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Abstract

The classical (m, k)-Landen transform Fm,k is a self-map of the field of rational func-

tions C(z) obtained by forming a weighted average of a rational function over twists by

m’th roots of unity. Identifying the set of rational maps of degree d with an affine open

subset of P2d+1, we prove that Fm,0 induces a dominant rational self-map Rd,m,0 of P2d+1

of algebraic degree m, and for 1 ≤ k < m, the transform Fm,k induces a dominant rational

self-map Rd,m,k of algebraic degree m of a certain hyperplane in P2d+1. We show in all

cases that Rd,m,k extends nicely to P2d+1

Z
, and that {Rd,m,0 : m ≥ 0} is a commuting

family of maps.

1. Introduction

The Landen transform, also known as Gauss’ arithmetic-geometric mean,

is a self-map of the space of rational functions in one variable. The purpose

of this note is to study the generalized Landen transform from the viewpoint

of arithmetic geometry and arithmetic dynamics. We defer until Section 2 a
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discussion of the history and historical applications of the Landen transform,

and devote this introduction to describing our main results.

The following proposition characterizes the generalized Landen trans-

form.

Proposition 1. Let m ≥ 1 and 0 ≤ k < m be integers, let K be a field in

which m 6= 0, and let ζm be a primitive m’th root of unity in an extension

field of K. Then for each rational function ϕ(z) ∈ K(z) there is a unique

rational function Fm,k(ϕ)(z) ∈ K(z), called the (m,k)-Landen transform

of ϕ, characterized by the formula

Fm,k(ϕ)(w
m) =

1

mwk

m−1
∑

t=0

ζ−kt
m ϕ(ζtmw). (1.1)

As a warm-up for our main result, we give the elementary proof of Proposi-

tion 1 in Section 2; see Proposition 12.

We denote the space of rational functions of degree d by Ratd, and we

identify Ratd with an affine open subset of P2d+1 by assigning the degree d

rational function

ϕa,b(z) :=
a0z

d + a1z
d−1 + a2z

d−2 + · · ·+ ad
b0zd + b1zd−1 + b2zd−2 + · · ·+ bd

to the point

[a, b] := [a0, a1, . . . , ad, b0, b1, . . . , bd] ∈ P2d+1.

In this way Ratd is an affine scheme over Z, and for any field K, we may

view K(z) as a disjoint union

K(z) =

∞
⋃

d=0

Ratd(K) ⊂
∞
⋃

d=0

P2d+1(K). (1.2)

However, we note that in general, the degree of Fm,k(ϕ)(z) may be

strictly smaller than the degree of ϕ(z), so the Landen transform Fm,k :

K(z) → K(z) does not respect the disjoint union decomposition (1.2). For

example, if ϕ(z) is a polynomial, then degFm,k(ϕ)(z) ≤ 1
m degϕ(z); see

Section 7. Our main result describes the rational self-maps of P2d+1
Z induced

by the action of Fm,k on a Zariski open subset of Ratd.
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Theorem 2. Let m ≥ 1 and 0 ≤ k < m be integers.

(a) For each d ≥ 1 there is a unique rational map

Rd,m,k : P2d+1
Z 99K P2d+1

Z

with the property that for all fields K in which m 6= 0 and for all

degree d rational functions ϕa,b(z) ∈ Ratd(K) ⊂ K(z) whose (m,k)-

Landen transform satisfies

degz Fm,k(ϕa,b)(z) = d,

we have

Fm,k(ϕa,b)(z) = Rd,m,k

(

[a, b]
)

.

(b) The indeterminacy locus of Rd,m,k is the linear subspace

Z(Rd,m,k) =
{

[a, b] ∈ P2d+1
Z : b = 0

} ∼= Pd,

and the rational map Rd,m,k induces a morphism

Rd,m,k : P2d+1
Z r Z(Rd,m,k) −→ P2d+1

Z r Z(Rd,m,k).

(c) The map Rd,m,0 : P2d+1
Z 99K P2d+1

Z is a dominant rational map of alge-

braic degree m.

(d) For 1 ≤ k < m, the image of the rational map Rd,m,k is the hyperplane

{

[a, b] ∈ P2d+1
Z : a0 = 0

} ∼= P2d
Z . (1.3)

For all 0 ≤ k < m, the map Rd,m,k induces a dominant rational map of

algebraic degree m from the hyperplane (1.3) to itself.

Example 3. We consider the case d = 2 and m = 2. Using the calculation

given later in Example 13, we find that R2,2,0 and R2,2,1 are degree 2 rational

maps P5
99K P5 given by the formulæ

R2,2,0 = [b0a0, b2a0 − b1a1 + b0a2, b2a2, b
2
0, 2b2b0 − b21, b

2
2],

R2,2,1 = [0, −b1a0 + b0a1, b2a1 − b1a2, b
2
0, 2b2b0 − b21, b

2
2].
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As predicted by Theorem 2(b), both R2,2,0 and R2,2,1 have indeterminacy

locus equal to the 2-dimensional linear subspace
{

[a,0]
}

⊂ P5. One can

check that it requires more than simply blowing up P5 along this subspace

in order to make R2,2,0 and R2,2,1 into morphisms.

Taking k = 0 leads to interesting families of commuting maps. (See

Proposition 16 for general composition properties of Rm,k,d.)

Corollary 4. Fix a degree d. Then

{Rd,m,0 : m = 1, 2, 3, . . .}

is a set of commuting dominant rational endomorphisms of P2d+1
Z of alge-

braic degree m. More precisely, dehomogenizing and specializing, the maps

Rd,m,0 induce commuting dominant polynomial endomorphisms of the affine

linear subspaces

{

[a, b] ∈ P2d+1 : b0 6= 0
} ∼= A2d+1

and
{

[a, b] ∈ P2d+1 : a0 = 0 and b0 6= 0
} ∼= A2d.

Remark 5. The classification of commuting rational maps in one variable

was solved by Ritt [22] in the 1920s. More recently, there has been some

work on classifying commuting endomorphisms of Pn [10, 11], as well as

various papers, including [1, 9], that study higher dimensional Lattès maps,

and work on commuting birational self-maps of P2 (and more generally of a

compact Kähler surface) [7]. But there seem to be few non-trivial examples

known of commuting rational (non-birational) self-maps of Pn, and as far as

we are aware, the family of commuting Landen maps described in Corollary 4

has not previously been studied.

Remark 6. If we treat rational maps of degree d− 1 as degenerate maps of

degree d, we obtain a natural embedding

ιd−1,d : P2d−1 −→ P2d+1,

[a0, . . . , ad−1, b0, . . . , bd−1] 7−→ [0, a0, . . . , ad−1, 0, b0, . . . , bd−1].

Then the maps in Theorem 2 fit together via

Rd,m,k ◦ ιd−1,d = ιd−1,d ◦Rd−1,m,k.
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Remark 7. Since P2d+1
Z is smooth, the rational function Rd,m,k is defined

off of a codimension 2 subscheme. (Theorem 2(b) says that in fact, the

indeterminacy locus has codimension d+1.) In particular, Rd,m,k induces a

rational map on every special fiber P2d+1
Fp

99K P2d+1
Fp

, even if p | m, despite

the 1
m factor appearing in the formula (1.1) defining Fm,k.

Remark 8. It follows from Proposition 16 and Theorem 2(c) that

degRr
d,m,0 = degRd,mr ,0 = mr = (degRd,m,0)

r,

soRd,m,0 is algebraically stable, and its dynamical degree ism. And similarly

for the restriction of Rd,m,k to the hyperplane (1.3).

Question 9. There are many further natural questions that one might ask

about the Landon maps described in this paper, including for example:

(1) Is there a birational covering X → P2d+1
Q such that Rd,m,0 extends to a

self-morphism of X, and similarly for Rd,m,k on the appropriate hyper-

plane in P2d+1
Q ? And the same question over Z.

(2) Does Rd,m,k preserve a pencil?

(3) Is Rd,m,k birationally conjugate to a higher-dimensional Lattès map?

We conclude the introduction by summarizing the contents of this ar-

ticle. Section 2 briefly describes some of the history and uses of the Lan-

den transformation. Section 3 illustrates the Landen transform by giving

explicit formulas for Fm,k(ϕ) when ϕ has degree 2 and 3 and m equals 2

and 3. Sections 4 and 5 give, respectively, the effect of Fm,k on formal Lau-

rent series and an elementary composition formula for Fm,k. In Section 6

we prove a key proposition that writes Fm,k(ϕ)(z) as a quotient of poly-

nomials Ga,b,m,k(z)/Hb,m(z) whose coefficients are Z-integral polynomials

in the coefficients of ϕ, and we describe various properties of Ga,b,m,k(z)

and Hb,m(z). This material is used in Section 7 to prove our main result

(Theorem 2). We conclude in Section 8 by showing that the coefficients of

the denominator Hb,m(z) of the Landen transformation induces a morphism

Pd → Pd that is birationally conjugate to the m’th power map.
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2. History and Applications

Let K be a field that is not of characteristic 2. The classical Landen

transformation is the map F = F2,1 on the space of rational functions K(z)

given by the formula

F(ϕ)(z) =
ϕ(

√
z )− ϕ(−√

z )

2
√
z

.

When K = R or C, the Landen transformation can be used to numerically

compute the integral
∫∞
0 ϕ(z) dz for certain choices of the rational function ϕ.

More precisely, for appropriate ϕ one shows that

∫ ∞

0
ϕ(z) dz =

∫ ∞

0
F(ϕ)(z) dz

and then studies the dynamics of F, i.e., the behavior of the orbit (Fn(ϕ))n≥1

of the rational map ϕ under iteration of the transformation F. See [2, 3, 4,

5, 8, 13, 16, 17, 19, 21] for work in this area, as well as [18] for a survey of

the theory of Landen transformations.

The origins of the subject go back to Landen’s work [14, 15] on iter-

ative methods to compute certain integrals. The method was rediscovered

and extended by Gauss [12] and is often referred to as Gauss’s Arithmetic-

Geometric Mean (AGM) method.

The authors of [3] also point to a related transformation

C(ϕ)(z) = F2,0(ϕ)(z) =
ϕ(

√
z ) + ϕ(−√

z )

2
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whose dynamics is analyzed in [6], and they indicate that there are natural

generalizations to higher degree transformations that they plan to study

in a future work. These higher degree transformations are the maps Fm,k

described in Proposition 1.

Remark 10. The formula (1.1) for Fm,k is given in [20], where the author

determines a basis for the set of rational functions ϕ(z) ∈ C(z) that are fixed

by Fm,k.

Remark 11. We observe that if we viewK(z) as aK-vector space, then Fm,k

is clearly a K-linear transformation of K(z). However, when we view K(z)

as a field, the action of Fm,k is more complicated.

Proposition 12. Let m ≥ 1 and k ∈ Z. Then for all ϕ(z) ∈ K(z), the

expression (1.1)

1

mwk

m−1
∑

t=0

ζ−kt
m ϕ(ζtmw) (2.1)

appearing in Proposition 1 is in K(wm). Further, it is independent of the

choice of a particular primitive mth root of unity ζm.

Proof. Let K̄/K be an algebraic closure of K. The field extension

K̄(w)/K̄(wm) is a Kummer extension whose Galois group is cyclic and gen-

erated by the automorphism w → ζw. (As always, we are assuming that m

is prime to the characteristic of K.) But it is easy to check that the expres-

sion (2.1) is invariant under the substitution w → ζw. Hence it is in K̄(wm),

and indeed in K(ζm)(wm). Next we observe that (2.1) is also invariant under

an element σ in the Galois group of K(ζm)(wm)/K(wm), since the effect of

such an element is to send ζm to ζjm for some j satisfying gcd(j,m) = 1, so it

simply rearranges the terms in the sum. This proves that (2.1) is in K(wm),

and also shows that (2.1) does not depend on the choice of ζm. ���

3. Examples

We compute some examples of Landen transforms for generic rational

maps of degrees 2 and 3, i.e., we give explicit formulas for the rational maps

Rd,m,k : P2d+1
99K P2d+1 for small values of d,m, k.
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Example 13. Consider the generic rational map of degree 2,

ϕ(z) =
a0z

2 + a1z + a2
b0z2 + b1z + b2

.

A simple calculation shows that the two transformations F2,0 and F2,1 are

given by

F2,0(ϕ)(z) =
b0a0z

2 + (b2a0 − b1a1 + b0a2)z + b2a2
b20z

2 + (2b2b0 − b21)z + b22
,

F2,1(ϕ)(z) =
(−b1a0 + b0a1)z + b2a1 − b1a2

b20z
2 + (2b2b0 − b21)z + b22

,

and

F3,0(ϕ)(z) =
b20a0z

2 + (−b2b1a0 − b2b0a1 + b21a1 − b1b0a2)z + b22a2
b30z

2 + (−3b2b1b0 + b31)z + b32
,

F3,1(ϕ)(z) =
(−b2b0a0 + b21a0 − b1b0a1 + b20a2)z + (b22a1 − b2b1a2)

b30z
2 + (−3b2b1b0 + b31)z + b32

,

F3,2(ϕ)(z) =
(−b1b0a0 + b20a1)z + (b22a0 − b2b1a1 − b2b0a2 + b21a2)

b30z
2 + (−3b2b1b0 + b31)z + b32

.

Example 14. Similarly, for a generic rational map of degree 3,

ϕ(z) =
a0z

3 + a1z
2 + a2z + a3

b0z3 + b1z2 + b2x+ b3
,

the first few Landen transforms act by

F2,0 =
b0a0z

3 + (b2a0 − b1a1 + b0a2)z
2 + (−b3a1 + b2a2 − a3b1)z − b3a3

b20z
3 + (2b2b0 − b21)z

2 + (−2b3b1 + b22)z − b23
,

F2,1 =
(−b1a0 + b0a1)z

2 + (−b3a0 + b2a1 − b1a2 + a3b0)z + (−b3a2 + a3b2)

b20z
3 + (2b2b0 − b21)z

2 + (−2b3b1 + b22)z − b23
,

and

F3,0 =

b2
0
a0z3+(2b3b0a0−b2b1a0−b2b0a1+b2

1
a1−b1b0a2+b2

0
a3)z2

+(b2
3
a0−b3b2a1−b3b1a2+b2

2
a2+2b3b0a3−b2b1a3)z+b2

3
a3

b3
0
z3+(3b3b20−3b2b1b0+b3

1
)z2+(3b2

3
b0−3b3b2b1+b3

2
)z+b3

3

,

F3,1 =

(−b2b0a0+b2
1
a0−b1b0a1+b2

0
a2)z2

+(−b3b2a0−b3b1a1+b2
2
a1+2b3b0a2−b2b1a2−b2b0a3+b2

1
a3)z+b2

3
a2−b3b2a3

b3
0
z3+(3b3b20−3b2b1b0+b3

1
)z2+(3b2

3
b0−3b3b2b1+b3

2
)z+b3

3

,

F3,2 =

(−b1b0a0+b2
0
a1)z2+(−b3b1a0+b2

2
a0+2b3b0a1−b2b1a1−b2b0a2+b2

1
a2−b1b0a3)z

+b2
3
a1−b3b2a2−b3b1a3+b2

2
a3

b3
0
z3+(3b3b20−3b2b1b0+b3

1
)z2+(3b2

3
b0−3b3b2b1+b3

2
)z+b3

3

.
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4. The Effect of Fm,k on Laurent Series

An elementary calculation reveals the effect of Fm,k on a Laurent series

around 0, and in particular on the series associated to a rational function.

Proposition 15. Let

ϕ(z) =
∑

n∈Z

anz
n

be a (formal) Laurent series. Then

Fm,k(ϕ)(z) =
∑

j∈Z

amj+kz
j .

Proof. We compute

Fm,k(ϕ)(w
m) =

1

mwk

m−1
∑

t=0

ζ−kt
m ϕ(ζtmw) =

1

mwk

m−1
∑

t=0

ζ−kt
m

∑

n∈Z

an(ζ
t
mw)n

=
∑

n∈Z

anw
n−k

(

1

m

m−1
∑

t=0

ζ(n−k)t
m

)

=
∑

n∈Z
n≡k (mod m)

anw
n−k.

This completes the proof of Proposition 15. ���

5. Composition of Fm,k Operators

The transformations Fm,k and Fn,ℓ do not generally commute, but they

do if k(n−1) = ℓ(m−1). In particular, if k = ℓ = 0, then they commute for

all values ofm and n. The next elementary result gives a general composition

formula.

Proposition 16. For all m,n ≥ 1 and all k, ℓ ∈ Z,

Fm,k ◦ Fn,ℓ = Fmn,kn+ℓ.

In particular, the r’th iterate of Fm,k is given by

Fr
m,k = Fmr ,(mr−1+mr−2+···+m+1)k.

Proof. This is easy to prove directly from the definition of Fm,k, but as

pointed out by the referee, it is even easier to use Proposition 15. Thus
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taking ϕ(z) =
∑

i∈Z aiz
i, we find that

Fm,k

(

Fn,ℓ(ϕ)
)

= Fm,k

(

∑

i∈Z

ani+ℓz
i
)

=
∑

j∈Z

an(mj+k)+ℓz
j = Fmn,kn+ℓ(φ).

This proves the first formula, and the second follows by induction. ���

Proposition 16 allows us to describe the monoid of Fm,k operators in

terms of a matrix monoid.

Corollary 17. Let M be the monoid of integral matrices

M =

{(

m 0

k 1

)

: m,k ∈ Z, m ≥ 1

}

under matrix multiplication. Then the map

M −→ {Fm,k : m,k ∈ Z, m ≥ 1},
(

m 0

k 1

)

7−→ Fm,k, (5.1)

is a monoid isomorphism.

Proof. The map (5.1) is clearly surjective, while Proposition 16 and the

matrix multiplication
(

m 0
k 1

) (

n 0
ℓ 1

)

=
(

mn 0
kn+ℓ 1

)

shows that (5.1) is a monoid

homomorphism. For injectivity, we suppose that Fm,k = Fn,ℓ. Proposition 15

tells us that Fm,k(z
d) is equal to z(d−k)/m if d ≡ k (mod m), and equal to 0

otherwise. Taking d = k+me, our assumption that Fm,k = Fn,ℓ implies that

ze = Fm,k(z
me+k) = Fn,ℓ(z

me+k) = z(me+k−ℓ)/n,

where necessarily n divides me+ k − ℓ. Equating the exponents, we have

(n −m)e = k − ℓ for all e ∈ Z.

The right-hand side is independent of e, and hence we must have n = m and

k = ℓ, which concludes the proof that (5.1) is injective. ���

6. Writing Fm,k as a Quotient of Integral Polynomials

Our primary goal in this section is to write Fm,k(ϕ), for a generic rational

function ϕ of degree d, as a quotient of Z-integral polynomials in z and the
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coefficients of ϕ. We recall from the introduction that we are identifying

the space Ratd of rational functions of degree d with an affine open subset

of P2d+1. More precisely, for a (d+ 1)-tuple a = [a0, . . . , ad], we let

Fa(X,Y ) = a0X
d + a1X

d−1Y + a2X
d−2Y 2 + · · ·+ adY

d,

and we associate to each point [a, b] ∈ P2d+1 the rational map

ϕa,b : P1 −→ P1, ϕa,b

(

[X,Y ]
)

=
[

Fa(X,Y ), Fb(X,Y )
]

.

Then Ratd is the complement of the resultant hypersurface

Ratd =
{

[a, b] ∈ P2d+1 : Res(Fa, Fb) 6= 0
}

.

In order to emphasize this inclusion, we let

Ratd ∼= P2d+1.

Points [a, b] ∈ RatdrRatd correspond to rational maps ϕa,b of lower degree,

but we note that different points in Ratd rRatd may correspond to the the

same rational map. (For a discussion of Ratd and its various extensions,

quotients, and compactifications, see for example [23, Section 4.3] or [24].)

It is often convenient to dehomogenize z = X/Y , so by abuse of notation

we will write

ϕa,b(z) =
Fa(z)

Fb(z)
=

Fa(z, 1)

Fb(z, 1)

for the associated rational function and its dehomogenized numerator and

denominator.

Proposition 18. Let m ≥ 1 and 0 ≤ k < m.

(a) There are unique polynomials

Ga,b,m,k(z) ∈ Z[a, b, z] and Hb,m(z) ∈ Z[b, z]

satisfying

Ga,b,m,k(w
m) =

1

mwk

m−1
∑

t=0

ζ−kt
m Fa(ζ

t
mw)

∏

s 6=t

Fb(ζ
s
mw), (6.1)
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Hb,m(w
m) =

m−1
∏

t=0

Fb(ζ
t
mw). (6.2)

(b) Let ϕa,b(z) = Fa(z)/Fb(z). Then

Fm,k(ϕa,b)(z) =
Ga,b,m,k(z)

Hb,m(z)
.

(c) The polynomials Ga,b,m,k(z) and Hb,m have the following homogeneity

properties:

(i) The z-coefficients of Hb,m(z), considered as elements of Z[b], are

homogeneous of degree m.

(ii) The z-coefficients of Ga,b,m,k(z), considered as elements of Z[a, b],

are bi-homogeneous of bi-degree (1,m− 1).

(iii) If we make Z[a, b, z] into a graded Z-algebra by assigning weights

wt(z) = m and wt(ai) = wt(bi) = i, (6.3)

then Ga,b,m,k(z) and Hb,m(z) are weight homogeneous with weights

wt(Ga,b,m,k(z)) = md− k and wt(Hb,m(z)) = md.

(d) The polynomials Ga,b,m,0(z) and Hb,m(z) have the form

Ga,b,m,0(z) = (−1)(m+1)da0b
m−1
0 zd +O(zd−1),

Ga,b,m,k(z) = O(zd−1) for 1 ≤ k < m,

Hb,m(z) = (−1)(m+1)dbm0 zd +O(zd−1).

In particular, both Ga,b,m,0(z) and Hb,m(z) have z-degree d, while

Ga,b,m,k(z) has z-degree strictly smaller than d for 1 ≤ k < m; cf. Re-

mark 21.

(e) Let

Fb(z) = b0

d
∏

i=1

(z − βi)
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be the factorization of Fb(z) in some integral extension of Z[b, z]. Then

Hb,m(z) = (−1)(m+1)dbm0

d
∏

i=1

(z − βm
i ).

(f) We have

Res(Ga,b,m,k,Hb,m) = (−1)d(m−k+1)bm−1
0 bm−1−k

d Res(Fa, Fb)
Disc(Hb,m)

Disc(Fb)
.

(6.4)

(g) We have

Disc(Hb,m)

Disc(Fb)
∈ Z[b0, . . . , bd],

i.e., the polynomial Disc(Fb) divides the polynomial Disc(Hb,m) in Z[b].

(h) Let β1, . . . , βd be the roots of Fb(z) as in (e), and assume that m ≥ 2.

The quotient Disc(Hb,m)/Disc(Fb) vanishes if and only if there is a pair

of indices i 6= j such that either :

(i) βi = βj = 0.

(ii) βi 6= βj and βm
i = βm

j .

Remark 19. Note that the resultant formula (6.4) implicitly assumes that

Fa and Fb have degree d. In other words, they should first be homogenenized

to be polynomials of degree d, then the polynomials Ga,b,m,k and Hb,m are

also homogeneous of degree d and the resultant is calculated accordingly.

With this convention, we see that

degz
(

Fm,k(ϕa,b)
)

= degz(ϕa,b) ⇐⇒ Res(Ga,b,m,k,Hb,m) 6= 0.

Thus Proposition 18(f) can be used to answer the question of whether the

operator Fm,k preserves the degree of ϕ(z).

Example 20. We illustrate Proposition 18 for d = 2 and m = 2. We have

Ga,b,2,0 = b0a0z
2 + (b2a0 − b1a1 + b0a2)z + b2a2,

Ga,b,2,1 = (−b1a0 + b0a1)z + b2a1 − b1a2,

Hb,2 = b20z
2 + (2b2b0 − b21)z + b22,
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from Example 13. The resultant of the quadratic polynomials Fa and Fb is

given by a well-known formula [25, §27], while

Disc(Hb,2) = b21(−4b2b0 + b21) = b21 Disc(Fb).

Then formulas for Res(Ga,b,2,0,Hb,2) and Res(Ga,b,2,1,Hb,2) can be derived

using Proposition 18(f).

Remark 21. It is possible to compute some of the other monomials ap-

pearing in Ga,b,m,k(z) and Hb,m by evaluating more complicated sums and

products of powers of roots of unity. For example, as an element of Z[a, b, z],

the polynomial Ga,b,m,k(z) contains the monomials

(−1)(m+1)dam−kb
m−1
0 zd−1 and (−1)(m+1)d+1am−k−1b

m−2
0 b1z

d−1.

In particular, if 1 ≤ k < m, then Ga,b,m,k(z) has z-degree equal to d−1. We

omit the proof.

Since it will come up frequently, we record here the elementary fact

m−1
∏

t=0

ζtm = (−1)m+1. (6.5)

Proof.[Proof of Proposition 18] For the moment, we let

g(w) =
1

mwk

m−1
∑

t=0

ζ−kt
m Fa(ζ

t
mw)

∏

s 6=t

Fb(ζ
s
mw), h(w) =

m−1
∏

t=0

Fb(ζ
t
mw).

Then the identity

Fm,k(ϕa,b)(w
m) =

g(w)

h(w)

follows directly from the definition (1.1) of Fm,k by putting the terms in the

sum over a common denominator.

We note that the coefficients of g(w), viewed as a polynomial in b and w,

are Gal(Q(ζm)/Q)-invariant, hence are in Z(ζm) ∩ Q = Z. Further, we

clearly have h(ζmw) = h(w), so h is a polynomial in wm. This proves that

h(w) ∈ Z[b, wm].
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Next we observe that ϕa,b(z) can be expanded as a power series

ϕa,b(z) ∈ Z[b−1
d , b,a][[z]].

It follows from Proposition 15 that

Fm,k(ϕa,b)(z) ∈ Z[b−1
d , b,a][[z]],

and hence that

g(w) = h(w) · Fm,k(ϕa,b)(w
m) ∈ Z[b−1

d , b,a][[wm]].

On the other hand, the definition of g shows the coefficients of mwkg(w)

are Gal(Q(ζm)/Q)-invariant and in Z[ζm], so we find that that g(w) ∈
(mwk)−1Z[a, b, w]. Hence

g(w) ∈ Z[b−1
d , b,a][[wm]] ∩ (mwk)−1Z[a, b, w] = Z[a, b, wm].

This proves that there are polynomials Ga,b,m,k(z) ∈ Z[a, b, z] and

Hb,m(z) ∈ Z[b, z] satisfying

Ga,b,m,k(w
m) = g(w), Hb,m(w

m) = h(w), and

Fm,k(ϕa,b)(z) = Ga,b,m,k(z)/Hb,m(z).

Since the uniqueness is clear from the defining formulas (6.1) and (6.2), this

completes the proof of (a) and (b).

We next consider the homogeneity properties described in (c). We know

from (a) that the z-coefficients of Ga,b,m,k(z) and Hb,m(z) are in Z[a, b]

and Z[b], respectively. It is clear from the formula (6.1) for Ga,b,m,k that it

is a Q(ζm)-linear combination of monomials of the form

Mj(a, b, w) = w−kaj1w
d−j1bj2w

d−j2bj3w
d−j3 · · · bjmwd−jm

= aj1bj2 · · · bjmwmd−k−j1−···−jm .

The (a, b) coefficients of these monomials are clearly bi-homogeneous of bi-

degree (1,m−1) in the variables (a, b). Further, using the weights described

by (6.3), so in particular deg(w) = 1
m deg(z) = 1, we have

wt
(

Mj(a, b, w)
)

= md− k.
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This completes the proof that Ga,b,m,k has the indicated bi-degree and

weight. The proof for Hb,m is similar, but easier, so we leave it for the

reader.

We turn to (d). We will make frequent use of (6.5) without further

comment. The highest degree term of Hb,m(w
m) is

m−1
∏

t=0

b0(ζ
t
mw)d = (−1)(m+1)dbd0w

md,

so Hb,m(z) has the indicated form. Similarly, the highest degree term of

Ga,b,m,k(w
m) is

1

mwk

m−1
∑

t=0

ζ−kt
m a0(ζ

t
mw)d

∏

s 6=t

b0(ζ
s
mw)d

=
a0b

m−1
0 wmd−k

m

m−1
∑

t=0

ζ−kt
m

m−1
∏

s=0

ζdsm =

{

(−1)(m+1)da0b
m−1
0 wmd if k = 0,

0 if 1 ≤ k < m.

Hence Ga,b,m,k(z) also has the indicated form. This completes the proof

of (d).

For (e) we compute

Hb,m(w
m) =

m−1
∏

t=0

Fb(ζ
t
mw) =

m−1
∏

t=0

(

b0

d
∏

i=1

(ζtmw − βi)
)

= bm0

d
∏

i=1

m−1
∏

t=0

(ζtmw − βi) = bm0

d
∏

i=1

(

(−1)m(βm
i −wm)

)

= (−1)(m+1)dbm0

d
∏

i=1

(wm − βm
i ).

To prove (f), we use the fact that for any polynomials we have

Res
(

f(wm), g(wm)
)

= Res
(

f(w), g(w)
)m

.

So we compute the resultant of Ga,b,m,k(z) andHb,m(z) with respect to the w

variable and then take the mth root. We use various elementary formulas
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such as

Res
(

f(αz), g(αz)
)

= α(deg f)(deg g)Res
(

f(z), g(z)
)

,

Res
(

Af(z), Bg(z)
)

= Adeg gBdeg f Res
(

f(z), g(z)
)

,

Res
(

f(z), f ′(z)
)

= (−1)(n
2−n)/2a0Disc

(

f(z)
)

, where n = deg(f).

Then

Res
(

Ga,b,m,k(w),Hb,m(w)
)m

= Res
(

Ga,b,m,k(w
m),Hb,m(wm)

)

= Res
( 1

mwk

m−1
∑

t=0

ζ−kt
m Fa(ζ

t
mw)

∏

s 6=t

Fb(ζ
s
mw),

m−1
∏

r=0

Fb(ζ
r
mw)

)

=

m−1
∏

r=0

Res
( 1

mwk

m−1
∑

t=0

ζ−kt
m Fa(ζ

t
mw)

∏

s 6=t

Fb(ζ
s
mw), Fb(ζ

r
mw)

)

=

m−1
∏

r=0

Res
( 1

mwk
ζ−kr
m Fa(ζ

r
mw)

∏

s 6=r

Fb(ζ
s
mw), Fb(ζ

r
mw)

)

=

m−1
∏

r=0

Res
(

ζ−kr
m Fa(ζ

r
mw), Fb(ζ

r
mw)

)

Res
(

mwk, Fb(ζrmw)
)

×
m−1
∏

r=0

∏

s 6=r

Res (Fb(ζ
s
mw), Fb(ζ

r
mw))

=

m−1
∏

r=0

(ζ−kr
m )d(ζrm)d

2 Res (Fa(w), Fb(w))

mdbkd

×
m−1
∏

r=0

∏

s 6=r

(ζsm)d
2

Res
(

Fb(w), Fb(ζ
r−s
m w)

)

= ±
(

Res (Fa(w), Fb(w))m
−db−k

d

)m
(m−1
∏

r=1

Res (Fb(w), Fb(ζ
r
mw))

)m

.

Taking mth roots yields

Res
(

Ga,b,m,k(w),Hb,m(w)
)

= ξRes (Fa(w), Fb(w))m
−db−k

d

m−1
∏

r=1

Res (Fb(w), Fb(ζ
r
mw)) (6.6)
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for some ξ ∈ µ2m, and aside from evaluating ξ, it only remains to deal with

the final product.

As in (e), we factor Fb as Fb(z) = b0
∏d

i=1(z − βi). Then

m−1
∏

r=1

Res (Fb(w), Fb(ζ
r
mw))

=

m−1
∏

r=1

(

b2d0 ζrdm

d
∏

i,j=1

(βi − ζ−r
m βj)

)

= ±b
2d(m−1)
0

( d
∏

i=1

βm−1
i

m−1
∏

r=1

(1− ζ−r
m )d

)(

∏

i 6=j

m−1
∏

r=1

(βi − ζ−r
m βj)

)

= ±b
(2d−1)(m−1)
0 bm−1

d md

(

∏

i 6=j

m−1
∏

r=1

(βi − ζ−r
m βj)

)

= ±b
(2d−1)(m−1)
0 bm−1

d md

(

∏

i 6=j

∏m−1
r=0 (βi − ζ−r

m βj)

βi − βj

)

= ±b
(2d−1)(m−1)
0 bm−1

d md
∏

i 6=j

βm
i − βm

j

βi − βj

= ±bm−1
0 bm−1

d mdDisc(Hb,m)

Disc(Fb)
,

where the last equality uses the formulas

Disc(Fb) = ±b2d−2
0

∏

i 6=j

(βi − βj), (6.7)

Disc(Hb,m) = ±b
m(2d−2)
0

∏

i 6=j

(βm
i − βm

j ), (6.8)

the latter of which follows from (e). Hence

m−1
∏

r=1

Res (Fb(w), Fb(ζ
r
mw)) = ±bm−1

0 bm−1
d mdDisc(Hb,m)

Disc(Fb)
.

Substituting this into (6.6) gives

Res(Ga,b,m,k,Hb,m) = ξ Res(Fa, Fb)b
m−1
0 bm−1−k

d

Disc(Hb,m)

Disc(Fb)
. (6.9)
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In order to complete the proof of (f), it remains to evaluate ξ. Since (6.9)

is an identity in Z[a, b], we see that ξ ∈ {±1}, and it suffices to compute ξ

for a single pair [a, b] ∈ Z such that Res(Ga,b,m,k,Hb,m) 6= 0. We only

sketch the proof, since for our applications, it suffices to know that ξ is a

root of unity. Taking Fa(z) = zd and Fb(z) = (z − 1)d, an easy calculation

shows that the right-hand side of (6.9) equals ξ(−1)d(m−k)md(d−1), while a

slightly more complicated calculation shows that the left-hand side of (6.9)

equals (−1)dmd(d−1). Hence ξ = (−1)d(m−k+1).

For (g), we use (6.7) and (6.8) to write

Disc(Hb,m)

Disc(Fb)
= ±b

(m−1)(2d−2)
0

∏

i 6=j

m−1
∑

k=0

βk
i β

m−1−k
j . (6.10)

The product of sums is symmetric in β1, . . . , βd, so Disc(Hb,m)/Disc(Fb) is

in Z[b, b−1
0 ]. On the other hand, we know that Disc(Fb) is in Z[b] and that

it is irreducible in C[b]; see [25, §28]. In particular, it is not divisible by b0,

so Disc(Hb,m)/Disc(Fb) is in Z[b]. Alternatively, we can see that Disc(Fb)

is not divisible by b0 in Z[b] directly from the formula

Disc(b0z
d + b1z

d−1 + bd) = bd−2
d (ddbdb

d−1
0 − (−1)d(d− 1)d−1bd1)

for the discriminant of a trinomial. This gives (g).

Finally, we see that (h) follows immediately from (6.10) provided that

we can show that Disc(Hb,m)/Disc(Fb) does not vanish when b0 = 0. We

will show that Disc(Hb,m) is not in the ideal of Z[b] generated by b0. It is

convenient to work in the ring

R = Z[b−1
d , γ1, γ2, . . . , γd] with γi = β−1

i .

We note that γ1, . . . , γd satisfy

zdFb(z
−1) = b0 + b1z + · · · + bdz

d = bd

d
∏

i=1

(z − γi),

so in particular γ1, . . . , γd are algebraically independent and integral over

Z[b−1
d , b]. Further,

b0 = (−1)dbdγ1γ2 · · · γd, so as ideals we have b0R = γ1γ2 · · · γdR.
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Rewriting the formula (6.8) for Disc(Hb,m) in terms of γ1, . . . , γd yields

Disc(Hb,m) = ±b
m(2d−2)
d

∏

i 6=j

(γmi − γmj ).

Since bd ∈ R∗, we are reduced to the following assertion.

Claim:
∏

i 6=j

(γmi − γmj ) /∈ γ1γ2 · · · γdR. (6.11)

In the product (6.11) we consider the monomial

(γm1 )2(d−1)(γm2 )2(d−2)(γm3 )2(d−3) · · · (γmd−2)
2·2(γmd−1)

2·1(γmd )2·0. (6.12)

There is a unique way to choose a term in each binomial in the product (6.11)

to get this monomial, since to get (γm1 )2(d−1) we need to take γm1 in every

term γmi − γmj in which either i or j is 1; then to get (γm2 )2(d−2) we need to

take γm2 in every remaining term γmi − γmj in which either i or j is 2; etc.

Hence the product on the left-hand side of (6.11) contains a monomial (6.12)

that is not in the ideal γ1γ2 · · · γdR. (Notice that the monomial (6.12) is not

a multiple of γd.) This completes the proof that Disc(Hb,m) is not in the

ideal b0Z[b]. ���

7. The Operator Fm,k as a Rational Map

In this section we show that Fm,k induces a rational map on the projec-

tive space Ratd ∼= P2d+1, and in particular, we prove Theorem 2 stated in

the introduction.

It is natural to ask whether the Fm,k operators preserve the degree of the

rational map ϕ. The answer is clearly no. For example, if ϕ(z) =
∑

aiz
i ∈

K[z] is a polynomial of degree d, then Proposition 15 tells us that

Fm,k(ϕ)(z) =

⌊(d−k)/m⌋
∑

j=0

ak+jmz
j ,

so

deg
(

Fm,k(ϕ)
)

≤
⌊

deg(ϕ)− k

m

⌋

≤ 1

m
deg(ϕ).
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We start by describing a large class of degree d rational maps whose

degree is preserved by Fm,k.

Definition 22. Let F (X,Y ) ∈ K[X,Y ] be a homogeneous polynomial of

degree d, and let m ≥ 1. We say that F is m-nondegenerate if F (z, 1) has

degree d and if the roots γ1, . . . , γd of F (z, 1) in K̄ are nonzero and have the

property that for all i 6= j,

either γi = γj or γmi 6= γmj .

If F ism-nondegenerate for allm ≥ 2, we say simply that F is nondegenerate.

Definition 23. We set

Ratm-nondeg
d = {ϕa,b ∈ Ratd : Fb is m-nondegenerate}.

Corollary 24. Let m ≥ 2 and 0 ≤ k < m.

(a) Identifying Ratd as a subset of P2d+1, the set Ratm-nondeg
d is the comple-

ment of a hypersurface of P2d+1.

(b) All ϕa,b ∈ Ratm-nondeg
d satisfy

degz
(

Fm,k(ϕa,b)
)

= d.

Proof. (a) Indeed, we see from Proposition 18(e,g,h) that F (z) = Fb(z) is

m-nondegenerate if and only if b0bd 6= 0 and Disc(Hb,m)/Disc(Fb) 6= 0. But

Proposition 18(g) tells us that Disc(Hb,m)/Disc(Fb) ∈ Z[b], so Ratm-nondeg
d

is the complement of the hypersurface defined by

b0bdDisc(Hb,m)/Disc(Fb) = 0.

(b) This is immediate from Proposition 18(f,h) and the definition of m-

nondegeneratcy. We note that the nondegeneracy includes the condition

that b0bd 6= 0, which is needed due to the bm−1
0 bm−1−k

d factor in (6.4), al-

though for k = m−1, there are maps with bd = 0 satisfying degz
(

Fm,k(ϕa,b)
)

= d. ���

7.1. Proof of Theorem 2(a,b)

Proposition 18 tells us that Ga,b,m,k(z) and Hb,m(z) are of degree at
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most d in z, and that their z-coefficients are homogeneous polynomials of

degree m in Z[a, b]. We write

Ga,b,m,k(z) =

d
∑

i=0

Gm,k,i(a, b)z
d−i and Hb,m(z) =

d
∑

i=0

Hm,i(b)z
d−i.

More precisely, Proposition 18(d) tells us that

Hm,0 = (−1)d(m+1)bm0 ,

Gm,0,0 = (−1)d(m+1)a0b
m−1
0 ,

Gm,k,0 = 0 for 1 ≤ k < m.

Further, the formula Fm,k(ϕa,b)(z) = Ga,b,m,k(z)/Hb,m(z) in Proposition

18(b) implies that the rational map Rd,m,k : P2d+1
99K P2d+1 is given by

Rd,m,k = [Gm,k,0, . . . , Gm,k,d,Hm,0, . . . ,Hm,d]. (7.1)

Hence Rd,m,k is a rational map of degree at most m. We are next going to

show that

Gm,k,0, . . . , Gm,k,d,Hm,0, . . . ,Hm,d

have no nontrivial common factor in the polynomial ring Z[a, b], which will

complete the proof that Rd,m,k has degree exactly equal to m.

Let

W =

{

[a, b] ∈ P2d+1 :
Gm,k,0(a, b) = · · · = Gm,k,d(a, b) = 0

Hm,0(b) = · · · = Hm,d(b) = 0

}

,

so (7.1) tells us that Z(Rd,m,k) ⊂ W . We first observe that if b = 0, then

the formulas for Ga,b,m,k(z) and Hb,m(z) given in Proposition 18 imply that

Ga,b,m,k(z) and Hb,m(z) are both identically 0, which shows that {b = 0} ⊂
W . Conversely, let [a, b] ∈ W . In particular, every coefficient of Hb,m(z)

vanishes. Since Hb,m(wm) =
∏

Fb(ζ
t
mw) by definition, it follows that there

is some t such that Fb(ζ
t
mw) = 0 as a polynomial in w, which in turn implies

that b = 0. This gives the other inclusion, so we have proven that

W =
{

[a, b] ∈ P2d+1 : b = 0
}

.
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Suppose now that degRd,m,k < m. As noted earlier, this implies that

Gm,k,0, . . . , Gm,k,d,Hm,0, . . . ,Hm,d have a nontrivial common factor u(a, b) ∈
Z[a, b]. But then W contains the subvariety {u = 0}, which has dimen-

sion 2d, contradicting the fact that

dimW = dim{b = 0} = d.

This shows that degRd,m,k = m, which completes the proof of Theorem 2(a),

while simultaneously proving that

Z(Rd,m,k) = W =
{

[a, b] ∈ P2d+1 : b = 0
}

.

Finally, let [a, b] ∈ P2d+1 r Z(Rd,m,k). Then

Rd,m,k(a, b) ∈ Z(Rd,m,k)

⇐⇒ Hb,m(z) = 0 as a z-polynomial,

⇐⇒ Hb,m(w
m) =

m−1
∏

t=0

Fb(ζ
t
mw) = 0 as a w-polynomial,

⇐⇒ Fb(ζ
t
mw) = 0 as a w-polynomial, for some t,

⇐⇒ b = 0

⇐⇒ [a, b] ∈ Z(Rd,m,k). (7.2)

This completes the proof of Theorem 2(b).

7.2. Computation of a Jacobian matrix

The proof of the remaining parts of Theorem 2 is more complicated and

requires some preliminary results.

The rational map Rd,m,k(a, b) is given by a list of 2d + 2 homogeneous

polynomials of degree m. We write

Jd,m,k(a, b) = JacRd,m,k(a, b)

for the associated Jacobian matrix. We note that since Ga,b,m,k has degree 1

in a and Hb,m is independent of a and k, the matrix Jd,m,k has block form

Jd,m,k(a, b) =

(

Ad,m,k(b) 0

Cd,m,k(a, b) Dd,m(b)

)

, (7.3)
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In particular, the Jacobian determinant

detJd,m,k = (detAd,m,k)(detDd,m) ∈ Z[b] (7.4)

is independent of a.

Lemma 1. With notation as in (7.3), in the case that k = 0 we have

Dd,m = mAd,m,0.

Proof. With our usual identification of z = wm, we have by definition that

the (i, j)’th entry of Ad,m,0 is the coefficient of zd−j in the partial derivative

∂Ga,b,d,m,0(z)

∂ai
=

∂

∂ai

( 1

m

m−1
∑

t=0

Fa(ζ
t
mw)

∏

s 6=t

Fb(ζ
s
mw)

)

=
1

m

m−1
∑

t=0

(ζtmw)d−i
∏

s 6=t

Fb(ζ
s
mw).

Similarly, the (i, j)’th entry of Dd,m is the coefficient of zd−j in the partial

derivative

∂Hb,d,m(z)

∂bi
=

∂

∂bi

(

m−1
∏

t=0

Fb(ζ
t
mw)

)

=
m−1
∑

t=0

(ζtmw)d−i
∏

s 6=t

Fb(ζ
s
mw).

Comparing these formulas shows that Dd,m = mAd,m,0. ���

Example 25. We illustrate Lemma 1 and the block form (7.3) of Jd,m,k by

computing

J2,2,0 =



















b0 b2 0

0 −b1 0

0 b0 b2

0 0 0

0 0 0

0 0 0

a0 a2 0

0 −a1 0

0 a0 a2

2b0 2b2 0

0 −2b1 0

0 2b0 2b2



















The next lemma, which includes a somewhat complicated calculation, is

the key to showing that the matrix Ad,m,0 is generically non-singular in all

characteristics.
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Lemma 2. Write the entries of the matrix Ad,m,k(b) as

Ad,m,k(b) =
(

αd,m,k(b)i,j
)

0≤i,j≤d
.

(a) Then αd,m,k(b)i,j ∈ Z[b] is homogeneous for both degree and weight, and

satisfies

degαd,m,k(b)i,j = m− 1,

wtαd,m,k(b)i,j = mj − i− k.

(b) detAd,m,k(b) ∈ Z[b] is homogeneous for both degree and weight, and

satisfies

deg detAd,m,k = (m− 1)(d + 1),

wtdetAd,m,k =
1

2
(m− 1)(d2 + d)− k(d+ 1).

(c) Let Ij ⊂ Z[b] be the ideal generated by b0, b1, . . . , bj−1, where by conven-

tion we set I0 = (0). Then

αd,m,0(b)i,j ≡ 0 (mod Ij) for all i > j,

and for i = j, we have

αd,m,0(b)j,j ≡ (−1)(m+1)(d−j)bm−1
j (mod Ij).

(d) When detAd,m,0(b) is written as a polynomial in Z[b], it includes the

monomial

(−1)(m+1)(d2+d)/2(b0b1 · · · bd)m−1.

(Note that (c) and (d) refer to the case that k = 0. For 1 ≤ k < m, see

Lemma 3.)

Proof. The (i, j)’th entry of Ad,m,k is equal to the coefficient of zd−j in the

partial derivative

∂Ga,b,d,m,k(z)

∂ai
=

1

mwk

m−1
∑

t=0

ζ−kt
m (ζtmw)d−i

∏

s 6=t

Fb(ζ
s
mw). (7.5)
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A typical monomial in the right-hand side of (7.5) is a Z[ζm]-multiple of

w−kwd−ibu1
wd−u1 · · · bum−1

wd−um−1 = bu1
· · · bum−1

wmd−i−k−u1−···−um−1 .

This quantity will be a multiple of zd−j = wm(d−j) if and only if

md− i− k − (u1 + · · ·+ um−1) = m(d− j).

Hence αd,m,k(b)i,j is a sum of monomials whose b-degree ism−1 and whose b-

weight is

wt(bu1
· · · bum−1

) = u1 + · · ·+ um−1 = mj − i− k.

This completes the proof of (a).

For (b), we see that each monomial in detAd,m,k is a product of d + 1

homogeneous polynomials of degree m − 1, which shows that detAd,m,k is

homogeneous of degree (m − 1)(d + 1). Further, if π ∈ Sd+1 is any permu-

atation, then detAd,m,k is a linear combination of terms having weight

wt

(

d
∏

i=0

αd,m,k(b)i,π(i)

)

=
d
∑

i=0

wtαd,m,k(b)i,π(i)

=
d
∑

i=0

(

mπ(i)− i− k
)

= (m− 1)d(d + 1)/2 − k(d+ 1).

This completes the proof of (b).

The weight and degree formulas from (a) say that αd,m,0(b)i,j is a linear

combination of terms of the form

be00 be11 · · · bedd with

d
∑

t=0

et = m− 1 and

d
∑

t=0

tet = mj − i.

Suppose that

αd,m,0(b)i,j 6≡ 0 (mod Ij).

This means that αd,m,0(b)i,j includes a monomial having e0 = · · · = ej−1 = 0,
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i.e., a monomial of the form

b
ej
j · · · bedd with

d
∑

t=j

et = m− 1 and
d
∑

t=j

tet = mj − i.

This leads to the inequality

mj − i =

d
∑

t=j

tet ≥
d
∑

t=j

jet = j(m− 1), (7.6)

which implies that i ≤ j. We have thus shown that

αd,m,0(b)i,j 6≡ 0 (mod Ij) =⇒ i ≤ j. (7.7)

The contrapositive of (7.7) is the first part of (c).

For the second part, we suppose that

αd,m,0(b)i,j 6≡ 0 (mod Ij) and i = j.

Then mj − i = j(m − 1), so the middle inequality in (7.6) is an equality.

Hence

0 =
d
∑

t=j

tet −
d
∑

t=j

jet =
d
∑

t=j

(t− j)et.

Every term (t − j)et is non-negative, so we must have (t − j)et = 0 for all

j ≤ t ≤ d, which implies that et = 0 for all j+1 ≤ t ≤ d. It follows that the

only monomial appearing in αd,m,0(b)i,j that is not in Ij has the form b
ej
j ,

and by degree considerations we must have ej = m− 1. This proves that

αd,m,0(b)j,j ≡ γbm−1
j (mod Ij) for some constant γ ∈ Z[ζm].

In order to complete the proof of the second part of (c), it remains to compute

the constant γ.

We are looking for the coefficient of bm−1
j wm(d−j) in the expression (note

that k = 0 by assumption)

1

m

m−1
∑

t=0

(ζtmw)d−j
∏

s 6=t

Fb(ζ
s
mw).
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The only way to get bm−1
j is to take the bj(ζ

s
mw)d−j term in each Fb(ζ

s
mw)

appearing in the product. This gives

1

m

m−1
∑

t=0

(ζtmw)d−j
∏

s 6=t

bj(ζ
s
mw)d−j

=
1

m
bm−1
j wm(d−j)

m−1
∑

t=0

ζ(d−j)t
m

∏

s 6=t

ζ(d−j)s
m

=
1

m
bm−1
j wm(d−j)

m−1
∑

t=0

(−1)(m+1)(d−j) from 6.5,

= (−1)(m+1)(d−j)bm−1
j wm(d−j).

This proves that γ = (−1)(m+1)(d−j), which completes the proof of (c).

Using (c), we see that the entries of the matrix Ad,m,k(b) have the form





















±bm−1
0 ∗ ∗ ∗ · · · ∗
I0 ±bm−1

1 + I1 ∗ ∗ · · · ∗
I0 I1 ±bm−1

2 + I2 ∗ · · · ∗
I0 I1 I2 ±bm−1

3 + I3 · · · ∗
...

...
...

...
. . .

...

I0 I1 I2 I3 · · · ±bm−1
d + Id





















,

where we write Ij to indicate an element of the ideal Ij, and where stars

indicate arbitrary elements of Z[b].

We now consider how we might obtain the monomial (b0b1 . . . bd)
m−1 in

the expansion of detAd,m,k(b). Since I0 = (0), the only nonzero entry in the

first column is the top entry of ±bm−1
0 , so we expand on that element and

delete the first row and column. But we’ve now used up all of our allowable

factors of b0, so when we take the determinant of the remaining d×d subma-

trix, we’re not allowed to use any monomials containing a b0. Equivalently,

we might as well set b0 = 0 before taking the determinant of the d× d sub-

matrix. When we do this, since I1 = (b0), the only nonzero entry in the first

column (of the submatrix) is the top entry, which is ±bm−1
1 . Expanding on

this entry and deleting the top row and column, we’ve now accumulated a

factor of (b0b1)
m−1, which uses up all of the allowable factors of b0 and b1.

This means that we can set b0 = b1 = 0 before taking the determinant of the
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remaining (d − 1) × (d − 1) submatrix. Since I2 = (b0, b1), the first column

of the (d− 1)× (d− 1) submatrix is zero except for the top entry of ±bm−1
2 .

Continuing in this fashion, we see that the monomial (b0b1 . . . bd)
m−1 appears

in the expansion of detAd,m,k(b) with coefficient ±1.

This would suffice for most purposes, but we can use the explicit formula

for the sign in (c) to exactly determine the coefficient. Thus detAd,m,k(b)

contains the monomial (−1)µ(b0b1 . . . bd)
m−1 with

µ ≡
d
∑

j=0

(m+ 1)(d − j) = (m+ 1)
d2 + d

2
(mod 2).

This completes the proof of Lemma 2. ���

7.3. Proof of Theorem 2(c)

Our goal is to prove that the rational map Rd,m,0 : P2d+1
Z 99K P2d+1

Z is

dominant. We observe that Lemma 2(d) and the elementary Jacobian for-

mula (7.4) imply that the Jacobian determinant of the rational map Rd,m,0,

considered as a homogeneous polynomial in Z[b], includes a monomial of the

form

md+1(b0b1 . . . bd)
2m−2.

It follows that

detJd,m,k(a, b) 6= 0 in Z[m−1][b].

This proves that Rd,m,0 is a dominant rational map provided that m is

invertible, i.e., as long as we’re not working in characteristic p for some

prime p dividing m. In particular, it proves that Rd,m,0 is a dominant

rational self-map of P2d+1
Q .

However, for characteristics p dividing m, this tangent space argument

will not work. Indeed, we will soon see that the map Rd,m,0 is inseparable

over Fp. So we proceed as follows. Theorem 2(b) says that the indeterminacy

locus of Rd,m,k is the set

Z = Z(Rd,m,k) =
{

[a, b] ∈ P2d+1 : b = 0
}

,
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and that Rd,m,k induces a morphism

Rd,m,k : P2d+1
Z r Z −→ P2d+1

Z r Z.

We note that Z is independent of m and k, so compositions of various Rd,m,k

for a fixed d and different m and k give well-defined rational self-maps

of P2d+1
Z , since they are self-morphisms of the Zariski dense subset P2d+1

Z rZ.

Contained within this set is the Zariski dense set on which Rd,m,k agrees with

the Landen transform Fm,k (cf. Corollary 24(a)), so the composition formula

in Proposition 16 implies the analogous formula

Rd,m,k ◦Rd,n,ℓ = Rd,mn,kn+ℓ. (7.8)

The composition formula (7.8) is valid as rational self-maps of P2d+1
Z . Tak-

ing k = ℓ = 0 in (7.8) and applying it repeatedly, we see that if m has

a factorization m = p1p2 · · · pr as a product of (not necessarily distinct)

primes, then

Rd,m,0 = Rd,p1,0 ◦Rd,p2,0 ◦ · · · ◦Rd,pr,0. (7.9)

Hence in order to prove that Rd,m,0 is a dominant rational self-map of P2d+1
Z ,

it suffices to consider the case that m = p is prime. Further, since we have

already proven that Rd,p,0 is dominant over Z[p−1], it suffices to prove that

the reduction modulo p,

R̃d,p,0 : P
2d+1
Fp

99K P2d+1
Fp

,

is dominant.

In order to analyze R̃d,p,0, it is convenient to write Fp as the quotient

field

Fp =
Z[ζp]

p
with p the ideal p = (1− ζp)Z[ζp].

Then using the fact that ζp ≡ 1 (mod p), we see that

Hb,p(w
p) =

p−1
∏

t=0

Fb(ζ
t
pw) ≡ Fb(w)

p ≡ Fbp(w
p) (mod p),

where we write bp for the p-power Frobenius map applied to the coordinates

of b. This proves that the last d + 1 coordinate functions of R̃d,p,0(a, b)
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are bp0, . . . , b
p
d, i.e., R̃d,p,0 has the form

R̃d,p,0(a, b) = [G̃a,b,p,0, b
p
0, b

p
1, . . . , b

p
d],

where we write G̃a,b,p,0 for the list of z-coefficients of Ga,b,p,0(z), reduced

modulo p.

Viewing P2d+1 as (A2d+2 r 0)/Gm, we lift the rational map R̃d,p,0 to a

morphism

R : A2d+2
Fp

−→ A2d+2
Fp

, (a, b) 7−→ (G̃a,b,p,0, b
p
0, b

p
d).

It suffices to prove that R is dominant. We write R as a composition R =

T ◦ S with

S : A2d+2
Fp

−→ A2d+2
Fp

T : A2d+2
Fp

−→ A2d+2
Fp

(x,y) 7−→ (G̃x,y,p,0,y) (x,y) 7−→ (x,yp)

Lemma 2(d) tells us that S is dominant, and it is clear that T is dominant,

hence R is also dominant. This completes the proof that R̃d,p,0 is dominant,

and with it the proof of Theorem 2(c).

Remark 26. Theorem 2 describes the algebraic degree of the rational map

Rd,m,k, where in general, the algebraic degree of a rational map ϕ : PN
99K

PN of projective space is the integer d satisfying ϕ∗OPN (1) = OPN (d). It is

also of interest to compute the separable and inseparable degrees of dominant

rational maps ϕ : X 99K Y of equidimensional varieties. By definition,

these are the separable and inseparable degrees of the associated extension

K(X)/ϕ∗K(Y ) of function fields. (Over C, the separable degree is equal

to the topological degree of ϕ, i.e., #ϕ−1(y) for a generic point y ∈ Y (C).)

The proof of Theorem 2(c) shows that in characteristic 0, the induced map

Rd,m,0 : P
2d+1
Q 99K P2d+1

Q has (separable) degree md, while in characteristic p,

we factor m = pen with p ∤ n, and then Rd,m,0 : P2d+1
Fp

99K P2d+1
Fp

has

separable degree nd and inseparable degree ped. The same statements are

true for Rd,m,k as self-maps of {a0 = 0} ∼= P2d.

7.4. Proof of Theorem 2(d)

The proof of (d) is similar to (c), but longer and computationally more

complicated, so we only give an outline and leave the details to the reader.
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We use a prime to denote restriction to the hyperplane {a0 = 0} in

P2d+1. So for example R′
d,m,k is the restriction of Rd,m,k to {a0 = 0}, and

J ′
d,m,k(a, b) is the Jacobian matrix of R′

d,m,k. We observe that J ′
d,m,k(a, b)

is obtained from Jd,m,k(a, b) by deleting the first column and the first row

of Jd,m,k(a, b), and then setting a0 = 0. Looking at the block form (7.3) of

Jd,m,k(a, b), we see that J ′
d,m,k(a, b) has the form

J ′
d,m,k(a, b) =

(

A′
d,m,k(b) 0

C ′
d,m,k(a, b) Dd,m(b)

)

, (7.10)

where A′
d,m,k is the d-by-d matrix obtained by deleting the first column and

row of Ad,m,k, and Dd,m is the (d+ 1)-by-(d+ 1) matrix already appearing

in Jd,m,k.

We note that Lemmas 1 and 2(d) tell us that detDd,m(b) includes the

monomial

md+1(−1)(m+1)(d2+d)/2(b0b1 · · · bd)m−1. (7.11)

We recall Lemma 2(c,d) gives various formulas when k = 0. The next

result gives analogous formulas for 1 ≤ k < m.

Lemma 3. Let 1 ≤ k < m, and write the entries of the matrix A′
d,m,k as

A′
d,m,k(b) =

(

α′
d,m,k(b)i,j

)

.

(a) For 1 ≤ j ≤ d, we write I ′j ⊂ Z[b] for the ideal generated by

b0, b1, . . . , bj−2, b
k+1
j−1 .

Then

α′
d,m,k(b)i,j ≡ 0 (mod I ′j) for all i > j,

α′
d,m,k(b)j,j ≡ (−1)(m+1)(d−j)+kbkj−1b

m−1−k
j (mod I ′j).

(b) When detA′
d,m,k(b) is written as a polynomial in Z[b], it includes the

monomial

(−1)(m+1)(d2−d)/2+dkbk0(b1b2 · · · bd−1)
m−1bm−1−k

d .

Proof. We omit the proof of Lemma 3, which is similar to the proof of

Lemma 2(c,d). ���
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Resuming the proof of Theorem 2(d), we note that (7.10), (7.11), and

Lemma 3(b) imply that

detJd,m,k(a, b) = detA′
d,m,k(b) detDd,m(b)

has a monomial term of the form

md+1(−1)(m+1)d2+dkbm−1+k
0 (b1b2 · · · bd−1)

2m−2b2m−2−k
d .

In particular, we conclude that R′
d,m,k is a dominant rational self-map of P2d

over Z[m−1].

The next step of the proof is to note that that the restriction of Rd,m,0

to P2d = {a0 = 0} ⊂ P2d+1 gives a map R′
d,m,0 from {a0 = 0} to itself.

This follows from the fact that Ga,b,m,0 = ±a0b
m−1
0 zd +O(zd−1). We claim

that R′
d,m,0 is a dominant rational map over Z. To see this, we first perform

a Jacobian calculation for R′
d,m,0 similar to those already done to check

that R′
d,m,0 is a dominant rational map over Z[m−1]. We then decom-

pose R′
d,m,0 as a composition of maps R′

d,p,0 with p prime, cf. (7.9), so it

suffices to show that R′
d,p,0 is dominant over Fp. The proof of this last as-

sertion is similar to the final step in the proof of Theorem 2(c) earlier in this

section.

Finally, writing m = np with p prime and using the decomposition

R′
d,m,k = R′

d,n,0 ◦ R′
d,p,k, we are reduced to showing that R′

d,p,k is domi-

nant over Fp. But we know from Lemma 3(b) that detA′
d,m,k(b) includes

a monomial whose coefficient is ±1, while the matrix Dd,m(b) does not de-

pend on k, so the argument used at the end of the proof of Theorem 2(c)

earlier in this section can be used, mutatis mutandis, to complete the proof

of Theorem 2(d).

Remark 27. Let A′
d,m,k(b) be the d-by-d matrix described in (7.10), i.e.,

the matrix obtained by deleting the first column and row of Ad,m,k(b). For

k = 0, we have

detAd,m,0(b) = (−b0)
m−1 detA′

d,m,0(b),

since only the first entry of the first column of Ad,m,0(b) is nonzero. It

appears from examples that the following formula is true:

bkd detA
′
d,m,k(b)

?
= (−1)(d+1)kbk0 detA

′
d,m,0(b). (7.12)
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We also remark that an easy calculation shows that if 1 ≤ m ≤ d + 1,

then the top d rows of Ad,m,k+1 are equal to the bottom d rows of Ad,m,k,

while the last row of Ad,m,k+1 is equal to the (d + 1 −m)’th row of Ad,m,k

shifted one place to the right. But this relation between Ad,m,k and Ad,m,k+1

is not sufficient to explain (7.12).

8. The map on Pd induced by Hb,m

In this section we discuss the map on Pd induced by using only the de-

nominator of the Landen transform. We write the function Hb,m(z) defined

by the formula (6.2) in Proposition 18 as

Hb,m(z) =

d
∑

i=0

Hm,i(b)z
d−i,

and we use the z-coefficients of Hb,m(z) to define a map

hm : Pd −→ Pd, hm(b) =
[

Hm,0(b), . . . ,Hm,d(b)
]

.

Thus hm is the map formed using the final d+1 coordinate functions of the

rational map Rd,m,k described in Theorem 2(a). We start with an easy fact.

Proposition 28. The map hm is a morphism.

Proof. The computation (7.2) done during the course of proving Theo-

rem 2(b) shows that

Hm,0(b) = · · · = Hm,d(b) = 0 ⇐⇒ b = 0,

so Z(hm) = ∅. ���

More interesting is the fact that hm is closely related to the m’th-power

map. In order to describe the exact relationship, we dehomogenize by setting

b0 = 1. Since Hm,0(b) = (−1)(m+1)dbd0, this has the effect of restricting hm

to an affine morphism (which by abuse of notation we also call hm) given by

hm : Ad −→ Ad,

hm(b) =
(

(−1)(m+1)dHm,1(b), . . . , (−1)(m+1)dHm,d(b)
)

, (7.13)
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where again by abuse of notation, we now use affine coordinates b = (b1, . . .,

bd). We let

πm : Ad −→ Ad, πm(x1, . . . , xd) = (xm1 , . . . , xmd ),

be the m-power map, and we let

σd : Ad → Ad, σd(x) =
(

−σ1
d(x), σ

2
d(x), . . . , (−1)dσd

d(x)
)

,

be the map defined by the elementary symmetric functions, taken with al-

ternating sign. So for example, when d = 3 we have

σ3(x1, x2, x3) =
(

−x1 − x2 − x3, x1x2 + x1x3 + x2x3,−x1x2x3
)

.

It is well known that σd induces an isomorphism that takes the quotient

of Ad by the action of the symmetric group Sd on (x1, . . . , xd) to Ad. We

denote this isomorphism by

σ̄d : Ad/Sd
∼−−→ Ad.

Proposition 29. With notation as described in this section, we have

hm = σ̄d ◦ πm ◦ σ̄−1
d as self-maps of Ad.

Proof. In order to relate hm to πm, it is convenient to let u1, . . . , ud be the

z-roots of Fb(z) = 0 in some integral closure of Z[b1, . . . , bd]. (Remember

that we have set b0 = 1.) In other words,

bi = (−1)iσi
d(u1, . . . , ud) and Fb(z) =

d
∏

s=1

(z − us).

This allows us to compute

d
∑

i=0

Hm,i(b)w
m(d−i) = Hb,m(wm) =

m−1
∏

t=0

Fb(ζ
t
mw) =

m−1
∏

t=0

d
∏

s=1

(ζtmw − us)

=

d
∏

s=1

m−1
∏

t=0

(ζtmw − us) =

d
∏

s=1

(−1)m+1(wm − ums )
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= (−1)d(m+1)
d
∑

i=0

(−1)iσi
d(u

m
1 , . . . , umd )wm(d−i)

= (−1)d(m+1)
d
∑

i=0

(−1)iσi
d ◦ πm(u1, . . . , ud)w

m(d−i).

Hence for 1 ≤ i ≤ d we have

Hm,i(b) = (−1)d(m+1)(−1)iσi
d ◦ πm(u1, . . . , ud).

Combining the Hm,i to form hm as in (7.13), we obtain

hm(b) = σ̄d ◦ πm(u1, . . . , ud).

However, by construction (u1, . . . , ud) satisfies

σ̄d(u1, . . . , ud) = b,

which gives the desired formula

hm = σ̄d ◦ πm ◦ σ̄−1
d .

This completes the proof of Proposition 29. ���

Remark 30. Although the equality in Proposition 29 is only valid on the

affine set {b0 6= 0}, we note that on the excluded hyperplane b0 = 0, the

definition of hm is given via a product of polynomials of degree d− 1. This

allows us to completely describe hm on Pd via a natural decomposition. More

precisely, we decompose Pd as a disjoint union

Pd =
d
⋃

n=0

{b0 = · · · = bn−1 = 0 and bn 6= 0} =
d
⋃

n=0

An.

Then Proposition 29 applied to each affine piece implies that the restriction

of hm : Pd → Pd to An satisfies

hm|An = σ̄n ◦ πm ◦ σ̄−1
n .

Remark 31. In some situations it may be more convenient to view Rd,m,k

itself as a map of affine space by dehomogenizing with b0 = 1. We write
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R′
d,m,k for the resulting polynomial map

R′
d,m,k : A2d+1

Z −→ A2d+1
Z ,

where we identify

A2d+1
Z

∼−−→ P2d+1
Z r {b0 = 0}.

We observe that there are a number of vector subspaces of A2d+1
Z that the

morphism R′
d,m,k leaves invariant, including for example

Ui = {a0 = a1 = · · · = ai = 0} for 0 ≤ i ≤ d,

Vi = {ad = ad−1 = · · · = ad−i = 0} for 0 ≤ i ≤ d,

Wi = {bd = bd−1 = · · · = bd−i = 0} for 0 ≤ i < d.

(Note that for 1 ≤ k < m, we have R′
d,m,k(A

2d+1
Z ) = U0.)

Writing a as a column vector and letting Ad,m,k(b) be the matrix ap-

pearing in the Jacobian, see (7.3), we see that R′
d,m,k takes the form

R′
d,m,k(a, b) =

(

Ad,m,k(b)a, hm(b)
)

.

With this notation, the composition law for the Landon transform described

in Proposition 16 becomes the matrix formula

Ad,m,k

(

hm(b)
)

Ad,n,ℓ(b) = Ad,mn,kn+ℓ(b).
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