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Abstract

In this paper, we study the optimal transportation on the hemisphere, with the cost

function c(x, y) = 1

2
d2(x, y), where d is the Riemannian distance of the round sphere. The

potential function satisfies a Monge-Ampère type equation with natural boundary con-

dition. In this critical case, the hemisphere does not satisfy the c-convexity assumption.

We obtain the a priori oblique derivative estimate, and in the special case of two dimen-

sional hemisphere, we obtain the boundary C2 estimate. Our proof does not require the

smoothness of densities.

1. Introduction

Let S
n be the n-dimensional unit sphere equipped with the standard

round metric g and geodesic distance d. Denote the northern hemisphere by

S
n
+ := S

n ∩ {xn+1 ≥ 0}. Let c(x, y) = 1
2d

2(x, y) be the cost function, f, g be

two positive densities on S
n
+, bounded from above and below, and satisfy

∫

Sn
+

f =

∫

Sn
+

g. (1.1)
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In this paper, we study the optimal transportation from (Sn+, f) to (Sn+, g)

and obtain the a priori oblique and boundary estimates without assuming

uniform c-convexity of domain and smoothness of densities. Let’s briefly

recall that in the optimal transportation (Ω, f) → (Ω∗, g), f, g > 0 satisfying
∫

Ω f =
∫

Ω∗
g, where Ω,Ω∗ are the initial and target domains, the optimal

mapping Tu is determined by the potential function u,

Du(x) = −Dxc(x, Tu(x)) (1.2)

for a.e. x ∈ Ω, where the cost function c satisfies conditions (A0)–(A1) in

Section 2, and the functions u, v are called potential functions as (u, v) is a

maximizer of

sup{I(φ,ψ) : (φ,ψ) ∈ K},

where

I(φ,ψ) =

∫

Ω
f(x)φ(x) +

∫

Ω∗

g(y)ψ(y),

K = {(φ,ψ) ∈ C(Ω)× C(Ω∗) : φ(x) + ψ(y) ≥ −c(x, y)}.

When u is smooth, it solves a Monge-Ampère type equation

det
[

D2u+D2
xc
]

= |detD2
xyc|

f

g ◦ Tu
in Ω, (1.3)

with a natural boundary condition

Tu(Ω) = Ω∗. (1.4)

In the Euclidean case, when Ω,Ω∗ are two bounded domains in R
n, the

global regularity of (1.3)–(1.4) is obtained in [14] by assuming that Ω,Ω∗

are uniformly c-convex with respect to each other and the densities f, g are

correspondingly smooth. The uniform c-convexity of Ω with respect to Ω∗

means that the image cy(·, y)(Ω) is uniformly convex in the usual sense for

each y ∈ Ω∗, while analogously Ω∗ is uniformly c-convex with respect to Ω,

if the image cx(x, ·)(Ω∗) is uniformly convex for each x in Ω.
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In the special case c(x, y) = −x · y, the c-convexity is equivalent to the

usual convexity, and (1.3) reduces to the standard Monge-Ampère equation

with the boundary condition of prescribing the image of gradient mapping,

{

detD2u = h(x,Du) in Ω,

Du(Ω) = Ω∗.
(1.5)

The boundary problem (1.5) has been extensively studied by many math-

ematicians, for example, see [2, 3, 16] and references therein. A crucial

assumption in those work is the uniform convexity of domains Ω and Ω∗.

Note that when c(x, y) = −x · y, (1.2) implies that Tu = Du for a

convex potential u. In our case c = d2/2, where d is the geodesic distance

on (Sn, g), it is noted in [13] that the optimal mapping can be expressed by

the exponential mapping

Tu(x) = expx(∇gu(x)),

where∇g denotes the gradient with respect to the round metric g on S
n, and

u is a c-convex potential. For Ω,Ω∗ ⊂ S
n, the condition that Ω is uniformly

c-convex with respect to Ω∗ is equivalent to the condition that exp−1
y (Ω) is

uniformly convex in R
n for each y ∈ Ω∗, while analogously Ω∗ is uniformly

c-convex with respect to Ω if exp−1
x (Ω∗) is uniformly convex for each x in Ω.

However, this is not the case when Ω = Ω∗ = S
n
+. To see this, one observes

that for a point y0 ∈ S
n
+ ∩ {xn+1 = 0}, one has

exp−1
y0 (Ω) = {z ∈ R

n : z ∈ Bπ(0) ∩ {zn ≥ 0} or |z| = π} .

The set is not even simply connected hence not a convex set. One can see

that for Ω = Ω∗ = S
n
ε := S

n ∩ {xn+1 ≥ ε}, the corresponding sets exp−1
y0 (Ω)

and exp−1
y0 (Ω

∗) are uniformly c-convex to each other for any positive constant

ε > 0. Therefore, the hemisphere S
n
+ is a critical case in above sense.

From here on, we use X = (X1, . . . ,Xn,Xn+1) to represent a point on

S
n
+, while x = (x1, . . . , xn) represents a point in R

n. We use the stereographic

projection from the south pole to transform S
n
+ into Π(Sn+) = B1(0) ⊂ R

n

by x = Π(X) and

X = Π−1(x) =

(

2x1
1 + |x|2 , . . . ,

2xn
1 + |x|2 ,

1− |x|2
1 + |x|2

)

, (1.6)
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where x = (x1, . . . , xn) ∈ B1(0).

Utilizing the ambient Euclidean geometry of Rn+1, it is an elementary

calculation that

d(X,Y ) = arccos(X · Y ), (1.7)

for X,Y ∈ S
n and d the geodesic distance. Under the stereographic projec-

tion Π, one has the optimal transportation from Ω = B1(0) to Ω∗ = B1(0)

with the cost function

c̄(x, y) = c(Π−1(x),Π−1(y))

=
1

2

(

arccos

(

4(x · y)
(1 + |x|2)(1 + |y|2) +

(1− |x|2)(1− |y|2)
(1 + |x|2)(1 + |y|2)

))2

,
(1.8)

for x, y ∈ B1(0). Correspondingly, the potential u and the optimal mapping

T will become

ū(x) = u ◦ Π−1(x) and T̄ (x) = Π ◦ T ◦Π−1(x), for x ∈ B1(0). (1.9)

The convexity with respect to c̄ is inherited from that of c, namely ū is c̄-

convex if and only if u is c-convex; a domain E ⊂ B1(0) is c̄-convex with

respect to E∗ ⊂ B1(0) if and only if Π−1(E) is c-convex with respect to

Π−1(E∗).

Due to the lack of convexity, the standard techniques in dealing with

(1.5) are not applicable to (1.3)–(1.4) with the cost function given by (1.8).

In this paper, we use an elementary but non-trivial observation of Delanoë

and Loeper (see Lemma 2.1) to establish the a priori oblique and boundary

estimates. Our main result is the following:

Theorem 1.1. Assume that the density functions f, g satisfies (1.1) and

there exists a constant λ > 0 such that λ−1 < f, g < λ. Then we have the a

priori estimate
n
∑

i,k=1

−yici,kxk ≥ c0, (1.10)

for all x ∈ Ω and y = T (x), where c0 > 0 is a constant depending only on λ.

Moreover, when n = 2, we have the a priori boundary estimate

sup
∂Ω

|D2u| ≤ C, (1.11)
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for some constant C > 0 depending only on λ. If furthermore f, g are

smooth, then u is smooth and the optimal mapping T is smooth.

The restriction to the special case n = 2 in the statement above is

unsatisfactory, but this is the case we can carry out our estimate by using

a shortcut for 2 × 2 inverse matrices. We also remark that, to derive the

boundary estimate (1.11), the usual proof relies on the differentiability of

the right hand side of the transport equation (1.3), but here we have only

used the boundedness assumption of the term.

This paper is organized as follows: In Section 2, we introduce some

preliminary notations and results. In Section 3, we prove the oblique esti-

mate (1.10). In Section 4, we prove the boundary C2 estimate (1.11) in the

two-dimensional case.

2. Preliminaries

First, let’s recall some basic notions of optimal transportation on a Rie-

mannian manifold M with the cost function c(x, y) = 1
2d

2(x, y).

Definition 2.1. Let M be a compact Riemannian manifold and d(·, ·) be its
Riemannian distance function. The c-transform uc of a function u : M → R

is defined for all x ∈ M by

uc(x) = sup
y∈M

{

−d
2(x, y)

2
− u(y)

}

. (2.1)

The function u is said to be c-convex if (uc)c = u.

For a c-convex function u, for any point x0 ∈ M, by the above definition

there exists y ∈ M such that

u(x) ≥ −d
2(x, y)

2
− uc(y),

for all x ∈ M with equality holds at x = x0. The function ϕ(·) = −d2(·,y)
2 −

uc(y) is called a c-support of u at x ∈ M. A function u is c-convex is

equivalent to that for any point x ∈ M there exists a c-support of u at

x. Naturally, the potential function u in (1.2) of optimal transportation is

c-convex.
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Definition 2.2. Let u be a c-convex function, the c-normal mapping Tu is

defined by

Tu(x0) = {y ∈ M : u(x) ≥ d2(x0, y)

2
− d2(x, y)

2
+ u(x0), ∀x ∈ M}. (2.2)

Note that by duality between u and uc, if y ∈ Tu(x0), we have uc(y) =

−d2(x0,y)
2 − u(x0), and

−Dxc(x0, y) ∈ ∂u(x0),

where ∂u is the subgradient of u. If u is C1 smooth at x0, then Tu(x0)

is single valued, and is exactly the mapping given by (1.2). In general,

Tu(x) is single valued for almost all x ∈ M as u is c-convex and thus twice

differentiable almost everywhere by the well-known theorem of Aleksandrov.

If c(x, y) = −x · y and M is Euclidean, then Tu is the normal mapping for

convex functions.

We may extend the c-normal mapping to boundary points. Let x0 ∈ ∂M
be a boundary point, we denote Tu(x0) = {y ∈ M : y = limk→∞ yk}, where
yk ∈ Tu(xk) and {xk} is a sequence of interior points ofM such that xk → x0.

Let U be a subset of M×M, which for simplicity we assume is compact.

Denote π1, π2 the usual canonical projections. For any x ∈ π1(U), we denote
by Ux the set U ∩ π−1

1 (x). Similarly, we can define Uy = U ∩ π−1
2 (y), for any

y ∈ π2(U). We introduce the following conditions:

(A0) The cost function c belongs to C4(U).

(A1) For any (x, y) ∈ U , (p, q) ∈ Dxc(U) × Dyc(U), there exists unique

Y = Y (x, p),X = X(y, q), such that −Dxc(x, Y ) = p,−Dyc(X, y) = q.

(A2) For any (x, y) ∈ U , detD2
x,yc 6= 0.

We recall the definition of c-convexity for domains (see [12]):

Definition 2.3. Let y ∈ π2(U), a subset Ω of π1(Uy) is c-convex (resp.

uniformly c-convex) with respect to y if the set {−Dyc(x, y), x ∈ Ω} is a

convex (resp. uniformly convex) set of TyM. Whenever Ω × Ω∗ ⊂ U , Ω is

c-convex with respect to Ω∗ if it is c-convex with respect to every y ∈ Ω∗.
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Similarly we can define c∗-convexity of domains by exchanging x and

y. Without arising any confusion, for simplicity we abuse the notation c-

convexity to also mean c∗-convexity by dropping the sup-script. When the

cost function c = d2/2, we have Dxc(x, y) = exp−1
x (y). Therefore, Ω∗ ⊂ M

is c-convex (resp. uniformly c-convex) with respect to x is equivalent to

exp−1
x (Ω∗) is convex (resp. uniformly convex).

However, conditions (A0)–(A2) are not satisfied on S
n
+ × S

n
+ due to the

singularities on antipodal points. The next lemma shows that for each point

x ∈ ∂Sn+, its image under the c-normal mapping of a c-convex function stays

uniformly away from its antipodal point x̂. Note that the singularity only

occurs on the boundary ∂Sn+ = S
n
+ ∩ {xn+1 = 0} and the antipodal point

x̂ = −x for x ∈ ∂Sn+.

Lemma 2.1. Let T = Tu be the c-normal mapping of a c-convex potential

u such that T#f = g. Assume that the densities f, g have positive lower and

upper bounds. Then there exists a constant δ > 0, such that

d(T (x), x̂) ≥ δ, (2.3)

for any x ∈ ∂Sn+.

Proof. The proof essentially follows from [4], where the measures and trans-

port maps are defined on the whole sphere Sn without boundary. We include

it here for completeness. Let x0 ∈ ∂Sn+ be a boundary point, and x̂0 be its

antipodal point. We claim that: for almost all x ∈ S
n
+, x 6= x0,

d(T (x), x̂0) ≤ 2π
d(T (x0), x̂0)

d(x, x0)
. (2.4)

Then denote D = {x ∈ Sn+ : d(x, x0) ≥ π/2}, a subset of Sn+. From the

preceding inequality, we infer that almost all x ∈ D are sent by T into

Bε(x̂0), where

ε = 2π
d(T (x0), x̂0)

π/2
= 4d(T (x0), x̂0). (2.5)

By the measure preserving condition, we then have

∫

Bε(x̂0)
g ≥

∫

D
f,
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and thus,

dn(T (x0), x̂0) sup g ≥ C inf f,

where C is a constant only depending on n. Since x0 is arbitrary, we conclude

that there is a constant δ > 0 depending on the lower bound of f and upper

bound of g such that (2.3) holds.

Therefore, it suffices to prove the claim (2.4). Fix x0 ∈ ∂Sn+ and another

point x ∈ S
n
+, define the function

F (p) =
1

2
d2(p, x)− 1

2
d2(p, x0),

for p ∈ S
n
+. The function F satisfies that [4]

gradpF (p) = exp−1
p (x0)− exp−1

p (x), (2.6)

where the gradient is defined everywhere except x̂0. Since our manifold is

S
n
+, by comparison with the Euclidean case,

|gradpF (p)| ≥ d(x0, x
′). (2.7)

Let us consider on S
n
+ \{x̂0} the normalized steepest descent equation (with

arc-length parameter s):

ṗ(s) = −
gradpF [p(s)]

|gradpF [p(s)]|
.

From (2.7), any solution p(s) satisfies

d

ds
F [p(s)] = −|gradpF [p(s)]| ≤ −d(x0, x).

It is easy to see that for fixed (x0, x), the function F (p) attains its infimum

at p = x̂0. Therefore, starting from p(0) = p0, for some p0 6= x̂0, the

minimum of p 7→ F (p) is reached by flowing along an integral curve of

length L ≥ d(p0, x̂0). Writing

F (p0)− F (x̂0) = −
∫ L

0

d

ds
F [p(s)]ds,
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we then have

F (p0)− F (x̂0) ≥
∫ L

0
d(x0, x) ≥ d(x0, x)d(p0, x̂0).

It implies that for x 6= x0 and for all p ∈ S
n
+,

d(p, x̂0) ≤
F (p)− F (x̂0)

d(x0, x)
. (2.8)

Next, we show that (2.4) follows from (2.8). We know that the mapping

T is a.e. c-monotone, see for example [1, 4], which implies that for almost

all x0 ∈ ∂Sn+ and x ∈ S
n,

1

2
d2(x0, T (x0)) +

1

2
d2(x, T (x)) ≤ 1

2
d2(x0, T (x)) +

1

2
d2(x, T (x0)).

From the definition of function F , we get

F [T (x)] ≤ F [T (x0)].

Now, setting p = T (x) in (2.8), we have

d(x̂0, T (x)) ≤
F (T (x))− F (x̂0)

d(x0, x)
≤ F (T (x0))− F (x̂0)

d(x0, x)
,

hence, since p 7→ F (p) is 2π-Lipschitz, we obtain (2.4), namely

d(x̂0, T (x)) ≤ 2π
d(T (x0), x0)

d(x0, x)
,

for almost all x ∈ S
n
+, x 6= x0. The proof is finished. ���

We now recall the definition of the cost-sectional curvature [10]; we will

also introduce an additional condition on the cost function c, which is crucial

for the regularity estimates [12]:

Definition 2.4. Assume that the cost function c satisfies (A0)–(A2) in U ⊂
M×M. For every (x0, y0) ∈ U , define on Tx0

M×Tx0
M a real-valued map

Sc(x0, y0)(ξ, η) = D4
pηpηxξxξ

[(x, p) → −c(x, expx0
(p))]

∣

∣

x0,p0=−∇xc(x0,y0)
.

(2.9)
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When ξ, η are unit orthogonal vectors (with respect to the metric g at x0),

Sc(x0, y0)(ξ, η) defines the cost-sectional curvature from x0 to y0 in direc-

tions (ξ, η).

In fact, definition (2.9) is equivalent to the following

Sc(x0, y0)(ξ, η) = D2
ttD

2
ss [(t, s) → −c(expx0

(tξ), expx0
(p0 + sη))]

∣

∣

t,s=0
.

(2.10)

Moreover, the definition of Sc(x0, y0)(ξ, η) is intrinsic, only depends on the

points (x0, y0) ∈ U and vectors (ξ, η), but not on the choice of local coordi-

nates around x0 or y0, [7, 10]. We are now ready to introduce the condition:

(A3) For any (x, y) ∈ U , and ξ, η ∈ R
n with ξ⊥η,

Sc(x, y)(ξ, η) ≥ c0|ξ|2|η|2, (2.11)

where c0 is a positive constant.

It has been verified [11] that the cost function c = d2/2 over Sn satisfies (A3)

for any x, y such that d(x, y) < π. Then under the assumptions of Lemma

2.1, we have

Corollary 2.1. The cost function c satisfies conditions (A0)–(A3) on the

graph of Tu, GT :=
{

(x, Tu(x)) : x ∈ S
n
+

}

.

Corollary 2.2. Let u be a c-convex potential on S
n
+. The densities f and g

are bounded from above and below. Then there exists a constant α ∈ (0, 1)

such that u ∈ C1,α(Sn+).

Proof. Using the stereographic projection, it suffices to show that ū ∈
C1,α(B1) for some constant α ∈ (0, 1), where ū is given in (1.9). By

Corollary 2.1, the cost function c̄ satisfies (A0)–(A3) on the graph GT̄ =
{

(x, T̄ (x)) : x ∈ B1(0)
}

. The proof then follows from [9] by using a similar

argument. The global C1,α regularity was previously obtained by Loeper in

[10] for Euclidean domains and in [11] for spheres S
n. More recently, Fi-

galli, Kim and McCann [5] reduced (A3) to degenerate case, where c0 = 0

in (2.11), under stronger convexity assumptions on domains.

In the following, we sketch the proof of ū ∈ C1,α(B1). Let x0 ∈ B1 be

an interior point and Nr(x0) := Br(x0) ∩B1(0) be a small neighborhood of
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x0. By Lemma 2.1, for each y0 ∈ T̄ (x0), Nr(x0) is c̄-convex with respect to

y0 when r > 0 is sufficiently small. Let ϕ = c̄(·, y0) + a0 be a c-support of ū

at x0, where a0 is a constant. Then we can define the sub-level set

S0
h,ū(x0) = {x ∈ Nr(x0) : ū(x) < ϕ(x) + h}

for h > 0 small. Since c̄ satisfies (A3), S0
h,ū(x0) is c̄-convex with respect to

y0. Thus by the coordinate transform x 7→ Dy c̄(x, y0), S
0
h,ū(x0) becomes a

convex set. By applying the normalization argument in [9], we can obtain

ū ∈ C1,α(x0).

For the boundary regularity, by extending ū to a neighborhood of B1(0)

it can be reduced to the interior case since the arguments in [9, 10] allow

that the initial density f vanishes. ���

3. Obliqueness

In this section we focus on the optimal transportation after the stere-

ographic transformation, which is from Ω = B1(0) to Ω∗ = B1(0) with the

cost function given in (1.8). We drop off the bars over the functions c, u

for simplicity, so that the potential function u satisfies equation (1.3) with

boundary condition (1.4), where the optimal mapping Tu is determined by

(1.2). We now prove (1.10) in the following lemma.

Recall that a boundary condition for a second order partial differential

equation defined on a domain Ω of the form

G(x, u,Du) = 0 on ∂Ω (3.1)

is called oblique, (or degenerate oblique) if

Gp · ν ≥ c0 > 0, (or ≥ 0) (3.2)

for all (x, z, p) ∈ ∂Ω×R×R
2, where c0 is a positive constant, ν denotes the

unit outer normal to ∂Ω. Let φ(x) = 1
2(|x|2 − 1) and φ∗(y) = 1

2(|y|2 − 1)

be smooth defining functions for Ω and Ω∗, respectively. Then (1.4) can be

written as

φ∗(Tu) = 0 on ∂Ω,
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(3.3)
φ∗(Tu) < 0 near ∂Ω.

Set G(x, u,Du) := φ∗ ◦ Tu(x,Du). The main estimate in this section is

the following

Lemma 3.1. Under the assumptions of Theorem 1.1, the boundary condition

(1.4) satisfies a strict obliqueness estimate (3.2).

Proof. Let u ∈ C2(Ω) be an elliptic solution of (1.3)–(1.4), and denote

y = Tu(x). By differentiation, we have

φ∗kDiykτi = 0 on ∂Ω (3.4)

for any unit tangential vector τ on ∂Ω, and

φ∗kDνyk ≥ 0 on ∂Ω (3.5)

where ν is the outer normal to ∂Ω, whence

φ∗iDjyi = χνj (3.6)

for some χ ≥ 0. Consequently, from (1.2)

−φ∗i ci,kwjk = χνj, (3.7)

where {ci,j} = {ci,j}−1 and

wij := uij + cij . (3.8)

At this point we observe that χ > 0 on ∂Ω since |∇φ∗| 6= 0 on ∂Ω and

detDT 6= 0. Using the ellipticity of (1.3) and letting {wij} denote the

inverse matrix of {wij}, we then have

−φ∗i ci,k = χwjkνj. (3.9)

Now writing G(x, p) = φ∗ ◦ Tu(x, p) = φ∗(y), by differentiating

Gpk = φ∗iDpkyi = −φ∗i ci,k = χwjkνj , (3.10)

thus
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Gp · ν = χwijνiνj > 0, (3.11)

on ∂Ω. Next, we obtain a uniform positive lower bound for Gp · ν as follows.

On the boundary ∂Ω× ∂Ω∗, the unit outer normal νi = xi and φ
∗
i = yi, for

i = 1, . . . , n. ¿From (3.10), we have

Gp · ν =

n
∑

i,j=1

−yici,j(x, y)xj . (3.12)

We claim that for (x, y) ∈ ∂Ω× ∂Ω∗, for any 1 ≤ i ≤ n

n
∑

j=1

ci,jyj = − arccos(x · y) xi
√

1− (x · y)2
. (3.13)

Hence,
∑n

i=1 c
i,jxj = −yi

√
1−(x·y)2

arccos(x·y) and then

Gp · ν =
|y2|

√

1− (x · y)2
arccos(x · y) =

√

1− (x · y)2
arccos(x · y) . (3.14)

By Lemma 2.1, 1+x · y ≥ ε0 for some positive constant ε0. Therefore, there

exists a constant c0 > 0 such that (3.2) holds. The proof of Lemma 3.1 is

completed.

Let us now prove the claim (3.13) at (x, y) ∈ ∂B1 × ∂B1 with the cost

function c given in (1.8). Denote

θ =
4(x · y)

(1 + |x|2)(1 + |y|2) +
(1− |x|2)(1 − |y|2)
(1 + |x|2)(1 + |y|2) , (3.15)

the cost function c(x, y) = 1
2 arccos

2 θ. By differentiating, the first order

derivatives are

ci =
∂c

∂xi
= − arccos θ√

1− θ2
1

1 + |y|2
(

4yi
1 + |x|2 − 8(x · y)xi

(1 + |x|2)2 − 4xi(1− |y|2)
(1 + |x|2)2

)

(3.16)

for all i = 1, . . . , n.

At (x, y) ∈ ∂B1 × ∂B1, |x| = |y| = 1 and the function θ = x · y, thus

ci =
− arccos(x · y)
√

1− (x · y)2
(yi − (x · y)xi) . (3.17)



38 S.-Y. A. CHANG, J. LIU AND P. YANG [March

Therefore, we obtain the relation x · Dxc =
∑n

i=1 xici = 0. We point this

out because it will be used on the boundary estimates in the next section.

By differentiating θ in (3.15) with respect to y variable, we have

∂θ

∂yi
=

1

1 + |x|2
(

4xi
1 + |y|2 − 8(x · y)yi

(1 + |y|2)2 − 4yi(1− |x|2)
(1 + |y|2)2

)

= xi − (x · y)yi,
(3.18)

for all (x, y) ∈ ∂B1 × ∂B1 and i = 1, . . . , n. By a further differentiation of

(3.16) with respect to y variable, the mixed second order derivatives are

ci,j =

(

1

1−θ2−
θ arccos θ

(1−θ2)3/2
)

∂θ

∂yj

1

1+|y|2
(

4yi
1+|x|2 −

8(x · y)xi
(1+|x|2)2−

4xi(1−|y|2)
(1+|x|2)2

)

+arccos θ
1√
1−θ2

2yj
(1 + |y|2)2

(

4yi
1+|x|2 −

8(x · y)xi
(1+|x|2)2 −

4xi(1−|y|2)
(1+|x|2)2

)

− arccos θ
1√
1−θ2

1

1+|y|2
1

1+|x|2
(

4δij−
8xixj
1+|x|2 +

8xiyj
1+|x|2

)

. (3.19)

Combining (3.18) with (3.19) and noting that θ = x · y, |x| = |y| = 1, we

have

ci,j =

(

1

1− θ2
− θ arccos θ

(1− θ2)3/2

)

(xj − (x · y)yj) (yi − (x · y)xi)

+
arccos θ√
1− θ2

(yj (yi − (x · y)xi)− (δij − xixj + xiyj)) . (3.20)

Therefore, the sum in (3.13) becomes

n
∑

j=1

ci,jyj =

(

1

1− θ2
− θ arccos θ

(1− θ2)3/2

)

(x · y − x · y) (yi − (x · y)xi)

+
arccos θ√
1− θ2

((yi − (x · y)xi)− (yj − (x · y)xi + xi))

=− arccos(x · y) xi
√

1− (x · y)2
. (3.21)

Thus we have proved the claim (3.13), hence (3.17); which in term established

Lemma 3.1. ���
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4. Boundary C2 Estimate

In this section we prove the boundary C2 estimate (1.11) in the two

dimensional case. Recall that Ω,Ω∗ = B1(0) and the boundary condition is

written as

φ∗(Tu) = 0 on ∂B1(0), (3.1)

where φ∗(y) = 1
2(|y|2 − 1), and Tu = T (·,Du) is the optimal mapping.

It is convenient to denote the vector field β = (β1, β2) where

βk :=
∂φ∗

∂pk
= φ∗iDpkyi = −φ∗i ci,k. (3.2)

Differentiating along any tangential vector field τ on ∂B1, we have

0 = φ∗kDiykτi = −φ∗kck,jwjiτi = wτβ on ∂B1. (3.3)

Let ν be the unit outer normal of ∂B1, by differentiating

0 ≤ φ∗kDiykνi = −φ∗kck,jwjiνi = wνβ on ∂B1. (3.4)

Here and below we use the notation wξη to denote wijξiηj even if ξ and η

are not unit vector fields.

Suppose wξξ takes its maximum over ∂B1 and unit vector ξ at x0 ∈ ∂B1.

Note that we may write ξ in terms of a tangential component τ(ξ) and a

component in the direction of β, namely

ξ = τ(ξ) +
ν · ξ
β · ν β

where

τ(ξ) = ξ − (ν · ξ)ν − ν · ξ
β · ν β

T

and

βT = β − (β · ν)ν.

Thanks to the oblique estimate in Lemma 3.1, we have

|τ(ξ)|2 = 1−
(

1− |βT |2
(β · ν)2

)

(ν · ξ)2 − 2(ν · ξ)β
T · ξ
β · ν ≤ C.
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Thus,

wξξ = wτ(ξ)τ(ξ) +
2ν · ξ
β · ν wτβ +

(ν · ξ)2
(β · ν)2wββ

≤ |τ(ξ)|2wτ0τ0 +
(ν · ξ)2
(β · ν)2wββ ,

(3.5)

Namely, it suffices to control wτ0τ0 and wββ.

From (3.17) and (1.2), x ·Du ≡ 0 on ∂B1. Without loss of generality, we

may assume x0 = (0, 1) and locally ∂B1 can be represented by x2 = ρ(x1) =
√

1− |x1|2. By tangential differentiation at x0,

0 = u1 + xkuk1 + (u2 + xkuk2)ρ
′,

0 = 2u11 + xkuk11 + (u2 + xkuk2)ρ
′′

= 2u11 + u211 + (u2 + u22).

As e1, e2 are the unit tangential and outer normal vectors at x0, repsec-

tively, we have

uν11 ≤ O(1 + wii). (3.6)

We now tangentially differentiate the boundary condition φ∗(Tu) twice

in the e1 direction at x0, to obtain

φ∗ij
∂yi
∂x1

∂yj
∂x1

+ φ∗i
∂2yi
∂x21

+ φ∗i
∂yi
∂x2

= 0,

and thus

∑

i

(

ci,kwk1

)2
− yi

∂

∂x1

(

ci,kwk1

)

− yic
i,kwk2 = 0,

which implies

w2
11 ≤ yi

(

ci,k1, wk1 + ci,kD1wk1

)

+ wβ2

= yic
i,k
1, wk1 + yic

i,k(uk11 + ck11, + ck1,pc
p,qwq1) + wβ2

= uβ11 +O(1 + wii). (3.7)

Let us assume that the maximal double-tangential term wττ occurs at
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x0 in a tangential direction e1, i.e. w11(x0). Hence, Dτw11(x0) = 0, which

gives

uτ11 ≤ O(1 + wii). (3.8)

Therefore, from (3.6) and (3.8)

uβ11 ≤ O(1 + wii),

and by (3.7)

w2
11 ≤ O(1 + wii).

Using the fact that λ−1 < detwij < λ for some constant λ > 0, we conclude

that

w11(x0) ≤ C. (3.9)

It remains to bound wββ(x0). By contradiction, we may assume wββ(x0)

is arbitrarily large. Note that we can decompose ν(= e2) in terms of

ν = − 1

β · ν (β − (β · ν)ν) + 1

β · ν β.

There exists a matrix A = (aij) such that at x0,

[

1 0

a21 a22

] [

τ

β

]

=

[

τ

ν

]

,

where 0 < a22 =
1
β·ν ≤ C by the obliqueness, and thus detA ≤ C. From the

decomposition,

w11 = wττ , w12 = a21wττ ,

w22 = a222wββ + a221wττ .

Since |a21|, wττ are bounded, w22 will be arbitrarily large if wββ is (by as-

sumption).

Next we invoke the dual problem: Let u∗ denote the c-transform of u,

defined for y = Tu(x) ∈ Ω∗ by

u∗(y) = −c(x, y)− u(x).
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It follows that

Du∗(y) = −cy(x, y) = −cy(T ∗
u∗(y), y),

where

T ∗
u∗(y) = (Tu)

−1(y),

and the dual equation is

|detDy(T
∗
u∗)|= g(y)/f(T ∗

u∗) in Ω∗,

T ∗
u∗(Ω∗) = Ω.

Furthermore, by differentiation at y = Tu(x),

wij(x) = w∗
kl(y)c

k,icl,j(x, y), (3.10)

where w∗
kl(y) = u∗ykyl(y) + c,kl(x, y) and (wij) is the inverse of (wij). By a

similar analysis as for (3.9), we have

w∗
τ∗τ∗(y0) ≤ C, (3.11)

where y0 = Tu(x0) and τ
∗ is the tangential direction at y0.

Define

τ̃k := τ∗i ci,k(x0, y0). (3.12)

Then by (3.10) and (3.11) we have

C ≥ w∗
ijτ

∗
i τ

∗
j =

(

w∗
ijc

i,kcj,l
)

τ̃k τ̃l = wklτ̃kτ̃l

= w11τ̃21 + 2w12τ̃1τ̃2 + w22τ̃22 .

It is easy to see that the last two terms are bounded because of (3.3) and

(3.9). If we can show τ̃21 ≥ δ0 for some constant δ0 > 0, then we have a

contradiction as w11 = w22/detwij will become arbitrary large (by assump-

tion).

At (x0, y0), by the obliqueness estimate (1.10)

−c2,1y1 − c2,2y2 ≥ c0,
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where c0 > 0 is constant. This is equivalent to

1

det ci,j
(c2,1y1 − c1,1y2) ≥ c0,

and

(c2,1y1 − c1,1y2)
2 ≥ c20(det ci,j)

2 =: δ0 > 0.

At y0, the tangential τ∗ = (y2,−y1). From (3.12)

τ̃1 = c1,1τ
∗
1 + c2,1τ

∗
2 = c1,1y2 − c2,1y1,

and thus we obtain

τ̃21 ≥ δ0 > 0.

The above contradiction implies that wββ(x) ≤ C for all x ∈ ∂B1.

Therefore, by (3.5) we conclude the estimate (1.11).

By Corollary 2.1, the cost function c satisfies the condition (A3). We

now observe by the work pioneered by Trudinger-Wang [14] in the subject,

one can obtain the global C2 and higher order estimates under the further

assumption that the densities f and g are C2 and smooth.

To see this, from [14], we have the estimate

sup
Ω

|D2u| ≤ C(1 + sup
∂Ω

|D2u|), (3.13)

combining this with (1.11), we obtain the global C2 estimate.

Once the second derivatives are bounded, equations (1.3)–(1.4) are uni-

formly elliptic. This combined with the obliqueness estimate (1.10) yields

global C2,α estimates [8]. Moreover, the higher order estimates follow from

the theory of linear elliptic equations with oblique boundary conditions [6]

and thus Theorem 1.1 is proved.
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