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Abstract

In this paper, we will study the following minimization problem

inf{l/ |Du)® — 87r1n/ et we HY,

2 Jq Q

where {u € H},.(R?) : u is doubly periodic in 2, and Jou =0}, uo(z) = —4nG(z, p1) —
4nG(z,p2) and G(z,p) is the Green function of —A in © with singularity at p subject to

the periodic boundary condition. We will introduce a quantity D(p) for p € Q and prove

that if D(p) > 0 at a maximum point of ug, then the above problem has a minimizer.

1. Introduction
Let e; and es be two linear independent vectors in R?, and let
Q= {a; €R?: 2 = t1ey + taey, for some ty, ty € [0, 1]}
Suppose p; and po are two points in 2. Here, p; and ps may coincide. Let

ug(z) = —4rG(z,p1) — 4nG(z, p2), (1.1)
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where G(z,p;) is the Green function of —A in Q with singularity at p;,
subject to the periodic boundary condition. That is, G(z, p;) satisfies

1

—AG(z,pj) = Op; — @,

where §,, () is the Dirac measure at p; € €2, and || is the measure of (2.

Define

1
I(u) = 5/Q|Du|2—871'ln/ﬂe“+“°, (1.2)

H = {u € H} (R?): wis doubly periodic with periodic cell ©,

and /Qu: 0}. (1.3)

In this paper, we consider the following minimization problem:
inf{I(u): ue H}. (1.4)

By a Moser-Trudinger type inequality, I(u) is bounded from below in H.
But it is not coercive in H. It turns out that the existence of a minimizer
for (L4) is a very delicate problem.

It is well-known now that the existence of a minimizer of (I.4]) is related
to the existence of bubbling solution for the following problem:

1 Jutu _ Jutug) — 8m :
Au + et TH0(1 — o) = g, (L5)
u is doubly periodic in 92

where and ¢ is the Chern-Simons constant. In fact, Nolasco and Tarantello
[13] proved the following result:

Theorem A. There is an g9 > 0, such that for any € € (0,e0], (LE) has a
solution u., which can be decomposed to

Ue = We + Ce, /’wg:O,
Q

for some constant c. satisfying cc: — —oo as € — 0. And up to a sub-
sequence, one of the following is true
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(i) of ([@L4) is achieved, then w, — w in CU(Q) for any ¢ > 0 as ¢ — 0,
and w is a minimizer of (L4);

(ii) of (L4) is not achieved, then there exists a po € §2, satisfying uo(po) =
max,ecq uo(x) and

ewg-i-uo

fQ eWetuo - 5p07

in the sense of measure.

Concerning the minimization problem (L4]), the following result was
proved in []:

Theorem B. Suppose that € is a rectangle and py = pa. Then ([L4) is not
achieved.
More result on this problem can be found in [9].

Note that generally it is very difficult to check whether (L4]) is achieved
or not. The aim of this paper is to give another condition, which will guar-
antee the existence of a minimizer for (4.

For any p € Q, we define the following quantity

D(p) = lim
(p) = limy O\B»(p) ly — p|*

8T (V(y:p) = (p,p))Fuo (y)—uo(p) _ 1 / 1 p
- 5 4y,
R2\Q ly — p|?
where 7y(y, p) is the regular part of the Green function G(y,p). Noting that
Aug + 81Av(y,p) = 0, we find that D(p) is well defined.

The main result of this paper is the following:

Theorem 1.1. If there exists a maximum point p of ug with D(p) > 0, then
(L4)) is achieved.

The quantity D(p) was first introduced in [2]. In the last two decades,
existence of bubbling solutions have been studied extensively for Chern-
Simons model [1, 16,7, 10,(11,/12] and the related mean field equation |3, 4, §].
When the number of the vortex points is bigger than two, the Cherm-Simons
model always has bubbling solutions. The case for two vortex points is very
delicate. If D(p) < 0 at a maximum point of ug, (L3) has a bubbling
solution. See |11]. Here, we show that if D(p) > 0 at a maximum point of
up, (L4) is achieved. This result complements to the result in [11].
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In the rest of this section, let us explain the proof of Theorem [l

In [13], Nolasco and Tarantello constructed a sequence of solution u. for
(LH), satisfying

(i) ue = we + ¢ with [, w. = 0 and

e = 167e” . (1.6)
f egtiot e (1 4+ |1 — 327e? 4f9 62(u0+w6)2>
Q (fQ eu0+w5)

(i) I(we) — infyem I(u) as e — 0.

This construction shows that (I4]) has special minimization sequence, which
is related to the solution of the Chern-Simons model (H). Nolasco and
Tarantello [13] proved that the sequence w, is either convergent strongly in
H to a minimizer of I(u), or blow-up at a maximum point p of the function

up. In the blow-up case, Lemma 4.12 in [13] shows
I(we) = =87 (4my(p, p) + uo(p) + In7 + 1),
as € — 0. Thus, to prove that (I4]) is achieved, we only need to show that

u%g I(u) < =8 (47y(p,p) + uo(p) + Inm + 1). (1.7)

So, in the next section, we will construct a suitable function w € H, such
that

I(w) < =87 (47y(p,p) + uo(p) + In7 + 1),

which will imply (7).

2. The Proof of the Main Result

Without loss of generality, in this paper, we assume || = 1.
Let p € © be a maximum point of ug. Denote

82

1+ p2ly — pf?)?’

Vou(y) =1n ( > 0.
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Then, u =V, , is a solution of
—Au=e*, inR?
fRQ eu - 87T
Here, we always assume that the constant p > 0 is large.

In this section, we will construct a function w,, € H such that

I(w,) < =87 (47y(p,p) + wo(p) + Inm + 1). (2.1)
Firstly, we define wj, as follows.
()= {Vp,u(y) +8m((y.p) = 7(p:2) (1~ 5.2) y € Ba(p);
g Vo,u(d)+8m(G(y, p)— g5 In g —(p,p)) (L=512),  y€Q\ Ba(p),

(2.2)
where 6 > 0 is a fixed small constant, and the constant d is chosen to make

wy, € CY(Q). Thus, d satisfies

!
= ——(1-—
where V (y) = Vp,1(y), which gives

(pd)? 1

L+ (ud)? — ~ Op®
So, we obtain

%). (2.3)

d*>=0+0(
Then, we take L, = — [ w},(y) dy, and
wy(y) = wi(y) + L. (2.4)

So [qwu(y)dy = 0. We will prove in this section that if y > 0 is large
enough, (2.1]) holds. We have
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Proposition 2.2. We have

8D |
I(wy,) = =8 (4ny(p,p) + lgtaeag uo(x) +Inm+1) — ,ugp) + O<%).

Proof. We have

1 w U, U, —u
I(wy) = §/Q|Dwu|2—87rln/ﬂe it Lutuo(p)+uo(y)—uo(p)
1
= 5/ \Dwu|2 —8nL,, — 8muy(p) — 8w ln/ eWhtuo(y)—uo(p) (2.5)
Q Q
We estimate 8I(w”) first:
* ow*
8L 87'(' ewu"’_uo(y)_uo (p) —__K©
== | Aw,—= — 87—+ — Jo o (2.6)
Q ou o o eWhtuo(y)—uo(p)
Noting that aw“ = 88“ % and [, Aw, = 0, we find
8w owy,
Aw,—5 = —/ Aw,—- — —F Aw
/ a Q Wn 8,& "
ow*
= — | Aw,—%
/Q "o
owy,
— 1 Vou _ g(1 — —)) 2. 2.7
| (et =82 (1= g FE @)
Since L, = — [, wy,, we find
ow? L
o Ou  Op

So, we obtain from (2.7)) and (2.8)
ow oL, v 87\, oW’
/ Awu—“ — W = /52(13(1(1,,)6 Ll e—uz))a—; (29)

Write
w;i = Vpu + &us
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where

¢ :{8 T(v(y, ) = (P, p)) (1 — gz, in By(p),
ERVAGE vu+8w<G<y )=t —y(p,p)(1-72), inQ\ Bap).
Then

26 _ {87T(’Y(y,p) ~(.p)) g5 in Ba(p),

O | (Vald)= V) +87(G(y,p) — = n =7 (p,p)) 25 in O\ Ba(p).

Using the above estimate, we find

0& 167
1 eVpY/‘l’ Ja :_/ eVP:H , — s
/Q B 5 T 008 S (v(y,p) = (P, ))

1 In p
_ 0 / Vo ly — pl2) = O(2H). 2.10
(u3 Bu) vy > (u5 ) (2.10)

and

1 o€, 1 / 0 1
— | 2= — (Vu(d) = V) + O(—
9:“2 Q 8,& 49”2 O\ Ba(p) 8#( H( ) Pvﬂ) (#5)

1 ply — pl? Apud? 1
T o2 - +0(—
O? /Q\Bd(p) <1 +uPly—pl* 1+ u2d2> (;P)

1 4 1 4 1
= 57 Jos [ (1O 0) — 5 (140G +0)
~ o). .11

Combining (2Z9)), [210), and (ZIT]), we are led to

ow oL, oV,
e e AT ol e N

On the other hand, by (2.3]), we have

8m IV,
1 VP;H D[
/Q( B+ ) 5

oV 8 2 / 4

Vp,u & VD5l

= e rr + — +

/Bd(P) o O ( H o m(1 ,U2|y p|2))

oV 167 Inp
V. T,

= elekh—=0 — — — 4+ O(—
/Bd(m) op Ou3 ( pP )
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Bd(x u a2 1
/ Ve 3V OV E dy (1“_”)
By(x) M R2\By(z |y - 33|4 o
|
/ _|_/ ve,u%_FO(n_éu)
d(w 6V 1R2\Bd(:v) | o Iz
e Vo L o(BHY _ oK 2.13
R2 8N+ (N5) (N5)’ ( )
which, together with ([2.12]), gives
8w 8L Inp
Inserting (2.14) into (2.6), we find
wk+u —u ow;,
8I(wﬂ) _ 8 er L tuo(y) O(P)a_: o In u (2 15)
o [ evitu®-u®) * (?) '
Let
fly,p) =87 (v(y,p) = v(p,p)) + uo(y) — uo(p)- (2.16)

It is easy to check that

" o (p) O 167 1
/ gwituo(y) 0@)% —— / eVt IR (y(y, p) = y(p,p)) + O(—)
Q K By (p) 2

O3
In p
= O(?% (2.17)
and !
/ewﬂ-‘ruo() w®) — 874 0(=2). (2.18)
Q p?

From (2.15]), (2ZI17) and (2.I8]), we obtain

w4 — oVp,
a[(wu) _ _87TfQ€ nt o(y) O(p)a—““ _'_O(ln_u) (2 19)
ou - fQ eWriTuo(y)—uo(p) ud ’

Let

Ful,p) = 87 (W p) — 1(.p)) (1 — eiﬂg Fup(y) —uo(p).  (2:20)
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Then

/ oo (v)—uo () WV
Q ou

:/ eVeutfu(y:p) AL +/ eWituo(y)—uo(p) OV,
Ba(p) op O\Ba(p) o

2 41— o)
:/ eVp,u‘f‘fu(va’)anW_i_ 8 / ieh(y,p)%
Ba(p) Q\ By

ou (14 p2d?)? )|y — p|4(1—ﬁ) ou
= / eVP7#+fH(y7p)% + E L efu(yvp) aVPW + O(i)
Ba(p) v O lllz O\ Bqy(p) ly —pl4 ou 78
_ Vo,ut+fu(y,p) Y Vo,u
— e'prTln —aF O(—
7 oV, o (M5) vV, 1
_ Vv Dyft v Ju(y:p) D
= e”*“——l—/e”*“e“ —1)—= + 0O(—=). 2.21
/Q o Jo ( ) O (u5) =
On the other hand,
/ Vou Vo _ 0 [ v,
. on 5,ua . 16 1 1
1%
- _ = e'rn — — dy+0(—). (2.22
op /Rz\g 13 Jrana ly — pl? Y (w”) (2:22)

Noting that

we find

V, oV 1
Voou (o fu(y,p) ] - Vo (of (y:0) p.p
/ep“(e“ 1) /e”“(e 1) —|—O( 5). (2.23)

Combining (2.21)), (2:22) and (223)), we are led to

/ it (v)—uo () WVou
Q

o
16/ 1 v aVv, Inp
- 7(13/—1—/6”’“ ef(y’p)—l ﬂ_FO_
1 Jraa ly — pl* Q ( ) o ( JIE )
16/ 1 16 Inp
S 7dy_/7ef(y,p)_1 +0(=£
13 Jr2na ly — pl* o 1Py —pl4( ) +0( P )
16D(p In p
- )+O(—5). (2.24)

3 I
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From (2:24]) and (2.I8]), we obtain

{7 ewﬁ-iruo(y)—uo(:l’)aﬁ
f ew uo (y)—uo(p) 1 1
Combining (2Z.19) and ([2:25]), we are led to
1 16D 1
Oltw,) _ 16D) o lopy (2.26)

o p p

We are now ready to estimate I(w,). From (2Z26), we find

. ~ 8D(p) In p
which gives
_ 8D(p) In p

Finally, we estimate lim;_, o I(w;). By (23,

1 *
I(wy) = . /Q wiAw;, — 81 ln/gewt Fuo)—uoP) _ 8L, — 8rug(p) (2.29)

But from [, w; =0,

1 1 1 1
__/ wiAwy = —/ eVp,t’wt +47T(1 — —2)/ wy = _/ eVp,twt.
2 Ja 2 JBa(w) 02" Jo 2 JBy(p)
(2.30)
It is easy to check
/ evi ) =10 |y 81 ast s oo, (231)
Q

and

evpvtwt - 87TLt

N —
5
IS
S

1 1
8t2 + Lt / evpvt — 87TLt + —/ 6Vp’t In
) Bu(p) 2 JBy(w) (1+ 22y —pl?)

(In
%/Bd(p) "8 (v(y,p) — v(p,p)) (1 - %)

N —
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4
= %(1n(8t2)+1;t)(87r+0(t12)) —87rLt+/R2(1+|y|2)2 In (1+|1y|2)2—|—0(1)
— %(ln(8t2) — Ly)8m — 8 + o(1) + 0('?—5'), (2.32)

/ 4 In 1 8 /+OO 1 In 1 dt
= 87
re (14 yl?)? (1 + |y?)? o (41 1+t

—+o0 1
=8 —— dt = 8.
“/o (1+1) "

Moreover, from [, G(y,p) dy = 0, we get

1 1
/ YWy,p)dy = —5—
Q

In
2w Jo |y —p

dy.

As a result,

1 1
L= [ wf = Voo —4(1— —)In——)d
' /th /Bd(m(p’t UG =)

1.1 1

—4(1——)In=)dy— 1——

+/Q\Bd(p)(Vt(d) (1-5) 0 7)dy=(p,p)8m(1-55)
4

= 7wd?In(8t72) —I—/ In ly = |

Bay) (% Ty -

m) — 8my(p,p) +0(1)
= In(8t72) — 87y(p,p) + o(1). (2.33)

+(1 — 7d?) (lntﬁ2 +1In

From (2.32)) and (2.33]), we obtain

1
9 / eVrtw, — 8Ly
2 Ba(p)
_ %(ln(&f?) +In(8t %) = 879(p,p) + o(1) )87 — 87 + o(1) + 0(1?_;)
= 8 (In8 — 4wy (p,p) — 1) + o(1). (2.34)

Combining (Z29)), (Z30), (Z.31) and (2.34), we obtain

I(wy) = 87(In8 — 4my(p,p) — 1) — 8muo(p) — 87 In(87) + o(1)
= =87 (47y(p,p) + uo(p) +Inm +1) + o(1),
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which gives

lim I(w;) = =87 (4my(p,p) + uo(p) + In7 +1). O

t—-+o0

Proof of Theorem [1.1l. If D(p) > 0, it follows from Proposition 2.2]

12151(11) < I(wy,) < —8m(4my(p,p) + uo(p) + Inm + 1),

if 1 > 0 is large enough. Thus the minimizing sequence constructed in [13]
converges strongly in H and (IL4)) is achieved. O
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