Bulletin of the Institute of Mathematics
Academia Sinica (New Series)
Vol. 8 (2013), No. 4, pp. 505-544

LONG-TIME BEHAVIOR OF THE NONLINEAR
SCHRODINGER-LANGEVIN EQUATION

I-LIANG CHERN 2@ AND HAI-LIANG LI**

!Department of Applied Mathematics & Center of Mathematical Modeling and Scientific Computing,
National Chiao Tung University, Hsinchu 30010, Taiwan.

?Department of Mathematics, National Taiwan University, Taipei, 10617, Taiwan.

“E-mail: [chern@math.ntu.edu.twl

3Department of Mathematics, Capital Normal University, Beijing, P. R. China.

bE-mail: hailiang.li.math@gmail.com

Abstract

We consider the large time behavior for nonlinear Schréodinger—Langevin equation in
one dimension for WKB-initial data with different density at left/right far fields. We show
that the momentum damping overwhelms the quantum dispersion. Thus, unlike those in
scattering theory, the solution tends to an asymptotic state determined by a porous media
equation. More precisely, the total density tends pointwise to a nonlinear diffusion wave

and the phase tends to a corresponding function.

1. Introduction and Main Results

The theory of quantum mechanics was employed to deal with the dis-
sipative system which were observed, for example, in heavy ion physics
and frictional phenomena in fission, etc |26, 21]. Recently, the nonlinear
Schrédinger—Langevin equation is taken into granted to describe the dissi-
pative process due to frictional force, for instance, in the motion of a Brow-
nian particle in heat bath by Kostin [16], to characterize directly a class
of nonlinear quantum mechanics through nonlinear gauge generalization by
Doebner-Goldin-Nattermann [5], and to study the motion of charged (quan-
tum) particles in semiconductor of nano-size |13,20], and so on. The starting
point for the derivation of Schrédinger—Langevin equation is the (quantum)
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Langevin equation. It is well-known that the Langevin equation has been
widely used in order to investigate the diffusion of Brownian particles, dis-
sipation and other non-equilibrium phenomena. In classical mechanics, the
Langevin equation for a Brownian particle of mass m acted on by an external
force F(x) is

(t) =k,
T (L.1)
k() = — Sk o+ F(a) + T(0),

where k = md is the momentum, £ > 0 is the friction constant, and I'(¢) is
the stochastic force due to heat bath. This force a purely random centered
Gaussian process characterized by

(L) =0, (L), L)) = 266T6(t — 1)),

where T' > 0 is the temperature of heat bath and k is the Boltzmann con-
stant. Based on this fundamental equation (II]) one can derive the well-
known Fokker-Planck equations [24].

In quantum mechanical analogy, Ford-Kac-Mazur [7, i8] have proposed
the quantum Langevin equation which is the Heisenberg equation of motion
for the (operator) coordinate of a Brownian particle coupled to a heat bath:

X(t) =—K,
. e (1.2)
K(t) = — =K+ F(X) + ().

Here K is the Heisenberg momentum operator, and X is the Heisenberg
position operator. Starting with a friction term propositional to the expec-
tation of the Heisenberg momentum operator K in the Ehrenfest equation
(the second equation above), Kostin [16] was able to derive the nonlinear
Schrodinger—Langevin equation for a Brownian particle interacting with a
thermal background.

In general, the nonlinear Schrodinger—Langevin for the wave function ¥
takes the form

1 1

eV = —§E2Ax1/+h(\xm2)x1:+ —S¥, in RYxR,, (1.3)
T

S

%sln(\lf/\lf*), (1.4)
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where d > 1, € > 0 is the scaled Planck constant, 7 > 0 is the scaled frictional
constant, and ¥* denotes the complex conjugate of the wave function ¥. The
function h(|¥|?) represents the self-interaction potential. We shall assume
B > 0. Physically it means that the interaction of particles is repulsive.
There are other derivations of the Schrodinger—Langevin equation based on
different assumptions, see |15, 28, 4, 217, |9].

With the frictional force (L4)) acting up, the dynamics of the wave func-
tion ¥ of Eq. (3] is completely different from the classical one for nonlin-
ear Schrodinger equation. In fact, it was proven that Schrodinger-Langevin
equation ususally can have no solitary type solutions in the damped free-
particle case in energy sapce [1], and that the coherent quantum-oscillation
trajectories are damped due to the nonlinear friction force in the Shcrédinger-
Langevin equation where the coherent oscillations decay exponentially with
time [25].

We are interested in the mathematical analysis on the large time be-
havior of the macroscopic observable-the mass and the momentum of the
nonlinear Schrodinger—Langevin equation caused by the nonlinear frictional
effect. Roughly speaking, the new frictional term SW¥ on the right hand
side of (L3)) caused by the purely random force through Langevin equation
is dissipative. Thus, we may expect a different asymptotic profile of the
wave function in large time. To have an intuition, we apply Madelung’s
idea [19] to describe quantum systems in terms of a fluid-dynamical descrip-
tion of the macroscopic observables such as mass, momentum, and energy.
We look for the solution of the WKB-form ¥ = ,/pexp(iS/e) of Eq. (L3)-
(I4]), substitute it into equations, and separate the real part and imaginary
part respectively, we can obtain the Madelung fluid-type equations for the
particle density p and the momentum J = pV S for irrotational flow

Op + div(pVS) = 0, (1.5)
2 A 1
0(pVS) +div (pVS @ VS) + Vp(p) = E—pV (—\/ﬁ> ——=pVS, (1.6)
2 NG T
where the pressure p = p(p) satisfies p/(p) = ph/(p), and the i-th component
of the convective term div(pu®u) equals Zzzl O, (pujuy). Let us introduce
the re-scaling;:

- t - 1 .t
t—=1Tt, p :p(;7x)v ST = ;S(;7$)7 (17)
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to transform (L5)—([L6l) into
Op + div(pVS) = 0 (1.8)

2 A
7204(pV S) + 2div (pVS ® VS) + Vp(p) = %pv <T\f)/_}> —pVS, (1.9)
Performing the formal limits ¢ — 0 and 7 — 0, we obtain the following
nonlinear parabolic equation for density

9o = Ap(p). (1.10)

Thus, instead of convergence to that of free Schrodinger equation, we expect
the density may tend to the self-similar solutions of the parabolic equation
(CI0). In the present paper, we justify above expected long-time behavior
for nonlinear Schrodinger-Langevin equation (L3)-(L4) in one-dimension
for the following WKB initial data:

U(z,t=0) = Uo(z) = /po(z)e™0@)/e, (1.11)
po(£o0) = pr >0, Sy(foo) = —h(ps). (1.12)

As shown in [6], Eq. (II0) in one-dimension admits a unique self-similar
solution up to a position shift, the nonlinear diffusion wave. It has the form

plx,t) =W(E), (£ = \/iET-t) with the boundary conditions:

W(xo0) = ps. (1.13)

Note that the mass p satisfies the conservation law ([L5). When the initial
density pg is a perturbation of the nonlinear diffusion wave, it causes a shift
of the nonlinear diffusion wave in the following sense[10, [11]:

[e.e]
/ [(po(x) = W(x + xo,t = 0)]de = 7(J4 — J_), (1.14)
—00

where the constant zg € R is the shift, and JL = pyruy. As it was shown in
[10, 111], the momentum (J_, J;) can be set to be zero at infinity. In fact,
if not, due to the damping of the momentum equation (at infinity), we can
define J.(z,t) and pe(z,t) as the follows:

Je(x,t) = J_e 4 (Jy — J_)e_it/ p(x)dx, (1.15)

—0o0
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J—J_ 1
pelat) = Tyt (1.16)

where p(z) > 0 belongs to C§°(R) and satisfies
/ plx)dx = 1.

The functions J, carries the initial momentum at infinity, whereas p, contains
the mass induced by J, at far fields. Then the shift xg is determined by

/_OO [po(z) = W(z + z9,t = 0) — pe(x,t = 0)]dx = 0. (1.17)

By removing J, from J and p, from p, we may assume
Jy =0. (1.18)

It is convenient to investigate the large time behavior of the IVP for NLS
([C3)—([T4) and (LII)—(CI2) in terms of the physical quantities, the ampli-
tude n = /p and the momentum J = n?S,. The macroscopic equations
take

2nny + J, = 0, (1.19)
J? 1 5 9 /N J
where
P(n) = p(n?). (1.21)

The initial and boundary conditions are given by
n(xz,0) = no(z) >0, J(z,0) = Jo(z), (1.22)

n(£oo,t) = ng = /px, J(Foo,t)=Jr=0. (1.23)

Set

ole) = | " (n3(y) — W(y + z0,0))dy,

wo(x) = no(z) — V/W(z + x0,0), mno(z) = Jo(x) + p(W(x + 20,0))s.
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The main theorem on the large time behavior of IVP (LI9)-(L23)) is

Theorem 1.1. Let p'(p) > 0 for p > 0, and |ny —n_| < 1. Assume that
20 € L*(R), wo € H*(R), no € H*(R) with ||z0| L2 w) + 1wol 175 )+ [110]| 14 (m)
sufficiently small, but independent of €. Then, there is a global classical

solution (n,J) of IVP (LI9)-(L23]) such that
(s t) = VW (- +z0,0) [[gs + [[J(8) +7p (W (- 4+ 20,1)), [lrs =0,

as t — oco. Moreover, it holds

In(-t) = VW (- + 20, t) e < CA+1)7%4,
1T 8) +7p (W (- + 20, 1)), e < CA+1)/4

From the solution (p,u) of IVP ([L19)—-(L23]), we can construct the so-
lution of IVP for NLS (IL3)-(L4) and (CII)-(TIZ). In fact, from (L20),

the equation for velocity u = S, is
1, 5 9 1, (nm) 1
~(u?), =2 () 2y, 1.24
ut+2(u) + h(n®) 55\, ).~ v (1.24)
from which we reckon the total velocity satisfies
/ u(z,t)de = e_t/T/ ug(x)dx — T[h(nt) — h(n?)](1 — e V™) < occ.

Thus, the wave function ¥(x,t)

U(z,t) = n(z,t)ed@N/e
with -

S(a.t) = —rh(W.) + / u(y, t)da (1.25)

—0o0

is well-defined and satisfies IVP ([3)-(L4) and (CII)-(TI12).

Set
oo = So(x) +7h (W (x + x0,t =0)). (1.26)

The large time behavior for the NLS (L3)-(L4) and (LII)-(TI2) is then

obtained as the follows:
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Theorem 1.2. Let h'(p) > 0 for p > 0, and |ny —n_| < 1. Assume that
(20,¢0) € L*(R), wo € H*(R), no € HYR) with |20 2wy + llwoll mrs ) +
70l 4wy sufficiently small. Then, there is a global classical solution ¥ =

ne'S/e of IVP (L3) (L) and (LIL) (LI such that

(U =), t)||gagy — 0, as t— oo, (1.27)
where U = /W (€)e ™M WO)/e ¢ = (x4 x0)/v/T + t. Moreover, it holds

— VW (- + @0, t), S, t) +Th (W (- + 20,)))|| ooy < C(1+1) 734,
(1.28)

2. Nonlinear Diffusion Waves

We list some known results concerning the self-similar solution of the
nonlinear parabolic equation (LI0) in this section.

Assume that the pressure-density functions satisfy p’(p) > 0 and 7,
are set to be one. Then the nonlinear parabolic equation (LI0) reads:

pr =p(P)zzs P (p) >0, (2.1)

which possesses a unique self-similar solution w(x,t) (see [6])

A x
plz,t) =W(C), (= ﬁ’
satisfying
ey o PV OW©Q — 3¢y

This solution is increasing if p_ < py and decreasing if p_ > p, and satisfies

6
dk .
Z|dgk O+ W () = p+leso + IW(C) — p—|¢c<o < Coe <2,
k=1
Wiz, t)| < C8(1+ )7L, [Walz,t)] < C5(1+1t)"2,

where and throughout § = |p4 — p_|.
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We introduce a new variable

n(x,t) = /Wi(x + xo,t).
From (2.1)), n satisfies

- 1
ny =

- %p(ﬁz):c:c

We have the following LP—estimates of the derivatives of W and 7 as

([18)):

Lemma 2.3. Let W be the self-similar solution of (LI0Q) and (LI3) and let
n =+vW. Then it holds that

AN
Q
(o9
—~
—_
_|_
o~
SN—
|
T
N
+
LY
¥l
—~
[\
[\
SN—

|OFEW (1) |15, <
|OF (., 6)|, < CO(1+t) 2725, (2.3)

fork,j >0 and p € [1,00], where C > 0 is some constant.

In the following section, we will often use the Moser-type calculus in-

equalities |14]:

Lemma 2.4. Let f,g € L N H?®. Then, it holds

107 (Fll < Cllgllzell0 Il + Cllfllz= 110791, (2.4)
102 (f9) = fORgll < Clglle=llOFFIl + Cllf <102 gll,  (2.5)
for1 < a<s. Here, ||-|| denotes for L? norm.

3. The Perturbed Equations

To obtain energy and decay estimates, we shall work on two sets of
perturbed equations. One is an equation for the integral of the perturbed

mass and the perturbed momentum:

z(x,1) = /x (p(z,t) = W(y + xo,t))dy, n=J+p(W). (3.1)

—00
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The other is the equation for the perturbed amplitude and the perturbed

momentum:

w=n—n, n=J+P(R),. (3.2)

We derive them and explain why we need to use both equations for energy

estimates at the end of this section.

From (LI9)—(T23]), the corresponding IVP for (z,n) becomes

2t + n= 07 (33)
_ 2
e+ [ (W + 20) - p(W)]
Wz
= %52(W + Z:c) <(W7\/T2“> —-n +p(W):ct7 (34)
2(z,0) = 20(2), n(z,0) =mo(z), z€R. (3.5)

From (B3)-(33), follows the IVP for the damped “wave equation” for z

wet o= O W)z)e + (e = (it fot fo)ye (36)

The corresponding initial data are

2(x,0) = zo(z), z(xz,0) = —no(x). (3.7)
Here,
_ J? _ (p(W)e +zt)2
fo = o = B (3.9)
fs = p(W + 2;) — p(W) — p'(W)z,. (3.10)

and we have used

(455) foe-3(3).

We recall that we have assumed p’ > 0. The term (p'(W)z;), is a diffusion

term. We denote

minp' (W) =v > 0. (3.11)
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From (LI9)—(L.20), we derive the “wave equation” for n = \/p as

1 1
ntt+nt+;n?—— [P(n)—k

JT 1, 1 on2,
2n .

wz),, A e g =0

where we recall P(n) = p(n?), and we have used the relation

2
9 (Mg Ny
n /zlg n

Recalling w = n —n and n = J + P(n),, then we obtain the equations for
(w,n) as
2(n 4+ w)ws + 20w + ny = 0, (3.12)

1
Wy + Wy — (p/(W)ww)m + Zgzwmrmm =01+ 92+ 93, (313)

imposed with the initial values

n(x,0) = no(z), (3.14)
o« 1 21
w(z,0) = wg=ng—n, wix,0)=1w(zr)=: —%. (3.15)
Here,
(nt + wt)2 52 (nmm + wmm)z 52 - -
= - - T llxxrx T ’ 1
g1(@1) Atw 4 atw 1" et (3.16)
RN W P
1 (P(7)s —n)*
= 1
2(ﬁ+w)[ Gro? |, (3.17)
g3(a,t) = [p((A + w)) (e +ws)], — [P(A*)7], — [P (A%)w,],
= [0 ((A+w)?) = p' (7)) (Re +ws)], (3.18)
with 7, defined by (B12).
There is a relation equation between w and z,:
- 1
2n+ww=2z or w= 2z, (3.19)
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which follows from p = n?.

Below we shall use both equations for the energy estimates. Roughly
speaking, the left-hand sides of both z-equation ([3.6) and w-equation (BI3)

produce two good terms in the energy estimates: the dissipation energies

t 2 ! 2
/0 2 (s)]2 ds. /O s ()] ds

and the damping energies

tzs2s twts2s.
/Oumud,/ou ()2 d

The right-hand side of the w-equation ([B.I3]) produces a term fot |lwl|? ds
which cannot be controlled in the energy estimate for the w-equation, but
it can be controlled by the dissipation energy of the z-equation, because
|w|| ~ ||zzll- On the other hand, the bad term on the right-hand side
of the z-equation ([B.6) iS 2zzzz, which produces fot ([lz2t]* + ||222]?) ds in
the energy estimate. Thus, the energy estimate cannot be closed by itself.
Fortunately, this term is bounded by fg (Jlwell? + JJwg||* + |lw||?) ds from
(BI19) and it can be controlled by the dissipation and damping energies of
the w-equation and the z-equation. Notice that the term fot |lz(s)||? ds does
not appear in the energy estimate for the z-equation because its right-hand
side is a derivative. Thus, the combination of the energy estimates for z and

w can close both energy estimates.

4. A Priori Estimates

4.1. A priori assumption

In order to perform the a priori energy estimate, let us assume that it

holds for local in time solutions that for T° > 0,
1

or = OmxT;) (N0 =) + 1Fw(®) g ) <1 (4.1)

Here, ||-||gzs is the Sobolev norm and ||-|| is the L? norm. Under the smallness
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assumption of d7 + 9, our goal is to show that ér is bounded by dg + §, where

1
b0 = 3 (I10F 20 + 19Fw(0)]] 752+ (4.2)
k=0

involves only the initial data.

Lemma 4.1. Under the assumption (L1), we have
1 . 3 1 3
SVP- St w<gVpr, 5p- S p S gp+s (4.3)

Proof. From BI9), ||z|| < O(]|w]]). The lemma follows easily from the
smallness of ||z]| 1, ||w||z1 and Sobolev embedding. O

We have the following relations between z, and w.

Lemma 4.2. It holds that
[[wl]| ~ |2zl (4.4)

and
k

J
0Foial = 33" O6r + o)l 0<2k+5<5  (45)
=0 i=0

provided ép < 1.
Proof. The proof follows easily from the relation:
= (2n 4+ w)w
assumption (4.1]), (2.3) and Lemma [4.1] O

We have some basic estimates.

Lemma 4.3. Under the assumption (&1)), it holds that for 0 <t <T

ZII@ () 115~ %,le@ () pro—2t,

Znafn i %,Zna’f Dl grisn = O(67 + ).
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Proof. From w-equation ([3.I3]), wy can be expressed in terms of 9F 92~k
with &£ < 1. From assumption (£1), we get ||wy|| g1 = O(d7). The estimates
for ||zz|lms, || 22t]| s follows from Lemma and assumption (LI). The
estimate for ||z g2 follows from the z-equation (B.6]). The estimates for 7

comes from (33), (I12), (£I). From J =7 — P(n); and the estimates of 7
and Lemma [4.2] we get the estimates for J. O

From the relations: n = —z, 2z, = 2n+w)w, 2(n+ w)w + 2w = —1ny,

we can get the following equivalent relations.

Lemma 4.4. Under the assumption (&1]), the following norms are equiva-
lent whenever one of them is small:

I2llme + llzell s ~ Wzl + lnllgs ~ 120+ llwllgs + [9] g4

~ 2l + llwllgs + [zl + [[well s (4.7)

We recall that the nonlinear terms have the following expression:

B €2 (Wy + 242)? 2
fl - 4 W—i-Zx p(W)t 4 me:
_ (p(W)s + zt)2
fo = WL
+ 2z
fs = p(W + 2;) = p(W) = p'(W)z,.
and ( )2 2 ( )2 2
o ﬁt""wt E_nxx+wxx _€_~ =
g1 = it w + 4 7+ w 4nxxxx e,
(n

1 [(P(). —n)?
P = 2<n+w>{ (7t + w)? ]
g = [0 (74 w)?) =P (7)) (i + w2)], -

From Lemmas 23] 4.1 [4.3] we have the following a priori estimates.

Lemma 4.5. Under the assumption (AIl), the nonlinear terms have the

following a-priori estimates:
Ji = O(07 + 6)zze + O(d)r2,

fo = O(61 +8)zt + O(0)ra,
fz = O(07)z2,
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where the function ri(x,t) is related to the k" x—derivative of W. It is
defined such that

re(t)||e < C(L+ )72 =0,1,2,... . (4.8)

Lemma 4.6. Under the assumption (A1), the nonlinear terms have the
following a-priori estimates:

g1 = (a1wy)z + O(8 4 d7)wy + O(8)ry
g2 = (aowy)z + (bawy)z + O(6 + 67)(w + wy + wy) + O(8)ry
g3 = (aswy)y + (07 + 0)(w + wy)
where
o Ctw. P
4 n4w P
az = p'((i+w)*) —p'(d*) = O(w).

Lemma 4.7. Under the assumption (LI), the higher order derivatives of
the nonlinear terms have the following a-priori estimates: for 0 < j < 3,

J+1 J
gy = (@0 w)s + 00r +8)( 3o Ohw+ Y dhwr) +0)ra,
i=1 1=1
. _ _ i+l i
Olgs = (207w, + (badwn)e + O(r +6) (D Ohw + > dhawy)
i=1 i=1
+O(5)Tj+4
, ' L
0lgs = (asdlt'w), + O(6r +6) > dhw.
i=1

4.2. Estimates for (z, z)

Lemma 4.8. For the local in time solutions z(t), it holds for 0 <t <T that

00 2

1 1 €
SO+ ZI=OF + [ pW)a2 do+ S leaalt)P

—00
t 2 .
€ 1 1
4 [ (Gl Sl + 5 [ pO00)2a0) ds
0 —00

< O(80 + 0)* + (a+ O(67 + 6)) /0 ([lzz()1* + 2ae()]1?) ds, (4.9)
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where o 1s a constant such that

a+ 00 +r) < % min(1,v). (4.10)

Proof. Multiplying ([B8.6]) with (z+ 22;) and integrating over R, we get after
integration by parts

o0 o0

d 1 g2
& (el 30e? + el + [

7 3 ztzda:)

p(W)z2dx —I-/

o0

2
£
+Z||wa||2 + [z ||? —I—/ P (W) ze - (2 + 22)dx

—0o0

- / T et 2200alfi + o+ fr)dn

—00

The diffusion term on the left-hand side has the following estimate:

/OO p’(W)zx-(z+2zt)xdx2/oo(p’(W)—O(5+5T))z§dx+i oop'(W)z:%dm

—00 —00 dt —00

Using Lemma for f,, and Cauchy’s inequality, we get

‘/_oo(f1+f2+f3)~(z+22t)xdx

< alllzel? + llzal®) + O AN + 1207 + 1 £311%)
< alllzl® + llzatl®) + O@r+6) 2z >+l 22 1+ l12]%) +O(6%) (1) 7.

Combining these estimates, we get

d 1 g2
& (e 3012 + Flzaal? + |

—0o0

oo

p'(W)22 d:z:—l—/ ztzda:>

oo

62
‘|’Z||zmm||2+(1_Q_O(5+5T))||Zt”2+/ (' (W)—a=0(6+ér))2;dx

—00

< (a+ 01 + ) (llzaall? + l2e®) + O(E2)(L + 1) ~3/2.

Integrating this in time from 0 to ¢, applying Cauchy’s inequality for [ z:z dx,
we get (4.9)), provided o and § + o7 satisfy (£.10]). O
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4.3. Estimates for (w,wy,wy)
4.3.1. Basic estimates

Lemma 4.9. For the local in time solutions w, it holds

1 1 1 [ g2
§||wt(t)||2 + lew(t)ll2 + 5/ p(W)w? dz + zllwm(t)ll2

t 52 9 1 9 1 o]
+/ —|wae (8)]|7 + =||we(s —I——/ o (W)w?dz) ds
(G lwas )P + Sl +5 | o (W)uide)

—00

< 0@ +0)2 + (a +O(6r + 5)) /Ot l[w(s)||? ds, (4.11)

for 0 <t < T, provided that ép + & is small enough. Here, a is defined by

(E.10).
Proof. Multiply (B.I3) with (w + 2w;) and integrate it by part over R:

o0 o0

d 1 g2
& (el + Sl + e+
2 4 -
g2 2 2 > 2
F el 4 ol + [ Oy o

—00
o0

= /_OO o1 (p' (W))w? da +/ (w + 2w) (g1 + g2 + g3)dx

—00

' (W)w? dx + / wiw da:)

—00

= Igp+ 1+ I+ Is.

From Lemma 23] the term Iy has the following estimate:

Iy = /oo P (W)w? de = O(0)]||ws . (4.12)

—00

From Lemma [£.6] integration-by-part and Cauchy’s inequality, we get

/ wgrdx < —/ alwidx—/ (0za1)wywdz

+C(8 4 07)||we|? + af|lw||? + C2(1 + )77/
< C(6+ o) (Jwel® + llwal|* + [lw]|?) + allw||? + C82(1 +)~/2,
/ 2wgrdr < —/ a12Wp Wyt dx
+C(8 4 07)||we]|? + aof|we||> + C6*(1 +1)~7/?
d o0

< -2 | awddo+ O(6+6r)([wel -+ lfws|?)+alluw |2 +Co* (14772
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Here, we have used
[0za1([L=, [[Orar]| e = O(6 + 6r),

‘/ oy (w+we) dz| < alfwl® + lwe]?) + O()(1 + )7/,

For go, we get

/OO wgadr < /OO w - [(agwy)e + (bowy),] do

—00 —00

£z + 8) (w2 + el + [wel?) + aljw] + Co(1 + 1) 72
< 007 + 8)(lwal® + [wl + [[we*) + al|w]® + C>(1 + )7/,
2/00 wygadr < /OO 2wy - [(agwy ) + (bowy),) da
H06r 1 8) (0l + e + el + e + C8(1 4 1)
<~ 2 ([ aautds) + 00z + 8)(wl? + P + )
+Oé||wt||20i>|- C82(1+1)" /2

Here, we have used Lemma [£3] and the estimates
[0z az]| Lo, |0raz|| Lo, 10Dz L=, = O(6 + or),

which also follow from Lemma (3]l For g3, we get

[e.e] d oo
| 2wgades— 5 [ anudderO6r-+0) sl + o+ P

— 00

Here, we have used
l0zas|| Lo, [|0saz|| o = O( + 67).

We combine the above estimates to get

d 2 1 2, € 2 R 2
(el + ol + Flwsal®+ [ @/ OF) + a1 + a3 + ag) wlda

dt 4 oo
00 62
—I-/ wtwdw) + ZmeHz + (1 = 20— O(6 + 67)) |Jwe||?
—I-/ (p'(W) - 00+ 5T)) w?c dx

< (a+ 0@+ 7)) |wl®
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Integrating it in time from 0 to t, then applying Cauchy’s inequality for
J wwy, using p'(W) > v > 0, and choosing a and 6 + 0y to satisfy (@I0), we
can obtain (A.IT]). O

Proposition 4.10. For local in time classical solution, it holds that

2@l + lze @)1 + [lw(®) 12 + llwe(®)]”

+/0 (Ilze(8)]12 + [[w(s)[| 72 + [[we(s)]|?) ds < C(S0 + 6)>. (4.13)

provided dT + § is small enough.

Proof. We add (4.9]) and (4.11)) together. The terms on its right-hand side
are fot(Hzm(s)H2 + |lzze(8)||?) ds and fot lw(s)||? ds, which can be estimated
through the relations in Lemma F.2] as the follows:

t 2 ¢ 2
/0 Jw(s)|? < /0 O(1) 12 (s)]2,
and

t t t

/0 2 < /0 O + b2 (> + e |?) < /0 O + 602 (|2 |2+ llwr]|?)
t t t

/0 oa? < /0 O + b2 (> + s |?) < /0 O + 602 (|2 |2+ 1w |?)

These terms can be absorbed into the damping and diffusion terms of z and
w on the left-hand side, provided d + 7 is sufficiently small. O

4.3.2. Higher order estimates

Applying the similar procedure in proving Lemma 9] we further esti-
mate higher order derivatives of w as the follows. We perform [*_ 04 B.I3)-

8%(11) + 2wy) dx. After integrating by part, we get
Ly R j g2
5 105w2 + lgwel? + 032w
o
+/ (Odwy - Dfw + p' (W) w]?) d:r}
—00

00 . ' 2 '
[ AW P + g ? + ok

—00

= Ip+ / (8%11) + 28%%[)08%(91 + g2 + gg)daz

— 00
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= Ig+ 11 + 1o+ I3, (4.14)

b= | [ O W)w) 05 (w4 2w) + (14 ) (9 (W)L )] d

—00

< 00+ 67) ([[wllFpse + llwell) -

Here, we have used Lemmas 23] 2.4 4.3l The rest terms on the right-hand
side are estimated as follows.

L < —% /_: a1 (03 w)? dz + C (o7 + ) (lwe]| 5 + [[we )
a0 w||? + (| @w|?) + CO*(1 4 )T,
_% ( /_Z as (00t 1w)? da:) + 067 + 0) (||well 3y + 1wl 1)
+a(||Zw]? + [|0dw|?) + O(6) (1 + 1) 7/2,

Iy < O(br + 8)(|lwell3ys + lwlFrer)-

I, <

The substitution of these estimates into ([&I4]) leads to

d 1 Jj 2 J 2 62 J+2 2

d R , .
e [/ (Hwy - Pw + (P (W) + a1 + az + a3)[02 T w]?) da

—00

2 . )
+ 107 2w]? + (1 = & = O3 + b)) |||
—I-/ (P (W) —a — 06 + 67))|04 T w|?dx

< 007 + 8)(Jwell s + llwllFpsen) +OG%) (1 +6)777/%, j=1,2,3. (4.15)

Integrating this inequality from 0 to ¢ and taking summation of it (4.I5l)
with respect to j = 0,1, 2,3, we get

()1l + llwe () 177 +/0 (lws (3)lI74 + llwe(s)l 72 )ds

< O(r +9) / ()12 + llwa(s)35) ds
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+0(6 + 67) /t |w(s)||? ds + O(5 + 6)* + O(dg + 86)?.  (4.16)
0

The first term on the right-hand side can be absorbed into the the damping
energy and dissipation energy on the left-hand side. The term fg lw(s)||? ds =
O(8 + 60)? by ([EI3). Thus, we obtain

Ilw(t)H?{erHwt(t)lﬁzﬁ/o (lwz (3) 1774 + lwe($)l7g2)ds < C(60+6), (4.17)

provided that d7 + ¢ is small enough.

Similarly, by performming

3
/Z 0,02BI3) - 0,07 (w + 2wy) do,
j=0
we can get

¢
lwe (@) 7gs + llwee ()1 72 +/0 (lwea ()12 + llwee(s)F2) ds < C(do + 6)%.

(4.18)

Combining (4.13)), (417) and (£I8]), we obtain the a priori energy estimate:

Theorem 4.11. For local in-time solutions (z,w), it holds for 0 <t < T
that
Iz + ll2e@I + w7 + w7z + llwellz

t
+/0 (lze()? + lwa ()32 +lwe () 5s +[[wee (5) [ Fr1)ds < C(0+6)%,(4.19)
for 0 <t <T, provided 6 + 6 < 1. Where

do =: [2O)] + |z O} + [[w(O) 5 + l[we (0) ]| g5

4.4. Proof of global existence

Proof of Theorem [1.1] : global existence. The local existence of (clas-
sical) solutions can be done by using the same argument as in [12]. The
Theorem [4.11] shows that the local solutions satisfy the uniform bounds for
(any) short time (and therefore satisfies (4.I]) too) when initial perturbations
are small enough. By using the continuous argument, we extend the local
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solution globally in time, which also satisfies Theorem FEIT] for any time.
The proof is completed. O

Proof of Theorem : global existence. From ([L24) and ([25]), we
find (S 4 Th(W)) satisfies

(S+7h(W))+ %uz +h(p)—h(W) = %52 (\/\ﬁ/ﬁ)m - %(S—FT]I(W)) +7h(W),
where W = W (- + zo,t). We express this equation in (w,n):
n)e —1)° _ _
(5 + 7h V)i = £(8 + 7h(W)) = ~ SRl — (b w)?) ~ ()
%52% + Th(W),.

Multiply above equation with (S + 7h(W)) and integrate over R. Using
Theorem [[.T] Lemma [2.3] and Cauchy’s inequality, we have

((S+Th(W))?) (S+7h(W))* < OW)(Inl]* + l[wllF2) + O (1 +1) 7/

1
t 2T
This leads to

1S(,t) + Th(W (- + 0, 1))
< 1180 + Th (W (- + 20,0)) |[2e¥/?>" + C5(1 + t)~3/?

+C(Inl? + llwllz2) (4.20)
and
IS (o) + Th(W (- + 20, 1) 775
< |1So+Th (W (- + 20,0)) [35e~ /%" + C*(1 +1) 7%
+C(IInlls + lwlls)- (4.21)
Thus, the proof is completed. O

5. Time decay rate

5.1. A priori decay assumption and the main result

We shall use the idea in [23, 122] to obtain the explicit time decay rate
for the global classical solutions and we need more estimates on higher order
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(both space and time) derivatives. It is not difficult to verify that Theo-
rem [I.IHI.2] are also valid for solution with arbitrarily higher Sobolev regu-

larity. In this section, we consider that the solutions satisfy
2 € C*0,00; H=2), w e C*(0,00; H*2%) k = 0,1, 2.

To perform a priori decay estimate, let us assume that for the global classical

solution it holds a-priori that

1 5-2k
o 1= max [0l + (1 + Ol 0] + 3 3 1+ 0T ook
+(1 +t)3||agw(t)||} <1. (5.1)

Notice that when T = 0,

1 6-2k

8o = 12(0)[| + 1= (O} + D > loFdfw(0)]| < 1. (5:2)

k=0 7=0

Under the assumption dy < 1, we can repeat the same argument in the
previous section to get the existence of global classical solution with the

following energy estimate

2O + [z + lw@®)lgs + lwe (@)l s + lweell g2

T
+/0 (lze()ll + llw(s) s + llwe(s)l s + llwie (s)][ =) ds < C(do + 9)- (5.3)

The main result in this section is

Theorem 5.1. Under the assumption (5.1l), it holds for the global solutions
(z,w) that

N

5-2 '
5 [ -+ kool + [ 01+ s>i+2’“||afa;w<s>||2ds}
k=0 i=0 0
3 —2k t
S [1+t Feofoi 0 + [ (1+s>i+2’f-1||afa;z<s>||2ds}
0

k=0 =1
O(do + 6)°, (5.4)

IN
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for 0 <t < T, provided § + op is small enough. Here &y denotes the initial
perturbation (5.2)).

Proof of Theorems [I1.1HI1.2: decay rate. In terms of the Sobolev Em-
bedding theorem

e < A2 - 11FalM2, (5:5)

and (£20)—{21)), we can infer from Theorem (.1 that

n(.,t) = VW (. + 20, 1) [z < C(80 + 8)(1 +1)~3/4, (5.6)
(o t) +7p (W (. +20,)), 1o < C(80 +8)(1+1)">/4. (5.7)
1(SCot) + Th (W (- +z0,1)), e < C(Bo + )1 +1)744, (5.8)

by which we complete the proofs of Theorems [L.THL.2

Strategy to prove Theorem[5.1: We shall obtain decay estimates through

the following procedures:

P,(k,j;i) =: /Ot(l +5)! /00 [(8f8g(z-equation)) . (afa;z)] drds (5.9)

—0o0

Py(k,j;1) =: /Ot(l + 5)° /OO {(8f8£(w—equation)) . (8;"’89{10)] dx ds. (5.10)

Let us define

5—2

2 t
NE=3 ) [(1 + ) 0P 0L w(n) [P + / (1+ )" 2F)|9f OLw(s)|? dS]
k=0 i=0 0

N

3 t
P +Y [<1+t>2’“uafz<t>u2+ / <1+s>2’f-1uafz<s>u2ds] (5.11)

k=1

From Lemma [53 below, N is equivalent to the right-hand side of (5.4]). So,

our goal is to show

N < O(6 + 6). (5.12)

5.2. Basic estimates

Lemma 5.2. Under the assumption (5.10), it holds that for 0 < j 4+ 2k <5,
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2<p<o

10F 85w (t)|| e = O(67)(1 + ¢)~3/AFY2=3/2k for 0 <t < T. (5.13)

Proof. For k = 0,1, this basically follows from assumption 5.1l The esti-
mate for wy follows from w-equation (BI3). O

From the relation z, = (27 + w)w, and using (Z.3) for 7, assumption
(51I) and Lemma for w, we can obtain the following relations between
zz and w.

Lemma 5.3. Under the assumption (5.1), it holds that

k J

1Rz, = 3 5" 061 +8)(1 + 1) PHED2)9lgia]|, 0 < 2k + 5 < 5.
=0 i=0

(5.14)

The assumption [5.1] also implies the following estimates for z, n and J.

Lemma 5.4. Under the assumption (B.1), we have for 0 <t <T,2<p<

OOJ
10887 2(8)|r < O(Sp 4 6)(1+8) Y/ AH1/2p=3/2=k < j 4 2k < 6,

10E82n(t)||e < O(6p + 6)(1+1)>/4H1/2p=3/27k < j 49k <4, (5.15)
10F02 T (t)|| e < O(7 + 6)(1+1)Y2H1/2p=3/27k o < j 4 9k < 4.

AN

Proof. The first estimate follows from Lemma and assumption (5.1]).
The second estimate comes from n = —z;. From J = n — P(n), and (Z3)),
we obtain the last estimate.

Next, we use Lemmas and B.4] to give a priori estimates for the
nonlinear terms f; and g; as the follows.

1 (W, + 2z2)?
Al = '46 W + z,
< 087 + 6)(1 + t)"Y?| 250 + O(6)r2
|amf1| < O(5T + 5) |:(1 + t)_1/2|zwxw| + (1 + t)_1|zmc|:| + 0(5)7“3

1
- p(W)t - ZE2WZ‘Z‘

D1l < O +6) [(1+ 7 2] + (1O |zl + (14 )72
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+O(5)7‘4
W)y + 2)? _

‘(MW)T;”‘ <O+ 67) (14 1) V22| + O(6)ry
O(6 +0r) |(1+ )72 zta ] + (L4 1) 2ol + (1 + )7
+O(5)7‘3
O(6 +8r) [(1+ )7 20l + (14 8) " zaa] + (L4 1)732]z
+O(5)T4
Ip(W + 25) = p(W) — p' (W) 2y |
O(|22]?) < O(O7)(1 + )12z,
O(67) (1 + )7V 2,4
O07)(1 4 )72 2.
('FLt + wt)2 i (ﬁmm + wmm)2 . i~ =

At w 1 htw g Mrar T T
a1 Waz + O(1) (8 + 67)(1 + ) " Lwy + O(1)dry (5.16)

@1 tyag + O(0)rs + O + 87) [(1+ ) 2wy + (14 6) 2w
F(L 4 )3 + (1 + 1) wm}

a1 Wegt + O(0)rg + O(0 + 1) [(1 1) 2w + (1 + )",

F(1 402w+ (1 + 1) Pwg + (1+ t)_lwtt]

1 [(P(ﬁ)x — 77)2}
2(n + w) (n+w)? |,
AWy + bowyy + O(0)ry

+O(5 + 87) [(1 )73 20, + (14 t) " + (1 + t)‘%}

@20z + batzat + O(0)15 + O3 +97) [(1+ 1) way
+(1+t)_3/2wx:c+(1—|—t)_2’wx+(1+t)_3/2wt+(1+t)_5/2w}
AWyt +batwygy +O(8)r6 +O(5+07) [(1+t)_2wm+(1+t)_3/ Wy
+(1+t)_1wtt+(1—|—t)_5/2wx—|—(1+t)_2wt+(1—|—t)_3w}

[P (4w)*) = (7%)) (7 + w2)]

azWgy + O(6 + 07) [(1 + 1)V 2w, + (1 + t)—lw}
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0293 = 3Wgzz+O(6+407) [(1+t)_1/2wm+(1+t)_1wx—|—(1+t)_3/2w}
0193 = a3Weg + O(6 + 01) [(1 1) Y20, + (1 41) 3 2w,
(4 w4+ (1 + t)—2w]
Ol (W)wsla = [ (W )waao + O0) [(14+ )M + (14 67 2wy, |
Ol (W)wy]e = [p'(W)wie]e + O(9) [(1 )3 2w, + (14 t)‘1/2wzt}
Here, we recall that

5_2nm+wm a _J_2 2J ,

“= 4 n 4+ w

and we have used

larlle = O +dr)(1+1)",
lazllc = O@r)(1+1)~"
b2l = O@r)(1+18)2,
lasllo = O@r)(1+1)~%*,
larellec = O +5T)(1+t)_3/2,
laszlloe = O +67)(1 + )72,
Hb27:c”oo =0

6+ 8r)(1+1)7,

”a37x”oo =0 )
S+07r)(1+1)72,
)
2

(

(

(

(

(6

(6

(67)(1 + )71

(

lar oo = O

laztlloo = O+ 7)1+t —2
Ib2lloe = O(Br)(1+1)7%2,
lasilloo = OB+ 67)(1+1)"7/%.

which follow from assumption (5.I). We summarize the above estimates as
the following lemma.

Lemma 5.5. Under the assumption (5.10), we have for0 <t <T, 2k+j < 4,

k j+2k—21
OFIAl < OB +6r)Y ) > (148 2029001 2 |
=0 =0
+O0(0)rot2k4j
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k j+2k—21
OF i fol < OB +67)Y 0 Y (L) /2 AH=G=0/219l51 5|
=0 =0
+0(6)ra1 2k 4
k j+2k—21
070Lfs] < O@+06r) Y Y (L) 2HUm021900, 2|
=0 =0

g = [a10f Ojwale + O(0)rasony;

k j+2k—21
+O(0+0r) > Y (L + 1) EHU029001
=0 =0

8589192 = [azafaa{wx]x + [anfa:]z;wt]x + 0(5)7’4+2k+j
k+1j+2k—20+1 o .
O(6 + 67) Z Z (14 )27 FH=G=0D729 i gy

k j+2k—20+1
0f0lgs = [a30fOlwela+0(6+07)> > (1+) FHU0200 0
=0 i=0

OF I (W)wele = [p'(W)OF Hwy]a
k j+2k-2I
+O(5—|— 5T)Z Z (1 _|_t)—1/2—k+l—(j—i)/26é8;ww
=0 0

5.3. Decay estimates for w

We have seen that by performming ZOSJS4 P,(0,4;0) + P,(0,0;0), we

have got the following energy estimate for (z,w):

Proposition 5.6. Under the assumption (&1, it holds for the global solu-
tion (z,w) that

12132 + 1O + lw®) e + lwe®)lIF
JoUlze ()17 + Ize() 1% + ()36 + llwi(s)134) ds < C(So + 6)15.17)

provided g + 6 < 1.

The integral part of (5.17]) will be used for the next-order decay estimate.

Proposition 5.7. Under the assumption (5.1, it holds for the global solu-
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tions w that
4 . .
SO+ 0 (05wt [2s + 03w (1)?)
7=0
+Z / (L4 s (100w (s) |2 + [Bwi(s)|?) ds < O(N),  (5.18)
—Jo

provided that & + 5 is small enough. Where

= (6 +00)* + (6 + 07)d7. (5.19)

Proof. We perform [ H@I3) - & (w + 2w,) dx for j = 0,...,4. Using
integration by part, we obtain
d : o0 ,
4 (10wl + ozl + [ @+ ol
% o +1 €% oiv2, 12 12
+ [ Own- 0 wdn) + (107wl + 9w
+ [ H )it do)

—00

< / (2(g1 + g2 + g3) - 0% (w + 2wy)) da + Lo + I, (5.20)

— o0
where

o [ 0 2 ) - 050
oo (5.21)

B [T 0L ) - 220/ )05 ]

—00

By using Lemmal[5.5] the terms on the right-hand side of (5.20]) are estimated

as the follows.
) J
|IO‘ < O((S)Hagc—’_leQ—i—O Z 1—|—t —-1- ]+zHasz2
i=1

| = / [ (W) (07 0)? — 2 [ W)y — O (5 (W), - Oy dx

< 0O) 1+ )Mo w]? + | O
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2
+H 6]wz_8j( (W )ww)]wH
< 0@)(L+ )M w|? + alldfw® +0(6) Y (1 + ) > |gpw]?
1=1
< af|ddw® +0(0) Y1+ )72 | 0w (5.22)
=1

/ 8%(91 +92) - 8%11) dx

< —/ (a1 + a2) (@ )2 da + a(1 + £) L@ w|?

—00
1 j4+1-21
+(1+0)[06+0r)7Y - D (14T 90k w|2+0(0%) rass
=0 =0

IN

—/ (a1 + a2) (3T w)? de + (1 + ) 7| dlw||?

1 j+1-21
O@+67)* > Y (L+t) 0Lk w|[*+O(8%) (1+) />~
=0 =0

/ 8%(91 +92) - 28%wt dx

d o0 . .
< 4 ([ @+ aeropac) +aloful? + 00l + el?

< 2 ([ @+ @ as) + el

1 j+1-2
+OG+67)2 S0 3T (L4 1) I gl w2
=0 =0

+0(0%)(1 41)77/279 (5.23)

/ 8Jw dx

= ‘/ a3(97 ) dz + O(8 + o7)(1 + £) |9

+O@G+0or)(1+1t) D> (14527 olw|?

1<i<j+1
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00 g+l
< _/ a3(9 M w)? dz + O(8 +6r) Y _(1+ )~ 7| aw||?

—© i=0

/ 8193 - 205wy dar < —% (/ a3 (9] 'w)? da:> + o[ 0wy |?

j+1
+O(8+067) > (L +1)7>77 4| 9kw| . (5.24)
i=0
Hence, we obtain for j =0,...,4
d(iaj w2, Liaj n2 <y i1, N2
= (Nogw + Slogwl? + [ (W) = 0 + 1)) (934 w)? da

g2 . oo .
+Z||8§E+2w||2 + / Hwy - 05w da:)
—00

2 . .
+ (I8 + (1= @ = O + o)) B

+ /OO (P'(W) = a = O(67 + 68)) (8 w)? da;)

—0o0

J
O(6 + o7 + ) Z (14 t)" 1749l w|?
1=

-1
+0(6 + 5T) (14 6) 0w + 06D (1 + 1) ™277. (5.25)
=0

Now, take j = 0 in the above equation. We perform fg(l +5)'(5.28) j_ ds
for ¢ = 1. This yields
2 2 ! 2 2
(1 + ) (lw(®)[[2 + l[we ()] )+/0 (1 + ) (lwe ()72 + lwe(s)7) ds
t
< 0o+ 87 + [ (o)l + un(9)]) ds

t
+O(5 + 61 + ) / lw(s)|2 ds < O(Ny). (5.26)

0

Here, the last step follows from (517]).

Next, we perform fot(l + 5)(B.25);_; ds. When ¢ = 1, using (5.17), we
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get
2 2 ¢ 2 2
u+wwmmm+Mwwm+Au+$w%wmpﬂmmwmw
t
gcm+&ﬁ+/mw@mp+wmwﬂ@
0

+/0 [O(6 + 6r + ) (wa(s)|]2 +(1+ 5)_1Hw(3)|]2)] ds
< O(MNy).

Now, we combine this with the result in (5.20]) to get
t
[ @+ o)+ lwaP)ds 0. (527
Thirdly, we perform [ (1 + 5)*(B.28);_, ds. Using (5.27), we obtain

(1482 (lwa (D172 + l[wae®)

t
[ @ P o) + ()] ds < OV,
0
For j = 2,3, 4, through the same procedures

t
/ (1 + )i (B23), ds
0
fori=1,...,7+ 1, we can inductively obtain that for j = 2,3,4
(L + (105w (t) 52 + 105w (8)]1?)
t
+/ (L+ )" (107 we(s) [ 71 + |0we(s)]?) ds < O(IN:). O

0

Proposition 5.8. Under the assumption (B51I), it holds for the global solu-
tions w that for j =0,...,4, 0<t<T,

t
(1+t)]+2(\\3iwt(t)”2+H5i+1w(t)”%p)+/ (1+5)7*2(|8]wi(s)]|* ds < O(N),
0
(5.28)
provided § + dp is small enough. Where Ny is defined by G19).
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Proof. For j =0,...,4, we perform
o . .
/ o) BI3) - 20wy dx.
—0o0
By integration by parts, we obtain

. S . 2 . .
& (1o + [ w0 @2y do+ 1050l ) + 0

< af|dw® + 23: 102 gm|* + I
m=0
where [; is defined by (5.21I)). We use (5.22)), (5.23)), (5.24]) and
/OO Sray; Py dr < ol |2 + O(82)(1 + 1)/
to get

d . o0 ) 2
— [||a;wt||2 + / (W) + a1 + az + a3) (09 w)? + %H@;”wﬂz}

dt -
+(1— a— 05 +57)) 0w
< 0@ +0r)( 3+ D2 D] + 301+ 1) 72 Dl
=0 =0
+O(6H) (1 +)77/27, (5.29)

Multiplying this equation by (1 + s)7*2 and integrating it from 0 to ¢, using
Proposition 5.7} we obtain (5.28)]). O

Similar to the procedures to estimate w and its z-derivatives, we perform

the procedures

/ &9 0F (w-equation) - #20F (w + 2w;) dz for 0 < j + 2k < 4

and
/ & 0F (w-equation) - 320F 2w, da for 0 <542k < 4.

These lead to the following proposition. Its proof is omitted.
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Proposition 5.9. Under the assumption (B.1l), it holds for the global solu-
tions w, 0 < j 42k < 4, that

L+ 025 (0F oo (8)|2 + 19F DFwn (1))
t
4 [ @ s (10Fort ()3 + |0F0un(s) ) ds < O(N),(5.30)
0

(1+ 0272 (| f (D)2 + 110F e (1)1 )

t
+ / (14 8)2H52)|9Fdlwy (s) || ds < O(Ny), (5.31)
0

provided that & + o1 is small enough. Here,

Ny = (64 60)? + (5 + 67)6%.

5.4. Decay estimates for z;, z;; and zy;

Proposition 5.10. Under the assumption (5.1)), it holds for the global so-
lutions z that for k =0,1,2,

(1+ 0% (J0F2Ol3 + 0k 2011
+/u+@%m%%@@rwwawwymsmmx (5.32)
0
(L + 02 (10F 20 (8) I3 + 108 =(8)]2)

t
+/ (14 )20k 2, (s) )% ds < O(Ny), (5.33)
0

for 0 <t <T, provided that 6 + o7 is small enough.

Proof. By performming the procedure
[ee] [e.e]
/ OF (z-equation) - OF (z + 22;) dx and / OF (z-equation) - OF2z; da
—0o0 —00
for £ =0, 1,2 and integrating by part, we get

d 1 00 52
G (00kal + S0kl + [~ pW)(0Fen)? do + ozl

o) 62
+/ afzx-afztdx)+Hafzt|y2+z|yafzmu2+/ P'(W)(0f2)” da

—00



538 I-LIANG CHERN AND HAI-LIANG LI [December

I 3
/ ( Of fmyz - O} z+2,zt)) dx + Jo + Ji, (5.34)
X Tm=0
and
d k. 112 < k. \2 e k 2 k_ (12
S0kl + [ A V)@ 2) de+ S0k 20l ) + 0K
oo 3
= / ( Z 8ffm,x . 8f2zt> dx + Jq, (5.35)
—° "m=0
where

Jo = /OO Kp’(W)@fzx —8f(p’(W)zx)> (8fzx)] dzx,
e (5.36)
Jy = / [at (p'(W)(@fzx)2> —28f(p'(W)zx)-(8fzxt)] da.

—00

By using Lemma [5.5] we get

|Jo

IN

k-1
O(8)]|0F 2 |* + O(8) D (1 + 1)~ |0}z |*
1=0

IN

k
Z 1—|—t 2k+2lHal H
=0

dzx

|ﬁ\=§KmZWW%@MM2—2@TWﬁf%—3ﬂﬂWU%ﬂ'%%x
O@)(1 + 1) 02l + 0@) (1 + )0 2
#5707 [ W)k — 0f /(W)=

OB) (1 + 1) H|0F 2| + O(8) (1 + )]0y 2,2
k—1
+O(8) Y (1 +8) 22 |o) 2, |2
=0
k+1
< 0(5)2(1+t)‘1‘2k+2lH0in2
(=0

[%%m+h+h%%%m

IN

IN

< [0Fzal? + 01) (108 A1 + 105 £l + 10F £3]12)
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/ OF(f1+ fot f3)  Of gy da

< (1L+0))oF 2> + o) (1 +1)~! (Haffl\\? 410k fo2 + Haffguz)

k+1
< (6 +67) Y (1407w
=0
+O)(1+ 7 (108112 + 108 f211 + 110 fol?)
k 2k—-21 ‘ ‘
IOF fill* < O@ +67) Y~ D (1417 22 90, 20 |* + O(6%) [rasan
=0 =0
k 142k-2I ' '
< O(5+5T Z Z (1+t)—2—2k+2l+1||§£a;w”2
=0 =1
0(52)( t) 3/2—2k
k 2k—-21
10F fol* < O +67) Y~ D (L+1) 7 229,00 24> + O(6%) [rosan
=0 =0
k
<SO@ +06r) Y (1+1) 7722 9pz
=0
k+12k—20—1 ' '
_|_Z Z (1+t)_2_2k+2l+l||8i8;2x”2

=1 =0
+O(8%) (1 +t)=3/272F

k+1
< 0(5 + 5T) Z(l + t)_3_2k+2l”8iZH2
=1
k+12k—20—1 ' '
+Y > (L) PR g0k w]P 4+ O(8) (1 +¢) 322
=1 =0
k 2k—21
10F f3]|* < O(8 + d7) Z (1 4 )~ 1 2k+20+i) glgi , 112
=0
k 2k—21 ' '
< 0(5 + 5T) Z (1 + t)_1_2k+2l+2||8£8;w||2.
=0 =0
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Putting all these together, (5.34]) becomes

o0

d 1 g2
G (00kal? + g0k + [~y w0k do + okl

—0o0

0 62
+/ Ow, - OFw, da:) + (1 =05+ o)) 0F 2| + ZH@fzmHQ

+/°0 (p/(W) — 0(5)) (8{“%)2 dx

—0o0

k

06+ 8r)| Do (1+ 67 o2 + (1 + 1) ]
=0

k 2k—2l

+Z Z (1+1) 11— 2k+2z+z”8181w”2+z (1+1) 1”818% 20+1 w| ]

=0 i=1 =0
k
OB +06r) > (14137 olz|> + O(3%) (1 + ) 73/272F. (5.37)
=1

And (5.35]) becomes

d *° g2
& (10l + [~ pOv@= i+ S okenal?) + ok

—00
k-+1
< O +67) [ > (L+1)72F 12 olw|”
1=0
kE 2k—2l
_|_Z Z 1—|—t —2— 2k+2l+1||8lazw||2+z 1—|—t 2||6l82k 21+1 ||]
1=0 i=1 1=0

O(5 + o7) zk: 1+ )~ 20 42 9|12 4 O(62)(1 + £)~ 5/2-2k (5.38)
=1
We notice that from Theorem
/Ot(l + 5)%right-hand-side of (5.37) ds = O(Ny)
/Ot(l + 5)?**1right-hand-side of (5.38)ds = O(N,)
Using these, we proceed the following procedures:

t
e For k=0, / (537),,_, ds leads to (5.39) below;
0
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t
For k = 0, / (1+ 5)[E38),_ ds leads to (5.40);
0

t 2k

For k=1, / Z(l + 8)' (531, ds leads to (.41));
0 =0

t
For k =1, /0 (14 )" @37),_, ds leads to (5.42);

t 2k

For k =2, / Z(l + 8)"(5.31) ,_, ds leads to (5.43));
0 =0

t
For k = 2, / (14 8)* T [E31),_, ds leads to (.44).

0

Izl + @I + | (lza(s)lFn + l2(s)]1*) ds = O(N)
0

(1 + )z ) + 2@ +/0 (1 + s)ll=e(s)]* ds = O(N1)

1+ (@)1 + (D)%)

T / (1+ 822 () + ()2 ds = O(Ny)
0

(1 + 8 (lzee @70 + N2 ()])

+/Ot(1 T )% lzu(s) 2 ds = O(N)

L+ 6)* (232 + llzeae (B)]I)

+/ (14 8) (lzeta (5171 + N1z ()]1%) ds = O(Ny)
0

(14 6)° (2 (O 71+ lze (0)]1?)

+/Ot(1 +8)° ||zt () [|> ds = O(Ny).

This completes the proof.

541

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

O

In general, we have the following proposition. Its proof is the same as

Proposition E.101 We shall not repeat it.

Proposition 5.11. Under the assumption (5.1)), it holds for the global so-
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lutions z that for 0 < j + 2k < 4,
(1+ 0% (0F 00113 + 1oF Lz
+ /O (1 927 (J0R 03 5) By + 04011 (9)]?) ds < O(V),
(L+ 02 (0F oz (8) |1 + 19800 ()]?)

t
+ / (14 8)2 4551 F 0 2, (s) |2 ds < O(IV),
0

for 0 <t <T, provided that 6 + o1 is small enough.

Proof of Theorem [5.1]. Recall

2 5-2k

t
N 35S [ oot [ (1) 0k (o) s
0

k=0 =0

2 t
NEOTESS [(1 Pt <1+s>2’f-1||afz<s>||2ds] (5.45)

k=1
and Ny = O(8 + 6)% + (6 + 07)0%. Combining all estimates in this section,
we get

N2 =0(N1) <O(6 4 8)% + (6 + N)N2.

When ¢ + §p is small enough, we can get N < O(d + dp).
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