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Abstract

In this paper we prove a sharp version of the Moser-Trudinger inequality for the

Euler-Lagrange functional of a singular Toda system, motivated by the study of models in

Chern-Simons theory. Our result extends those in [14] and [37] for the scalar case, as well

as that in [23] for the regular Toda system. We expect this inequality to be a basic tool

to attack variationally the existence problem under general assumptions.

1. Introduction

The Moser-Trudinger inequality yields exponential-type embeddings of

Sobolev functions in critical dimension. On a compact closed surface Σ the

space H1(Σ) embeds compactly into every Lp(Σ) for any real p > 1: at

a more refined level, due to the seminal works [38] and [31] one has the

inequality

16π log

∫

Σ
eu−u dVg ≤

∫

Σ
|∇u|2 dVg + C; u ∈ H1(Σ), (1)
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where C is a constant depending only on Σ and its metric g, and where u

stands for the average of u on the surface.

Inequality (1) has been proven to be fundamental in several contexts

such as the Gaussian curvature prescription problem ([2], [11], [10]), mean

field equations in fluid dynamics ([18], [19]) and models in theoretical physics

([36], [41]). To give an example, considering a conformal change of metric of

the form g̃ = ewg, the Gaussian curvature of Σ transforms according to the

law

−∆w + 2Kg = 2Kg̃e
w. (2)

If one wishes to prescribe the Gaussian curvature Kg̃ as a given function

K(x), then solutions to the problem can be found as critical points of the

functional

I(u) :=

∫

Σ
|∇u|2dVg +

∫

Σ
Kgu dVg −

(∫

Σ
KgdVg

)
log

(∫

Σ
K eudVg

)
.

By means of (1) one can then control the last term in the functional by

means of the Dirichlet energy.

More recent versions of (1) include exponential terms with power-type

weights, which are motivated by the study of singular Liouville equations.

For example, given points p1, . . . , pm ∈ Σ, weights α1, . . . , αm > −1, and a

smooth positive function h(x), a solution of the equation

−∆w + 2Kg = 2h ew − 4π
m∑

j=1

αjδpj (3)

yields a conformal metric g̃ = ewg with Gaussian curvature h on Σ\{p1, . . .,

pm} and with a conical singularity at pj with opening angle 2π(1 + αj).

By the substitution

w(x) 7→ w(x) + 4π

m∑

j=1

αjGpj (x),

(4)
h(x) 7→ h̃(x) = h(x)e−4π

∑m
j=1

αjGpj
(x),

(2) transforms into an equation of the form

−∆w + 2f̃ = 2h̃ ew (5)



2014] A MOSER-TRUDINGER INEQUALITY 3

where f̃(x) is a smooth function and where

h̃ > 0 on Σ \ {p1, . . . , pm}; h̃(x) ≃ d(x, pj)
2αj near pj. (6)

Although (3) and (5) are perfectly equivalent, the advantage of the latter

compared to the former is that the singular structure is absorbed into the

factor h̃, which endows the problem with a variational structure. Similarly

to (2), solutions to (5) can be found as critical points of the functional

Ĩ(u) :=

∫

Σ
|∇u|2dVg +

∫

Σ
f̃ u dVg −K log

(∫

Σ
h̃ eudVg

)
,

where K = 2πχ(Σ) + 2π
∑m

j=1 αj is a constant determined by the Gauss-

Bonnet formula.

The singular weight h̃ has indeed an effect on the optimal constant in

the corresponding Moser-Trudinger type inequality. In [15], [37] (see also

[10] for conical domains) it was shown that

16πmin

{
1, 1 + min

j
αj

}
log

∫

Σ
h̃eu−u dVg ≤

∫

Σ
|∇u|2 dVg+C; u ∈ H1(Σ).

(7)

Notice that, if at least one of the αj ’s is negative, say αj , the constant

gets worse, as h̃ blows-up at pj . On the other hand when all the weights

are positive the constant does not improve: this can be easily seen by the

following consideration. The sharpness of the Moser-Trudinger constant 1
16π

can be obtained using the test function

ϕλ,x(y) = log
λ2

(1 + λ2d(x, y)2)2
; x ∈ Σ, λ > 0, (8)

which makes the two sides of (1) diverge at the same rate. As the conformal

volume eϕλ,x concentrates at x as λ → +∞, there would be no effect from

the vanishing of h̃ if x is a regular point. We also refer to [17], [21] for more

general optimal inequalities on singular measure spaces.

Inequality (7) has been useful in finding constant curvature metrics when

prescribing conical singularities as it might yield global minima of Ĩ, see [37],
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[8], as well as in studying general singular mean field equations like

−∆w + 2f = 2ρh ew − 4π

m∑

j=1

αjδpj , (9)

where f, h are smooth functions, h positive, and ρ is a real parameter, see

[4], [3], [29] (see also [12], [13] for a non-variational approach to (9)).

Singular Liouville equations have a role in fluid dynamics, see [39], as

well as in the study of Electroweak theory or abelian Chern-Simons vortices,

see [36], [41]. For the latter cases, singular points represent zeroes of the

scalar wave function involved in the model.

The goal of this paper is to prove a sharp inequality related to a singular

Toda system arising in Chern-Simons theory, which represents a non-abelian

counterpart of (9). Specifically, we consider the following system





−∆u1 = 2ρ1

(
h1e

u1∫
Σ
h1e

u1dVg
−1
)
−ρ2

(
h2e

u2∫
Σ
h2e

u2dVg
−1
)
−4π

m∑

j=1

α1,j(δpj−1),

−∆u2 = 2ρ2

(
h2e

u2∫
Σ
h2e

u2dVg
−1
)
−ρ1

(
h1e

u1∫
Σ
h1e

u1dVg
−1
)
−4π

m∑

j=1

α2,j(δpj−1),

(10)

where h1, h2 are smooth positive functions on Σ, and the coefficients αi,j are

larger than −1.

While abelian Chern-Simons vortices have been quite studied for some

time, see e.g. [7], [9], [32], [34], [35], the treatment of the non-abelian case

is more recent, see e.g. [20], [24], [25], [27], [33].

With a change of variable similar to (4) the latter problem transforms

into





−∆u1 = 2ρ1

(
h̃1e

u1∫
Σ
h̃1e

u1dVg
− 1

)
− ρ2

(
h̃2e

u2∫
Σ
h̃2e

u2dVg
− 1

)
,

−∆u2 = 2ρ2

(
h̃2e

u2∫
Σ
h̃2e

u2dVg
− 1

)
− ρ1

(
h̃1e

u1∫
Σ
h̃1e

u1dVg
− 1

)
,

(11)

where the functions h̃i satisfy

h̃i > 0 on Σ \ {p1, . . . , pm}; h̃i(x) ≃ d(x, pj)
2αi,j near pj, i = 1, 2.

(12)
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As for the scalar case one gains the variational structure, with Euler-Lagrange

functional

Jρ(u1, u2) =

∫

Σ
Q(u1, u2) dVg +

2∑

i=1

ρi

(∫

Σ
uidVg − log

∫

Σ
h̃ie

uidVg

)
, (13)

where Q(u1, u2) is defined as:

Q(u1, u2) =
1

3

(
|∇u1|

2 + |∇u2|
2 +∇u1 · ∇u2

)
. (14)

Concerning Liouville systems with no singularites, some sharp inequalities

were proven in [16], [40] when the matrix of coefficients of the exponential

terms is non-negative. For the regular Toda system instead a sharp inequal-

ity was found in [23], where it was shown that

4π
2∑

i=1

log

∫

Σ
eui−ui dVg ≤

∫

Σ
Q(u1, u2) dVg + C; u ∈ H1(Σ). (15)

Notice that one always has the inequality Q(u1, u2) ≥ 1
4 |∇u1|

2, and hence

(15) can be thought of as an extension of (1). Our main result is the following

one, which extends both (7) and (15).

Theorem 1.1. Suppose p1, . . . , pm ∈ Σ and αi,j, i = 1, 2, j = 1, . . . ,m,

satisfy αi,j > −1 for all i, j. Then, if h̃i satisfy (12), the following inequality

holds

4π

2∑

i=1

min

{
1, 1 + min

j
αi,j

}
log

∫

Σ
h̃ie

ui−ui dVg

≤

∫

Σ
Q(u1, u2) dVg + C u1, u2 ∈ H1(Σ). (16)

The constants in the above inequality are sharp.

We expect the above result to be a main step for a possible variational

approach for the study of (10). In the recent paper [5] the case of non-

negative coefficients and positive genus has been treated using simply in-

equality (15), as the corresponding functions h̃i are uniformly bounded (see

also [28] and [30] for the regular case). In more general cases, the full strength

of (16) would be needed.
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Some steps in the proof of the above theorem follow closely the argu-

ments in [23]: through blow-up analysis one can show with few difficulties

that inequality (16) holds for any smaller couple of parameters, and moreover

that there exist extremal functions for the corresponding Euler functionals

(13). We pass then to the limit for these extremals when the parameters

approach the critical ones.

However the presence of singularities might cause in principle a variety

of blow-up behaviours (different blow-up rates for the two components, and

blow-up at regular or singular points): using a Pohozaev identity from the

recent paper [26] we reduce ourselves to two cases only. The former can be

brought back to the scalar case, where one can use (7) to get a conclusion;

the latter can be solved by using a local version of the singular Moser-

Trudinger inequality from Adimurthi and Sandeep [1]. The latter argument

in particular differs substantially from that in [23], and it also provides a

simpler argument for the regular case.

2. Notation and Preliminaries

In this section we provide some useful notation and some known prelim-

inary results which will be used in the proof of the main theorem.

First of all, given two points x, y ∈ Σ, we will indicate as d(x, y) the

metric distance between x and y on Σ; we will denote as Br(p) the open

metric ball of radius r centered at p.

Given a function u ∈ L1(Σ), u will stand for the average of u on Σ; since

we will suppose, from now on, |Σ| = 1, we can write

u =

∫

Σ
udVg.

We denote as x− the negative part of a real number x, that is

x− :=

{
0 if x ≥ 0

−x if x ≤ 0
,

and we set, for i ∈ {1, 2},

α̃i = − max
j∈{1,...,m}

αi,j
−. (17)
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Notice that, in these terms, the inequality we wish to prove is

4π

2∑

i=1

(1 + α̃i) log

∫

Σ
h̃ie

ui−uidVg ≤

∫

Σ
Q(u1, u2)dVg + C u1, u2 ∈ H1(Σ),

whereas the singular Chen-Troyanov (7) inequality can be expressed as

16π(1 + α̃i) log

∫

Σ
h̃ie

ui−uidVg ≤

∫

Σ
|∇u|2 dVg + C; u ∈ H1(Σ).

We then define the ith weight of a point p ∈ Σ, for i ∈ {1, 2} in the

following way

p = pj ⇒ αi(p) = αi,j p /∈ {p1, . . . , pm} ⇒ αi(p) = 0. (18)

The definition implies that h̃i ≃ d(·, p)2αi(p) near p; precisely, it is the only

real number such that log h̃i − 2α̃i log d(·, p) is bounded in a sufficiently small

neighborhood of p.

As anticipated in the introduction, we will prove inequality (16) via blow-up

analysis. We define, for a sequence uk = (u1,k, u2,k) of solutions of (11), the

concentration value of the ith component around a point p ∈ Σ as

σi(p) := lim
r→0

lim
k→+∞

∫

Br(p)
h̃ie

ui,kdVg. (19)

Lin, Wei and Zhang in [26] found out, through a Pohožaev identity, that

the concentration values satisfy the following condition, which was already

pointed out for the regular case in [22].

Theorem 2.1 ([26], Proposition 3.1). Let uk = (u1,k, u2,k) ∈ H1(Σ)2 be so-

lutions of (11), α̃i be as in (18) and σi be as in (19). Then, it holds

σ1(p)
2−σ1(p)σ2(p)+σ2(p)

2 = 4π(1+α̃1(p))σ1(p)+4π(1+α̃2(p))σ2(p). (20)

In the setting we are considering, a dichotomy between concentration

and compactness occurs, similar to the ones in the regular case from Jost-

Wang [23], Theorem 3.1. Since the proof of the theorem we are giving is

very close to [23], we will only sketch it; we refer to these papers for the

details in the regular case.
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Theorem 2.2. Let h̃i as in (12), let uk=(u1,k, u2,k)∈H
1(Σ)2 be solutions

of





−∆ui,k = 2Vi,kh̃ie
ui,k − V3−i,kh̃3−ie

u3−i,k + ψi,k
∫

Σ
h̃ie

ui,kdVg ≤ C

‖ψi,k‖Lp(Σ) ≤ C

Vi,k →
k→+∞

1 in L∞(Σ)

i ∈ {1, 2},

for some p > 1, C > 0 and define the sets Si as

Si :=

{
p ∈ Σ : ∃ xk →

k→+∞
p such that ui,k(xk) →

k→+∞
+∞

}
.

Then, after taking subsequences, one of the following alternatives happens.

1. For each i ∈ {1, 2}, either ui,k is bounded in L∞(Σ) or it tends uniformly

to −∞.

2. Si 6= ∅ for some i ∈ {1, 2}; in this case, Si is finite and either uj,k is

bounded in L∞
loc(Σ\(S1 ∪ S2)) or it converges to −∞ in L∞

loc(Σ\(S1 ∪ S2))

for each j ∈ {1, 2}; moreover, if Si\S3−i 6= ∅, then the latter alternative

occurs for ui,k.

Proof. (Sketch) Reasoning as in [4] we find that, given p ∈ Σ, if for some

i ∈ {1, 2} one has

lim sup
k→+∞

∫

Br(p)
Vi,kh̃ie

ui,kdVg < 2π(1 + αi(p)
−)

for sufficiently small r, then ui,k is uniformly bounded from above, and this

fact implies the finiteness of the sets Si. The alternative between being

bounded in L∞ and converging uniformly to −∞ follows by applying a Har-

nack inequality and the last part of (2) follows by arguing as in [6], Theorem

3. ���

Finally, as anticipated, we will need a singular Moser-Trudinger inequal-

ity on bounded Euclidean domains, from [1]:
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Theorem 2.3 ([1], Theorem 2.1). Let Ω ⊂ R
2 a bounded domain containing

the origin. Then, for any α ∈ (−1, 0], it holds

sup
u∈H1

0
(Ω),

∫
Ω
|∇u(x)|2dx≤1

∫

Ω
|x|2αe4π(1+α)u(x)2dx ≤ C,

where C is a constant depending on α and Ω only.

From elementary inequalities we then obtain the following result.

Corollary 2.4. Let Ω ⊂ R
2 a bounded domain containing the origin. Then,

for any α ∈ (−1, 0] and u ∈ H1
0 (Ω), it holds

16π(1 + α) log

∫

Ω
|x|2αeu(x)dx ≤

∫

Ω
|∇u(x)|2dx+C. (21)

3. A Moser-Trudinger Inequality

In this section, we are going to prove the following Moser-Trudinger type

inequality.

Theorem 3.1. Let Σ be a closed surface with area |Σ| = 1, h̃i be as in

(12), and α̃i be as in (17). Then, for any ρ = (ρ1, ρ2) ∈ R
2
+ satisfying

ρi < 4π(1 + α̃i) for both i ∈ {1, 2} there exists C(ρ) > 0 such that the Euler-

Lagrange functional (13) verifies

Jρ(u) > −C(ρ) ∀ u ∈ H1(Σ)2

Definition 3.2. As in [23], we define the set of admissible parameters Λ as

Λ :=
{
ρ ∈ R

2
+ : Jρ is bounded from below

}
.

Clearly, Λ preserves the partial order of R
2
+, that is if ρ ∈ Λ then ρ̃ ∈ Λ

until ρ̃i ≤ ρi for both i ∈ {1, 2}; in these terms, Theorem 3.1 is equivalent to

saying

(0, 4π(1 + α̃1))× (0, 4π(1 + α̃2)) ⊂ Λ.

Remark 3.3. One can easily see that Λ is not empty: since it holds

|∇u1|
2 + |∇u2|

2

6
≤ Q(u1, u2)
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one can apply the scalar Moser-Trudinger inequality (7) to both components

to get
(
0,

8

3
π(1 + α̃1)

)
×

(
0,

8

3
π(1 + α̃2)

)
⊂ Λ.

To prove Theorem 3.1, some lemmas will be needed. First of all, we

notice that when the parameter ρ is in the interior of the set Λ, then the

energy functional is not only bounded from below, but even coercive and it

has a minimizer; on the other hand, if ρ is on the boundary of Λ, then Jρ
cannot be coercive.

Lemma 3.4. For any ρ ∈
◦
Λ there exists a constant C such that

Jρ(u) ≥

∫
Σ

(
|∇u1|

2 + |∇u2|
2
)
dVg

C
− C

Moreover, Jρ admits a minimizer u = (u1, u2) that solves (11).

Proof. Taking δ ∈
(
0, d(ρ,∂Λ)√

2

)
, we have (1 + δ)ρ ∈ Λ so J(1+δ)ρ(u) ≥ −C;

therefore, we can write

Jρ(u) =
δ

1 + δ

∫

Σ
Q(u1, u2)dVg +

J(1+δ)ρ(u)

1 + δ

≥
δ

6(1 + δ)

∫

Σ

(
|∇u1|

2 + |∇u2|
2
)
dVg − C

and the first claim follows.

To prove the rest we notice that, if we restrict ourselves to the subset

of H1(Σ)2 consisting of all functions satisfying
∫
Σ h̃ie

uidVg = 1, the energy

is coercive because, from Poincaré’s inequality and (7)

∫

Σ
u2i dVg =

∫

Σ
(ui − ui)

2 dVg + (ui)
2

≤ C

∫

Σ
|∇ui|

2dVg +

(
C +

1

16π(1 + α̃i)

∫

Σ
|∇ui|

2dVg

)2

≤ C

(
1 +

∫

Σ
|∇ui|

2dVg

)2

.

Being Jρ weakly lower-semicontinuous as well, the existence of minimizers

follows from the direct methods of calculus of variations. ���
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Lemma 3.5. For any ρ ∈ ∂Λ there exists a sequence {ũk}k∈N ⊂ H1(Σ)2

verifying

∫

Σ

(
|∇ũ1,k|

2 + |∇ũ2,k|
2
)
dVg →

k→+∞
+∞

lim
k→+∞

Jρ(ũk)∫
Σ (|∇ũ1,k|2 + |∇ũ2,k|2) dVg

≤ 0.

Proof. Suppose by contradiction that

∫

Σ

(
|∇u1,k|

2 + |∇u2,k|
2
)
dVg →

k→+∞
+∞

⇒
Jρ(uk)∫

Σ (|∇u1,k|2 + |∇u2,k|2) dVg
≥ θ > 0

for any choice of {uk}. This would mean that

Jρ(u) ≥
θ

2

∫

Σ

(
|∇u1|

2 + |∇u2|
2
)
dVg − C,

hence for any small δ we would get

J(1+δ)ρ(u) = (1 + δ)Jρ(u)− δ

∫

Σ
Q(u1, u2)dVg

≥

(
(1 + δ)

θ

2
−
δ

2

)∫

Σ

(
|∇u1|

2 + |∇u2|
2
)
dVg − C

≥ −C

hence (1 + δ)ρ ∈ Λ, whereas one clearly has (1− δ)ρ ∈ Λ; this is in contra-

diction to ρ ∈ ∂Λ. ���

We then need a basic calculus lemma. Its proof will be omitted, as it

can be found in [23] (following an idea of W. Ding).

Lemma 3.6 ([23], Lemma 4.4). Let {ak}k∈N and {bk}k∈N be two sequences

of real numbers satisfying

ak →
k→+∞

+∞ and lim
k→+∞

bk
ak

≤ 0.

Then there exists a smooth function F : [0,+∞) → R satisfying, up to sub-
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sequences,

0 < F ′(t) < 1 for any t ≥ 0 F ′(t) →
t→+∞

0 F (ak)− bk →
k→+∞

+∞.

The latter lemma will be applied to the sequences

ak =

∫

Σ
Q(ũ1,k, ũ2,k)dVg bk = Jρ(ũk)

where ũk is as in Lemma 3.5, and we will consider the auxiliary functional

J̃ρ(u) := Jρ(u)− F

(∫

Σ
Q(u1, u2)dVg

)
,

whose behavior is described by the following lemma.

Lemma 3.7. For any ρ ∈
◦
Λ the functional J̃ρ is bounded from below on

H1(Σ)2 and its infimum is achieved by a function satisfying





−
(
1− 2

3g(u)
)
∆ui +

g(u)
3 ∆u3−i = 2ρi

(
h̃ie

ui − 1
)
− ρ3−i

(
h̃3−ie

u3−i − 1
)
;

∫

Σ
h̃ie

uidVg = 1,

where g(u) = F ′ (∫
ΣQ(u1, u2)dVg

)
. On the other hand, if ρ ∈ ∂Λ then

infH1(Σ)2 J̃ρ = −∞

Proof. For ρ ∈
◦
Λ one can argue as in Lemma 3.4, yielding lower semi-

continuity from the regularity of F and coercivity from the behavior of F ′

at infinity.

For ρ ∈ ∂Λ, taking ũk as in Lemma 3.5 and applying Lemma 3.6 one

gets

J̃ρ(ũk) = bk − F (ak) →
k→+∞

−∞.

This concludes the proof. ���

We are now in position to prove the main theorem of this section.

Proof of Theorem 3.1. Suppose by contradiction that

(0, 4π(1 + α̃1))× (0, 4π(1 + α̃2)) 6⊂ Λ;
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then there is some ρ ∈ ∂Λ with ρi < 4π(1 + α̃i) for both i ∈ {1, 2}.

Consider a sequence {ρk}k∈N ∈
◦
Λ with ρk →

k→+∞
ρ and a minimizer uk for

J̃ρk , as in Lemma 3.7; then, vk := uk + log ρk solves





−∆vi,k = 2 6−5g(vk)
6−8g(vk)+2g(vk)2

(
h̃ie

vi,k − ρi,k

)

− 3−4g(vk)
3−4g(vk)+g(vk)2

(
h̃3−ie

v3−i,k − ρ3−i,k

)
;

∫

Σ
h̃ie

vi,kdVg = ρi,k,

with 6−5g(vk)
6−8g(vk)+2g(vk)2

and 3−4g(vk)
3−4g(vk)+g(vk)2

both uniformly converging to 1, so

Theorem 2.2 can be applied to this sequence. The normalization on the inte-

gral implies that ui,k cannot tend to −∞ for any i ∈ {1, 2}; moreover, we can

also exclude boundedness in L∞(Σ) because this would imply convergence

to a minimizer u of J̃ρ, contradicting Lemma 3.7.

The only case left is the blow-up around at least one point p: Pohožaev’s

identity (20) implies that if there is a singularity of mass αi,j on p then

σi ≥ 4π(1 + αi,j) for some i ∈ {1, 2}, whereas if p is a regular point then

there is a component with a mass of at least 4π around it; in both cases, for

such an i we obtain:

4π(1+α̃i)≤ lim
r→0

lim
k→+∞

∫

Br(p)
h̃ie

vi,kdVg ≤ lim
k→+∞

∫

Σ
h̃ie

vi,kdVg=ρi<4π(1+α̃i),

that is a contradiction. ���

We conclude the section by showing a partial converse of Theorem 3.1,

namely that for higher values of the parameter ρ the functional Jρ is un-

bounded from below.

Proposition 3.8. If ρi > 4π(1 + α̃i) for some i ∈ {1, 2}, then infH1(Σ)2 Jρ

= −∞ that is

Λ ⊂ (0, 4π(1 + α̃1)]× (0, 4π (1 + α̃2)] .

Proof. We will show the proof only for i = 1, since the same argument

works for i = 2 as well.
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Choosing a point p1 such that h̃1 ≃ d(·, pi)
2α̃1 in its neighborhood, we

define for large λ

ϕ1,λ(x) = log

(
λ1+α̃1

1 + (λd(x, p1))2(1+α̃1)

)2

;

ϕ2,λ(x) = −
1

2
log

(
λ1+α̃1

1 + (λd(x, p1))2(1+α̃1)

)2

.

Using the fact that
∣∣∇
(
d(x, p1)

2(1+α̃1)
)∣∣ ≤ 2(1 + α̃1)d(x, p1)

1+2α̃1 , we obtain

|∇ϕ1,λ(x)| =

∣∣∣∣∣
−2λ2(1+α̃1)

∣∣∇
(
d(x, p1)

2(1+α̃1)
)∣∣

1 + (λd(x, p1))2(1+α̃1)

∣∣∣∣∣

≤
4(1 + α̃1)λ

2(1+α̃1)d(x, p1)
1+2α̃1

1 + (λd(x, p1))2(1+α̃1)

≤ min

{
Cλ2d(x, p1)

1+2α̃2 ,
4(1 + α̃1)

d(x, p1)

}
,

and therefore

∫

Σ
Q(ϕ1,λ, ϕ2,λ)dVg =

1

4

∫

Σ
|∇ϕ1,λ|

2dVg

≤ Cλ4
∫

B 1
λ
(p1)

d(·, p1)
2(1+α̃1)dVg+4(1+α̃1)

2

∫

Σ\B 1
λ
(p1)

dVg
d(·, p1)2

≤ C + 8π(1 + α̃1)
2 log λ. (22)

Moreover, being

max{1, (λd(x, p1))
2(1+α̃1)} ≤ 1 + (λd(x, p1))

2(1+α̃1)

≤ Cmax{1, (λd(x, p1))
2(1+α̃1)}, (23)

one gets

ϕ1,λ =

∫

Σ
(max{2(1+ α̃1) log λ,−2(1+ α̃1)(log λ+2 log d(·, p1))}+O(1))dVg .

Dividing Σ into the two regions where the above maximum is attained and
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using the integrability of log d(·, p1) in two dimensions one gets

ϕ1,λ = 2(1 + α̃1) log λ

∫

B 1
λ
(p1)

dVg − 2(1 + α̃1) log λ

∫

Σ\B 1
λ
(p1)

dVg

−4(1 + α̃1)

∫

Σ\B 1
λ
(p1)

log d(·, p1)dVg +O(1)

= −2(1 + α̃1) log λ+O(1), (24)

and clearly ϕ2,λ = (1 + α̃1) log λ+O(1).

For a small but fixed δ > 0 we have, again by (23),

∫

Σ
h̃1e

ϕ1,λdVg ≥ C

∫

Bδ(p1)\B 1

λ
(p1)

d(·, p1)
2α̃1eϕ1,λdVg

≥
C

λ2(1+α̃1)

∫

Bδ(p1)\B 1

λ
(p1)

dVg
d(·, p1)4+2α̃1

≥ C; (25)

on the other hand, we can write that

∫

Σ
h̃2e

ϕ2,λdVg ≥ Cλ1+α̃1

∫

Σ\B 1

λ
(p1)

h̃2d(·, p1)
2(1+α̃1)dVg

≥ Cλ1+α̃1 . (26)

Therefore, from (22), (24), (25),(26) we conclude that

Jρ(ϕ1,λ, ϕ2,λ) ≤ 2(1 + α̃1)(4π(1 + α̃1)− ρ1) log λ+O(1) →
λ→∞

−∞,

as desired. ���

4. The Optimal Inequality

In the last section we are going to discuss the boundedness from below

of Jρ in the only case left, that is when ρi = 4π(1 + α̃i) for some i ∈ {1, 2};

we will show that infH1(Σ)2 Jρ > −∞ in this case as well.

Theorem 4.1. Let Σ be a closed surface with area |Σ| = 1, h̃i be as in (12),

α̃i be as in (17) and Jρ be as in (13).
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Then, there exists a constant C > 0 such that for any u ∈ H1(Σ)2

J4π(1+α̃1),4π(1+α̃2)(u) > −C

namely

Λ = (0, 4π(1 + α̃1)]× (0, 4π(1 + α̃2)].

Theorem 4.1 is equivalent to saying that, given a sequence

ρk ր
k→+∞

(4π(1 + α̃1), 4π(1 + α̃2)),

there exists C > 0 such that infH1(Σ)2 Jρk ≥ −C.

Moreover, in view of Lemma 3.4, it suffices to show that the minimizers

uk of Jρk verify Jρk(uk) > −C; these functions solve





−∆ui,k = 2ρi,k

(
h̃ie

ui,k − 1
)
− ρ3−i,k

(
h̃3−ie

u3−i,k − 1
)

∫

Σ
h̃ie

ui,kdVg = 1
i ∈ {1, 2},

therefore, as in the proof of Theorem 3.1, we can apply Theorem 2.2 to

vk := uk + log ρk.

As in the proof of Theorem 3.1, the condition on the integral excludes

convergence to −∞, whereas if uk is bounded in ‖ · ‖L∞(Σ) it converges to

a minimizer of J4π(1+α̃1),4π(1+α̃2) hence the conclusion is trivial, so we may

suppose that at least one component blows up.

The following lemma describes the two possible blow-up scenarios.

Lemma 4.2. Let {uk}k∈N be a blowing up sequence of minimizers of Jρk for

some sequence ρk such that ρk →
k→+∞

(4π(1 + α̃1), 4π(1 + α̃2)) and let αi(p)

be as in (18). Then, one of the following happens:

1. Only the ith component of uk blows up, for some i ∈ {1, 2} and it does

at a single point pi with αi(pi) = α̃i around it.

2. Each component of uk blows up at a single point pi satisfying αi(pi) = α̃i

around it, and p1 6= p2.



2014] A MOSER-TRUDINGER INEQUALITY 17

Proof. Suppose that only one component blows up, say u1,k, and suppose it

blows up around a point p1 satisfying α1(p1) > α̃1. Then, by (20) we obtain

4π(1 + α1(p1)) = lim
r→0

lim
k→+∞

∫

Br(p1)
h̃1e

v1,kdVg ≤ lim
k→+∞

∫

Σ
h̃1e

v1,kdVg

= 4π(1 + α̃1),

that is a contradiction; moreover, if the blow-up occurs at two points p1, p2,

then one similarly gets another contradiction:

8π(1 + α̃1) = lim
r→0

lim
k→+∞

∫

Br(p1)∪Br(p2)
h̃1e

v1,kdVg ≤ lim
k→+∞

∫

Σ
h̃1e

v1,kdVg

= 4π(1 + α̃1).

Suppose now that both components blow up at the same point; then, again

by (20), vi,k must have a local mass strictly greater than 4π(1 + α̃i) around

that point, for some i ∈ {1, 2}, but this is impossible since the total mass

of vi,k is converging to 4π(1 + α̃i); therefore, at any given point only one

component may blow up, hence we can argue as in the previous case to get

the conclusion. ���

We will consider first the single-component blow-up in alternative (1).

Lemma 4.3. Suppose u1,k blows up at p1 and u2,k does not blow up. Then,

1. u1,k − u1,k →
k→+∞

G1 in W 2,p
loc (Σ\{p1}) for any p ∈ [1, 1

−α̃1
) and weakly∗

in W 1,q(Σ) for any q ∈ [1, 2), and G1 satisfies





−∆G1 = 8π(1 + α̃1) (δp1 − 1)− 4π(1 + α̃2)(f − 1)
∫

Σ
G1dVg = 0

. (27)

2. u2,k − u2,k →
k→+∞

G2 in W 2,p
loc (Σ\{p1}) for any p ∈ [1, 1

−α̃2
) and weakly∗

in W 1,q(Σ) for any q ∈ [1, 2), and G2 satisfies





−∆G2 = 8π(1 + α̃2)(f − 1)− 4π(1 + α̃1) (δp1 − 1)
∫

Σ
G2dVg = 0

. (28)

for some non-negative f ∈ L1(Σ) satisfying
∫
Σ fdVg = 1.
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Proof. First of all, we prove that ui,k − ui,k is bounded in W 1,q(Σ) for

q ∈ [1, 2): taking q′ ∈ (2,+∞] such that 1
q′
+ 1

q
= 1,

‖ui,k − ui,k‖W 1,q(Σ) ≤ C‖∇ui,k‖Lq(Σ)

= C sup
φ∈W 1,q′(Σ), ‖∇φ‖

Lq′≤1

∣∣∣∣
∫

Σ
∇ui,k · ∇φdVg

∣∣∣∣

≤ C sup
φ∈W 1,q′(Σ), ‖∇φ‖

Lq′≤1

‖∆ui,k‖L1(Σ)‖φ‖L∞(Σ)

≤ C sup
φ∈W 1,q′(Σ), ‖∇φ‖

Lq′≤1

‖∆ui,k‖L1(Σ)‖∇φ‖Lq′ (Σ)

≤ C.

Moreover, from Theorem 2.2 we know that, in the sense of measure,

h̃1e
u1,k ⇀

k→+∞
δp1 h̃2e

u2,k ⇀
k→+∞

f ∈ L1(Σ);

therefore, taking Gi satisfying respectively (27), (28), for any fixed φ ∈

W 1,q′(Σ)

∣∣∣∣
∫

Σ
∇ (u1,k − u1,k −G1) · ∇φdVg

∣∣∣∣

=

∫

Σ
(−∆u1,k +∆G1)φdVg

≤ C

∣∣∣∣
∫

Σ

(
2ρ1,kh̃1e

u1,k−8π(1 + α̃1)δp1

)
φdVg

∣∣∣∣

+C

∣∣∣∣
∫

Σ

(
4π(1 + α̃2)f − ρ2,kh̃2e

u2,k

)
φdVg

∣∣∣∣ = o(1).

in a similar way, we get u2,k − u2,k
∗ ⇀

k→+∞
G2 in W 1,q(Σ) and convergence in

W 2,p
loc (Σ\{p1}) follows from standard elliptic estimates. ���

Remark 4.4. From the previous lemma, we deduce that |u2,k| ≤ C, since

both u2,k and u2,k − u2,k are uniformly bounded in L∞
loc(Σ\{p1}); therefore,

up to subsequences, the previous convergence result extends to u2,k.

We will now consider the alternative (2) in Lemma 4.2.

When both components blow up, the last lemma has a counterpart; its

proof follow closely the proof of Lemma 4.3, and therefore will be omitted.
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Lemma 4.5. Suppose each ui,k blows up at pi. Then, for both i ∈ {1, 2}

we have that ui,k − ui,k →
k→+∞

Gi in W
2,p
loc (Σ\{pi}) for any p ∈ [1, 1

−α̃i
) (p ∈

[1,∞) if α̃i = 0) and weakly∗ in W 1,q(Σ) for any q ∈ [1, 2), and Gi satisfies





−∆Gi = 8π(1 + α̃i) (δpi − 1)− 4π(1 + α̃3−i)(δp3−i
− 1);

∫

Σ
GidVg = 0.

In the case of both components blowing up, a sort of localized Moser-

Trudinger inequality is required.

Lemma 4.6. Suppose each ui,k blows up at pi. Then, for any small δ > 0

there exists C = C(δ) > 0 such that for both i ∈ {1, 2}

1

4

∫

Bδ(pi)
|∇ui,k|

2dVg + ρi,kui,k ≥ −C.

Proof. We will take δ such that Bδ(pi) does not contain any other singular

point and we will suppose that Bδ(pi) is a flat disk, see [23] (Remark 3.3).

This condition can be achieved through a conformal change of metric

which results in a modified Liouville equation. The same estimates on mini-

mizers hold true for the modified equation and one gets lower bounds on the

functionals as before.

Consider the solution w̃i,k of

{
−∆w̃i,k = 0 on Bδ(pi),

w̃i,k − ui,k + ui,k = 0 on ∂Bδ(pi);

standard elliptic estimates and Lemma 4.5 give

‖w̃i,k‖C1(Bδ(pi))
≤ C ‖w̃i,k‖L∞(Bδ(pi))

≤ C‖ui,k − ui,k‖L∞(∂Bδ(pi)) ≤ C.

Moreover, we can apply the scalar Moser-Trudinger inequality (21) to wi,k

:= ui,k − ui,k − w̃i,k, which belongs to H1
0 (Bδ(pi)):

∫

Bδ(pi)
|∇wi,k|

2dVg − 16π(1 + α̃i) log

∫

Bδ(pi)
d(·, pi)

2α̃iewi,kdVg ≥ −C.
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The construction of w̃i,k gives

∫

Bδ(pi)
|∇wi,k|

2dVg −

∫

Bδ(pi)
|∇ui,k|

2dVg

=

∫

Bδ(pi)

(
2∇ui,k · ∇w̃i,k + |∇w̃i,k|

2
)
dVg

≤ 2|∇w̃i,k|L∞(Bδ(pi))

∫

Bδ(pi)
|∇ui,k|dVg +

∫

Bδ(pi)
|∇w̃i,k|

2dVg

≤ C;

on the other hand, for large k we may suppose that
∫
Bδ(pi)

h̃ie
ui,kdVg ≥

1
2 ,

so
∫

Bδ(pi)
d(·, pi)

2α̃iewi,kdVg = e−ui,k

∫

Bδ(pi)
d(·, pi)

2α̃ieui,k−w̃i,kdVg

≥ Ce−ui,k

∫

Bδ(pi)
h̃ie

ui,k−w̃i,kdVg

≥ Ce−ui,k

∫

Bδ(pi)
h̃ie

ui,kdVg

≥
C

2
e−ui,k .

Therefore, we get

1

4

∫

Bδ(pi)
|∇ui,k|

2dVg + ρi,kui,k

≥
1

4

∫

Bδ(pi)
|∇wi,k|

2dVg − ρi,k log

∫

Bδ(pi)
d(·, pi)

2α̃iewi,kdVg − C

≥ −C.

which is the conclusion. ���

We have now all the necessary tools to conclude the proof of Theorem

4.1.

Proof of Theorem 4.1. Take a minimizing blowing up sequence uk and

suppose that the first alternative in Lemma 4.2 holds; it is not restrictive to

suppose that u1,k blows up.

From Lemma 4.3 and the following remark we know that u2,k is uni-

formly bounded; therefore, using the scalar Moser-Trudinger inequality (7)
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we obtain

Jρk(uk) =

∫

Σ
Q(u1,k, u2,k)dVg + ρ1,ku1,k + ρ2,ku2,k

≥

∫

Σ
Q(u1,k, u2,k)dVg + ρ1,ku1,k − C

≥
1

4

∫

Σ
|∇u1,k|

2dVg + ρ1,ku1,k − C

≥ −C.

that concludes the analysis of the first case.

Suppose now that both components blow up; then, we may conclude by

applying Lemma 4.6:

Jρk(uk) =

∫

Σ
Q(u1,k, u2,k)dVg + ρ1,ku1,k + ρ2,ku2,k

≥
2∑

i=1

(∫

Bδ(pi)
Q(u1,k, u2,k)dVg + ρi,kui,k

)

≥
2∑

i=1

(
1

4

∫

Bδ(pi)
|∇ui,k|

2dVg + ρi,kui,k

)

≥ −C.

This concludes the proof. ���
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Inst. H. Poincaré Anal. Non Linéaire, 16(1999), No. 5, 653-666.

19. Z. Djadli, Existence result for the mean field problem on Riemann surfaces of all
genuses, Commun. Contemp. Math., 10(2008), No. 2, 205-220.

20. G. Dunne, Self-dual Chern-Simons Theories, Lecture notes in physics. New series m:
Monographs. Springer, 1995.

21. L. Fontana and C. Morpurgo, Adams inequalities on measure spaces, Adv. Math.,
226(2011), No. 6, 5066-5119.

22. J. Jost, C. Lin and G. Wang, Analytic aspects of the Toda system. II, Bubbling
behavior and existence of solutions, Comm. Pure Appl. Math., 59(2006), No. 4, 526-
558.

23. J. Jost and G. Wang, Analytic aspects of the Toda system. I, A Moser-Trudinger
inequality, Comm. Pure Appl. Math., 54(2001), No. 11, 1289-1319.



2014] A MOSER-TRUDINGER INEQUALITY 23

24. H.-C. Kao and K. Lee, Self-dual SU(3) Chern-Simons Higgs systems, Phys. Rev. D

(3), 50(1994), No. 10, 6626-6632.

25. K. Lee, Self-dual nonabelian Chern-Simons solitons, Phys. Rev. Lett., 66(1991), No. 5,
553-555.

26. C. Lin, J. Wei and L. Zhang, Classification of blowup limits for SU(3) singular Toda
systems, preprint, 2013.

27. M. Lucia and M. Nolasco, SU(3) Chern-Simons vortex theory and Toda systems, J.
Differential Equations, 184(2002), No. 2, 443-474.

28. A. Malchiodi and C. B. Ndiaye, Some existence results for the Toda system on closed
surfaces, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl.,
18(2007), No. 4, 391-412.

29. A. Malchiodi and D. Ruiz, New improved Moser-Trudinger inequalities and singular
Liouville equations on compact surfaces, Geom. Funct. Anal., 21(2011), No. 5, 1196-
1217.

30. A. Malchiodi and D. Ruiz, A variational analysis of the Toda system on compact
surfaces, Comm. Pure Appl. Math., 66(2013), No. 3, 332-371.

31. J. Moser, A sharp form of an inequality by N, Trudinger, Indiana Univ. Math. J.,
20(1970/71), 1077-1092.

32. M. Nolasco and G. Tarantello, Double vortex condensates in the Chern-Simons-Higgs
theory, Calc. Var. Partial Differential Equations, 9(1999), No. 1, 31-94.

33. M. Nolasco and G. Tarantello, Vortex condensates for the SU(3) Chern-Simons theory,
Comm. Math. Phys., 213(2000), No. 3, 599-639.

34. J. Spruck and Y. S. Yang, Topological solutions in the self-dual Chern-Simons theory:
existence and approximation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 12(1995),
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