=1

njmf (r,Dj)

≤
3 + ǫ

q

(

q
∑

j=1

njTf,Dj
(r)

)

‖E ,

which is a contradiction when q ≥ 4. ���
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