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Abstract

This is the third and last in our series of papers concerning solution of the Einstein-

scalar field Lichnerowicz equations on Riemannian manifolds. Let (M, g) be a smooth

compact Riemannian manifold without the boundary of dimension n > 3, f , h > 0, and

a > 0 are smooth functions on M with
∫
M

advolg > 0. In this article, we prove two major

results involving the following partial differential equation arising from the Hamiltonian

constraint equation for the Einstein-scalar field system in general relativity

∆gu+ hu = fu
2⋆−1 +

a

u2⋆+1
,

where ∆g = −divg(∇g·), 2⋆ = 2n
n−2

. In the first part of the paper, we prove that if∫
M

advolg is sufficient small, the equation admits one positive smooth solution. In the

second part of the paper, we show that the condition for
∫
M

advolg can be relaxed if supM f

is small. As a by-product of this result, we are able to get a complete characterization

of the existence of solutions in the case when supM f 6 0. In addition to the two main

results above, we should emphasize that we allow a to have zeros in M .
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1. Introduction

This is the third and last in our series of papers concerning solution

of the Einstein-scalar field Lichnerowicz equations on compact Riemannian

manifolds. Given a smooth compact Riemannian manifold (M,g) without

the boundary of dimension n > 3, in this paper, we prove some existence

results for the following simple partial differential equation

∆gu+ hu = fu2
⋆−1 + au−2⋆−1, u > 0, (1.1)

where ∆g = −divg(∇g·) is the Laplace-Beltrami operator, 2⋆ = 2n
n−2 is the

critical Sobolev exponent, and h > 0, f , a > 0 are smooth functions.

The analysis of Eq. (1.1) is motivated by the constraint equations for the

initial value problems of general relativity by using the conformal method.

Recently, Eq. (1.1) has received much considerable attention due to the

nature of their origin. To make the paper self-contained, we briefly recall

how the conformal method can be used when we study the Cauchy problem

in general relativity and how Eq. (1.1) appears. For interested readers, we

refer to [4, Chapter III], see also [4, 5, 6, 7, 16, 17].

Roughly speaking, by a given initial data set (M,g,K) we mean an n-

dimensional Riemannian manifold (M,g) and a symmetric (0, 2)-tensor K,

then the initial value problem asks for a Cauchy development of (M,g,K),

simply denoted by (M ,g), which is a Lorentzian manifold of dimension n+1.

Here the spacetime metric g is required to satisfy the following Einstein

equation

Ricg −
1

2
Scalgg = T ,

where Ricg and Scalg are the Ricci tensor and the scalar curvature of the

spacetime metric g. Also, the symmetric (0, 2)-tensor T appearing in the

Einstein equation is the energy-momentum tensor which is supposed to

present the density of all the energies, momenta and stresses of the sources.

In order for (M ,g) to be a Cauchy development of (M,g,K), it is

required that (M,g,K) must embed isometrically to (M ,g) as a slice with

the second fundamental form K; and the metric g becomes the pullback of

the spacetime metric g by the embedding. It turns out that the initial data

(g,K) cannot be arbitrary, they must satisfy some conditions. As a direct



✐

“BN09N37” — 2014/9/2 — 20:07 — page 453 — #3
✐

✐

✐

✐

✐

2014] EINSTEIN-SCALAR FIELD LICHNEROWICZ EQUATIONS... 453

consequence of the Gauss and Codazzi equations, those conditions can be

rewritten in a form consisting two equations known as the Hamiltonian and

momentum constraints which are defined on (M,g), namely,

{

Scalg − |K|2g + (tracegK)2 − 2ρ = 0,

∇g ·K −∇gtracegK − J = 0,
(1.2)

where all quantities of (1.2) involving a metric are computed with respect to

the spacelike metric g and Scalg is the scalar curvature of g. Also in (1.2),

ρ is a scalar field on M representing the energy density and J is a vector

field onM representing the momentum density of the nongravitational fields;

they are related to the energy-momentum tensor T as follows

ρ = T (n,n), J = −T (n, ·),

where n is the unit timelike normal to the slice M × {0}, see [4, 6] and [7,

Section 5].

By a simple dimension counting argument, it is clear that Eq. (1.2) forms

an under-determined system of variable (g,K); thus they are generally hard

to solve. However, in literature, the conformal method can be effectively

applied in the constant mean curvature setting as remarked in [4], that is to

look for






g = u2
⋆−2g,

Kij =
τ

n
u2

⋆−2gij + u−2(σ + LW )ij,
(1.3)

where the metric g is fixed, u is a positive (smooth) function to be deter-

mined, and W is a 1-form. Note that the operator L appearing in (1.3)

is the conformal Killing operator acting on W which can be given in local

coordinates by

LWij = ∇iWj +∇jWi −
2

n
(∇kWk)gij ,

where ∇ and ∇ are the Levi-Civita connections associated to the metrics g

and g respectively. Here τ = gijKij is the mean curvature of M as a slide

of M . The choice for the two-tensor σ is somehow arbitrary.

When the conformal method is applied in this setting, the constraints

(1.2) can easily be transformed to a determined system of partial differential
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equations of variable (u,W ) given by

4(n−1)

n− 2
∆gu+ Scalgu = −

(n−1

n
τ2−2ρ

)

u2
⋆−1 + |σ + LW |2gu

−2⋆−1,(1.4a)

divg(LW ) =
n− 1

n
u2

⋆

dτ + u
2(n+2)
n−2 J . (1.4b)

In the vacuum case and when τ is constant, e.g. T ≡ 0 and hence ρ ≡ 0

and J ≡ 0 as well, we know exactly which sets of data lead to solutions and

which do not, see [12]. This is because Eq. (1.4b) then only involves W and

generically implies W ≡ 0 (for example, if M admits no conformal Killing

vector field). Therefore, one is left with solving Eq. (1.4a). Clearly, Eq. (1.1)

already includes Eq. (1.4a) as a particular case. Throughout this paper,

equations of the form (1.1) are called the Einstein-scalar field Lichnerowicz

equations.

While, as we have noted, the conformal method can be effectively applied

for solving Eq. (1.2) in most cases, it should be pointed out that there

are several cases for which either partial result or no result was available,

especially in the non-vacuum case, when gravity is coupled to field sources.

To see this more precise, we assume the presence of a real scalar field ψ

on the space time (M ,g) with a potential U being a function of ψ, then

Eq. (1.4a) takes the form of (1.1) with

h =
n− 2

4(n− 1)

(

Scalg − |∇ψ|2g

)

, a =
n− 2

4(n − 1)

(

|σ + LW |2g + π2
)

, (1.5)

and

f = −
n− 2

4(n− 1)

(

n− 1

n
τ2 − 2U (ψ)

)

, (1.6)

where π is the transformed normalized time derivative of ψ restricted to

M and ψ is the restriction of ψ to M , see [6, 4] for details. Based on the

division in [6], one can observe that there are three cases corresponding to

either h < 0, or h ≡ 0, or h > 0 with sign-changing f , for which either

partial result or no result was achieved.

In the preceding papers [16, 17], we have already proven that, in the

case h 6 0, a suitable balance between coefficients h, f , a of the Einstein-

scalar field Lichnerowicz equations is enough to guarantee the existence of

one positive smooth solution. In addition, it was found that under some

further conditions we may or we may not have the uniqueness property of
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solutions of the Einstein-scalar field Lichnerowicz equations. This paper is

a continuation of those papers above [16, 17].

In the present paper, we continue our study of the existence of the

positive smooth solutions to (1.1) when h > 0. We assume hereafter that

f and a are smooth functions on M with a > 0. The latter assumption

implies no physical restrictions since we always have that a > 0 in the

original Einstein-scalar field theory. We also assume
∫

M
advolg > 0. This

assumption prevents us from the study of the prescribing scalar curvature

problem in the positive case. Thanks to the conformally covariance property

of the Einstein-scalar field Lichnerowicz equations, we can freely choose a

background metric g such that manifold M has unit volume.

As far as we know, Eq. (1.1) with h > 0 was first considered in [10]

by using variational methods. In that elegant paper, Hebey–Pacard–Pollack

proved, among other things, a fundamental existence result which roughly

says that a suitable control of
∫

M
advolg from above is enough to guarantee

the existence of one positive smooth solution. Their result basically makes

use of the fact that the operator ∆g+h is coercive. Although the coerciveness

property is slightly weaker than the condition h > 0, however, this condition

is enough to guarantee that the following

‖u‖H1
h
=

(
∫

M

|∇u|2g dvolg +

∫

M

hu2dvolg

)
1
2

is an equivalent norm on H1(M). The advantage of this setting is that the

first eigenvalue of the operator ∆ + h is strictly positive, and thus, various

goods properties of the theory of weighted Sobolev spaces can be applied.

In particular, for all u ∈ H1(M), there holds

∫

M

|∇u|2dvolg +

∫

M

hu2dvolg > Sh

(
∫

M

|u|2
⋆

dvolg

)
2
2⋆

, (1.7)

where the constant Sh is called the Sobolev constant and is independent of

u. Using our notations, their result can be restated as follows.

Theorem A (see [10]). Let (M,g) be a smooth compact Riemannian man-

ifold without the boundary of dimension n > 3. Let h, a, and f be smooth
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functions on M for which ∆g + h is coercive, a > 0 in M , and supM f > 0.

There exists a constant C = C(n), C > 0 depending only on n, such that if

‖ϕ‖2
⋆

H1
h

∫

M

a

ϕ2⋆
dvolg 6

C

(Sh supM |f |)n−1 (1.8)

and
∫

M

fϕ2⋆dvolg > 0 (1.9)

for some smooth positive function ϕ > 0 in M , then the Einstein-scalar field

Lichnerowicz equation (1.1) possesses a smooth positive solution.

As can be seen from Theorem A, the condition supM f > 0 is crucial

since the condition (1.9) does not hold if f 6 0. Moreover, it could be nec-

essary to have a > 0 in M in order to get a positive lower bound for smooth

solutions of (1.1). Besides, if we denote f− = min(f, 0) and f+ = max(f, 0),

then the condition (1.8) involves not only supM f+ but also infM f−. In

other words, for given a, the negative part f− of f cannot be too negative.

This restriction basically reflects the fact that the energy functional has to

verify the mountain pass geometry as their solution was found as a moun-

tain pass point. It is worth noticing that an upper bound for
∫

M
advolg as

in (1.8) is predictable since for given h and f , a cannot be too large, see [10,

Section 2].

The present paper was also motivated by a recent paper by Ma–Wei [14].

In their paper, provided u is a positive smooth solution, Ma–Wei proved the

existence of some mountain pass solution of (1.1) of the form u+ v for some

positive smooth function v. In terms of our notations, we can formulate

their result as the following.

Theorem B (see [14]). Assume that a, f , h are positive functions on the

compact Riemannian manifold (M,g) of dimension 3 6 n < 6. Let u be a

positive smooth solution of (1.1). Assume that the first eigenvalue of

∆g + h−
n+ 2

n− 2
fu

4
n−2 +

3n− 2

n− 2
au

4n−4
n−2 (1.10)

is positive. Then the Einstein-scalar field Lichnerowicz equation (1.1) pos-

sesses a mountain pass, smooth, positive solution.
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It is easy to see that the positivity of the first eigenvalue of the operator

given in (1.10) immediately implies that the solution u is strictly stable.

Therefore, it is natural to seek for positive smooth solutions of (1.1) as local

minimizers. Another reason that supports this approach is to look at the

profile of the functional associated to (1.1). Due to the presence of the term

au−2⋆−1, the energy of u is very large when maxM u is small. Clearly, in the

case f 6 0, the energy of u is also large when maxM u is large. Consequently,

a local minimizer of the energy functional should exist which could provide

a possible solution. Similarly, if one assumes that supM f > 0 and that the

energy functional admits some mountain pass geometry, a local minimizer

of the energy functional again exists.

While searching for positive smooth solutions of Eq. (1.1), we found that

the method used in [16, 17] still works in this context. While the non-positive

Yamabe-scalar field invariant h 6 0 involves more conditions and our analy-

sis of solvability of the Lichnerowicz-scalar field equations strongly depends

on the ratio between supM f and
∫

M
|f−|dvolg , the positive Yamabe-scalar

field invariant h > 0 requires fewer conditions than the non-positive case.

In fact, as we shall see later, in the case supM f > 0, no condition for f is

imposed and we are able to show that if
∫

M
advolg is small, then (1.1) pos-

sesses at least one smooth positive solutions since the condition for supM f

can be absorbed to the condition for
∫

M
advolg . The first main theorem can

be stated as follows.

Theorem 1.1. Let (M,g) be a smooth compact Riemannian manifold with-

out the boundary of dimension n > 3. Assume that f , h > 0, and a > 0

are smooth functions on M such that
∫

M
advolg > 0 and supM f > 0. We

assume further that there exists a constant τ > max{1, ( 2
Sh

∫

M
hdvolg)

2⋆

2 }

such that

∫

M

advolg <
(2n− 1)n−1

22n−1nn
Sh

τ

(

Shτ

τ supM f −
∫

M
fdvolg

)n−1

(1.11)

holds. Then (1.1) possesses at least one smooth positive solution.

Observe from (1.11) that τ plays no role but a scaling factor. There-

fore, for given
∫

M
advolg , we could select τ sufficiently large and supM f

sufficiently small in such a way that (1.11) is fulfilled. This suggests that

under the case when supM f is small, the condition for
∫

M
advolg appearing
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in (1.11) can be relaxed. In the second part of the present paper, we prove

this affirmatively. That is the content of the following.

Theorem 1.2. Let (M,g) be a smooth compact Riemannian manifold with-

out the boundary of dimension n > 3. Let f , h, and a be smooth functions

on M with h > 0, a > 0 in M ,
∫

M
advolg > 0, and supM f > 0. Then there

exists a positive constant C to be specified later such that if supM f < C , then

Eq. (1.1) possesses one positive smooth solution.

Apparently, Theorem 1.2 provides a slightly stronger result than that of

Theorem A as the negative part f− of the function f could be arbitrarily

small. In addition, the condition (1.11) also suggests that if h is large enough,

(1.1) always admits at least one positive solution. This is because, as a

function of h, Sh is monotone increasing. It turns out that the size of h

really affects the solvability of (1.1). We shall not prove anything about

this interesting feature but to summarize the role of h in Table 1 in the last

paragraph of the present paper.

In the third part of the present paper, we focus our attention to the case

when f 6 0. In this context, we are able to get a complete characterization of

the existence of solutions of (1.1) in the case when f 6 0. Roughly speaking,

it should mention that in the statement of Theorem 1.1, supM f is exactly

supM f+ where f+ is the positive part of f . Therefore, without any supM f ,

one can immediately observe that the right hand side of (1.11) goes to +∞

as τ → +∞. This suggests that under the condition f 6 0, no condition is

imposed.

Theorem 1.3. Let (M,g) be a smooth compact Riemannian manifold with-

out the boundary of dimension n > 3. Let f , h, and a be smooth functions

on M with h > 0, a > 0 in M ,
∫

M
advolg > 0, and f 6 0. Then Eq. (1.1)

always possesses one and only one positive smooth solution.

Concerning Theorem 1.2, it is worth noticing that it generalizes the same

result obtained in [6] when the functions f and a take the form (1.5)–(1.6).

Loosely speaking, it was proved in [6, Proposition 3] by the method of sub-

and super-solutions that (1.1) always possesses one positive solution so long

as the functions f and a take the form (1.5)–(1.6) with f 6 0 and a > 0.

The main ingredient of the proof in [6] is the conformal invariant property
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of the functions f and a when they take the form (1.5)–(1.6). Apparently,

this property is no longer available in our general case.

Besides, we would like to comment that we do not expect that the result

in Theorem 1.2 is original and completely new. Recently, it has just come

to our attention that other approaches could lead us to the same result,

for interested reader, we refer to [11] and [9]. However, more or less, our

approach is different from the others.

When written in the form (1.1), one can easily see that the Einstein-

scalar field Lichnerowicz equations is closely related to the Yamabe problem

and the prescribing scalar curvature problem, which has been studied for

years by many great mathematicians, for example, Yamabe [22], Trudinger

[21], Aubin [1], Schoen [19], Kazdan–Warner [13], Escobar–Schoen [8], Rauzy

[20], Chen–Xu [3] and references therein.

As already used in [16, 17] for the case h 6 0, the original idea of our

approach was based on Rauzy [20]. However, we found that in the case

considered in [20], the assumption of the negative Yamabe invariant h < 0

is important; in fact, this approach cannot be applied to the case of the

positive Yamabe invariant h > 0. Nevertheless, and thanks to the presence

of the term with a negative exponent, we can still use the idea of [20] in our

case. As always, in the first step to tackle (1.1), we look for positive smooth

solutions of the following subcritical problem

∆gu+ hu = f |u|q−2u+
au

(u2 + ε)
q
2
+1
. (1.12)

Our main procedure is to show that the limit exists as first ε→ 0 and then

q → 2⋆ under various assumptions. It is worth noticing that in [10], the

authors just considered Eq. (1.12) with q replaced by 2⋆. This difference

somehow reflects the fact that we need the compact embedding H1(M) →֒

Lq(M) while searching for minimum points.

Before closing this section, we briefly mention the organization of the

paper and highlight some techniques used. Section 2 mainly concerns basic

properties of positive solutions of (1.1) such as point-wise estimate and reg-

ularity. In Section 3, a careful analysis of the energy functional is presented

by proving the various properties involving the asymptotic behavior of the

energy functional that is needed in later parts. Having these preparation,

we spend Sections 4, 5 and 6 to prove Theorems 1.1, 1.2, and 1.3. Some
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460 Q. A. NGÔ AND X. XU [September

comments and remarks will appear in Section 7. Part of this paper is a

revision of Chapter 6 of the first author’s doctoral thesis [15] submitted to

the National University of Singapore under the supervision of the second

author.

2. Preliminary

2.1. Notations

As usual, let Hp(M) be the standard Sobolev space equipped with the

standard norm. We also denote by 2♭ the average of 2 and 2⋆, that is,

2♭ = 2n−2
n−2 . Observe that τ > 1 and therefore τ supM f >

∫

M
fdvolg . Having

this, we then introduce

k1,q =

(

q + 2

4q

Shτ
2
q

τ supM f −
∫

M
fdvolg

)

q
q−2

, k2,q = τk1,q. (2.1)

One can observe that k1,q < k2,q. Moreover, one can easily bound k1,q from

below and k2,q from above, that is, there exists two positive numbers k < 1

and k > 1 independent of q and ε such that k 6 k1,q < k2,q 6 k. In order to

find such bounds, one first observes that

τk1,q =

(

q + 2

4q

Shτ

τ supM f −
∫

M
fdvolg

)
q

q−2

.

Therefore, we can choose

k =
1

τ
min

{

(1

4

Shτ

τ supM f −
∫

M
fdvolg

)

2♭

2♭−2
, 1

}

(2.2)

and

k = max

{

(1

2

Shτ

τ supM f −
∫

M
fdvolg

)

2♭

2♭−2
, 1

}

. (2.3)

2.2. Basic properties for positive solutions

This section is devoted to proving several properties of positive solutions

of (1.12). We first derive a lower bound for positive C2 solutions of (1.12).
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It is worth noticing that such a result was already proved in [10], here we

just derive a precise lower bound for positive C2 solutions of (1.12). Then

we recall a regularity result for weak solutions of (1.12).

Lemma 2.1. Let u be a positive C2 solution of (1.12) with h > 0. Then it

holds

min
M

u > min

{

(

1

22♭
infM a

supM h+ supM |f |

)
1

2♭+2

, 1

}

(2.4)

for any q ∈ [2♭, 2⋆) and any

ε < min

{

(

1

22♭
infM a

supM h+ supM |f |

)
2

2♭+2

, 1

}

. (2.5)

Proof. Following [10], we let δ > 0 be the unique positive solution of the

following algebraic equation

δq+2

(

sup
M

h+ (sup
M

|f |)δq−2

)

=
1

22♭
inf
M
a. (2.6)

Since δ depends on q, we shall prove that for q ∈ (2♭, 2⋆), δ has a strictly

positive lower bound. We have the following two cases.

Case 1. Suppose

sup
M

h+ sup
M

|f | >
1

22♭
inf
M
a.

In this case, there holds δ 6 1. Consequently, we can estimate

1

22♭
inf
M
a 6 δq+2

(

sup
M

h+ sup
M

|f |

)

which immediately gives us

δ >

(

1

22♭
infM a

supM h+ supM |f |

)
1

q+2

>

(

1

22♭
infM a

supM h+ supM |f |

)
1

2♭+2

.

Case 2. Suppose

sup
M

h+ sup
M

|f | <
1

22♭
inf
M
a.
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In this case, there holds δ > 1 which immediately gives us a lower bound for

δ.

Combining two cases above, we conclude that

δ > min

{

(

1

22♭
infM a

supM h+ supM |f |

)
1

2♭+2

, 1

}

.

Suppose that u is a positive C2 solution of (1.12) with ε > 0 satisfying

the condition (2.5) above, that is,

∆gu

u
+ h = fuq−2 +

a

(u2 + ε)
q
2
+1
.

Let us assume that u achieves its minimum value at x0, then we have

h(x0) + (−f(x0))u(x0)
q−2

>
a(x0)

(u(x0)
2 + ε)

q
2
+1
. (2.7)

We assume u(x0) < δ. From the choice of δ, one can verify that

sup
M

|h|+ (sup
M

|f |)δq−2
> h(x0) + (−f(x0))u(x0)

q−2. (2.8)

Since ε < δ2 and u(x0) < δ, it is easy to see that

a(x0)

(u(x0)
2 + ε)

q
2
+1

>
infM a

(
√
2δ)

q+2 >
1

22♭
infM a

δq+2
. (2.9)

Using (2.7), (2.8), and (2.9), we easily get a contradiction, thus proving that

u(x0) > δ. In particular, there holds

u > δ in M.

This proves our lemma. ���

From (2.4), our lower bound for minM u clearly depends on infM a. As

mentioned in Introduction, it could be necessary to have infM a > 0 in order

to guarantee that minM u stays away from 0 for any positive solution u. We

now quote the following regularity result whose proof can be mimicked from

a similar result proved in [16].
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Lemma 2.2. Assume that u ∈ H1(M) is an almost everywhere non-negative

weak solution of Eq. (1.12). Then

(a) If ε > 0, then u ∈ C∞(M). In particular, u > 0 in M .

(b) If ε = 0 and u−1 ∈ Lp(M) for all p > 1, then u ∈ C∞(M).

3. The analysis of the energy functionals when supM f > 0

As indicated in the title of this section, throughout this section, we

mainly consider the energy functional associated to (1.12) in the case when

supM f > 0. As such, unless otherwise stated, we always assume that

supM f > 0 and infM a > 0.

3.1. Functional setting

For each q ∈ (2, 2⋆) and k > 0, we introduce Bk,q a hyper-surface of

H1(M) which is defined by

Bk,q =
{

u ∈ H1(M) : ‖u‖Lq = k
1
q

}

. (3.1)

Notice that for any k > 0, our set Bk,q is non-empty since it contains k
1
q .

Now we construct the energy functional associated to problem (1.12). For

each ε > 0 small satisfying (2.5), consider the functional Fε
q : H1(M) → R

defined by

Fε
q (u) =

1

2

∫

M

(

|∇u|2 + hu2
)

dvolg −
1

q

∫

M

f |u|qdvolg +
1

q

∫

M

a

(u2 + ε)
q
2

dvolg .

By a standard argument, Fε
q is differentiable on H1(M). Since Fε

q

∣

∣

Bk,q
is

bounded from below by −k| supM f |, we can define

µεk,q = inf
u∈Bk,q

Fε
q (u).

Since critical points of Fε
q are weak solutions of (1.12), we wish to find critical

points of the functional Fε
q . It was proved in [16] that µεk,q is achieved by
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some smooth positive function, say uε. The proof is standard and we refer

the reader to [16] for the details of the proof.

3.2. Asymptotic behavior of µεk,q in the case supM f > 0

In this subsection, we investigate the behavior of µεk,q when both k and

ε vary. We first study the behavior of µεk,q as k → +∞. Using the idea

developed in [16], we can easily prove the following lemma.

Lemma 3.1. µεk,q → −∞ as k → +∞ if supM f > 0.

We are going to show that µεk1,q,q < µεk2,q,q where k1,q and k2,q are given

in (2.1). To this purpose, we first need a rough estimate for µεk1,q,q.

Lemma 3.2. There holds

µεk1,q,q 6
1

2
k

2
q

1,q

∫

M

hdvolg −
k1,q
q

∫

M

fdvolg +
1

qk1,q

∫

M

advolg (3.2)

where k1,q is given in (2.1).

Proof. This is trivial since µεk1,q,q 6 Fε
q (k

1
q

1,q). The proof follows. ���

As a consequence of Lemma 3.2 and thanks to the fact that k < 1 and

k > 1, we can bound µεk1,q,q with the bound independent of q and ε as follows

µεk1,q,q 6
k

2

2♭

2

∫

M

hdvolg +
k

2
sup
M

|f |+
1

2k

∫

M

advolg .

As can be seen, the right hand side of (3.2) is always positive. In order to

make µεk2,q,q > µεk1,q,q with k2,q > k1,q, we need supM f to be small. We now

study the asymptotic behavior of µεk,q as k → 0. This result together with

Lemmas 3.1 and 3.6 give us a full description of the asymptotic behavior of

µεk,q.

Lemma 3.3. There holds limk→0+ µ
k
2
q

k,q = +∞. In particular, there is some

k⋆ sufficiently small and independent of both q and ε such that

µεk⋆,q > k
2

2♭

∫

M

hdvolg + k sup
M

|f |+
1

k

∫

M

advolg

for any ε 6 k⋆. In particular, there holds µεk⋆,q > µεk1,q,q.
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Proof. The way that ε comes and plays immediately shows us that µεk,q is

strictly monotone decreasing in ε for fixed k and q. Following [16, Lemma

3.1], for any ε 6 k
2
q , any 1 < q/2 < 2⋆/2, and any u ∈ Bk,q, we have

∫

M

√
advolg 6 2

q
4

√
k

(

∫

M

a

(u2 + ε)
q
2

dvolg

)
1
2

. (3.3)

By squaring (3.3) and using q < 2⋆, we get that

∫

M

a

(u2 + ε)
q
2

dvolg >
1

2
2⋆

2 k

(
∫

M

√
advolg

)2

.

This helps us to conclude

Fε
q (u) > −

k

q
sup
M

f +
1

2
2⋆

2 qk

(
∫

M

√
advolg

)2

,

which proves that µk
2
q

k,q → +∞ as k → 0. Since the right hand side of the

preceding inequality is independent of u, in order to get the desired estimate,

it suffices to find some small k⋆ < 1 independent of both q and ε such that

the following inequality

−
k⋆
q
sup
M

f +
1

2
2⋆

2 qk⋆

(
∫

M

√
advolg

)2

> k
2

2♭

∫

M

hdvolg + k sup
M

|f |+
1

k

∫

M

advolg (3.4)

holds. In order to find such a k⋆, we first let k⋆ < 1. Since q > 2, it suffices

to select k⋆ in such a way that

1

2
2⋆

2 2⋆k⋆

(
∫

M

√
advolg

)2

> k
2

2♭

∫

M

hdvolg+k sup
M

|f |+
1

k

∫

M

advolg+
1

2
sup
M

f

which is equivalent to

k⋆ 6
1

2
2⋆

2 2⋆

(
∫

M

√
advolg

)2

(

k
2

2♭

∫

M

hdvolg + k sup
M

|f |+
1

k

∫

M

advolg +
1

2
sup
M

f

)−1

.
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Hence, one can choose k⋆ as

k⋆ = min

{

1

2
2⋆

2 2⋆

(
∫

M

√
advolg

)2

(

k
2

2♭

∫

M

hdvolg +
(

k +
1

2

)

sup
M

|f |+
1

k

∫

M

advolg

)−1

, k, 1

}

. (3.5)

Since k⋆ 6 1, we always have k⋆ < k
2
q
⋆ . By Lemma 3.2, we can check that

µεk⋆,q > µεk1,q,q, thus concluding the lemma with ε 6 k⋆. Notice that, we have

used k in (3.5). The reason is that we wish to ensure that k⋆ < k1,q in any

case. The proof now follows easily. ���

Our next result concerns the continuity of the function µεk,q with respect

to k for each ε > 0 and q ∈ (2♭, 2⋆) fixed. Since a similar result has been

proved in [16], we omit its proof here and refer the reader to [16, Proposition

3.9].

Proposition 3.4. For ε > 0 and q ∈ (2♭, 2⋆) fixed, the function µεk,q is

continuous with respect to k.

In the rest of this section, our aim here is to study µεk,q when k > k1,q.

It is found that µεk1,q ,q < µεk2,q,q provided supM f is sufficiently small. To this

end, we need to estimate µεk,q for k > k1,q. A similar result was studied in

[20, Proposition 2], [16, Proposition 3.14], or [17, Proposition 4.5]. Recall

that Sh is the Sobolev constant appearing in (1.7).

Proposition 3.5. For any u ∈ Bk,q with k > k2,q, any q ∈ [2♭, 2⋆), and any

ε > 0, there holds

Fε
q (u) >

1

2
Shk

2
q −

k

q
sup
M

f.

In particular,

µεk,q >
1

2
Shk

2
q −

k

q
sup
M

f

for any k > k2,q.

Proof. Suppose u ∈ Bk,q where k is arbitrary. We now estimate Fε
q (u)

from below. In view of (1.7) and the Hölder inequality, we obviously have

∫

M

|∇u|2dvolg +

∫

M

hu2dvolg > Shk
2
q
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Using this, we then easily have

Fε
q (u) >

1

2

(
∫

M

|∇u|2dvolg +

∫

M

hu2dvolg

)

−
1

q

∫

M

f+|u|qdvolg .

In particular, there holds

Fε
q (u) >

1

2
Shk

2
q −

k

q
sup
M

f.

Thus, we can conclude the lemma by taking the infimum with respect to

u ∈ Bk,q. ���

In order to prove the existence of a local minimum point, the following

lemma plays an important role in our analysis.

Lemma 3.6. Assume that, for some τ > 1, the total integral of a satisfies

∫

M

advolg <
q − 2

4q

Sh

τ

(

q + 2

4q

Shτ

τ supM f −
∫

M
fdvolg

)
q+2
q−2

. (3.6)

Then there holds

µεk1,q,q < min{µεk⋆,q, µ
ε
k2,q ,q

}

for any q ∈ [qη0 , 2
⋆) and any ε ∈ (0, k⋆).

Proof. First, using Lemma 3.3, it suffices to verify µεk1,q,q < µεk2,q,q for all

q ∈ [qη0 , 2
⋆). By Lemma 3.2 and Proposition 3.5, the following facts have

already proved

µεk1,q,q <
k

2
q

1,q

2

∫

M

hdvolg −
k1,q
2

∫

M

fdvolg +
1

2k1,q

∫

M

advolg

and

1

2
Shk

2
q

2,q −
k2,q
q

sup
M

f 6 µεk2,q,q.

Therefore, it suffices to prove that

k
2
q

1,q

∫

M

hdvolg − k1,q

∫

M

fdvolg +
1

k1,q

∫

M

advolg 6 Shk
2
q

2,q − k2,q sup
M

f,
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for any q ∈ [qη0 , 2
⋆). Notice that, from the choice of τ , we can verify that

Shτ
2
q > 2

∫

M
hdvolg . This amounts to saying that

k
2
q

1,q

∫

M

hdvolg 6
1

2
Shτ

2
q k

2
q

1,q =
1

2
Shk

2
q

2,q.

Therefore, it suffices to show that

−k1,q

∫

M

fdvolg +
1

k1,q

∫

M

advolg 6
1

2
Shτ

2
q k

2
q

1,q − τk1,q sup
M

f

or equivalently,

∫

M

advolg 6
1

2
Shτ

2
q k

1+ 2
q

1,q − k21,q

(

τ sup
M

f −

∫

M

fdvolg

)

= k21,q

(

1

2
Shτ

2
q k

2−q
q

1,q −

(

τ sup
M

f −

∫

M

fdvolg

))

, (3.7)

for any q ∈ [qη0 , 2
⋆). Again, from the choice of k1,q, it is clear to see that

τ
2
q k

2−q
q

1,q = τ
2
q

(

q + 2

4q

Shτ
2
q

τ supM f −
∫

M
fdvolg

)−1

=
4q

q + 2

τ supM f −
∫

M
fdvolg

Sh
.

Therefore,

1

2
Shτ

2
q k

2−q
q

1,q −

(

τ sup
M

f −

∫

M

fdvolg

)

=
q − 2

q + 2

(

τ sup
M

f −

∫

M

fdvolg

)

=
q − 2

4q
Shτ

2
q

(

q + 2

4q

Shτ
2
q

τ supM f −
∫

M
fdvolg

)−1

.

By using this, (3.7) is equivalent to

∫

M

advolg 6
q − 2

4q
Shτ

2
q

(

q + 2

4q

Shτ
2
q

τ supM f −
∫

M
fdvolg

)
q+2
q−2
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=
q − 2

4q

Sh

τ

(

q + 2

4q

Shτ

τ supM f −
∫

M
fdvolg

)
q+2
q−2

. (3.8)

The proof follows easily by comparing (3.6) and (3.8). ���

4. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. The proof that we provide here

consists of two steps. First, in view of Lemma 2.1 we need to make use of

the condition infM a > 0 in order to guarantee the existence of one solution.

Second, by using a simple sub- and super- solutions argument, we prove that

Eq. (1.1) still admits one positive smooth solution even that infM a = 0.

4.1. The case infM a > 0

In this subsection, we obtain the existence of one solution of (1.1) under

the assumption infM a > 0. For the sake of clarity, we divide the proof into

several claims.

Claim 1. There holds

µεk1,q,q < min{µεk⋆,q, µ
ε
k2,q ,q

}

for all q ∈ (qη0 , 2
⋆) and for all ε ∈ (0, k⋆) satisfying (2.5).

Proof of Claim 1. This is a consequence of Lemma 3.6. In order to apply

Lemma 3.6, we have to derive (3.6) for suitable q close enough to 2⋆. Observe

that

lim
q→2⋆

q + 2

q − 2
= n− 1, lim

q→2⋆

q − 2

4q

(

q + 2

4q

)
q+2
q−2

=
(2n− 1)n−1

22n−1nn
.

Hence, we can choose qη0 ∈ [2♭, 2⋆) sufficiently close to 2⋆ such that the

condition Shτ
2
q > 2 and the following inequality

∫

M

advolg <
q − 2

4q

Sh

τ

(

q + 2

4q

Shτ

τ supM f −
∫

M
fdvolg

)
q+2
q−2

(4.1)
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holds for any q ∈ [qη0 , 2
⋆). Thanks to (4.1), we can now use Lemma 3.6 to

finish the proof of this claim. Note that the condition infM a > 0 is crucial

since this makes the right hand side of (2.5) strictly positive.

It is important to note that qη0 is independent of q and ε. Thus, from

now on, we only consider q ∈ [qη0 , 2
⋆).

Claim 2. Eq. (1.12) with ε replaced by 0 has a positive solution, say u1,q,

that is, u1,q solves the following subcritical equation

∆gu1,q + hu1,q = f(u1,q)
q−1 +

a

(u1,q)q+1
, (4.2)

for any q ∈ [qη0 , 2
⋆).

Proof of Claim 2. Again for the sake of clarity, we divide our proof into two

steps.

Step 1. The existence of uε1,q with energy µεq. We now define

µεq = inf
u∈Dq

Fε
q (u)

where the set Dq is given by

Dq =
{

u ∈ H1(M) : k⋆ 6 ‖u‖qLq 6 k2,q
}

.

In term of Bk,q, we can rewrite Dq as follows Dq =
⋃

k⋆6k6k2,q
Bk,q. It

follows from k1,q ∈ (k⋆, k2,q) and Lemma 3.2 that

µεq 6 µεk1,q,q 6 k
2

2♭

∫

M

hdvolg + k sup
M

|f |+
1

k

∫

M

advolg .

In other words, we have proved that µεq is bounded. By a standard argument

and the Ekeland Variational Principle, one can show that there exists a H1-

bounded minimizing sequence for µεq in Dq. A standard argument shows

that µεq is achieved by some positive function uε1,q ∈ Dq. Notice that one

can claim uε1,q ∈ Dq since q < 2⋆, furthermore, by Claim 1, uε1,q does not

lie on the boundary of Dq; hence u
ε
1,q is a weak solution of (1.12). Thus,

the regularity result, Lemma 2.2(a), developed in Section 2 can be applied

to (1.12) to conclude that uε1,q ∈ C∞(M). Finally, with Lemma 2.1 and

the Strong Minimum Principle in hand, in order to see why uε1,q > 0, it is
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necessary to rule out the case uε1,q ≡ 0. To this purpose, we observe that

‖uε1,q‖
q
Lq > k⋆ > 0.

Step 2. The existence of u1,q with energy µk1,q. Next, in order to send

ε → 0, we need a uniform bound for uε1,q in H1(M). Using the Hölder

inequality and the fact that ‖uε1,q‖L2 6 ‖uε1,q‖Lq , it is not hard to prove that

‖uε1,q‖H1 is bounded from above with the bound independent of q and ε. In

what follows, we let {εj}j be a sequence of positive real numbers such that

εj → 0 as j → ∞. For each j, let u
εj
1,q be a smooth positive function in M

solving

∆gu
εj
1,q + hu

εj
1,q = f(u

εj
1,q)

q−1 +
au

εj
1,q

((u
εj
1,q)

2 + εj)
q
2
+1
. (4.3)

Being a bounded sequence in H1(M), there exists u1,q ∈ H1(M) such that,

up to subsequences, as j → ∞,

• u
εj
1,q ⇀ u1,q in H1(M);

• u
εj
1,q → u1,q strongly in L2(M); and

• u
εj
1,q → u1,q almost everywhere in M .

Using Lemma 2.1, the Lebesgue Dominated Convergence Theorem can be

applied to conclude that
∫

M
(u1,q)

−pdvolg is finite for all p. Now sending

j → ∞ in (4.3), we get that u1,q is a weak solution of the subcritical equation

(4.2). Thus Lemma 2.2(b) can be applied to (4.2). It follows that u1,q ∈

C∞(M). Using the strong convergence in Lp(M) and the fact that kε1 > k⋆,

one can see that ‖u1,q‖
q
Lq > k⋆ > 0, thus proving u1,q 6≡ 0. Again with

Lemma 2.1 and the Strong Minimum Principle in hand, it is easy to prove

that u1,q is strictly positive. Keep in mind that ‖u1,q‖
q
Lq 6 k2,q since we still

have a strong convergence. This settles Claim 2.

Claim 3. Eq. (1.1) has at least one positive solution.

Proof of Claim 3. Let us denote by µk1,q the energy of u1,q found in Claim

2, i.e.,

µk1,q =
1

2

∫

M

|∇u1,q|
2
dvolg +

1

2

∫

M

h(u1,q)
2
dvolg

−
1

q

∫

M

f(u1,q)
q
dvolg +

1

q

∫

M

a

(u1,q)
q dvolg .
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Here by k1 we mean ‖u1,q‖
q
Lq = k1. Since q < 2⋆, by strong convergences,

we have

µk1,q = lim sup
j→∞

µ
εj
q

6 lim sup
j→∞

µ
εj
k1,q,q

6
k

2

2♭

2

∫

M

hdvolg +
k

2
sup
M

|f |+
1

2k

∫

M

advolg . (4.4)

We now estimate the H1-norm of the sequence {u1,q}q. Clearly, since h > 0

and a > 0, we get that

1

2

∫

M

|∇u1,q|
2
dvolg = µk1,q −

1

2

∫

M

h(u1,q)
2
dvolg

+
1

q

∫

M

f(u1,q)
q
dvolg −

1

q

∫

M

a

(u1,q)
q dvolg

6 µk1,q +
1

q

∫

M

f(u1,q)
q
dvolg

6 µk1,q +
k1
2

sup
M

|f |.

Since k1 ∈ [k⋆, k2,q], we then easily obtain

1

2

∫

M

|∇u1,q|
2
dvolg 6

k
2

2♭

2

∫

M

hdvolg + k sup
M

|f |+
1

2k

∫

M

advolg .

This and the fact that ‖u1,q‖
2
L2 6 (k)

2

2♭ imply that the sequence {u1,q}q
remains bounded in H1(M). Thus, up to subsequences, there exists u1 ∈

H1(M) such that, as q → 2⋆,

• u1,q ⇀ u1 in H1(M);

• u1,q → u1 strongly in L2(M); and

• u1,q → u1 almost everywhere in M .
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Our aim is now to prove that u1 is the desired solution. Notice that u1,q

verifies
∫

M

∇u1,q · ∇vdvolg +

∫

M

hu1,qvdvolg

−

∫

M

f(u1,q)
q−1vdvolg −

∫

M

a

(u1,q)q+1
vdvolg = 0

(4.5)

for any v ∈ H1(M). As a standard routine, all we need to do is to take the

limit in (4.5) as q → 2⋆. First, thanks to ∇u1,q ⇀ ∇u1, there holds

∫

M

(∇u1,q −∇u1) · ∇vdvolg → 0

as q → 2⋆. Since u1,q → u1 strongly in L2(M), it is not hard to see

∫

M

(u1,q − u1) vdvolg → 0

as q → 2⋆. Lemma 2.1 and the dominated convergence theorem imply that

∫

M

av

(u1,q)
q+1dvolg →

∫

M

av

(u1)
2⋆+1dvolg ,

as q → 2⋆. So far, we can pass to the limit every terms on the left hand side

of (4.5) except the term involving f . By the Hölder inequality, one obtains

∥

∥(u1,q)
q−1
∥

∥

L
2⋆

2⋆−1
6

(

(
∫

M

(u1,q)
2⋆
dvolg

)
q−1
2⋆−1

)

2⋆−1
2⋆

= ‖u1,q‖
q−1

L2⋆ .
(4.6)

Making use of the Sobolev inequality and (4.6), we can prove the bounded-

ness of (u1,q)
q−1 in L

2⋆

2⋆−1 (M). In addition, since u1,q → u1 almost every-

where, (u1,q)
q−1 → (u1)

2⋆−1 almost everywhere. According to [2, Theorem

3.45], we conclude that (u1,q)
q−1 ⇀ (u1)

2⋆

2⋆−1 weakly in L
2⋆

2⋆−1 (M). There-

fore, by definition of weak convergence and the smoothness of f , one has
∫

M

f(u1,q)
q−1vdvolg →

∫

M

f(u1)
2⋆−1vdvolg (4.7)

as q → 2⋆. Using (4.7), one can see, by sending q → 2⋆ in (4.5), that u1 are

weak solutions to (1.1). Using Lemma 2.2(b) we conclude that u1 ∈ C∞(M)
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and u1 > 0 in M .

4.2. The case infM a = 0

Under this context, making use of the method of sub- and super-solutions

is the key argument. As far as we know, this idea was first introduced in

[9, Pages 43–44]1 . However, it is worth mentioning that our construction of

sub-solutions is different from that of [9]. We let ε0 > 0 sufficiently small

and then fix it so that the following inequality

∫

M

advolg + ε0 <
(2n − 1)n−1

22n−1nn
Sh

τ

(

Shτ

τ supM f −
∫

M
fdvolg

)n−1

(4.8)

still holds. Since the manifold M has unit volume, we can conclude that

from (4.8), the function a + ε0 verifies all assumptions in the previous sub-

section, thus showing that there exists a positive smooth function u solving

the following equation

∆gu+ hu = fu2
⋆−1 +

a+ ε0
u2

⋆+1 .

Obviously, u is a super-solution to (1.1), that is

∆gu+ hu > fu2
⋆−1 +

a

u2
⋆+1 .

Our aim is to find a sub-solution to (1.1). In this context, we consider the

following equation

∆gu+ (h− f−)u = a. (4.9)

Since h− f− > 0, a > 0, a 6≡ 0, and the manifold M is compact without the

boundary, the standard argument shows that (4.9) always admits a weak

solution, say u0. By a standard regularity result, one can easily deduce that

u0 is at least continuous. Thus, by the Maximum Principle, we conclude

u0 > 0.

As before, we now find the sub-solution u of the form εu0 for small ε > 0

1Some other unpublished results can also be found in [9].
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to be determined. To this purpose, we first write

∆gu+ hu = εa+ f−u. (4.10)

Since maxM u0 < +∞, it is easy to see that, for any 0 < ε 6 (maxM u0)
− 2⋆+1

2⋆+2 ,

there holds

εa 6
a

ε2⋆+1u2
⋆+1

0

. (4.11)

Besides, since f− 6 0 and 2⋆ > 2, it is not difficult to see that the following

inequality

εu0f
−
6 ε2

⋆−1u2
⋆−1

0 f−

holds provided 1 6 maxM u0. In particular, the following

εu0f
−
6 ε2

⋆−1u2
⋆−1

0 f (4.12)

holds provided 1 6 maxM u0. Combining all estimates (4.10), (4.11), and

(4.12) above, we conclude that for small ε, there holds

∆gu+ hu 6 ε2
⋆−1u2

⋆−1
0 f +

a

ε2
⋆+1u2

⋆+1
0

.

In other words, we have shown that u is a sub-solution of (1.1). Finally,

since u has a strictly positive lower bound, we can choose ε > 0 sufficiently

small such that u 6 u. Using the sub- and super-solutions method, see [13,

Lemma 2.6], we can conclude the existence of a positive solution u to (1.1).

By a regularity result developed in [13], we know that u is smooth.

5. Proof of Theorem 1.2

In order to prove Theorem 1.2, we need to show that the condition (1.11)

is fulfilled. Although we have not assumed that
∫

M
advolg is bounded from

above, we are able to show that we can recover the condition (1.11) provided

supM f is bounded from above by some small constant C depending not only

on f− but also on a and h. Here we only consider the existence of such a C ,

the dependence of C in a and h will be considered in the last section of the

paper.
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As usual, we first assume infM a > 0. Depending on the sign of
∫

M
fdvolg ,

we have two cases.

Case 1. Suppose
∫

M
fdvolg > 0. In this context, we can easily verify that

Sh

supM f
6

Shτ

τ supM f −
∫

M
fdvolg

.

Therefore, it suffices to show that

∫

M

advolg <
(2n− 1)n−1

22n−1nn
Sh

τ

(

Sh

supM f

)n−1

,

which is equivalent to

sup
M

f <

(

(2n− 1)n−1

22n−1nn
S
n
h

τ
∫

M
advolg

)
1

n−1

.

Case 2. Suppose
∫

M
fdvolg < 0. In this context, we assume for a moment

that supM f > 0 is small in such a way that we can select

τ =
1

supM f
> max

{

1,
( 2

Sh

∫

M

hdvolg

)

2⋆

2

}

.

Then, we have

Shτ

τ supM f −
∫

M
fdvolg

=
1

supM f

Sh

1−
∫

M
fdvolg

>
1

supM f

Sh

1 +
∫

M
|f−|dvolg

.

Therefore, it suffices to show that

∫

M

advolg <
(2n− 1)n−1

22n−1nn
Sh sup

M

f

(

1

supM f

Sh

1 +
∫

M
|f−|dvolg

)n−1

,

which is equivalent to

sup
M

f <

(

(2n − 1)n−1

22n−1nn
S
n
h

(1 +
∫

M
|f−|dvolg)

∫

M
advolg

)
1

n−2

.
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From calculation above, we conclude that there exists some positive

constant C > 0 depending only on a, h, and f− such that if 0 < supM f < C ,

our equation (1.1) always admits at least one positive smooth solution.

It remains to consider the case infM a = 0. However, since the size of

a plays no role in the above calculation, we can freely add a small constant

ε0 to a as in the second stage of the proof of Theorem 1.1. This procedure

ensures that we get a super-solution of (1.1) with a strictly positive lower

bound and this is enough since a suitable positive sub-solution always exists.

6. Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3. Since we are in the

case supM f 6 0, we generally have two cases. First we observe that if f ≡ 0,

then it is easy to see that (1.1) always admits a positive solution since a

small constant and a large constant are sub- and super-solutions. Therefore,

it suffices to study the case f 6≡ 0. This and the condition supM f 6 0

immediately imply that
∫

M
fdvolg < 0.

To prove Theorem 1.3, we use the same approach as in the proof of

Theorem 1.1. However, unlike the case when supM f > 0 that forces µεk,q →

−∞ as k → ∞, in the case supM f 6 0, we always have µεk,q → +∞ as

k → ∞ and this is enough to guarantee the existence of at least solution.

Before doing so and since f+ ≡ 0, throughout this section, let us denote

k1,q =

(

q + 2

4q

Shτ
2
q

−
∫

M
fdvolg

)

q
q−2

, k2,q = τk1,q, (6.1)

where τ > 1 is a scaling constant to be determined later. Thanks to
∫

M
fdvolg < 0, k1,q and then k2,q are clearly well-defined.

6.1. Asymptotic behavior of µεk,q in the case supM f 6 0

As we have already seen that the behavior of µεk,q for small k and small

ε depends strongly on the term involving a. Despite the fact that we are

under the case supM f 6 0, we can still go through Lemma 3.3 without any

difficulty, that is, for small ε, µεk,q → +∞ as k → 0. It is worth noticing
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that we always assume infM a > 0. We now study the behavior of µεk,q for

k → +∞ when supM f 6 0.

Proposition 6.1. Suppose supM f 6 0, then µεk,q → +∞ as k → +∞ for

any ε > 0 and any q ∈ [2♭, 2⋆) but all are fixed.

Proof. By using (1.7) and the Hölder inequality, for any u ∈ Bk,q, any

q ∈ (qη0 , 2
⋆), and any ε > 0, there holds

Fε
q (u) =

1

2

∫

M

(|∇u|2 + hu2)dvolg −
1

q

∫

M

f |u|qdvolg +
1

q

∫

M

a

(u2 + ε)
q
2

dvolg

>
1

2
Shk

2
q ,

which immediately implies that µεk,q >
1
2Shk

2
q . Thus, we have shown that

µεk,q → +∞ as k → +∞. ���

Our next lemma gives a full description for µεk,q similarly to that proved

in Section 3.

Lemma 6.2. There holds

µεk1,q,q < min{µεk⋆,q, µ
ε
k2,q ,q

}

for any ε ∈ (0, k⋆) and any q ∈ (qη0 , 2
⋆).

Proof. As in the proof of Lemma 3.6, the proof is similar and straightfor-

ward. To see this, for new k1,q and k2,q, we can also bound by k and k given

in (2.2) and (2.3) by dropping supM f . Therefore, we can define k⋆ as in

(3.5). Having such a k⋆, the estimate µεk1,q,q 6 µεk⋆,q still holds; therefore, it

suffices to prove µεk1,q,q 6 µεk2,q,q by choosing a suitable τ ≫ 1. Equivalently,

we need to prove that

k
2
q

1,q

∫

M

hdvolg − k1,q

∫

M

fdvolg +
1

k1,q

∫

M

advolg 6 Shk
2
q

2,q,

for any q ∈ [qη0 , 2
⋆). From the choice of τ , we only need to prove that

∫

M

advolg 6 k21,q

(

1

2
Shτ

2
q k

2−q
q

1,q +

∫

M

fdvolg

)

. (6.2)
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A simple calculation shows that (6.2) is equivalent to

∫

M

advolg 6 τ
4

q−2
q − 2

4q
Sh

(

q + 2

4q

Sh

−
∫

M
fdvolg

)
q+2
q−2

.

Hence, by choosing τ sufficiently large, one easily gets the desired result. ���

6.2. Proof of Theorem 1.3: The existence

The proof of the existence part of Theorem 1.3 consists of two parts.

Case 1. In the first stage of the proof, we assume that infM a > 0 and

ε ∈ (0, k⋆) satisfying (2.5). With information that we have already proved

in Lemma 6.2, we can define

µεq = inf
u∈Dq

Fε
q (u)

where

Dq =
{

u ∈ H1(M) : k⋆ 6 ‖u‖qLq 6 k2,q
}

.

Then by an usual routine as we have already used before, we can easily prove

the existence of at least one positive smooth solution to (1.1) that conclude

the proof of Theorem 1.3.

Case 2. In the second stage of the proof, we assume infM a = 0. Since we

have no control on
∫

M
advolg , we can freely add small ε0 > 0 to a as in the

proof of Theorem 1.1. Since the trick that was used in the proof of Theorem

1.1 still works in our context, a sub- and super-solutions argument as used

before concludes that (1.1) has at least one positive smooth solution for any

q ∈ [2♭, 2⋆).

6.3. Proof of Theorem 1.3: The uniqueness

The uniqueness of positive solutions of (1.1) follows from the fact that

the following functions t 7→ −t2
⋆−1 and t 7→ t−2⋆−1 are monotone decreasing.

We note that this type of argument is standard and was used once in the

proof of [17, Theorem 1.2].
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Suppose that there exists two positive smooth solutions u1 and u2 of

(1.1). By setting w(x) = u1(x)− v(x) with x ∈M , we arrive at

w∆gw + hw2 = f
(

u2
⋆−1

1 − v2
⋆−1
)

(u1 − u2) + a
(

u−2⋆−1
1 − v−2⋆−1

)

(u1 − u2).

Thanks to h > 0, simply integrating both sides over M gives

0 6

∫

M

|∇w|2dvolg +

∫

M

h|w|2dvolg

=

∫

M

f(u2
⋆−1

1 − u2
⋆−1

2 )(u1 − u2)dvolg

+

∫

M

a(u−2⋆−1
1 − u−2⋆−1

2 )(u1 − u2)dvolg

6 0.

Thanks to f 6 0 and a > 0 with a 6≡ 0, the only possibility for which

the preceding inequality holds is that w vanishes in M , thus proving the

uniqueness of positive smooth solution of Eq. (1.1).

7. Some Remarks and Discussion

7.1. The constant C in Theorem 1.2

As can be seen from the proof of Theorem 1.2, our choice for C basically

depends on both f−, h, and a. Then one can ask whether or not there is

some constant C independent of h and a such that the result in Theorem 1.2

still holds for any f with supM f < C . Here we prove that such a constant

C never exists. Indeed, the key argument is a non-existence result due to

Hebey–Pacard–Pollack [10, Theorem 2.1]. In our context, their result claims

that (1.1) has no positive solution if f > 0 and the following inequality holds

(

nn

(n− 1)n−1

)
n+2
4n
∫

M

a
n+2
4n f

3n−2
4n dvolg >

∫

M

h
n+2
4 f

2−n
4 dvolg . (7.1)

Therefore, by contradiction, if such a constant C existed, we would have an

existence result for (1.1) for any given a > 0 and h > 0. However, for any

f fixed with supM f < C , this is impossible as one can construct counter-

examples by either enlarging a or reducing h in such a way that the condition

(7.1) holds.
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Note that the dependence of C in a and h could be seen from the proof

of Theorem 1.2, for example, the larger
∫

M
advolg is, the smaller supM f is.

7.2. Translation of f and a turning point

In view of Theorem 1.3, Eq. (1.1) always admits at least one posi-

tive smooth solution provided supM f 6 0. In particular, the condition
∫

M
fdvolg < 0 holds. We now assume at the beginning that the smooth

function f verifies the condition supM f 6 0. For each λ ∈ R, we construct

a new family of functions, say fλ, given as follows

fλ(x) = f(x) + λ, x ∈M.

Let us now consider the following equation

∆gu+ hu = fλu
2⋆−1 +

a

u2⋆+1
, u > 0. (7.2)λ

Obviously, Eq. (7.2)λ always admits one positive smooth solution provided

λ 6 0. We are now interested in the case λ > 0. By using Theorem 1.2, we

can prove the following theorem.

Theorem 7.1. There exists a constant λ⋆ > 0 such that

(i) Problem (7.2)λ has no positive smooth solution if λ > λ⋆.

(ii) Problem (7.2)λ has at least one positive smooth solution if λ < λ⋆.

We now sketch a proof of this theorem.

Proof. In order to prove this theorem, let us observe from Theorem 1.2 that

Eq. (7.2)λ has at least one positive smooth solution for some small λ > 0

since fλ depends continuously on λ. In order to see this, let us observe that

in this context, supM fλ = λ. Since
∫

M
fdvolg < 0, we can select λ > 0

small such that
∫

M
fλdvolg < 0. As usual, let us first suppose infM a > 0.

Now we show that there exists some

τ > max

{

1,
( 2

Sh

∫

M

hdvolg

)
2⋆

2

}
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and some λ ∈ (0, 1) small enough such that

∫

M

advolg <
(2n − 1)n−1

22n−1nn
Sh
τ

(

Shτ

τ supM fλ −
∫

M
fλdvolg

)n−1

.

Indeed, we can start with small λ having

1

λ
> max

{

1,
( 2

Sh

∫

M

hdvolg

)
2⋆

2

}

and
∫

M
fλdvolg < 0. In particular, we can choose τ = 1

λ
and observe that

0 < 1−

∫

M

fλdvolg = 1− λ−

∫

M

fdvolg < 1−

∫

M

fdvolg .

Therefore, a simple calculation shows that it suffices to show that

∫

M

advolg <
(2n − 1)n−1

22n−1nn
S
n
h

λn−2

(

1

1−
∫

M
fdvolg

)n−1

,

or equivalently,

λ <

(

(2n − 1)n−1

22n−1nn
S
n
h

∫

M
advolg

)
1

n−2( 1

1−
∫

M
fdvolg

)
n−1
n−2

,

which proves the existence of some small λ as claimed in the case infM a > 0.

In the case infM a = 0, as in the second stage of the proof of Theorem 1.1,

we simply replace a by a + ε0 for some small ε0 > 0 and repeat the above

procedure to obtain a super-solution. Since a sub-solution always exists, the

existence result for small λ follows.

Therefore, we can define

λ⋆ = sup
λ∈R

{ (7.2)λ has at least one positive smooth solution }.

We now prove the following comparison: if 0 < λ1 < λ2 < λ⋆ such that

(7.2)λ2 has at least one positive smooth solution, then (7.2)λ1 also has at

least one positive smooth solution. Indeed, suppose that u2 is a positive

smooth solution of (7.2)λ2 , we then see that u2 is a super-solution of (7.2)λ1

since fλ2 > fλ1 pointwise. Having such an u2, one can easily construct a
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sub-solution u1 of (7.2)λ1 with u1 < u2. By the method of sub- and super-

solutions, one can prove the existence of at least one positive smooth solution

of (7.2)λ1 .

In order to see why should we have λ⋆ < +∞, we make use of [10,

Theorem 2.1]. Indeed, for sufficiently large λ, we obviously have fλ > 0.

Moreover, the following estimate

(

nn

(n− 1)n−1

)
n+2
4n
∫

M

a
n+2
4n f

3n−2
4n

λ dvolg >

∫

M

h
n+2
4 f

2−n
4

λ dvolg

holds, which immediately proves the finiteness of λ⋆ since n > 3. ���

Clearly, the theorem above does not cover the critical case λ = λ⋆. In

fact, it would be interesting if one can answer whether or not we have the

solvability in the critical case above. Since we do not have any good control

for solutions when λ is near λ⋆, we cannot say anything about this critical

case.

7.3. Interaction between coefficients

Finally, before closing the present paper, we would like to mention the

interaction between the coefficients of the Einstein-scalar field Lichnerowicz

equations (1.1) for any sign of h. Using our previous results for the negative

case in [16] and for the null case in [17] together with Theorems 1.1, 1.2,

and 1.3 in the present paper, one can obtain the following table which shows

us how the coefficients in (1.1) depend on each other in order to get the

existence of solutions.

Table 1: Interaction between the coefficients of (1.1) for any h.

h −λf < h < 0 h = 0 h = 0 h > 0 h > 0 h ≫ 0

f sup f+ < C(f−) sup f+ < C(f−) sup f+ < C(f−, a)

a
∫
a < C(f−)

∫
a < C(f−) sup a < C(f)

∫
a < C(f)

The second column basically says that h cannot be too negative as it

must satisfy h > −λf for some positive constant λf given in [16, Eq. (2.1)].

Under this condition, we guarantee an existence result for (1.1) provided
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supM f+ and
∫

M
advolg are bounded in terms of f−. This result still holds

for the case h = 0; however, the boundedness of supM f+ can be relaxed if

we replace
∫

M
advolg by supM a as shown in the third column. The fourth

column shows that in the case h > 0, the boundedness of supM a can be

weakened by using
∫

M
advolg . For the fifth column, it shows that no con-

dition is required if supM f+ is small in terms of f− and a. In the last

column, it shows that (1.1) is always solvable if infM h is sufficiently large,

for example, if h satisfies

h > sup
M

f + sup
M

a

in M . (See also the paragraph right after the statement of Theorem 1.2 in

Introduction.) This is because in this case the constant 1 is a super-solution

for (1.1) and this is enough since a sub-solution for (1.1) which is less than

1 always exists.
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