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Abstract

Local iterated function systems are an important generalisation of the standard

(global) iterated function systems (IFSs). For a particular class of mappings, their fixed

points are the graphs of local fractal functions and these functions themselves are known

to be the fixed points of an associated Read-Bajactarević operator. This paper establishes

existence and properties of local fractal functions and discusses how they are computed.

In particular, it is shown that piecewise polynomials are a special case of local fractal

functions. Finally, we develop a method to compute the components of a local IFS from

data or (partial differential) equations.

1. Introduction

Contractive operators on function spaces are important for the devel-

opment of both the theory and algorithms for the solution of integral and

differential equations. They are used in the theory of elliptic partial differ-

ential equations, Fredholm integral equations of the second kind, Volterra

integral equations, and ordinary differential equations. This is just a small

Received November 1, 2013 and in revised form August 6, 2014.

AMS Subject Classification: 28A80, 33F05, 41A05, 65D05.

Key words and phrases: Iterated function system, local iterated function system, attractor, code
space, fractal function, fractal imaging, fractal compression, subdivision schemes.

This research was partially supported under Australian Research Council’s Discovery Projects
funding scheme (project number DP130101738) and the Technische Universität München - Insti-
tute for Advanced Study, funded by the German Excellence Initiative.

389

mailto:michael.barnsley@anu.edu.au
mailto:markus.hegland@anu.edu.au
mailto:massopust@ma.tum.de


✐

“BN09N35” — 2014/8/29 — 15:08 — page 390 — #2
✐

✐

✐

✐

✐

390 M. F. BARNSLEY, M. HEGLAND AND P. MASSOPUST [September

selection of instances where they appear in mathematics. Contractive op-

erators are fundamental for the development of iterative solvers in general

and wavelet-based solvers for elliptic problems [11] in particular.

One class of contractive operators is defined on the graphs of functions

using a special kind of iterated function system (IFS). The fixed point of such

an IFS is the graph of a fractal function. There is a vast literature on IFSs,

see for example the recent review by the first author [1]. Computationally,

IFSs are used in Computer Graphics in refinement methods which effectively

compute points on curves and surfaces [8]. They are also used to compute

function values of piecewise polynomial functions and wavelets. In fact, it

can be shown that these applications use a variant of IFSs where the iterated

functions are defined locally [6]. These local IFSs and, in particular, their

computational application are the topic of the following discussion. In this

first manuscript we will mostly consider functions of one real variable in the

examples. Functions of multiple variables are planned to be covered in a

future paper.

The remaining part of this introduction will provide some further back-

ground and motivation for our approach to utilise IFSs or local IFSs in

computations. In the second section we introduce and review local IFSs.

The third section applies local IFSs to graphs of functions to define local

fractal functions. It will be seen that these functions are the fixed points

of a Read–Bajactarević (RB) operator. (See also [20] for the use of such

operators in the theory of (global) fractal functions.) Section 4 provides a

reformulation of the RB operator in terms of matrices acting on vectors of

function values over grids. Several examples of local fractal functions are

then displayed. In Section 5 we discuss the important case of polynomials

and their RB operators. In a penultimate section we discuss the determi-

nation of (approximate) iterated function systems both from data and from

functional equations such as partial differential equations. We conclude this

discussion with some general remarks and in particular with a connection

between fractals and the active research area of tensor approximation.

1.1. Fractals and numerics

One can show that graphs of piecewise polynomial functions can be

written as the fixed points of local IFSs. Thus the popular finite element
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method approximates solutions of PDEs with particular fractal functions.

However, numerical methods do not usually use IFSs directly. Exceptions

are the subdivision schemes used in computer graphics where (local) IFSs

are employed mostly for the representation of smooth curves and surfaces.

We suggest the construction and use of IFSs for the solution of PDEs.

This is done by choosing an initial IFS and then changing it iteratively until

it approximates a desired function given by either data or functional (e.g.

partial differential) equations. We use ideas based on the collage theorem to

fit a given function class and refine the domains of the IFS if necessary.

In the following we will discuss the numerical application of local IFSs

which is not based on a basis of a linear space but on the IFS itself. We

anticipate that this approach has the following advantages over approaches

that are based on a linear basis:

• The same approach can be used to approximate and solve PDEs on very

general grids defined by IFSs including fractal sets.

• Visualisation and numerical solutions are computed simultaneously and

can be done on the same or on neighboring processors of a multiprocessor

system such that communication overhead may be reduced.

• Dimensionality is handled much more flexibly in fractals – for example,

one may use 1D solvers for higher-dimensional problems.

• We can at the same time adapt the basis functions (or frames) as well

as solve the problem. Searches over large collections of dictionaries of

finite dimensional approximation spaces can be done locally during the

solution.

• The computational complexity is bounded by the resolution one requires.

• Adaptivity is naturally included as in wavelet-based methods and is a

consequence of the iteration – one application of the IFS reduces the

finest scale.

• Convergence of the method can be controlled with few parameters and

is driven by the convergence of the IFS.

• The theory is based on the theory for fractals and IFSs which is well

established. In addition, there has been a lot of work on wavelets and

subdivision schemes which provides further firm foundations.
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1.2. The Collage Theorem

While it is usually assumed that the iterated function system (IFS) is

given, a very important class of methods used in image processing determines

the IFS from its fixed point. An important result used here is the Collage

Theorem [2]. For the purposes of self-containment, we state this theorem

below.

Theorem 1.1. Let (X, dX) be a complete metric space. Denote by (H(X), dH)

the associated complete metric space based on the hyperspace of nonempty

compact subsets of X endowed with the Hausdorff metric dH. Let M ∈ H(X)

and ε > 0 be given. Suppose that F := {X; f1, . . . , fN} is a contractive IFS

such that

dH

(

M,
N
⋃

i=1

fi(M)

)

< ε.

Then

dH(M,A) <
ε

1− s
,

where A is the attractor of the IFS and and s := max{Lip fi | i = 1, . . . , N}.

It has been demonstrated that approaches that are based on the Collage

Theorem lead to very efficient image compression methods. The interested

reader is referred to [6, 13] for methodologies and to [18] for a summery of

fractal-type approaches in an analytical setting. Note that the application

of an IFS starts with points on a large scale and then moves to finer scales.

This is very similar to some multigrid methods and wavelet methods.

2. Local Iterated Function Systems

The concept of local iterated function system is a generalization of an

IFS as defined in [2] and was first introduced in [6].

In the following, (X, dX) denotes a complete metric space with metric

dX and N := {1, 2, 3, . . .} the set of positive integers.

Definition 2.1. Let N ∈ N and let NN := {1, . . . , N}. Suppose {Xi | i ∈

NN} is a family of nonempty subsets of X. Further assume that for each

Xi there exists a continuous mapping fi : Xi → X, i ∈ NN . Then Floc :=
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{X; (Xi, fi) | i ∈ NN} is called a local iterated function system (local

IFS).

Note that if each Xi = X, then Definition 2.1 coincides with the usual

definition of a standard (global) IFS on a complete metric space. However,

the possibility of choosing the domain for each continuous mapping fi differ-

ent from the entire space X adds additional flexibility as will be recognized

in the sequel.

A mapping f : U ⊂ X → X is called contractive on U or a contrac-

tion on U if there exists a constant s ∈ [0, 1) so that

dX(f(x1), f(x2)) ≤ s dX(x1, x2), ∀x1, x2 ∈ X.

Definition 2.2. A local IFS Floc is called contractive if there exists a

metric d′ equivalent to dX with respect to which all functions f ∈ Floc are

contractive (on their respective domains).

Let 2X := {S |S ⊆ X} be the power set of X. With a local IFS we

associate a set-valued operator Floc : 2
X → 2X by setting

Floc(S) :=
N
⋃

i=1

fi(S ∩ Xi). (2.1)

Here fi(S ∩ Xi) = {fi(x) | x ∈ S ∩ Xi}. By a slight abuse of notation,

we use the same symbol for a local IFS and its associated operator.

Definition 2.3. A subset A ∈ 2X is called a local attractor for the local

IFS {X; (Xi, fi) | i ∈ NN} if

A = Floc(A) =
N
⋃

i=1

fi(A ∩ Xi). (2.2)

In (2.2) we allow for A ∩ Xi to be the empty set. Thus, every local

IFS has at least one local attractor, namely A = ∅. However, it may also

have many distinct ones. In the latter case, if A1 and A2 are distinct local

attractors, then A1∪A2 is also a local attractor. Hence, there exists a largest

local attractor for Floc, namely the union of all distinct local attractors. We

refer to this largest local attractor as the local attractor of a local IFS Floc.
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We remark that there exists an alternative definition for (2.1). For given

functions fi which are only defined on Xi one could introduce set functions

(which will also be called fi) which are defined on 2X by

fi(S) :=

{

fi(S ∩ Xi), S ∩ Xi 6= ∅;

∅, S ∩ Xi = ∅,
i ∈ NN , S ∈ 2X.

On the right-hand side fi(S ∩Xi) is the set of values of the original fi as in

the previous definition. This extension of a given function fi to sets S which

include elements which are not in the domain of fi basically just ignores

those elements. In the following we will assume this definition of the set

function fi to be used.

In the case where X is compact and the Xi, i ∈ NN closed, i.e., compact

in X, and where the local IFS {X; (Xi, fi) | i ∈ NN} is contractive, the local

attractor may be computed as follows. Let K0 := X and set

Kn := Floc(Kn−1) =
⋃

i∈NN

fi(Kn−1 ∩ Xi), n ∈ N.

Then {Kn |n ∈ N0} is a decreasing nested sequence of compact sets. If each

Kn is nonempty, then by the Cantor Intersection Theorem,

K :=
⋂

n∈N0

Kn 6= ∅.

Using [19, Proposition 3 (vii)], we see that

K = lim
n→∞

Kn,

where the limit is taken with respect to the Hausdorff metric on H(X). This

implies that

K = lim
n→∞

Kn = lim
n→∞

⋃

i∈NN

fi(Kn−1 ∩ Xi) =
⋃

i∈NN

fi(K ∩ Xi) = Floc(K).

Thus, K = Aloc. A (mild) condition guaranteeing that each Kn is nonempty

is that fi(Xi) ⊂ Xi, i ∈ NN . (See also [6].)

In the above setting where the fi have been extended to 2X, one can

derive a relation between the local attractor Aloc of a contractive local IFS
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{X; (Xi, fi) | i ∈ NN} and the (global) attractor A of the associated (global)

IFS {X; fi | i ∈ NN} where the extensions of fi to all sets are defined as

above. To this end, let the sequence {Kn |n ∈ N0} be defined as above. The

unique attractor A of the IFS F := {X; fi | i ∈ NN} is obtained as the fixed

point of the set-valued map F : H(X) → H(X),

F(B) =
⋃

i∈NN

fi(B), (2.3)

where B ∈ H(X). If the IFS F is contractive, then the set-valued mapping

(2.3) is contractive on H(X) (with respect to the Hausdorff metric) and its

fixed point can be obtained as the limit of the sequence of sets {An |n ∈ N0}

with A0 := X and

An := F(An−1), n ∈ N.

Note that K0 = A0 = X and, assuming that Kn−1 ⊆ An−1, n ∈ N, it follows

by induction that

Kn =
⋃

i∈NN

fi(Kn−1 ∩ Xi) ⊆
⋃

i∈NN

fi(Kn−1) ⊆
⋃

i∈NN

fi(An−1) = An.

Hence, upon taking the limit with respect to the Hausdorff metric as n→ ∞,

we obtain Aloc ⊆ A. This proves the next result.

Proposition 2.4. Let X be a compact metric space and let Xi, i ∈ NN , be

closed, i.e., compact in X. Suppose that the local IFS Floc := {X; (Xi, fi) | i ∈

NN} and the IFS F := {X; fi | i ∈ NN} are both contractive. Then the local

attractor Aloc of Floc is a subset of the attractor A of F .

Contractive local IFSs are point-fibered if X is compact and the Xi,

i ∈ NN , are closed. To show this, define the code space of a local IFS by

Ω :=
∏

n∈NNN and endow it with the product topology T. It is known that

Ω is metrizable and that T is induced by the Fréchet metric dF : Ω×Ω → R,

dF (σ, τ) :=
∑

n∈N

|σn − τn|

(N + 1)n
,

where σ = (σ1 . . . σn . . .) and τ = (τ1 . . . τn . . .). (As a reference, see for

instance [12], Theorem 4.2.2.) The elements of Ω are called codes.



✐

“BN09N35” — 2014/8/29 — 15:08 — page 396 — #8
✐

✐

✐

✐

✐

396 M. F. BARNSLEY, M. HEGLAND AND P. MASSOPUST [September

Define a set-valued mapping γ : Ω → K(X), where K(X) denotes the

hyperspace of all compact subsets of X, by

γ(σ) :=

∞
⋂

n=1

fσ1 ◦ · · · ◦ fσn(X),

where σ = (σ1 . . . σn . . .). Then γ(σ) is point-fibred, i.e., a singleton. More-

over, in this case, the local attractor A equals γ(Ω). (For details regarding

point-fibred IFSs, we refer the interested reader to [17], Chapters 3–5.)

Example 1. Let X := [0, 1] × [0, 1] and suppose that 0 < x2 < x1 < 1 and

0 < y2 < y1 < 1. Define

X1 := [0, x1]× [0, y1] and X2 := [x2, 1] × [y2, 1].

Furthermore, let fi : Xi → X, i = 1, 2, be given by

f1(x, y) := (s1x, s1y) and f2(x, y) := (s2x+ (1− s2)x2, s2y + (1− s2)y2),

respectively, where s1, s2 ∈ [0, 1).

The (global) IFS {X; f1, f2} has as its unique attractor the line segment

A = {(x, y2
x2
x) | 0 ≤ x ≤ x2}. The local attractor Aloc of the local IFS

{X; (X1, f1), (X2, f2)} is the union of the fixed point (0, 0) of f1 and the fixed

point (x2, y2) of f2.

3. Local Fractal Functions

In this section, we exhibit a class of special attractors of local IFSs,

namely local attractors that are the graphs of bounded functions. These

functions will be called local fractal functions. We prove that the set of

discontinuities of these bounded functions is countably infinite and we derive

conditions under which local fractal functions are elements of the Lebesgue

spaces Lp.

To this end, we assume that 1 < N ∈ N and set NN := {1, . . . , N}.

Let X be a nonempty connected set and {Xi | i ∈ NN} a family of nonempty

connected subsets of X. Suppose {ui : Xi → X | i ∈ NN} is a family of

bijective mappings with the property that



✐

“BN09N35” — 2014/8/29 — 15:08 — page 397 — #9
✐

✐

✐

✐

✐

2014] NUMERICS AND FRACTALS 397

(P) {ui(Xi) | i ∈ NN} forms a (set-theoretic) partition X, i.e., X =
N
⋃

i=1
ui(Xi)

and ui(Xi) ∩ uj(Xj) = ∅, for all i 6= j ∈ NN .

Now suppose that (Y, dY) is a complete metric space with metric dY. A

mapping f : X → Y is called bounded (with respect to the metric dY) if

there exists an M > 0 so that for all x1, x2 ∈ X, dY(f(x1), f(x2)) < M .

Denote by B(X,Y) the set

B(X,Y) := {f : X → Y | f is bounded}.

Endowed with the metric

d(f, g) := sup
x∈X

dY(f(x), g(x)),

(B(X,Y), d) becomes a complete metric space. Similarly, we define B(Xi,Y),

i ∈ NN .

Remark 1. Note that under the usual addition and scalar multiplication of

functions, the spaces B(Xi,Y) and B(X,Y) become metric linear spaces. A

metric linear space is a vector space endowed with a metric under which the

operations of vector addition and scalar multiplication are continuous.

For i ∈ NN , let vi : Xi × Y → Y be a mapping that is uniformly

contractive in the second variable, i.e., there exists an ℓ ∈ [0, 1) so that for

all y1, y2 ∈ Y

dY(vi(x, y1), vi(x, y2)) ≤ ℓ dY(y1, y2), ∀x ∈ X. (3.1)

Define a Read-Bajactarević (RB) operator Φ : B(X,Y) → Y
X by

Φf(x) :=
N
∑

i=1

vi(u
−1
i (x), fi ◦ u

−1
i (x))χui(Xi)(x), (3.2)

where fi := f |Xi
and

χM (x) :=

{

1, x ∈M

0, x /∈M
.
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Note that Φ is well-defined and since f is bounded and each vi contractive

in the second variable, Φf ∈ B(X,Y).

Moreover, by (3.1), we obtain for all f, g ∈ B(X,Y) the following in-

equality:

d(Φf,Φg) = sup
x∈X

dY(Φf(x),Φg(x))

= sup
x∈X

dY(v(u
−1
i (x), fi(u

−1
i (x))), v(u−1

i (x), gi(u
−1
i (x))))

≤ ℓ sup
x∈X

dY(fi ◦ u
−1
i (x), gi ◦ u

−1
i (x)) ≤ ℓ dY(f, g). (3.3)

To simplify notation, we set v(x, y) :=
∑N

i=1 vi(x, y)χXi
(x) in the above

equation. In other words, Φ is a contraction on the complete metric space

B(X,Y) and, by the Banach Fixed Point Theorem, has therefore a unique

fixed point f∗ in B(X,Y). This unique fixed point will be called a local

fractal function f∗ = f∗Φ (generated by Φ).

Next, we would like to consider a special choice for mappings vi. To

this end, we require the concept of an F -space. We recall that a metric

d : Y× Y → R is called complete if every Cauchy sequence in Y converges

with respect to d to a point of Y, and translation-invariant if d(x+a, y+

a) = d(x, y), for all x, y, a ∈ Y.

Definition 3.1. A topological vector space Y is called an F -space if its

topology is induced by a complete translation-invariant metric d.

Now suppose that Y is an F -space. Denote its metric by dY. We define

mappings vi : Xi × Y → Y by

vi(x, y) := λi(x) + Si(x) y, i ∈ NN , (3.4)

where λi ∈ B(Xi,Y) and Si : Xi → R is a function.

If in addition we require that the metric dY is homogeneous, that is,

dY(αy1, αy2) = |α|dY(y1, y2), ∀α ∈ R ∀y1.y2 ∈ Y,

then vi given by (3.4) satisfies condition (3.1) provided that the functions Si
are bounded on Xi with bounds in [0, 1) for then

dY(λi(x) + Si(x) y1, λi(x) + Si(x) y2) = dY(Si(x) y1, Si(x) y2)
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= |Si(x)|dY(y1, y2)

≤ ‖Si‖∞,Xi
dY(y1, y2)

≤ s dY(y1, y2).

Here, ‖ • ‖∞,Xi
denotes the supremum norm with respect to Xi and s :=

max{‖Si‖∞,Xi
| i ∈ NN}.

Thus, for a fixed set of functions {λ1, . . . , λN} and {S1, . . . , SN}, the

associated RB operator (3.2) has now the form

Φf =

N
∑

i=1

λi ◦ u
−1
i χui(Xi) +

N
∑

i=1

(Si ◦ u
−1
i ) · (fi ◦ u

−1
i )χui(Xi),

or, equivalently,

Φfi ◦ ui = λi + Si · fi, on Xi, ∀ i ∈ NN ,

with fi = f |Xi
.

Theorem 3.2. Let Y be an F -space with homogeneous metric dY. Let X

be a nonempty connected set and {Xi | i ∈ NN} a family of nonempty con-

nected subsets of X. Suppose {ui : Xi → X | i ∈ NN} is a family of bijective

mappings satisfying property (P).

Let λ :=(λ1, . . . , λN )∈
N
×
i=1
B(Xi,Y), and S :=(S1, . . . , SN )∈

N
×
i=1
B(Xi,R).

Define a mapping Φ :

(

N
×
i=1
B(Xi,Y)

)

×

(

N
×
i=1
B(Xi,R)

)

×B(X,Y) → B(X,Y)

by

Φ(λ)(S)f =
N
∑

i=1

λi ◦ u
−1
i χui(Xi) +

N
∑

i=1

(Si ◦ u
−1
i ) · (fi ◦ u

−1
i )χui(Xi). (3.5)

If max{‖Si‖∞,Xi
| i ∈ NN} < 1 then the operator Φ(λ)(S) is contractive on

the complete metric space B(X,Y) and its unique fixed point f∗ satisfies the

self-referential equation

f∗ =

N
∑

i=1

λi ◦ u
−1
i χui(Xi) +

N
∑

i=1

(Si ◦ u
−1
i ) · (f∗i ◦ u−1

i )χui(Xi), (3.6)
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or, equivalently

f∗ ◦ ui = λi + Si · f
∗
i , on Xi, ∀ i ∈ NN , (3.7)

where f∗i = f∗|Xi
.

This fixed point f∗ is called a local fractal function.

Proof. The statements follow directly from the considerations preceding

the theorem. ���

Remark 2. Note that the local fractal function f∗ generated by the operator

defined by (3.5) does not only depend on the family of subsets {Xi | i ∈ NN}

but also on the two N -tuples of bounded functions λ ∈
N
×
i=1
B(Xi,Y), and S ∈

N
×
i=1
B(Xi,R). The fixed point f∗ should therefore be written more precisely as

f∗(λ)(S). However, for the sake of notational simplicity, we usually suppress

this dependence for both f∗ and Φ.

The following result found in [15] and in more general form in [21] is the

extension to the setting of local fractal functions.

Theorem 3.3. The mapping λ 7→ f∗(λ) defines a linear isomorphism from
N
×
i=1
B(Xi,Y) to B(X,Y).

Proof. Let α, β ∈ R and let λ,µ ∈
N
×
i=1
B(Xi,Y). Injectivity follows imme-

diately from the fixed point equation (3.6) and the uniqueness of the fixed

point: λ = µ ⇐⇒ f∗(λ) = f∗(µ).

Linearity follows from (3.6), the uniqueness of the fixed point and injec-

tivity:

f∗(αλ+ βµ) =
N
∑

i=1

(αλi + βµi) ◦ u
−1
i χui(Xi)

+

N
∑

i=1

(Si ◦ u
−1
i ) · (f∗i (αλ+ βµ) ◦ u−1

i )χui(Xi)

and

αf∗(λ) + βf∗(µ) =

N
∑

i=1

(αλi + βµi) ◦ u
−1
i χui(Xi)
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+

N
∑

i=1

(Si ◦ u
−1
i ) · (αf∗i (λ) + βf∗i (µ)) ◦ u

−1
i )χui(Xi).

Hence, f∗(αλ+ βµ) = αf∗(λ) + βf∗(µ).

For surjectivity, we define λi := f∗ ◦ ui − Si · f
∗, i ∈ NN . Since f∗ ∈

B(X,Y), we have λ ∈
N
×
i=1
B(Xi,Y). Thus, f

∗(λ) = f∗. ���

We may construct local fractal functions on spaces other than B(X,Y).

To this end, we assume again that the functions vi are given by (3.4) and

that X := [0, 1] and Y := R. We consider the metric on R and [0, 1] as being

induced by the L1-norm. Note that endowed with this norm B([0, 1],R)

becomes a Banach space.

We have the following result for RB-operators defined on the Lebesgue

spaces Lp[0, 1], 1 ≤ p ≤ ∞.

Theorem 3.4. Let 1 < N ∈ N and suppose that {Xi | i ∈ NN} is a family

of half-open intervals of [0, 1]. Further suppose that P := {x0 := 0 < x1 <

· · · < xN := 1} is a partition of [0, 1] and that {ui | i ∈ NN} is a family of

affine mappings from Xi onto [xi−1, xi), i = 1, . . . , N − 1, and from X
+
N :=

XN ∪ u−1
N (1−) onto [xN−1, xN ], where uN maps XN onto [xN−1, xN ).

The operator Φ : Lp[0, 1] → R
[a,b] defined by

Φg :=
N
∑

i=1

(λi ◦ u
−1
i )χui(Xi) +

N
∑

i=1

(Si ◦ u
−1
i ) · (gi ◦ u

−1
i )χui(Xi), (3.8)

where gi = g|Xi
, λi ∈ Lp(Xi, [0, 1]) and Si ∈ L∞(Xi,R), i ∈ NN , maps

Lp[0, 1] into itself. Moreover, if



























(

N
∑

i=1

ai ‖Si‖
p
∞,Xi

)1/p

< 1, p ∈ [1,∞);

max {‖Si‖∞,Xi
| i ∈ NN} < 1, p = ∞,

(3.9)

where ai denotes the Lipschitz constant of ui, then Φ is contractive on Lp[0, 1]

and its unique fixed point f∗ is an element of Lp[0, 1].
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Proof. Note that under the hypotheses on the functions λi and Si as well

as the mappings ui, Φf is well-defined and an element of Lp[0, 1]. It remains

to be shown that under condition (3.9), Φ is contractive on Lp[0, 1].

To this end, let g, h ∈ Lp[0, 1] and let p ∈ [0,∞). Then

‖Φg − Φh‖pp

=

∫

[0,1]

|Φg(x) − Φh(x)|pdx

=

∫

[0,1]

∣

∣

∣

∣

∣

N
∑

i=1

(Si ◦ u
−1
i )(x)[(gi ◦ u

−1
i )(x)− (hi ◦ u

−1
i )(x)]χui(Xi)(x)

∣

∣

∣

∣

∣

p

dx

=

N
∑

i=1

∫

[xi−1,xi]

∣

∣(Si ◦ u
−1
i )(x)[(gi ◦ u

−1
i )(x)− (hi ◦ u

−1
i )(x)]

∣

∣

p
dx

=
N
∑

i=1

ai

∫

Xi

|Si(x)[gi(x)− hi(x)]|
p dx

≤

N
∑

i=1

ai ‖Si‖
p
∞,Xi

∫

Xi

|gi(x)− hi(x)|
p dx =

N
∑

i=1

ai ‖Si‖
p
∞,Xi

‖fi − gi‖
p
p,Xi

=

N
∑

i=1

ai ‖Si‖
p
∞,Xi

‖gi − hi‖
p
p ≤

(

N
∑

i=1

ai ‖Si‖
p
∞,Xi

)

‖g − h‖pp.

Now let p = ∞. Then

‖Φg − Φh‖∞ =

∥

∥

∥

∥

∥

N
∑

i=1

(Si ◦ u
−1
i )(x)[(gi ◦ u

−1
i )(x)− (hi ◦ u

−1
i )(x)]χui(Xi)(x)

∥

∥

∥

∥

∥

∞

≤ max
i∈NN

∥

∥(Si ◦ u
−1
i )(x)[(gi ◦ u

−1
i )(x) − (hi ◦ u

−1
i )(x)]

∥

∥

∞,Xi

≤ max
i∈NN

‖Si‖∞,Xi
‖gi − hi]‖∞,Xi

= max
i∈NN

‖Si‖∞,Xi
‖gi − hi]‖∞

≤

(

max
i∈NN

‖Si‖∞,Xi

)

‖g − h]‖∞ .

These calculations prove the claims. ���

Remark 3. The proof of the theorem shows that the conclusions also hold

under the assumption that the family of mappings {ui : Xi → X | i ∈ NN} is
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generated by the following functions.

(i) Each ui is a bounded diffeomorphism of class Ck, k ∈ N ∪ {∞}, from

Xi to [xi−1, xi) (obvious modification for i = N). In this case, the ai’s

are given by ai = sup{
∣

∣

dui

dx
(x)
∣

∣ |x ∈ Xi}, i ∈ NN .

(ii) Each ui is a bounded invertible function in Cω, the class of real-analytic

functions from Xi to [xi−1, xi) and its inverse is also in Cω. (Obvious

modification for i = N .) The ai’s are given as above in item (i).

Next we investigate the set of discontinuities of the fixed point f∗ of the

RB-operator (3.8).

Theorem 3.5. Let Φ be given as in (3.8). Assume that for all i ∈ NN the

ui are contractive and the λi are continuous on Xi. Further assume that

condition (3.9) is satisfied for p = ∞ and that the fixed point f∗ is bounded

everywhere. Then the set of discontinuities of f∗ is at most countably infi-

nite.

Proof. Let f be a real-valued function and U a nonempty open interval

contained in its domain. The oscillation of f on U is defined as

ω(f ;U) := sup
x∈U

f(x)− inf
x∈U

f(x) = sup
x1,x2∈U

|f(x1)− f(x2)|,

and the oscillation of a function f at a point x0 inside an open interval

contained in its domain is defined by

ω(f ;x0) := lim
δ→0

ω(f ; (x0 − δ, x0 + δ)), δ > 0.

The Banach Fixed Point Theorem implies that we may start with any

bounded function, say f0 = χ[0,1], to construct a sequence of iterates fn :=

Φfn−1, n ∈ N, which under the given hypotheses, converge in the L∞–norm

to the fixed point f∗.

Each iterate fn may have finite jump discontinuities at the interior knots

{xj | j = 1, . . . , N − 1} of the partition P and also at the images ui1 ◦ ui2 ◦

· · · ◦ui−1(xj) of the interior knots. The number of possible discontinuities at

level n is bounded above by Nn−1(N −1) since the sets Xi may only contain

a subset of the interior knots. Denote by En the finite set of all finite jump
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discontinuities at level n and let E :=
⋃

n∈NEn. Note that E is at most

countably infinite.

Let x ∈ [0, 1] \ E and let ε > 0. The fixed point equation for f∗,

f∗(ui(x)) = λi(x) + Si(x)f
∗
i (x), x ∈ Xi,

implies that for all intervals I ⊂ Xi,

ω(f∗;ui(I)) ≤ s ω(f∗; I) + Λ |I|,

where s := max{‖Si‖∞,Xi
| i ∈ NN} < 1 and Λ = maxi∈NN

supx∈Xi
|λi(x)|.

Hence, for any finite code σ|K := σ1σ2 · · · σK ∈ Ω′ :=
⋃∞

m=0 N
m
N of length

K ∈ N, we have that

ω(f∗;uσ|K(I)) ≤ sKω(f∗; I)

+ Λ |I|
(

aσ2···σK
+ saσ3···σK

+ · · ·+ sK−2aK + sK−1
)

≤ sKω(f∗; I) + Λ |I|
(

aK−1 + saK−2 + · · ·+ sK−2a+ sK−1
)

≤ sKω(f∗; I) + Λ |I|
aK

|a− s|
. (3.10)

for all intervals I ⊂ Xi. Here, a := max{ai | i ∈ NN} < 1.

Note that {X; (Xi, ui) | i ∈ NN} is a contractive local IFS with attractor

[0, 1]. As {X; (Xi, ui) | i ∈ NN} is point-fibered, there exists a code σ ∈ Ω =

N
∞
N such that

γ(σ) = {x} =
⋂

k∈N

uσ|k(X).

Given any K ∈ N there exists a nonempty compact interval IK such that

x ∈ IK ⊂
K
⋂

k=1

uσ|K(X).

The length |IK | of IK is bounded above by aK . Set J := u−1
σ|K

(IK), where

u−1
σ|K

:= u−1
σK

◦ · · · ◦ u−1
σ1

.

Using (3.10) we obtain

ω(f∗; IK) = ω(f∗;uσ|K(J)) ≤ sKω(f∗;J) + Λ |J |
aK

|a− s|
.
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Since f∗ is bounded on [0, 1], |J | ≤ 1, and aK → 0 as K → ∞, we can choose

aK large enough so that sKω(f∗;J) < ε/2 and Λ |J | aK/|a−s| < ε/2. Thus,

ω(f∗; IK) < ε, which proves the continuity of f∗ at all points in [0, 1] \ E

and completes the proof. ���

Corollary 3.6. Under the assumptions of Theorem 3.5, the fixed point f∗

of Φ is Riemann-integrable over [0, 1].

Proof. This is a direct consequence of the above theorem and, for instance,

Theorem 7.5 in [26]. ���

Next, we exhibit the relation between the graph G of the fixed point

f∗ of the operator Φ given by (3.2) and the local attractor of an associated

contractive local IFS. To this end, we need to require that X is a closed subset

of a complete metric space. Consider the complete metric space X× Y and

define mappings wi : Xi × Y → X× Y by

wi(x, y) := (ui(x), vi(x, y)), i ∈ NN .

Assume that the mappings vi : Xi × Y → Y in addition to being uniformly

contractive in the second variable are also uniformly Lipschitz continuous

in the first variable, i.e., that there exists a constant L > 0 so that for all

y ∈ Y,

dY(vi(x1, y), vi(x2, y)) ≤ LdX(x1, x2), ∀x1, x2 ∈ Xi, ∀i ∈ NN .

Denote by a := max{ai | i ∈ NN} the largest of the Lipschitz constants of

the mappings ui : Xi → X and let θ := 1−a
2L . The mapping dθ : (X × Y) ×

(X× Y) → R defined by

dθ := dX + θ dY

is then a metric for X × Y which is compatible with the product topology

on X× Y.

Theorem 3.7. The family Wloc := {X × Y; (Xi × Y, wi) | i ∈ NN} is a

contractive local IFS in the metric dθ and the graph G(f∗) of the local fractal

function f∗ associated with the operator Φ given by (3.8) is an attractor of

Wloc. Moreover,

G(Φf∗) = Wloc(G(f
∗)), (3.11)
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where Wloc denotes the set-valued operator (2.1) associated with the local

IFS Wloc.

Proof. We first show that {X × Y; (Xi × Y, wi) | i ∈ NN} is a contractive

local IFS. For this purpose, let (x1, y1), (x2, y2) ∈ Xi × Y, i ∈ NN , and note

that

dθ(wi(x1, y1), wi(x2, y2)) = dX(ui(x1), ui(x2)) + θdY(vi(x1, y1), vi(x2, y2))

≤ a dX(x1, x2) + θdY(vi(x1, y1), vi(x2, y1))

+ θdY(vi(x2, y1), vi(x2, y2))

≤ (a+ θL)dX(x1, x2) + θ s dY(y1, y2)

≤ q dθ((x1, y1), (x2, y2)).

Here we used (3.1) and set q := max{a+ θL, s} < 1.

The graph G(f∗) of f∗ is an attractor for the contractive local IFS Wloc,

for

Wloc(G(f
∗)) =

N
⋃

i=1

wi(G(f
∗) ∩ Xi) =

N
⋃

i=1

wi({(x, f
∗(x) |x ∈ Xi}

=

N
⋃

i=1

{(ui(x), vi(x, f
∗(x))) |x ∈ Xi}

=

N
⋃

i=1

{(ui(x), f
∗(ui(x))) |x ∈ Xi}

=

N
⋃

i=1

{(x, f∗(x)) |x ∈ ui(Xi)} = G(f∗).

That (3.11) holds follows from the above computation and the fixed point

equation for f∗ written in the form

f∗ ◦ ui(x) = vi(x, f
∗(x)), x ∈ Xi, i ∈ NN . ���



✐

“BN09N35” — 2014/8/29 — 15:08 — page 407 — #19
✐

✐

✐

✐

✐

2014] NUMERICS AND FRACTALS 407

4. Computation and Examples

4.1. Computational remarks

The main step in the computation of a fractal function relates in one

way or the other to the evaluation of the RB operator. We will discuss a

discretisation of the RB operator here. Note that this discretisation does

not involve any numerical approximations but is an exact restriction of the

full RB operator and will thus (in exact arithmetic) deliver values of the full

RB operator applied to a function.

For computational and visualisation purposes we introduce a grid X
g ⊂

X which is a finite subset. The numerical computations will then be done

for functions f g : Xg → Y. We introduce a restriction Φg of the RB operator

Φ by

Φgf g (x) = Φf (x), x ∈ X
g, f g = f |Xg .

Due to the occurrence of fi(u
−1
i (x)), this defines a mapping Φg : YXg

→ Y
Xg

if the grid has the property that u−1
i (x) ∈ X

g whenever x ∈ ui(Xi) ∩ X
g for

some Xi. If a grid X
g satisfies this property, we call it admissible. We then

call Φg the discrete RB operator corresponding to the RB operator Φ

and the grid X
g.

We will now rewrite the discrete RB operator slightly for the case where

Y = R. Note that in this case f g is an element of the finite dimensional

vector space R
X
g

:= R
|Xg|. First, we define the (potentially nonlinear) maps

wi : R
Xg

→ R
X
g
i

by

wi(f
g)(x) = vi(x, f

g(x)), x ∈ X
g
i ,

where Xg
i = Xi∩X

g. Then, we define a linear operator Ui : R
X
g
i → R

ui(Xi)∩X
g

by

[Uif ](x) := f(u−1
i (x)), x ∈ ui(Xi) ∩ X

g.

Ui is then a sampling operator and we have in particular

[Uiwi(f
g)](x) = wi(f

g)(u−1
i (x)) = vi(u

−1
i (x), f g(u−1

i (x))), x ∈ ui(x) ∩ X
g.
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As the sets ui(Xi) ∩ X
g form a partition of Xg one then has for the discrete

RB operator

Φgf g =
N
⊕

i=1

Ui wi(f
g).

For the special case where vi(x, y) = λi(x) + Si(x)y, one introduces the

restriction operator Ei : R
X
g

→ R
X
g
i defined by Eif(x) := f(x) for x ∈ X

g
i .

The RB operator then is an affine mapping of the form

Φgf g =
N
⊕

i=1

Uiλi + UiSiEif
g,

where Si is the multiplication operator (diagonal matrix) with elements

Si(x). Thus, one has

Φgf g = λg +Mf g

where the matrix M is factorised in the following way:

M = USE =













U1

U2
...

UN

























S1
S2

. . .

SN

























E1

E2
...

EN













.

Both matrices Ui and Ei are sampling matrices, i.e., they contain at most

one nonzero element (with value one) in each column. As the matrices Si

are diagonal, one can further simplify the factorisation as

M =













U1S1U
T
1

U2S2U
T
2

. . .

UNSNU
T
N

























U1E1

U2E2
...

UNEN













.

Here the matrices UiSiU
T
i are square so that the first factor is a diagonal

matrix and the factors UiEi are sampling matrices.

One sees that the discrete RB operator can be applied in parallel. How-

ever, a difficulty is still that in general the evaluation of the sampling oper-

ators UiEi may require substantial communication between the processors.
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This needs to be analysed for each particular case. In some (practically im-

portant) cases, however, one can reduce the amount of communication. This

happens when the Xi are uniquely partitioned by some uj(X
g
j ) in the sense

that there exists a partition

M
⋃

m=1

Km = NN

such that

X
g
i =

⋃

j∈Km

uj(Xj) ∩X
g, i ∈ Km.

From the factorisation above one can derive that in this case the operator

M has a block diagonal structure with M blocks. Furthermore, each block

has a factorisation similar to the one above. This leads to highly efficient

parallel algorithms which will be discussed elsewhere. We will refer to this

case as having a local refinement. Typically, to each block belongs a

standard (global) IFS so that the local IFS consists of M standard ones.

The connection between the various IFSs is obtained through the choice of

the λi and Si.

4.2. Example 1: The one-dimensional case with constant λi and Si

For this example let X = [0, 1) and Y = R. Furthermore, let the number

N of functions in the local IFS be even and let X2j−1 = X2j = [(j − 1)h, jh)

for j = 1, . . . , N/2 where h = 2/N . Furthermore, let

u2j−1(x) =
x+ (j − 1)h

2
and u2j(x) =

x+ jh

2
, x ∈ X2j−1 = X2j .

This choice for the mappings ui implies that ui(Xi) =
[

(i− 1)h2 , i
h
2

)

. In this

first example we choose vi(x, y) = λi + Si y, where λi, Si ∈ R and |Si| < 1,

i = 1, . . . , N. The discrete grid is chosen to be uniform with hg = 1/Ng and

where Ng is a multiple of N .

One sees that we have here a block structure as discussed at the end

of the previous section with M = 2. Using vector notation, one gets with

e = (1, . . . , 1) ∈ R
Ng/N the vector

λ = (λ1e, . . . , λNe)
T
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and the matrix

M = S

























S1I

S2I

S3I

S4I
. . .

SN−1I

SNI

















































F

F

F

F
. . .

F

F

























=

























S1F

S2F

S3F

S4F
. . .

SN−1F

SNF

























,

where F is the sampling matrix selecting every second element in the Xi’s.

The fractal function is defined on each domain and there it obeys the fixed

point equation

f gj =

[

λ2j−1e
T

λ2je
T

]

+

[

S2j−1F

S2jF

]

f gj .

From these equations one can see that solving this iteratively using the

fixed point iteration gives an error of the order of O((S2
2j−1 + S2

2j)
k/2) for k

iterations.

We selected the Si’s and the λi’s randomly and iterated with the RB

operator. The result is displayed in Figure 1. In this case, we chose N = 8

and thus have four different domains. One can clearly see the different

behaviour on the four domains.

4.3. Example 2: Interpolating 1D fractal functions

As before, we choose constant λi and constant Si. Furthermore, as-

sume that the function values at the boundaries of the domains are to be
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Figure 1: Random 1D fractal function.

interpolated. From the fixed point equation one then obtains

λ2j−1 = (1− S2j−1) f((j − 1)h)

and

λ2j = (1− S2j) f(jh).

If in addition one would like to have continuity at the midpoint then one

needs to require that

(1− S2j − S2j−1) (f(jh) − f((j − 1)h)) = 0.

The constants Si with odd index, S2j−1, were chosen randomly and those

with even index as

S2j = 1− S2j−1.

This particular choice implies that the convergence rate is at not any faster

than
√

1/2.

If one selects Si = 0.5 for all i, a piecewise linear interpolant is obtained.

In Figure 2 we have displayed a couple of interpolants for (x(1−x))0.2. This

shows that some of the interpolants have similar errors as the piecewise linear

interpolant. However, it also shows that at the boundaries some of the inter-

polants perform substantially better than the piecewise linear interpolant.

The evaluation of the RB operator for the interpolation problem con-

verges with the same rate as if one begins the iteration at a random point.
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Figure 2: Random 1D interpolating fractal functions for (x(1 − x))0.2.

If, however, one starts the iteration at zero one obtains finite termination

for a finite grid. The number of iterations is of order O(log2(Ng)) where Ng

is the number of numerical grid points.

4.4. Example 3: Variable λi and constant Si

The main issue here is how to choose the functions λi. From the fixed

point equation Φf = f one gets

λi(x) = f(ui(x)) − Sif(x), x ∈ Xi.

This shows that for any function f and Si there exists a λi. (See also

Theorem 3.3.) But this λi is as complex as the original function and thus

there is no gain in representing f by λi. In some cases, howevever, f cannot

be simplified. In this case one might choose Si = 0 and thus

λi(x) = f(ui(x)).

A simple choice for the λi is: λi(x) = αi + βix, for some constants

αi and βi. As in the case of constants this simple model can also lead to

rather complicated functions. (See Figure 3.) Again one observes a different

behaviour on the four different ranges of the ui. Note, however, that the

fractal function f is a linear function of the λi so that the dimension of the

affine space generated by some λi has at most as many dimensions as the

linear space defined by the vector λ. (In this context, see Theorem 3.3 and

the results in [21] and [22] where this dimension is explicitly computed.)
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Figure 3: Random fractal function with affine λi.

Figure 4: Error of Hermite interpolant of exp(4x) using fractal function.

One can also determine λi such that the resulting fractal function is

interpolatory. If one chooses all Si = 0.25, one can select the λi such that

the resulting fractal function is differentiable at the boundary points between

the domains of the ui and is therefore a Hermite interpolant at these points.

(Cf. also [21, 22].) In general, this function does have discontinuities, in

particular, at the midpoints of the domains. Experiments suggest that the

approximation order of this (discontinuous) interpolant is of third order in

the size of the domains. This is the same order as one would expect from a

piecewise quadratic function. An example of the error curve for the function

exp(4x) can be seen in Figure 4. One can clearly observe that the error is

differentiable at the grid points but has some large discontinuities within the

domains Xi.

While linear spaces of λ define linear function spaces of fractal functions,

not every linear function space for f consists of fractal functions. For this
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to be the case the function space itself must be self-referential. We define

a linear function space spanned by finitely many functions ψ1(x), . . . , ψd(x),

d ∈ N, to be self-referential if there exist matrices Ai and vectors bi such

that

ψ ◦ ui = bi +Aiψ,

where ψ : X → R
d is defined by

ψ(x) = (ψ1(x), . . . , ψd(x))
T .

In this case there exists λi(x) =
∑d

j=1 ci,jψj(x) such that the fractal function

defined by the λi is an element of the function space. Prominent examples of

such function spaces include polynomials and scaling functions. More gener-

ally, the condition of self-referantiabilty for bases is found in the subdivision

schemes of computer graphics.

5. Polynomial Fractals

5.1. The Taylor series

In the following we will investigate the fractal nature of the graph of

polynomials

p : [0, 1] → R.

This research is done with a view to the development of efficient numerical

algorithms. In the future we will consider complex-valued polynomials and

also real-analytic analytic functions.

For our purposes, we denote by ℓ0 the space of all real-valued sequences

having only finitely many terms not equal to zero. As is common practice,

we endow ℓ0 with the “norm” ‖a‖0 := |a0|
0 + · · · |an|

0, a ∈ ℓ0. Here, we

defined 00 := 0. Furthermore, we denote by ℓp, p > 0, the space of all

real-valued sequences RN ∋ x := {xn |n ∈ N0} such that

∞
∑

n=0

|xn|
p <∞.
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Note that for p ≥ 1,

‖x‖ℓp :=

(

∞
∑

n=0

|xn|
p

)1/p

defines a norm making ℓp into a Banach space. For 0 < p < 1, the function

dp(x, y) :=

∞
∑

n=0

|xn − yn|
p

defines a metric making ℓp into a complete topological vector space which is

not normable. In this setting, ℓ0 may be thought of as ℓp where p→ 0+.

Let a ∈ ℓ0 be a finite sequence and define a function v : [0, 1] → ℓ1 with

components

vk(x) =
xk

k!
.

Then the function p given by

p(x) =

∞
∑

k=0

akvk(x)

is a polynomial and ak is the value of its k-th derivative at zero. One can

see that any derivative of p satisfies

dkp(x)

dxk
=

∞
∑

j=0

ak+jvj(x).

This motivates the introduction of a function f : [0, 1] → ℓ0 with components

fk(x) =
dkp(x)

dxk
.

As p is a polynomial only a finite number of components fk are not equal to

zero. One can now reformulate the Taylor series of p at any point x as

p(x+ t) = f(x)T v(t).

Similar formulas for all the derivatives of p may be obtained in a similar
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fashion. This can all be stated using the matrices A(x) and V (t) defined by

[A(x)]ij = [f(x)]i+j

and

[V (t)]ij =

{

[v(t)]i−j , if i ≥ j

0 else,

respectively. In the following choose indices i, j = 0, 1, . . . to always start at

zero. Note that A(x) is a Hankel matrix and V (t) a Toeplitz matrix. From

the above one can show that the Taylor series for all the derivatives takes

the form

f(x+ t) = A(x)v(t) = V (t)f(x).

The infinite matrix A(x) is a Hankel matrix and the anti-diagonals take

the values fi(x). As f(x) only has a finite number of elements (corresponding

to p being a polynomial) there exists some nonnegative integer M so that

fM (x) 6= 0 and fk(x) = 0 for k > M.

Now let An(x) ∈ R
n×n denote the principle submatrix of A(x). It follows

that AM+1(x) is invertible left upper triangular with antidiagonal elements

aM . Consequently, the generalised inverse A(x)+ of A(x) is a matrix which

has zero elements except for a principle (M +1)× (M +1) block (A(x)+)M
which is

(A(x)+)M = AM (x)−1.

Lemma 5.1. Let A be an infinite upper triangular Hankel matrix with

AM,0 6= 0 and Ak,0 = 0 for all k > M . Let [B]M denote the principal

(M + 1) × (M + 1) block of any matrix B and let A+ denote the Moore-

Penrose inverse of A. Then [A]M is nonsingular and

[A+]M = [A]−1
M

is a lower triangular Hankel matrix. Moreover,

A+ =

∞
∑

k=0

(I −
1

aM
PMA)

k 1

aM
PMA.
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Proof. Let PM be the permutation with (PMx)j = xM−j for j = 0, . . .M

and (PMx)j = xj for j > M . Then [PMA]M is a lower triangular Toeplitz

matrix with nonzero diagonal. Consequently it and also [A]M are invertible.

If B is the matrix which is zero except for the principle submatrix [B]M and

such that [B]M = [A]−1
M then one can show that AB is an infinite matrix with

[AB]M = [I]M and zero elsewhere. (Here, I denotes the identity matrix.)

From this one easily confirms the four defining criteria of a Moore-Penrose

Inverse.

As PMA is regular lower triangular Toeplitz with diagonal elements

aM the matrix L = I − 1
aM
PMA is also lower triangular Toeplitz with

zero diagonal. It follows that LM = 0 and thus one can obtain the

inverse of [A]M using the geometric series for I + L. This leads to the

stated formula. ���

One can get an explicit formula for the inverse. For simplicity we omit

the x. As M is the degree of the polynomial and PM is the reversal per-

mutation of the first M + 1 elements, the geometric series converges as any

term with k ≥M is zero.

The matrix V (t) also has a nice structure and one can see that

V (t) = exp(tσ)

where σ is the forward shift matrix given by [σ]i,j = δi,j−1. Consequently

one obtains

V (t)−1 = V (−t) = exp(−tσ)

and thus

f(x) = V (−t)f(x+ t).

Hence, the operators V (t) form a group with

V (t)V (s) = V (t+ s), V (0) = I, V (t)−1 = V (−t).

In addition, we also obtain that V (s)T v(t) = v(t+ s).
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5.2. Self-referentiality of v and f

So far we have considered the properties of v under translations. We will

now consider dilations. The dilations in the x-space are defined by mappings

lx of the form.

lx(t) = (1− s)x+ st.

By definition one has

v(sx) = Dsv(x)

where Ds = diag(sk)k=0,...,∞. Then the map on R× ℓ1 → R× ℓ1 given by

w(x, y) := (sx,Dsy)

satisfies w(x, v(x)) = (sx,Dsv(x)) = (sx, v(sx)) and thus w leaves the graph

{(x, v(x))} invariant. More generally, one has

v(lx(t)) = v(x+ s(t− x))

= V (x)T v(s(t− x))

= V (x)TDsv(t− x)

= V (x)TDsV (−x)T v(t).

Then the mapping w defined by

w(t, y) := (lx(t), V (x)TDsV (−x)T y)

satisfies

w(t, v(t)) = (lx(t), v(lx(t)))

and consequently w leaves the graph of v invariant. A similar observation

has also been reported in a forthcoming publication Barnsley et al. [7].

Next, we like to find functions w under which the graph of f is invariant.

To this end, consider

w(t, y) = (lx(t), A(x)DsA(x)
+y).
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Recall from above that A(x)v(t) = f(x+ t). Therefore, one concludes that

[A(x)+f(t)]k =

{

vk(t− x), for k ≤M

0, for k > M.

An argument similar to the one given in the previous example yields

w(t, f(t)) = (lx(t), f(lx(t)),

implying that w leaves the graph of f invariant. According to [7] we call the

mappings w which leave a polynomial invariant fractels. For more details

and fundamental properties of fractels, we refer the reader to the upcoming

publication [7].

5.3. Affine IFSs for given polynomials

Here we combine two fractels w from the previous section to form an

IFS. The infinite matrix

Ws(x) = A(x)DsA(x)
+

has the following properties:

• Ws(x) is of rank M + 1;

• Most eigenvalues of Ws(x) are thus equal to zero. The nonzero eigenval-

ues are 1, s, s2, . . . , sM ;

• Ws(x) is lower triangular (and the eigenvalues are on the diagonal).

It is possible to use the fractels introduced in the last section but due to

the occurrence of the eigenvalue 1, the fixed point of the resulting IFS is

not unique and typically depends on the starting point. Note that if linear

mappings are used with all eigenvalues less than zero the only fixed point is

the zero function. Thus in this case one needs eigenvalues of value 1. Such

an approach may be suited for the case of projective spaces, here however we

consider affine spaces. Therefore, we replace the linear w from last section

by

w(t, y) := (lx(t), (Ws(x)− θe0e
T
0 )y + θf0(x)e0)
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for some θ ∈ [0, 1]. In practice the choice θ = 0.5 was very stable but

sometimes leads to slow convergence. Choosing θ = 0 was faster but less

stable. This behaviour will be investigated further and the results reported

elsewhere.

The particular choice of affine function also leaves the graph of f invari-

ant as

(Ws(x)− θe0e
T
0 )f(x) + θf0(x)e0 =Ws(x)f(x).

Note that we used e0 := (1, 0, . . .).

For illustrative purposes, let us consider x ∈ [0, 1] and define an IFS

{[0, 1];w1, w2} consisting of two functions w1 and w2 which correspond to

the Taylor expansion at x = 0 and at x = 1. Furthermore, we let us choose

s = 0.5. Then

w0(x, y) = (0.5x, (W0.5(0)− θ e0e
T
0 )y + θa0e0)

and

w1(x, y) = (0.5(x + 1), (W0.5(1)− θ e0e
T
0 )y + θb0e0)

where we have a0 = f0(0) and b0 = f0(1).

6. Algorithms

In this section we present some algorithmic aspects which are mostly

motivated by the Collage Theorem. We first consider convex optimisation,

then grids and finally subdivision. Here we only provide a rough outline. A

more detailed treatment is under development.

6.1. Collage fitting

In this section a new kind of approximant for the solution of elliptic

problems is introduced. We call this approximant collage fit. Like the com-

mon Ritz method this approximation is shown to be quasi-optimal. Let in

the following H be a Hilbert space and a(·, ·) be a symmetricH-elliptic form.

We consider here the problem of determining

û = argminu∈V Ψ(u).
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where Ψ(u) = 1
2a(u, u) − b(u) and b is a continuous linear functional on H.

Let VN ⊂ H be an M dimensional linear subspace of H. The widely used

Ritz method provides an approximation ûN ∈ VN to û defined by

ûN := argminu∈VN
Ψ(u).

It can be shown that the Ritz method minimises the energy norm of the

error ûN − û, i.e.,

‖ûN − û‖E ≤ ‖uN − û‖E , for all uN ∈ VN

where ‖v‖E =
√

a(v, v). A consequence of the H-ellipticity is that the energy

norm is equivalent to the H-norm, i.e., there exist c1, c2 > 0 such that

c1‖v‖ ≤ ‖v‖E ≤ c2‖v‖, for all v ∈ H. (6.1)

It follows directly that the Ritz approximation is quasi-optimal, and in par-

ticular

‖ûN − û‖ ≤
c2
c1

‖uN − û‖, for all uN ∈ VN .

We define VN as a set of fractal functions as follows. Let F (·;α) :

H → H denote a family of RB operators (as defined in a previous section)

parameterised by a parameter vector α ∈ R
M . We will assume that the RB

operators are contractive, i.e., that

‖F (u;α) − F (v;α)‖ ≤ c‖u− v‖, for all u, v ∈ H

for some constant c ∈ (0, 1). We will also assume a stronger condition,

namely that

γ :=
c c2
c1

< 1.

Finally, we will assume that F (u;α) is a linear function of (u, α) ∈ V ×R
M .

These assumptions hold for commonly used RB operators. The fixpoint uα

of an RB operator F (·;α) is a fractal function. As approximation set for our

elliptic problem we consider

VN = {uα | α ∈ R
M , uα = F (uα;α)}.
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As F is linear in (u, α) the set VN is a finite-dimensional linear space, and,

in addition that F can be decomposed as

F (u;α) = F (u; 0) + F (0;α).

It follows that F (u;α) − F (v;α) = F (u; 0) − F (v; 0) and thus all the

F (·;α) are contractive with a constant c independent of α.

For the following let W := {F (0;α) | α ∈ R
M}. Note that W is a linear

space and define the affine space

W (u) := F (u; 0) +W.

We now introduce the operator G : H → H by

G(u) := argminv∈W (u)Ψ(v)

where Ψ(v) is the quadratic form defined previously.

Proposition 6.1.

• Let Ψ be an H-elliptic quadratic form which defines an energy norm ‖·‖E

for which there exist c1, c2 > 0 such that c1‖v‖ ≤ ‖v‖E ≤ c2‖v‖ for all

v ∈ H.

• Let F (u;α) = F (u; 0) +F (0;α) define an RB operator which is contrac-

tive with constant c such that c < c1/c2.

• Let G(u) = argminw∈W (u)Ψ(w).

Then the so defined operator G is contractive and

‖G(u) −G(v)‖ ≤ γ‖u− v‖

where γ = cc2/c1.

Proof. As G(u) is the best approximation in W (u) to û one can show that

û − G(u) is orthogonal to the space W with respect to the scalar product

a(·, ·) and the same holds for û − G(v). Thus G(u) − G(v) is orthogonal

to W in the same scalar product. It follows that ‖G(u) − G(v)‖E is the

distance between W (u) and W (v) in the energy norm. As this distance is
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the minimum distance between any point of W (u) and any point of W (v)

one has in particular

c1‖G(u) −G(v)‖ ≤ ‖G(u) −G(v)‖E

≤ ‖F (u; 0) − F (v; 0)‖E

≤ c2‖F (u; 0) − F (v; 0)‖

≤ c2c‖u− v‖

and thus ‖G(u) −G(v)‖ ≤ γ‖u− v‖. ���

One then has:

Corollary 6.2 (Existence of collage fit ũN ). Let G be as in Proposition 6.1.

Then there exists a unique ũN ∈ VN such that ũN = G(ũN ).

Proof. As G is contractive there exists a unique ũN ∈ H such that ũN =

G(ũN ). As ũN ∈ W (ũN ) there exists an α ∈ R
M such that ũN = F (ũN , α).

Thus ũN ∈ VN . ���

Thus the collage fit ũN ∈ VN is defined to be the fixpoint of G. Note

that this is an approximation of û which is in VN , it is, however, in general

different from the Ritz approximation ûN . Nonetheless it is also a quasi-

optimal approximation.

Proposition 6.3 (quasi-optimality of collage fit). Let ũN be the collage fit

for the quadratic form Ψ as defined in Corollary 6.2. If all the assumptions

of this corollary hold and if γ and c are as defined in this corollary, then one

has

‖ũN − û‖ ≤
1/c+ 1

1/γ − 1
‖uN − û‖, for all uN ∈ VN .

Proof. Let uN ∈ VN and α ∈ R
M such that uN = F (uN ;α). As ũN

minimises the energy norm in W (ũN ) one has

c1‖ũN − û‖ ≤ ‖ũN − û‖E

≤ ‖F (ũN ;α) − û‖E

≤ c2‖F (ũN ;α) − û‖.
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By the triangle inequality and contractivity of F (·;α) one has

‖F (ũ;α)− û‖ ≤ ‖F (ũ;α)− F (û;α)‖+ ‖F (û;α) − F (uN ;α)‖ + ‖uN − û‖

≤ c‖ũ− û‖+ c‖û− uN‖+ ‖uN − û‖

and thus

‖ũ− û‖ ≤
c2
c1
((1 + c)‖uN − û‖+ c‖ũ− û‖).

The claimed inequality follows directly. ���

We then compute the collage fit ũN iteratively using the fixpoint algo-

rithm for G:

Collage Fitting Algorithm

• First choose some u(0).

• Then repeat for all k = 0, 1, 2, . . .

u(k+1) = G(u(k))

The algorithm converges because of the contractivity of the operator G.

Applications of this algorithm include quasi-optimal approximations of L2

functions by classes of fractal functions. In practice we found that these

approximations are very close to the best L2 approximations. Other ap-

plications are the computation of fractal approximations to the solution of

Fredholm integral equations of the first kind using Tikhonov regularisation.

Finally, this approach can also be used to solve elliptic PDEs numerically

with fractal functions. More details on these applications will be provided

in a forthcoming paper.

6.2. Evaluation of functions on grids

Grids are very important objects for numerical computations. They are

a collection of points where during the computations one needs to compute

the unknown function in order to get the value at the points one is interested

in.

In the simple case of local interpolation one requires just neighboring

points. However, if one would like to solve a PDE one needs a whole field.
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In the end, however, the values of interest are a function of a certain

collection of values at other points. This is a type of self-referentiality and

we now proceed to define self-referential grids. This approach is based on a

upcoming paper by Barnsley et al. [7] on the computation of function values.

Here we only consider the simple case discussed above where we have an IFS

with two functions and our functions are defined over [0, 1].

To this end, consider x ∈ [0, 1]. Then x has a numerical representation

of the form

x = 0.d1d2d3 . . . dJ , di ∈ {0, 1}.

Let functions li : [0, 1] → [0, 1] be given by

l0(x) := x/2, and l1(x) := (x+ 1)/2.

Then x is defined by the recursion

x(0) = 0, x(k+1) = ldJ−k
(x(k)), k = 0, . . . , J.

If f(x) is the vector of derivatives of some polynomial evaluated at x then

one may use the recursion

y(0) = f(0), y(k+1) =WdJ−k
y(k) + bdJ−k

to obtain y = f(x). This is essentially the method of function evaluation

discussed in [7].

Here we note that in order to obtain the value of f at the point x one

requires the values of f on all x(k). This is the “grid” required to determine

f(x). This “grid” is nothing else but the path of the shift function σ starting

at point x where

σ(0.d1d2d3 . . .) = 0.d2d3 . . . .

More generally, we define a self-referential grid γ as a finite set of

points {0, 1} ⊂ γ ⊂ [0, 1] such that

γ ⊂ l0(γ) ∪ l1(γ).

We now have
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Proposition 6.4. A self-referential grid γ is invariant under σ, i.e.,

σ(γ) ⊂ γ.

Proof. As γ is self-referential there exists for every x ∈ γ a z ∈ γ such that

x = li(z), for some i ∈ {0, 1}.

If z = 0.d1d2 . . . then l0(z) = 0.0d1d2 . . . and l1(z) = 0.1d1d2 . . .. In both

cases one has z = σ(x). Thus, σ(x) ∈ γ and we have shown that for any

x ∈ γ, σ(x) ∈ γ. ���

Hence, we now can define for any finite set M ⊂ [0, 1] a self-referential

grid γM =
⋃

k σ
k(γ). If we know the IFS we can then determine the values

on all the points of γM recursively (as outlined above). In particular, one

then also obtains the values on the set M . One could use this for multiscale

modelling where one models fine scale behaviour on just a small subset of a

very fine grid and uses self-referentiality to get the overall solution.

6.3. Subdivision schemes

Subdivision schemes are widely used in computer graphics for modelling

curves and surfaces. An introduction and survey of the mathematics of

subdivision schemes can be found in [8, 9, 23, 27, 28]. A subdivision scheme

is a collection of mappings (called refinement rules) Rk : Vk → Vk+1 between

linear spaces Vk of real functions defined on nested meshes (at most countable

sets of isolated points) N0 ⊂ N1 ⊂ · · · ⊂ R
s.

Iterated function systems (and LIFSs) provide a rich source of subdivi-

sion schemes. For example, consider an IFS with X = [0, 1), N = 2 and

u1(x) =
1

2
x and u2(x) =

1

2
+
x

2

for x ∈ [0, 1). Furthermore, let vi(x, y) be continuous for i = 1, 2 with

v1(1, y) = v2(0, y) for y ∈ R. One then obtains a subdivision scheme with

meshes Nk = 2−k
Z2k and Z2k = {0, . . . , 2k − 1} by choosing the refinement

rules Rk : RNk → R
Nk+1 to be

(Rkf)(ξ) =

{

v1(2ξ, f(2ξ)), ξ ∈ [0, 1/2) ∩Nk+1

v2(2ξ − 1, f(2ξ − 1)), ξ ∈ [1/2, 1) ∩Nk+1.
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Note that these rules are well defined as 2ξ ∈ Nk in the first case and 2ξ−1 ∈

Nk in the second case. An important question regards the convergence of

subdivision schemes to continuous functions. In the examples generated by

LIFSs one obtains this convergence directly from the convergence of the LIFS

itself.

Subdivision algorithms – like LIFSs – are used to generate the values

of graphs of functions. Generalising the concept of polyomial fractals dis-

cussed in the previous section, one now may obtain LIFSs from the common

subdivision schemes, see also the book by Prautzsch et al [28] for a different

angle of this discussion based on Bézier splines. More specifically, Micchelli

and Prautzsch [27, 23] discuss refinement algorithms which use a refined ba-

sis based on uniform subdivision. They present the unified structure of a

large class of smoothing methods. In particular, they show that the obtained

curves are uniformly refinable or self-referential in the sense that the curve

may be patched together from scaled subcomponents of itself. This funda-

mentally defines a local IFS and, in particular, generalizes methods used for

Bezier curves which are based on polynomials.

7. Conclusions and Final Remarks

We have demonstrated that fractal functions defined by local iterated

function systems can be used for computations. In fact, many known meth-

ods including piecewise polynomial approximation and wavelets and more

generally subdivision schemes can be described within the fractal framework

because the underlying components (the polynomials and wavelets) have a

fractal nature.

While this fractal nature has been observed in particular in the sub-

division and wavelet literature, one observes that even some of the newest

numerical approximation schemes do have a fractal nature. As an illustra-

tion thereof, we consider here the QTT (quantized tensor train) method. It

considers functions which can be represented by matrix products of the form

f(x) =
∑

α1,...,αd

g1(i1, α1)
d−1
∏

k=2

gk(αk, ik, αk+1) gd(αd, id),
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where x has the binary representation

x =
d
∑

k=1

ik2
k−1.

The approximation of functions using their binary digits in this way was

motivated by the work on high-dimensional approximation and quantum

mechanics. QTT was introduced by Oseledets in [24]. The summation

ranges of the indices αk = 1, . . . , rk are defined by the tensor train ranks

rk. For computational efficiency it is important that these ranks are small.

Except for special cases (the exponential function, trigonometric functions

and piecewise polynomials) little is known [10, 14, 25] about which functions

can be approximated by QTT functions with low ranks. We briefly remark

that fractals admit such a representation. This demonstrates that the fractal

framework considered here is also useful for the analysis of the QTT method.

Consider in particular a fractal function defined by

f(x/2) = λ1 + S1f(x)

f(x/2 + 1/2) = λ2 + S2f(x).

Let x have the binary representation with binary digits i1, i2, . . . as above

and let

y =

d−1
∑

k=1

ik+12
k−1.

Then the recursion for the fractal function can be rewritten as

f(x) = λi1+1 + Si1+1 f(y)

or in matrix form as

f(x) =
[

1 0
]

[

Si1+1 λi1+1

0 1

][

f(y)

1

]

.

If one now iterates this for f(y) one gets the factorisation

f(x) =
[

1 0
]

d
∏

k=1

[

Sik+1 λik+1

0 1

][

f(0)

1

]

.
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This provides an explicit QTT representation for the fractal function f(x)

and shows that these fractal functions have QTT rank 2. Note, however, that

we have only considered a function class with 4 parameters λi and Si. Rank

2 QTT functions allow the parameters to depend on the levels or position

of digits. This can also be discussed in the fractal framework and will be

considered in future works as will local IFSs.
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