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Abstract

A known Hardy-Littlewood theorem asserts that if both the function and its conjugate

are of bounded variation, then their Fourier series are absolutely convergent. It is proved in

the present paper that the same result holds true for functions on the whole axis and their

Fourier transforms, with certain adjustments. The proof of the original Hardy-Littlewood

theorem is derived from the obtained assertion. It turned out that the former is a partial

case of the latter when the function is supposed to be of compact support. A similar result

for radial functions is derived from the one-dimensional case.

1. Introduction

The following result is due to Hardy and Littlewood (see [7] or, e.g., [20,

Vol.I, Ch.VII, (8.6)]).

Theorem 1.1. If a (periodic) function f and its conjugate f̃ are both of

bounded variation, then their Fourier series converge absolutely.

In [20] this result is one of the consequences of the general theory of

Hardy spaces, first of all H1 in the unit disk. Since we are going to generalize

the Hardy-Littlewood theorem to functions on the real axis, let us recall

certain notions and notations concerning Hardy spaces in this setting. The
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Fourier transform ĝ of a (complex-valued) function g in L1(R) is defined by

ĝ(t) :=

∫

R

g(x)e−itxdx, t ∈ R,

while its Hilbert transform Hg is defined by

Hg(x) :=
1

π
(P.V.)

∫

R

g(x− u)
du

u
=

1

π
(P.V.)

∫

R

g(u)

x− u
du

=
1

π
lim
δ↓0

∫ ∞

δ

{g(x − u)− g(x+ u)}
du

u
, x ∈ R.

As is well known, for g ∈ L1(R) this limit exists for almost all x in R, and

the real Hardy space H1(R) is defined to be

H1(R) := {g ∈ L1(R) : Hg ∈ L1(R)},

where L1(R) is the usual space of integrable functions with norm

‖g‖L1 :=

∫

R

|g(x)| dx.

The Hardy space is endowed with the norm

‖g‖H1 := ‖g‖L1 + ‖Hg‖L1 .

If g ∈ H1(R), then
∫

R

g(t) dt = 0. (1.1)

It was apparently first mentioned in [10]. Since a function f of bounded

variation may not be integrable, its Hilbert transform, a usual substitute for

the conjugate function, may not exist. One has to use the modified Hilbert

transform (see, e.g., [6, Ch.III, §1])

H̃f(x) = (P.V.)
1

π

∫

R

f(t)

{
1

x− t
+

t

1 + t2

}
dt.

As a singular integral, it behaves like the usual Hilbert transform; the addi-

tional term in the integral makes it well-defined near infinity.

Correspondingly, the absolute convergence of the Fourier series should

be replaced by the integrability of the Fourier transform.
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Our work is much in the spirit of the book [3], especially Chapter 8.

Roughly speaking, some classes are characterized there for the values r =

1, 2, . . . of a certain parameter r. Our consideration formally corresponds to

the case r = 0.

The outline of the paper is as follows. In the next section we formulate

and prove the main result. As in the proof of the initial result in [20, Ch.VII,

§8] much is based on the Hardy inequality (cf. (8.7) in the cited chapter and

(2.4) in the present text). Then we derive the original Hardy-Littlewood

theorem from the proven result. In the last section we apply the obtained

theorem to derive a similar multidimensional result for radial functions.

2. Main Result

With the above preliminaries in hand, we are in a position to formulate

and prove our main result.

Theorem 2.1. Let f be a function of bounded variation that vanishes at

infinity: lim
|t|→∞

f(t) = 0. If its conjugate H̃f is also of bounded variation,

then the Fourier transforms of both functions are integrable on R.

Proof. The only property of a function of bounded variation we really need

is that its derivative exists almost everywhere and is integrable; cf. [2, Ch.1].

So, such is d
dx
H̃f .

More precisely, “almost everywhere” will be specified as at the Lebesgue

points. Recall that x is a Lebesgue point of an integrable function g if g(x)

is finite and

lim
t→0

1

t

∫ x+t

x

|g(u) − g(x)| du = 0,

and almost every point is a Lebesgue point of g.

Lemma 2.2. Under the assumptions of the theorem, we have at any Lebesgue

point x of f ′(x)

d

dx
H̃f(x) = Hf ′(x). (2.1)

Proof of Lemma 2.2. This lemma is a direct analog of the various known

results for the Hilbert transform of a function from the spaces different from
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the space of functions of bounded variation; see, e.g., [14, 3.3.1, Th.1] or

[9, 4.8]. Since the assumptions are different, we use different arguments

while interchanging limits. Let us start with the right-hand side of (2.1).

Integrating by parts, we obtain

πHf ′(x) = lim
δ↓0

(∫ x−δ

−∞
+

∫ ∞

x+δ

)
f ′(t)

x− t
dt

= lim
δ↓0

[
f(x− δ) + f(x+ δ)

δ
−

(∫ x−δ

−∞
+

∫ ∞

x+δ

)
f(t)

(x− t)2
dt

]
. (2.2)

In order to integrate by parts, we need f to be locally absolutely continuous.

It turns out that it is just the case under our assumptions. Consider F to

be f on a finite interval, say (−π, π] for simplicity, and zero otherwise. Its

Hilbert transform

HF (x) =
1

π

∫ π

−π

f(t)

x− t
dt

differs from the classical periodic conjugate function

F̃ (x) =
1

2π

∫ π

−π

f(t) cot
x− t

2
dt

(also understood in the principal value sense) only in kernels. However (see,

e.g., [3, (9.0.4)]), the difference of these kernels is quite well behaved:

1

2
cot

t

2
−

1

t
=

∑

k 6=0

t

2kπ(t− 2kπ)
.

In particular, the derivative of the right-hand side is integrable. By this, if

F̃ is of bounded variation, then also HF is. Observe, that for a function of

compact support there is no need in modifying the Hilbert kernel, and we

can consider the usual Hilbert transform. When a function and its conjugate

are both of bounded variation, the function is absolutely continuous, see [20,

Ch.VII, (8.2)], exactly as required.

Further, since f is continuous and vanishes at infinity, we find

d

dx

(∫ x−δ

−∞
+

∫ ∞

x+δ

)
f(t)

(
1

x− t
+

t

1 + t2

)
dt

= −

(∫ x−δ

−∞
+

∫ ∞

x+δ

)
f(t)

(x− t)2
dt+ f(x− δ)

[
1

δ
+

x− δ

1 + (x− δ)2

]
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−f(x+ δ)

[
−
1

δ
+

x+ δ

1 + (x+ δ)2

]
.

Combining the last display and (2.2), we get

πHf ′(x) = lim
δ↓0

{
d

dx

(∫ x−δ

−∞
+

∫ ∞

x+δ

)
f(t)

(
1

x− t
+

t

1 + t2

)
dt

−f(x− δ)
x− δ

1 + (x− δ)2
+ f(x+ δ)

x+ δ

1 + (x+ δ)2

}
,

which gives

πHf ′(x) = lim
δ↓0

d

dx

(∫ x−δ

−∞
+

∫ ∞

x+δ

)
f(t)

(
1

x− t
+

t

1 + t2

)
dt,

since the rest, by continuity, tends to zero as δ ↓ 0.

What remains is to change the order of the limit and differentiation.

The integrals

∫ x−1

−∞
+

∫ ∞

x+1
converge uniformly, and both are independent of

δ. Hence, it suffices to study the convergence of

(∫ x−δ

x−1
+

∫ x+1

x+δ

)
f(t)

(
1

x− t
+

t

1 + t2

)
dt.

Since

(∫ x−δ

x−1
+

∫ x+1

x+δ

)
dt

x− t
= 0,

and (∫ x−δ

x−1
+

∫ x+1

x+δ

)
t

1 + t2
dt ≤ 2,

it remains to deal with

(∫ x−δ

x−1
+

∫ x+1

x+δ

)
f(t)− f(x)

x− t
dt. (2.3)

Let x be a Lebesgue point of f ′. We have

∫ x+1

x+δ

f(t)− f(x)

x− t
dt =

∫ x+1

x+δ

1

x− t

∫ t

x

f ′(u) du dt

= −

∫ 1

δ

1

t

∫ x+t

x

f ′(u) du dt.
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The finiteness of f ′(x) implies

∣∣∣∣
∫ x+1

x+δ

f(t)− f(x)

x− t
dt

∣∣∣∣ ≤
∫ 1

δ

1

t

∫ x+t

x

|f ′(u)− f ′(x)| du dt + |f ′(x)|.

Since the inner integral on the right-hand side is uniformly bounded on (0, 1),

we get the uniform convergence of the integrals in (2.3) (the other integral is

treated in exactly the same manner). This allows us to apply lim
δ↓0

and d
dx

in

any order, which leads to the required relation (2.1) at any Lebesgue point

x of f ′(x). Since such is almost every point, the proof is complete. ���

With this result in hand, the proof of the theorem goes along the fol-

lowing lines. Since the function f is of bounded variation, its derivative f ′

exists almost everywhere and is integrable. It follows from the boundedness

of variation of its conjugate and from Lemma 2.2 that Hf ′(x) exists at al-

most every x and is also integrable. Therefore f ′ ∈ H1(R). We shall now

make use of the well-known extension of Hardy’s inequality (see, e.g., [5,

(7.24)])
∫

R

|f̂ ′(x)|

|x|
dx ≤ ‖f ′‖H1(R). (2.4)

Observe that the assumptions of the theorem imply the cancelation prop-

erty (1.1) for f ′. Integrating by parts, which is possible since f is locally

absolutely continuous, we obtain

f̂ ′(x) =

∫

R

f ′(t)e−itxdt = ix

∫

R

f(t)e−itxdt.

Hence, the left-hand side of (2.4) is exactly the L1 norm of the Fourier

transform of f . Further, we have isignxf̂ ′(x) = Ĥf ′(x), which, by Lemma

2.2, is the Fourier transform of
d

dx
H̃f . Integrating by parts as above, we

conclude that in our situation the left-hand side of (2.4) is also the L1 norm

of the Fourier transform of H̃f . The proof is complete. ���

3. The Original Hardy-Littlewood Theorem

In this section we derive the proof of the original Hardy-Littlewood

theorem from Theorem 2.1. It turned out that the former is a partial case



2013] ON A HARDY-LITTLEWOOD THEOREM 487

of the latter when the function is supposed to be of compact support.

Beginning the proof of Theorem 1.1, we may consider f to be the 2π-

periodic extension of the function F which coincides with f on (−π, π] and

is zero otherwise. Of course, this function is of bounded variation as well.

Using the argument after (2.2) in the opposite direction, we are now under

the assumptions of Theorem 2.1, and hence the Fourier transform of F is

integrable. It follows from this (see [19, Ch.2, §11]) that the Fourier series

of its periodic extension, that is, the Fourier series of f , is absolutely con-

vergent. Since the Fourier coefficients of f̃ are the same modulo as those of

f , the Fourier series of f̃ also converges absolutely.

This fact seems to be a good supplement to Wiener’s study of the rela-

tions between the Fourier transform of a compactly supported function and

the Fourier series of its periodic extension in [19, Ch.2].

4. Radial Case

Let us now apply the obtained results to problems of integrability of the

multidimensional Fourier transform of a radial function f(x) = f0(|x|). Let

f̂ denote its usual Fourier transform on R
n. The known Leray’s formula (see

Lemma 25.1’ in [15]) says that when

∫ ∞

0

tn−1

(1 + t)
n−1

2

|f0(t)| dt < ∞, (4.1)

the following relation holds

f̂(x) = 2π
n−1

2

∫ ∞

0
I(t) cos |x|t dt, (4.2)

where the fractional integral I is given by

I(t) =
2

Γ
(
n−1
2

)
∫ ∞

t

sf0(s)(s
2 − t2)

n−3

2 ds.

This result has proved to be very convenient for deriving statements for the

Fourier transform of a radial function from known one-dimensional results;

see, e.g., [11], [12].
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Theorem 4.1. Let f0 satisfy (4.1), while I and its n−2 derivatives be locally

absolutely continuous and vanish at zero and infinity. If I(n−1) satisfies the

assumptions of Theorem 2.1, then the (multidimensional) Fourier transform

of f is Lebesgue integrable over R
n.

Proof. First, we integrate by parts n − 1 times in (4.2). Integrated terms

vanish. We thus arrive to the formula

f̂(x) =
2π

n−1

2 (−1)n−1

|x|n−1

∫ ∞

0
I(n−1)(t) cos(

π(n− 1)

2
− |x|t) dt.

Applying now Theorem 2.1 to the integral on the right-hand side and inte-

grating then in the polar coordinates, we complete the proof. ���

Remark 4.2. Observe that for n = 1 understanding the function I formally

as f0 reduces Theorem 4.1 to the one-dimensional Theorem 2.1.
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