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Abstract

In this paper we propose numerical algorithms for solving large-scale quadratic eigen-

value problems for which a set of eigenvalues closest to a fixed target and the associated

eigenvectors are of interest. The desired eigenvalues are usually with smallest modulo

in the spectrum. The algorithm based on the quadratic Jacobi-Davidson (QJD) algo-

rithm is proposed to find the first smallest eigenvalue closest to the target. To find the

successive eigenvalues closest to the target, we propose a novel explicit non-equivalence

low-rank deflation technique. The technique transforms the smallest eigenvalue to infinity,

while all other eigenvalues remain unchanged. Thus, the original second smallest eigen-

value becomes the smallest of the new quadratic eigenvalue problem, which can then be

solved by the QJD algorithm. To compare with locking and restarting quadratic eigen-

solver, our numerical experience shows that the QJD method combined with our explicit

non-equivalence deflation is robust and efficient.

1. Introduction

Deflation technique is an important concept for solving eigenvalue prob-

lems. Suppose that we have computed some eigenvalues and their associated

eigenvectors or Schur vectors of an input matrix or pair by some iterative

algorithms. Those algorithms always deliver a few eigenvalues which are

closest to a certain target along with their eigen- or Schur vectors. The

problem now becomes to how to compute the next few eigenpairs which are
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closest to the certain target by the same algorithms. To restart with a dif-

ferently selected Ritz pair, in general, with no guarantee that this algorithm

leads to a new eigenpairs close to the target. A well-known way out of this

problem is to use a technique, known as deflation.

For solving linear eigenvalue problems, an old technique-Wielandt de-

flation [16, Chap. 4 & 9], typically a low-rank modification, is applied to

the original matrix pair so as to displace the computed eigenvalues, while

keeping all other eigenvalues unchanged. The low rank modification is cho-

sen so that the uncomputed desired eigenvalue becomes the one with closest

modulus to the target of the modified matrix pair, and therefore, the pro-

posed algorithm can now be applied to the new matrix pair to extract the

new desired eigenpairs. This low rank modified matrix pair by Wielandt

deflation is typically not equivalent to the original matrix pair.

Recently, some elaborate deflation techniques based on the existence of

a Schur decomposition of a matrix pair are proposed for solving eigenvalue

problems. Those deflation techniques such as locking and purging are devel-

oped to incorporate with implicitly restarted, shift-and-invert, Arnoldi- or

Lanczos-type algorithms [10, 11, 12, 13, 24, 25], as well as Jacobi-Davidson-

type algorithms [21, 22] for solving standard and generalized eigenvalue prob-

lems.

In this paper, we are interested in solving a few eigenpairs (λ, x) close

to a certain target of the Quadratic Eigenvalue Problem (QEP)

Q(λ)x := (λ2M + λC +K)x = 0, (1.1)

where M,C and K are n × n symmetric real matrices with M and K be-

ing positive definite. Typically, M and K represent the mass and stiffness

matrices, respectively, and C represents the damping matrix of the system.

QEPs of (1.1) arise in the solution of initial or boundary value problems for

second order systems of the form

Mq̈ +Cq̇ +Kq = f (1.2)

and in other applications. These include finite element characterization in

structural analysis [18], and in acoustic simulation of poro-elastic materials

[15, 17, 19]. See also [28] for a recent survey. The classical approach in
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solving the QEP is to transform it into a generalized eigenvalue problem by

introducing a new vector y = λx:

([

0 I

K C

]

− λ

[

I 0

0 −M

])[

x

y

]

= 0. (1.3)

If (λ,

[

x

y

]

) is an eigenpair of (1.3), then x is an eigenvector of (1.1) corre-

sponding to the eigenvalue λ. The approach in (1.3) allow us to determine

eigenpairs numerically, since for the generalized eigenvalue problem (1.3) the

mathematical theory, numerical methods as well as the perturbation theory

are well established [1, 5, 26]. However, due to the embedding into the prob-

lem of double size, and the destroying of the specific zero, identity blocks

and the symmetric structure of (1.3) by perturbation, the condition numbers

of the eigenvalues and eigenvectors with respect to perturbations in the data

M,C,K may increase [27, 28]. In view of this remark it would be ideal to

develop a numerical algorithm that works directly with the original data of

the quadratic eigenvalue problem for avoiding the problem of the increased

condition numbers.

A comment on quadratic or general higher-order eigenvalue problem

by Bai [2] says “besides transforming such an eigenvalue problem to the

standard eigenvalue problem, not much progress has been made concerning

how to solve such λ-matrix eigenvalue problem directly and efficiently”. The

recent proposed quadratic or polynomial Jacobi-Davidson methods [7, 20, 23]

partially fulfill these requirements. The methods use projections on low-

dimensional subspaces in order to reduce the given polynomial eigenproblem

to a polynomial eigenproblem with matrix coefficients of lower order. The

reduced problem can then be solved by standard methods.

The quadratic or polynomial Jacobi-Davidson methods [20, 23] proposed

a shift-target strategy for possibly computing interior eigenvalues without

inversion. However, if the desired eigenvalues of (1.1) form a cluster of

nearby eigenvalues, then the quadratic Jacobi-Davidson method sometimes

has difficulties in detecting and resolving such a cluster. The undesired effect

is that in this case for different starting eigenpairs it converges to the same

eigenpair of (1.1). It is know that implicit deflation technique based on Schur

forms (See e.g. §4.7 and §8.4 of [3]) combined with Jacobi-Davidson method
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performs well for the linear eigenvalue problem. However, in the quadratic or

high-order eigenvalue problem, it is not clear how to incorporate an implicit

deflation technique because a Schur form , in general, does not exist to a

quadratic or a polynomial pencil.

A very recently proposed locking and restarting quadratic eigensolver

[14] gives the link between methods for solving quadratic eigenproblems and

the linearized problem. It combines the benefits of the quadratic and the

linearized approaches by employing a locking and restarting scheme based

on the partial Schur form of the linearized problem in quadratic Jacobi-

Davidson method. This method essentially locks the desired eigenvalues in

a reduced quadratic pencil by an equivalence projection. In this case, some

dummy (meaningless) Ritz values will appear in the reduced quadratic eigen-

problem and possibly disturb the selection of the new desired eigenvalues.

In this paper, we will develop an explicit non-equivalence low-rank de-

flation technique based on the method proposed in [6, 9] for quadratic eigen-

problem. Suppose that (λ1, x1) is a given eigenpair. The new deflation tech-

nique transforms the original quadratic eigenproblem (1.1) to a new deflated

quadratic eigenproblem so that it has an infinite eigenvalue transformed from

λ1 and keep the remaining eigenpairs invariant.

2. Non-Equivalence Low-Rank Deflation

In this section, we will construct a new non-equivalence low-rank de-

flated quadratic pencil Q̃(λ) := λ2M̃ + λC̃ + K̃ such that a given iso-

lated eigenmatrix pair (Λ1,X1) ∈ R
r×r × R

n×r of the quadratic pencil

Q(λ) := λ2M + λC + K is replaced by (diagr{∞, . . . ,∞},X1), while the

other eigenvalues and the associated eigenvectors are kept invariant. Here

the subindex r in diagr denotes the dimension of the diagonal matrix.

Definition 2.1. Let Q(λ) := λ2M + λC + K be a quadratic pencil as in

(1.1), and (Λ1,X1) ∈ R
k×k×Rn×k be a given pair, where X1 is of full column

rank. The pair (Λ1,X1) is called an eigenmatrix pair of Q(λ) if it satisfies

MX1Λ
2
1 + CX1Λ1 +KX1 = 0. (2.1)

In particular, (diagk{∞, . . . ,∞},X1) is called an “infinity” eigenmatrix pair

of Q(λ) if MX1 = 0.
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Note that if k = 1 then λ1 = Λ1 is called an eigenvalue of Q(λ) and

x1 = X1 is the associated eigenvector. And (λ1, x1) is called an eigenpair of

Q(λ).

Theorem 2.1. Given an eigenmatrix pair (Λ1,X1) ∈ R
r×r × R

n×r(r ≤ n)

of Q(λ) := λ2M + λC +K, where Λ1 is nonsingular and X1 satisfies

XT
1 KX1 = Ir, Θ1 := (XT

1 MX1)
−1. (2.2)

We define

M̃ := M −MX1Θ1X
T
1 M, (2.3)

C̃ := C +MX1Θ1Λ
−T
1 XT

1 K +KX1Λ
−1
1 Θ1X

T
1 M, (2.4)

K̃ := K −KX1Λ
−1
1 Θ1Λ

−T
1 XT

1 K. (2.5)

Suppose that Θ1 − Λ1Λ
T
1 is nonsingular. Then the real symmetric pencil

Q̃(λ) := λ2M̃ + λC̃ + K̃ has the following spectral property: the eigenvalues

of the quadratic pencil Q̃(λ) are the same as those of Q(λ) except that the

eigenvalues of Λ1, which are closed under complex conjugation, are replaced

by r infinities.

Proof. By assumption and definition 2.1 we see that (Λ1,X1) is an eigen-

matrix pair of Q(λ) and satisfies

MX1Λ
2
1 + CX1Λ1 +KX1 = 0. (2.6)

Then from (2.6) we have

Q̃(λ) := λ2M̃ + λC̃ + K̃ + λ(MX1Θ1Λ
−T
1 XT

1 K +KX1Λ
−T
1 Θ−1

1 Θ1X
T
1 M)

−KX1Λ
−1
1 Θ1Λ

−T
1 XT

1 K

= Q(λ) + (MX1(λIr + Λ1) + CX1)Θ1Λ
−T
1 (XT

1 K − λΛT
1 X

T
1 M)

= Q(λ) +Q(λ)X1(λIr − Λ1)
−1Θ1Λ

−T
1 (XT

1 K − λΛT
1 X

T
1 M). (2.7)

By using the identity

det(In +RS) = det(Im + SR),
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where R,ST ∈ R
n×m, and (2.7) we have

det[Q̃(λ)] = det[Q(λ) +Q(λ)X1(λIr − Λ1)
−1Θ1Λ

−T
1 (XT

1 K − λΛT
1 X

T
1 M)]

= det[Q(λ)]det[Ir + (λIr − Λ1)
−1Θ1Λ

−T
1 (Ir − λΛT

1 Θ
−1
1 )]

=
det[Q(λ)]

det(λIr − Λ1)
det(Θ1Λ

−T
1 − Λ1). (2.8)

Since (Θ1 − Λ1Λ
T
1 ) ∈ R

r×r is nonsingular, we have det(Θ1Λ
−T
1 − Λ1) 6= 0.

Therefore, Q̃(λ) has the same eigenvalues as Q(λ) except that r eigenvalues

of Λ1 are replaced by r infinities. ���

In accordance of Theorem 2.1 we can deflate r unwanted eigenvalues

of Λ1, which are closed under complex conjugation, by using real arith-

metic. That means we can obtain the new non-equivalence low-rank deflated

quadratic pencil Q̃(λ), without adopting any complex arithmetic, when un-

wanted eigenvalues of Λ1 are replaced by r infinities.

Next, we show that the remaining eigenpairs of Q(λ) keep invariant on

deflating. Based on the observation of [4] we prove the following orthogo-

nality relation.

Lemma 2.1. Let (Λ1,X1) ∈ R
r×r×Rn×r and (Λ2,X2) ∈ R

s×s×Rn×s be two

eigenmatrix pairs of Q(λ) with XT
1 KX1 = Ir and XT

2 KX2 = Is. Suppose

that spec(Λ1) ∩ spec(Λ2) = ∅. Then the orthogonality relation holds

XT
2 KX1 = ΛT

2 (X
T
2 MX1)Λ1. (2.9)

Proof. Assumption gives the equations

XT
2 MX1Λ

2
1 +XT

2 CX1Λ1 +XT
2 KX1 = 0, (2.10)

(ΛT
1 )

2
XT

2 MX1 + ΛT
2 X

T
2 CX1 +XT

2 KX1 = 0. (2.11)

Eliminating term involving “XT
2 CX1” by multiplying (2.10) and (2.11) by

ΛT
2 from the left and by Λ1 from the right, respectively, we obtain

ΛT
2 (X

T
2 MX1)Λ

2
1 − (ΛT

2 )
2
(XT

2 MX1)Λ1 + ΛT
2 (X

T
2 KX1)− (X2

2KX1)Λ1 = 0.

(2.12)
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Let MX := XT
2 MX1,KX := XT

2 KX1. Then vectorizing the equation (2.12)

we have

(Ir ⊗ ΛT
2 −Λ

T
1 ⊗ Is)vec(KX) = vec(ΛT

2 (Λ
T
2 MX−MXΛ1)Λ1)

= (ΛT
1 ⊗ ΛT

2 )vec(Λ
T
2 MX−MXΛ1)

= (ΛT
1 ⊗ ΛT

2 )(Ir ⊗ ΛT
2 −Λ

T
1 ⊗ Is)vec(MX)

= (Ir ⊗ ΛT
2 −Λ

T
1 ⊗ Is)(Λ

T
1 ⊗ ΛT

2 )vec(MX). (2.13)

Here ⊗ denotes the Kronecker product of two matrices. Since spec(Λ1) ∩

spec(Λ2) = ∅, the matrix (Ir ⊗ ΛT
2 − ΛT

1 ⊗ Is) is nonsingular, and hence

(ΛT
1 ⊗ΛT

2 )(vec(MX)) = vec(KX) by (2.13). Thus, the orthogonality relation

(2.9) holds. ���

Theorem 2.2. Let (Λ2,X2) ∈ R
s×s ×R

n×s be an eigenmatrix pair of Q(λ)

with XT
2 KX2 = Is and Q̃(λ) := λ2M̃ + λC̃ + K̃ be given in Theorem 2.1.

Suppose spec(Λ1)∩ spec(Λ2) = ∅. Then (Λ2,X2) is also an eigenmatrix pair

of Q̃(λ).

Proof. Since (Λ2,X2) is an eigenmatrix pair of Q(λ), we have

MX2Λ
2
2 + CX2Λ2 +KX2 = 0. (2.14)

From (2.3)−(2.5) follows that

M̃X2Λ
2
2 + C̃X2Λ2 + K̃X2

= (M −MX1Θ1X
T
1 M)X2Λ

2
2 + (C +MX1Θ1Λ

−T
1 XT

1 K

+KX1Λ
−1
1 Θ1X

T
1 M)X2Λ2 + (K −KX1Λ

−1
1 Θ1Λ

−T
1 X − 1TK)X2

= MX2Λ
2
2 −MX1Θ1X

T
1 MX2Λ

2
2 + CX2Λ2 +MX1Θ1Λ

−T
1 XT

1 KX2Λ2

+KX1λ
−1
1 Θ1X

T
1 MX2Λ2 +KX2 −KX2Λ

−1
1 Θ1Λ

−T
1 XT

1 KX2

= −MX1Θ1X
T
1 MX2Λ

2
2 +MX1Θ1Λ

−T
1 XT

1 KX2Λ2

+KX1λ
−1
1 Θ1X

T
1 MX2Λ2 −KX2Λ

−1
1 Θ1Λ

−T
1 XT

1 KX2

= MX1Θ1Λ
−T
1 (XT

1 KX2Λ2 − ΛT
1 X

T
1 MX2Λ

2
2)

+KX1Λ
−1
1 Θ1Λ

−T
1 (ΛT

1 X
T
1 MX2Λ2 −XT

1 KX2). (2.15)

From the orthogonality relation in Lemma 2.1 the assertion follows. ���
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Remark 2.1. (a) Let (λ1 := α1+iβ1, x1) be an isolated complex eigenpair of

Q(λ) i.e., Q(λ1)x1 = 0, with α1, β1 6= 0 ∈ R and x1 = x1R + ix1I , x1R, x1I ∈

Rn. Since (λ1, x1) is also an eigenpair of Q(λ), we have

MX1Λ
2
1 + CX1Λ1 +KX1 = 0, (2.16)

where

Λ1 =

[

α1 β1

−β1 α1

]

and X1 =
[

x1R x1I

]

(2.17)

Suppose that X1 = [x1R, x1I ] is of full column rank. Since K is positive

definite, there is an orthogonal matrix S1 ∈ R
2×2 such that

ST
1 (X

T
1 KX1)S1 = D2

1 =

[

d21 0

0 d22

]

> 0. (2.18)

Let

Λ1 = D1S
T
1 Λ1S1D

−1
1 =

[

α1
β1d1
d2

−d2β1

d1
α1

]

(2.19)

and

X1 = X1S1D
1

1. (2.20)

Then (λ1,X1) ∈ R
2×2×R

n×2 is a complex conjugate eigenpair of Q(λ) with

XT
1 K1X1 = I2. The non-equivalence low-rank deflation formulae (2.3)−(2.5)

now can be applied to the eigenpair (Λ1,X1).

(b) The degenerate case, where the real and imaginary parts of eigenvectors,

x1R and x1I are linearly dependent, can occur for quadratic pencil Q(λ).

In this case, the eigenvector x1 corresponding to λ1 ∈ C can be a real

vector scaling by a complex number ℓ−i
2ℓ‖x1R‖2

provided x1I = ℓx1R. Since

both (λ1, x1) and (λ1, x1) are eigenpairs of Q(λ), we have

λ2
1Mx1 + λ1Cx1 +Kx1 = 0, (2.21)

λ
2

1Mx1 + λ1Cx1 +Kx1 = 0. (2.22)

Then we obtain (λ1 + λ1)Mx1 + Cx1 = 0. This implies that Cx1 is parallel

to Mx1, and thus, Kx1 is parallel to Mx1. Let Q ∈ R
n×n be an orthogonal
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matrix such that QTx1 = e1. When we let

M̃ = QTMQ, C̃ = QTCQ, K̃ = QTKQ,

we can see that the first columns and rows of M̃, C̃ and K̃ are mutually

parallel. Hence if we apply Gaussian elimination, say L and LT , to eliminate

those elements from the second component to the nth component of the first

column and the first row of M̃ , respectively, the dimension of the quadratic

eigenproblem can be reduced to n− 1, whenever we deflate the first column

and row of matrices LM̃LT , LC̃LT and LK̃LT simultaneously.

3. Quadratic Jacobi-Davidson Algorithm and Deflation

As mentioned in Section 1 the possible disadvantage of the linearized ap-

proach for the QEP in (1.1) are the doubling of the dimension of the problem

and the increasing of the condition numbers of eigenpairs. The quadratic

Jacobi-Davidson method [20, 23] proposed a shift-target strategy for possi-

bly computing interior eigenvalues without inversion. In this method, the

QEP is first projected onto a low-dimensional subspace, which leads to a

QEP of modest dimension. This low-dimensional projected QEP can be

solved with any method of choice. Expansion of the subspace is realized by

a Jacobi-Davidson correction equation.

In the first part of the quadratic Jacobi-Davidson iteration step for solv-

ing the QEP of (1.1), the projected quadratic eigenproblem onto the search

subspace span(V )

(ρ2V TMV + ρV TCV + V TKV )y = 0. (3.1)

The columns of n ×m real matrix V are constructed to be orthogonal for

stability reasons. The projected problem (3.1) is typically of much smaller

dimension with m ≪ n. First, a Ritz value ρ with desired properties, such

as the largest real part or closest to a given target τ0, is selected and for the

associated eigenvector y with ‖ y ‖2= 1. Then the Ritz vector u ≡ V y and

the residual r = Q(ρ)u is computed. For expansion of the search space the

vector p,

p := Q′(ρ)u = (2ρC +K)u (3.2)
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is also computed.

In the second part of the quadratic Jacobi-Davidson iteration step, the

search subspace span(V ) is expanded by a vector t̂ ⊥ u that solves (approx-

imately) the correction equation

(

I −
puH

uHp

)

Q(ρ)(I − uuH)t = −r. (3.3)

In order to maintain the computation of the projected eigenproblem in (3.1)

in real arithmetic, the next columns of the new V are obtained by orthonor-

malizing the approximate solutions Re(t̂) and Im(t̂) sequentially against the

previously computed columns of V whenever the approximate solution t is

a complex vector, otherwise by orthonormalizing the approximate solution t̂

against the columns of V . This approach is repeated until a desired eigenpair

(λ1, x1) has been computed, i.e., until the residual r is sufficiently small.

Once a desired eigenpair (λ1, x1) has been detected, we can use the non-

equivalence low-rank deflation given by Section 2 to transform the computed

eigenvalue to infinity so that the next desired eigenvalue becomes the closest

eigenvalue to the target. Thus, the above quadratic Jacobi-Davidson process

can be repeatedly used for computing the new desired eigenpairs.

We now consider two cases of real eigenvalues or complex conjugate

eigenvalues. Suppose that we have computed a real eigenvalue λ1 and the

associated real eigenvector x1 with xT1 Kx1 = 1 satisfying Q(λ1)x1 = 0. Let

θ1 = (xT1 Mx1)
−1. As in (2.3)−(2.5) we define a new deflated quadratic

eigenproblem Q̃ := λ2M̃ + λC̃ + K̃ by

M̃ = M − θ1Mx1x
T
1 M (3.4)

C̃ = C +
θ1

λ1
(Mx1x

T
1 K +Kx1x

T
1 M) (3.5)

K̃ = K −
θ1

λ2
1

Kx1x
T
1 K. (3.6)

Suppose that we have computed a complex eigenvalue λ1 = α1 + iβ1, and

the associated eigenvector x1 = x1R + ix1I such that Q(λ1)x1 = 0. Let

Θ1 = (XT
1 MX1)

−1, where X1 = [x1R, x1I ]. Then from (2.16)−(2.20) we

define a new deflated quadratic eigenproblem Q̃(λ) = λ2M̃ + λC̃ + K̃ by

M̃ = M −MX1Θ1X
T
1 M (3.7)
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C̃ = C +MX1Θ1Λ
−T
1 XT

1 K +KX1Λ
−1
1 ΘT

1 X
T
1 M) (3.8)

K̃ = K −KX1Λ
−1
1 Θ1Λ

−T
1 XT

1 K. (3.9)

in which Λ1 =

[

α1 β1

−β1 α1

]

.

Using this deflation technique we now present the ingredients for our

algorithm. We solve the QEP in (1.1) by the quadratic Jacobi-Davidson

method [3, 23] combined with the non-equivalence low-rank deflation tech-

nique (3.4) or (3.7). We summarize this approach in the following algorithm.

Algorithm 3.1. (Quadratic Jacobi-Davidson Algorithm + Non-equivalence

Low-rank Deflation)

Input: Matrices C2 = M,C1 = C,C0 = K as in (1.1). A target τ0 with non-

negative imaginary part and a number ℓ of desired eigenpairs nearest

to τ0. Positive integer numbers ℓ + 2 ≤ mmin ≤ mmax for the mini-

mal and maximal dimensions of the search subspaces. Tolerance “Tol”

for the stopping criterion. Choose randomly a n × mmin real matrix

V ∈ R
n×mmin .

Output: The ℓ desired eigenpairs {(λj , xj)}
ℓ
j=1 of

Q(λ)x = (λ2M + λC +K)x = 0,

associated with eigenvalues {λj}
ℓ
j=1 that are nearest to the target τ0.

While (j ≤ ℓ) do

I. Start: let m = mmin and j = 1. Orthonormalize V .

II. Repeat:

(i) Compute H2 ← V TMV, H1 ← V TCV, H0 ← V TKV.

(ii) Compute mmin eigenpairs {(ρi, yi)}
mmin

i=1 of

(ρ2H2 + ρH1 +H0)y = 0,

where ‖yi‖2 = 1 and ρi has nonnegative imaginary part so that the

eigenvalues {ρi}
mmin

i=1 are nearest to the target τ0 satisfying

|ρmmin
− τ0| ≥ · · · ≥ |ρ1 − τ0|.
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(iii) Compute u← V y1, p← (2ρ1C2 + C1)u, {vi ← V yi}
mmin

i=2 .

(iv) Compute r ← (ρ21M + ρ1C +K)u.

(v) If (‖r‖2 < Tol), then

λj = ρ1 (Im(ρ1) ≥ 0), xj = u

If λj is real, then j = j + 1; else j = j + 2.

Else

(v.1) Solve (approximately) a t̂ ⊥ u from

(I −
puH

uHp
)Q(ρ1)(I − uuH)t = −Q(ρ1)u ≡ −r̃. (3.10)

(v.2) Expand V:

V ←ModGS([V |t̂]), m = m+ 1, if t̂ ∈ R
n;

V ←ModGS([V |Re(t̂), Im(t̂)]), m = m+ 2, if t̂ ∈ C
n.

(v.3) (Restart)

If m > Mmax, then

Set i = 2.

If u ∈ R
n, then V = [u], m = 1; else V = [Re(u), Im(u)], m =

2.

While (m ≤ mmin) do

V ←ModGS([V |vi]), m = m+ 1, i = i+ 1, if vi ∈ R
n;

V ← ModGS([V |Re(vi), Im(vi)]), m = m + 2, i = i +

1, if vi ∈ C
n.

end while m

End if

Go to Repeat

End if.

(vi) (Deflation) Select a new suitable target τ0.

If λj is real, then compute

C2 := C2 − θjC2xjx
T
j C2

C1 := C1 +
θj

λj

(C2xjx
T
j C0 + C0xjx

T
j C2)

C0 := C0 −
θj

λ2
j

C0xjx
T
j C0.
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where θj = (xTj C2xj)
−1;

if λj = αj + iβj is complex and xj = xjR + ixjI , then compute

C2 := C2 − C2XjΘjX
T
j C2

C1 := C1 + C2XjΘjΛ
−T
j XT

j C0 +C0XjΛ
−1
j ΘT

j X
T
j C2

C0 := C0 − C0XjΛ
−1
j ΘjΛ

−T
j XT

j C0.

where Λj =

[

αj βj

−βj αj

]

,Xj = [xjR, xjI ] and Θj = (XT
j C2Xj)

−1.

(vii) Set Q(λ) := λ2C2 + λC1 +C0.

m = 0, V = [], i = 2.

While (m ≤ mmin) do

V ←ModGS([V |vi]), m = m+ 1, i = i+ 1, if vi ∈ R
n;

V ← ModGS([V |Re(vi), Im(vi)]), m = m + 2, i = i +

1, if vi ∈ C
n.

End while m

End while j

Remark 3.1. (a) In step (ii) of Algorithm 3.1, since matrices H0,H1 and

H2 are all real, the Ritz values of (ρ2H2 + ρH1 + H0)y = 0 occur un-

der closed complex conjugation and can be compute by standard QZ

algorithm in real arithmetic.

(b) From Theorem 2.2 we see that the new deflated quadratic pencil given

by (3.4) or (3.7) keeps the remaining eigenpairs, i.e., {(λi, xi), i > 1},

invariant provided λi 6= λ1. Therefore, the reduced QEP λ2H2+λH1+H0

in step (i) and the residual in step (v) can thus be computed by using

the original data M,C and K.

(c) An approximate solution t̂ (t̂ ⊥ u) of the correction equation (3.10) can

be solved by

t̂ = −M−1r̃ + ǫM−1p (t̂ ⊥ u), (3.11)

where M is an approximate preconditioner of Q(ρ1) and

ǫ =
uTM−1r̃

uTM−1p
. (3.12)



70 TSUNG-MING HUANG AND WEN-WEI LIN [March

In our numerical examples, M is chosen as a SSOR(ω) decomposition

of Q(ρ1), i.e.,

M = (D1 − ωL1)D
−1
1 (D1 − ωU1), (3.13)

where D1 = diag(Q(ρ1)), L1 and U1 are strictly lower and upper trian-

gular of Q(ρ1), respectively.

(d) The quadratic Jacobi-Davidson method can also be applied to compute

the interior eigenvalues of the spectrum of (1.1) without any inversion.

Thus, a variant shift-target strategy can be designed to shift along the

specified interval.

Based on a locking and restarting technique combined with Jacobi-

Davidson developed in [14] for solving quadratic eigenvalue problems we

summarize these approaches in the following algorithm.

Algorithm 3.2 ([14]). (Quadratic Jacobi-Davidson Algorithm + Locking

and Restarting)

Input: Matrices M,C,K as in (1.1). A target τ0 with nonnegative imagi-

nary part and a number ℓ of desired eigenpqairs nearest to τ0. Positive

integer numbers ℓ + 2 ≤ mmin ≤ mmax for the minimal and maxi-

mal dimensions of the search subspaces. Tolerance Tol for the stopping

criterion. Λ = ∅, V0 = []. Choose randomly a n × mmin real matrix

V ∈ R
n×mmin .

Output: The ℓ desired eigenpairs {(λj , xj)}
ℓ
j=1 of

Q(λ)x = (λ2M + λC +K)x = 0,

associated with eigenvalues {λj}
ℓ
j=1 that are nearest to the target τ0

While (j ≤ ℓ) do

I. Start: let m = mmin. Orthonormalize V .

II. Repeat:

(i) Compute H2 ← V TMV, H1 ← V TCV, H0 ← V TKV.
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(ii) Let k = mmin − ♯(Λ). Compute k eigenpairs {(ρi, yi)}
k
i=1 of

(ρ2H2 + ρH1 +H0)y = 0,

where ‖yi‖2 = 1, ρi has nonnegative imaginary part and is not

in Λ so that the eigenvalues {ρi}
k
i=1 are nearest to the target τ0

satisfying

|ρk − τ0| ≥ · · · ≥ |ρ1 − τ0|.

(iii) Compute u← V y1, p← (2ρ1M + C)u, {vi ← V yi}
k
i=2.

(iv) Compute r ← (ρ21M + ρ1C +K)u.

(v) If (‖r‖2 < Tol), then

λj = ρ1 (Im(ρ1) ≥ 0), xj = u, Λ = Λ ∪ {λj}.

If λj is real, then V0 = [V0|u], j = j + 1;

else V0 = [V0|Re(u), Im(u)], j = j + 2.

Else

(v.1) Solve (approximately) a t̂ ⊥ u from

(I −
puH

uHp
)Q(ρ1)(I − uuH)t = −r.

(v.2) Perform steps (v.2), (v.3) as in Algorithm 3.1.

Go to Repeat.

End if.

(vi) (Locking) Select a suitable target τ0,m = ♯(Λ), V ← V0, i = 2.

While (m ≤ mmin) do

V ←ModGS([V |vi]), m = m+ 1, i = i+ 1, if vi ∈ R
n;

V ← ModGS([V |Re(vi), Im(vi)]), m = m + 2, i = i +

1, if vi ∈ C
n.

End while m

End while j
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Remark 3.2. (a) In contrast to Algorithm 3.1, locking technique locks a

desired eigenvalue by appending the associated eigenvector to the search

subspace V . Thus, the reduced quadratic eigenvalue problem in step (ii)

would yield a dummy(meaningless) Ritz value which is meaningless for

the original Q(λ). This dummy Ritz value sometimes might slow down

the convergence of Jacobi-Davidson method.(See examples in Section 4).

(b) In Algorithm 3.1 the desired and computed eigenvalues are transformed

to infinity which do not appear in the specified interval any more. Thus,

we can either fix the original target or move the target to the new com-

puted eigenvalue (which has been removed to infinity) and continue the

Jacobi-Davidson iteration. In contrast to Algorithm 3.1, in the locking

step (vi) of Algorithm 3.2 the selection of a new suitable target τ0 is not

so easy provided that the desired eigenvalues lie in a complex region.

4. Numerical Results

In this section we present some numerical results for testing algorithms

developed in Section 3. All computation were done in FORTRAN90 on a

Compaq DS20E workstation. We use the following abbreviation to denote

algorithms proposed in Section 3.

• QJD LR: Quadratic Jacobi-Davidson method + Locking and Restart-

ing [14], given by Algorithm 3.2.

• QJD NLD: Quadratic Jacobi-Davidson method + Non-equivalence Low-

rank Deflation with a fixed target, given by Algorithm 3.1.

• QJD NLD(q): Repeatedly select a new suitable target and compute

q eigenpairs by QJD NLD. (Deflate two or three eigenpairs which are

closest to the target if necessary!)

Here in QJD NLD(q), if the desired eigenvalues are required in a real

interval, the selection strategy for the new targets can be arranged as follows.

We begin with a target from the right most end of the interval, and then we

move the target to the current qth eigenvalue (counted in a descent order)

which has just been computed by QJD NLD(q). To avoid the duplication,

we can deflate the computed (q − 1)th and qth eigenpairs and continue the

QJD NLD(q).



2014] SOLVING QUADRATIC EIGENVALUE PROBLEMS 73

Figure 4.1: (a) The spectrum of Q(λ) = λ2M + λC +K; (b) the 100 desired real
eigenvalues; (c) the 100 desired complex eigenvalues

Example 4.1. A model quadratic eigenvalues problem [28]. Let

M=In, K=κTridn{−1, 3,−1}, C=γTridn{−1, diag{4, 2, 4, · · · , 2, 4},−1},

where n = 1000, γ = 3.0 and κ = 5.0. Here Tridn{s, t, r} denotes a tridi-

agonal matrix with sub-diagonal, diagonal and super-diagonal elements s, t

and r, respectively. We show in Figure 4.1(a), the spectrum of the quadratic

eigenvalue problem Q(λ) = λ2M + λC + K, and in Figure 4.1(b),(c), the

100 desired real and complex eigenvalues, respectively.

We first compute the 100 desired real eigenvalues which are closest

to zero (see Fig.4.1(b)) by using QJD NLD and QJD LR algorithms with

mmax = 50, respectively. The stop tolerance Tol is chosen to be 10−13. The

relaxation parameter ω for SSOR(w) decomposition in (3.13) is chosen to

be 1.7, which is optimal in average in this example. We show that numbers

of iterations and residuals versus orders of computed eigenvalues from zero
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Figure 4.2: Numbers of iterations versus orders of computed real eigenvalues from
zero toward the negative direction by (a) QJD NLD, and (b) QJD LR

toward the negative direction by QJD NLD and QJD LR in Figure 4.2 and

Figure 4.3, respectively. In Figure 4.2(b) and Figure 4.3, respectively, we see

that QJD LR can compute only 6 desired eigenpairs, and the residuals of the

other Ritz pairs oscillate between 10−4 and 10−10 repeatedly which cannot

converge after 5000 iterations by QJD LR. In Figure 4.4 we see that the

differences between the computed eigenvalues by QJD NLD and the eigen-

values computed by MATLAB in the same order are al less than 10−13. This

concludes that QJD NLD algorithm never lost any desired eigenpairs for this

example.

We now compute the desired real eigenvalues by QJD NLD(10) with

ω = 1.7 starting with zero target. QJD NLD(10) computes 10 eigenpairs

from zero toward the negative direction with the current target. Then we

move the target to the new computed tenth eigenvalue and continue applying

QJD NLD(10) to the new quadratic pencil by deflating the new computed

ninth and tenth eigenpairs from the original matrices M,C and K. The
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Figure 4.3: Residuals versus orders of the computed real eigenvalues from zero
toward the negative direction by QJD NLD and QJD LR, respectively.

numbers of iterations and the CPU time versus orders of the computed real

eigenvalues from the zero toward the negative direction by QJD NLD and

QJD NLD(10), respectively, are shown in Figure 4.5(a) and (b). We see that

the number of iterations of QJD NLD(10) is larger than that of QJD NLD,

however, QJD NLD(10) considerably saves computational cost.(See Figure

4.5(b)).

Since a shift-target strategy for finding complex eigenvalues is not so

easy to design, we now use QJD NLD to compute the 100 desired complex

eigenvalues which are closest to −1+2ı (See Figure 4.1(c)). The fixed target

is chosen by −1 + 2ı. Figure 4.6 shows that numbers of iterations, CPU

time and the difference between the computed eigenvalues by QJD NLD

and by MATLAB, respectively, versus orders in modulo of the computed

complex eigenvalues by QJD NLD. The performance of QJD NLD for the

computation of the desired complex eigenpairs works well.
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Figure 4.4: (a) Residuals, (b) the differences between the computed eigenvalues by
QJD NLD and by MATLAB, versus orders of the computed real eigenvalues by
QJD NLD

Example 4.2. We now construct a 12 × 12 artificial symmetric quadratic

pencil A(λ) with entries as follows,

(A(λ))i,i =



















(λ− 1)(λ− 1.5), if i = 1,

(λ− i)(λ− i− 1), if i = 2, . . . , 10,

(1.5λ − 2.5)(λ − 3), if i = 11,

(λ− 4)(λ− 2), if i = 12,

(A(λ))i,i−1 = A(λ))i−1,i =











0, if i = 2, 11,

η, if i = 3, . . . , 10,

(λ− 1)(λ− 2), if i = 12,

(A(λ))i,j =











(λ− 1)(λ− 2), if (i, j) = (11, 1), (1, 11),

ǫ, if (i, j) = (12, 2), (2, 12),

0, otherwise, for i+ 1 > j or i < j + 1,

where ǫ = η = 10−9. The exact eigenvalues of A(λ) are shown in Figure 4.7.
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Figure 4.5: (a) The numbers of iterations, (b) CPU time, versus orders from 1-105
of the computed real eigenvalues by QJD NLD and QJD NLD(10), respectively.

Table 4.1: Iterations and residuals by QJD NLD and QJD LR, respectively.

QJD NLD QJD LR
iterations residuals iterations residuals

λ1 20 3.7e-14 20 3.7e-14
λ2 7 1.2e-14 1436 2.8e-14
λ3 3 1.0e-14 22 4.4e-14

In order to illustrate the convergence behavior of QJD LR and QJD NLD,

we use these algorithms to compute the first three smallest eigenvalues λ1, λ2

and λ3 of A(λ). We choose the maximal number mmax = 8 for restarting,

the stop tolerance Tol = 5× 10−14 and the fixed target τ0 = 0.

In Table 4.1 we see that the QJD NLD algorithm converges to the three

desired eigenpairs of A(λ) very fast within 10 iterations.

The QJD LR algorithm also converges to the first and the third eigen-
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Figure 4.6: (a) Numbers of iterations, (b) CPU time, (c) the differences between
the computed eigenvalues by QJD NLD and by MATLAB, versus orders in moduls
of the computed complex eigenvalues by QJD NLD

pairs of A(λ) very rapid, however, it needs 1436 iterations to converge to the

second eigenpairs (See Table 4.1).

To look into the convergence behavior of QJD LR in detail for the com-

putation of λ2, in Figure 4.8 we show that (a) and (b) the current Ritz values

ρ1 chosen by step (ii) of Algorithm 3.2; (c) and (d) the corresponding resid-

uals, versus the iterations from 1 to 60 and 1380 to 1436, respectively. It is

easily seen that the unit vector e1 is the eigenvector of A(λ) corresponding

to λ1 = 1 which will be locked in QJD LR while finding the second small-

est eigenvalue λ2 = 2. We also see that the Ritz value ρ1 = 1.5 computed

by eT1 A(ρ)e1 = 0 is a dummy (meaningless) value of A(λ). This artificial

example is constructed so that the dummy value 1.5 always be chosen as a

candidate closest to the target τ0 unless the search subspace V in step (i)

of Algorithm 3.2 contains some component in the direction e11. Thus, if V

has some component of e11, then the value 1.5 is no longer a Ritz value of
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Figure 4.7: The spectrum of A(λ)

V TA(λ)V and a Ritz value ρ ≈ 2 will be chosen as a candidate for find-

ing λ2. After this iteration, the Ritz pair will converges toward the desired

eigenpairs, however, while performing restarting step, the search subspace

V is reset by V ≈ [e1, e12], where e12 is an approximate eigenvector corre-

sponding to λ2, the dummy Ritz value ρ1 ≈ 1.5 is again to be chosen as a

candidate for finding λ2. The behavior of either choosing ρ1 ≈ 1.5 or 2 as a

candidate and the corresponding residuals occur oscillatory in finding λ2 by

QJD LR as shown in Figure 4.8 (a)-(d).

We construct an artificial example so that the dummy Ritz values in-

fluence and slow down the convergence of QJD LR. In fact, the locking

technique in [14] is developed based on the partial Schur form, however, a

generalized Schur form does not always exist for a quadratic pencil. Hence,

a mistaken choice of the dummy Ritz value cannot avoided in Algorithm 3.2.

In contrast to Algorithm 3.2, non-equivalence low-rank deflation in Al-

gorithm 3.1 (QJD NLD) removes the computed eigenvalue λ1 to ∞, while

keeping the other eigenpairs invariant. The computed eigenvector corre-

sponding to λ1 is not locked in V , so the dummy Ritz value 1.5 will not

appear in step (ii) of Algorithm 3.1. Hence we have very satisfactory con-

vergence using QJD NLD as shown in Table 4.1.
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Figure 4.8: (a),(b) the current Ritz values ρ1 chosen by step (ii) of algorithm 3.2;
(c), (d) the corresponding residuals, versus the iterations from 1 to 60 and 1380 to
1436, respectively.

Example 4.3. Semiconductor quantum dot model with non-parabolic ef-

fective mass [8]

We consider a 2D time independent Schrödiger equation

~
2

2mℓ(λ)

(

∂2F

∂x2
+

∂2F

∂y2

)

+ cℓF = λF, (4.1)

where ~ is the Plank constant, λ is the total energy and F = F (x, y) is a

wave function. The index ℓ depends on (x, y) is used to distinguish from

the quantum dot (InAs, ℓ = 1) with a triangle shape and the matrix (GaAs,

ℓ = 2). c1 = 0.0 and c2 = 0.35 denote the confinement potential in the ℓth

region. The non-parabolic effective mass approximation satisfies equation

1

mℓ(λ)
=

P 2
ℓ

~2

(

2

λ+ gℓ − cℓ
+

1

λ+ gℓ − cℓ + δℓ

)

, (4.2)
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Figure 4.9: (a) The spectrum of eigenvalues of B(λ). (b) Zoom in the rectangular
box in (a).

where P1 = 0.2875, P2 = 0.1993, g1 = 0.235, g21.59, δ1 = 0.81 and δ2 = 0.80

denote the momentums, the energy gaps and the spin-orbit splitting in the

ℓth region, respectively, in our numerical computation. The equation (4.1)

is equipped with Dirichlet boundary condition and interface condition

−~2

m1(λ)

∂F

∂~n
|I+=

−~2

m2(λ)

∂F

∂~n
|I− , (4.3)

where I is the interface between the quantum dot and the matrix, and ~n is

the normal unit vector of I.

Discretizing (4.1) and (4.3) by modified five-point finite difference, and

multiplying the common denominators of (4.2), we simplify to get an ap-

proximate symmetric quadratic eigenvalue problem (see [8] for details)

B(λ)x = (λ2B2 + λB1 +B0)x = 0,

where B0, B1 are five-diagonal and B2 is tridiagonal with B0 and B2 positive

definite.
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Figure 4.10: (a) The numbers of iterations, (b) CPU time, versus orders of the
computed real positive eigenvalues by QJD LR and QJD NLD, respectively.

In Figure 4.9(a) we show the spectrum of eigenvalues of B(λ) with the

matrix size n = 306081. All eigenvalues are plotted in the complex plane

with plus marks. The desired eigenvalues located within the interval [0, 0.35]

are emphasized by the mark ⊕ and zoomed in Figure 4.9(b). It is clear that

the desired eigenvalues are embedded in the interior of the spectrum.

We now use QJD LR and QJD NLD to compute all discrete energy

(eigenvalues) that are less than 0.35, of B(λ) with matrix size n = 306081.

The “Tol” is chosen by 5 × 10−13. Figure 4.10 show all the numbers of

iterations and the CPU time by QJD LR and QJD NLD, respectively.
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