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Abstract

In this survey, we discuss the dead-core rates for a family of parabolic equations with

strong absorption. This includes the standard heat equation, fast diffusion equation and

slow diffusion equation. It is surprising that, even in the case of one space dimension, the

dead-core rate can be either self-similar or non-self-similar. Some open problems are also

given.

1. Introduction

In the study of singularity formation, one of the main issues is to deter-

mine the temporal asymptotic behavior of the singular solution at a singular

point. The typical singularities of great interests are, for examples, blow-up

(the solution becomes unbounded), extinction (the solution becomes identi-

cally zero), quenching (the solution reaches zero) and dead-core (the solution

reaches zero). The difference between quenching and dead-core is that cer-

tain derivative of the solution blows up for quenching, but the solution is

regular for dead-core.

We are interested in the case that a solution develops a singularity in

finite time. Then it is important to determine the (temporal) singular rate

of the given solution. Usually, we can classify the rate(s) into two classes,
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namely, whether it is self-similar or not. For a given equation, a special

solution is self-similar if it is invariant under certain re-scaling of both in-

dependent and dependent variables. Hence the self-similar rate of a given

equation is intrinsic. We say that the singular rate is self-similar, if it is the

same as that of the self-similar solution.

A well-studied equation for blow-up is

ut = ∆u+ up, p > 1. (1.1)

See, for examples, [39, 9, 10, 11, 28]. For extinction, the well-known equation

is

ut = ∆u− up, 0 < p < 1.

See, e.g., [8, 31, 20, 21]. For the equation

ut = ∆u− u−q, q > 0,

we have the quenching (cf. [12, 13, 5, 25]). The above mentioned works

exhibit that the singular rates are all self-similar. Also, it is worthy to

mention here that the self-similar rates of the above 3 equations are the

same as that of the corresponding spatially independent ordinary differential

equations.

For the dead-core, we study the following initial boundary value prob-

lem:




ut = (um)xx − up, x ∈ (−1, 1), t > 0,

u(±1, t) = k, t > 0,

u(x, 0) = u0(x), x ∈ [−1, 1],

(1.2)

where k > 0, 0 < p < 1, p < m. It is always assumed that the initial data

u0 satisfies

u0 ∈ C([−1, 1]), u0 > 0 in [−1, 1], u0(±1) = k. (1.3)

Problem (1.2) withm = 1 arises from the modeling of an isothermal reaction-

diffusion process (cf. [2, 36]). Here u is the concentration of the reactant.

The reactant becomes inactive (so that a dead-core is developed) whenever
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u reaches zero. The reaction is of strong absorption, since the reaction rate

−up−1 → −∞ as u→ 0. The boundary condition means that the reactant is

injected with a fixed amount on the boundary. For another application, we

refer to [27, 24] in which (1.2) is the description of thermal energy transport

in plasmas. For m 6= 1, we have the fast diffusion when 0 < m < 1 and the

slow diffusion when m > 1.

It is clear that problem (1.2) admits a unique local classical positive

solution u. We set

T = T (u0) := inf {t > 0 | Λ(t) = 0} > 0, Λ(t) := min
|x|≤1

u(x, t).

For suitable initial data, we have T (u0) <∞ in which the solution develops a

dead-core in finite time (cf. [2, 36, 3]). It seems that there is nothing special

for the temporal dead-core rate than the other singularities mentioned above.

Therefore, nobody pays attention to this question in the last century. It turns

out that the time asymptotic behavior of the solution u as t → T− when

T < ∞ exhibits a very interesting phenomenon. Our main purpose of this

paper is to survey the recent developments of the dead-core rates.

Until the work of Herrero and Velazquez [22] in 1994, all singular rates

of classical parabolic problems found are self-similar. The work [22] gives

the first example of non-self-similar singularity for (1.1) with p sufficiently

large and spatial dimension n ≥ 11. See also the later developments by

Mizoguchi [29, 30] and others. It is sometimes called the Type II singularity

for a non-self-similar singularity. The self-similar rate is then called the type

I. Another example of type II singularity is about the boundary gradient

blow-up for the equation

ut − uxx = |ux|
p, p > 2,

under Dirichlet boundary conditions (cf. [15, 23, 26]). An important differ-

ence of self-similar and non-self-similar singularities is that there is a unique

rate (independent of initial data) for a self-similar singularity, but there are

infinitely many different rates (depending on initial data) for a non-self-

similar singularity. Indeed, the rates of non-self-similar singularity are re-

lated to the spectrum of the linearized operator around the (singular) steady

state, if it exists.
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This paper is organized as follows. In the next section, we shall describe

the results for dead-core rates for all m > 0. This includes the cases of heat

equation, fast diffusion equation and slow diffusion equation. Then, in §3,

we give some ideas of the proof for the non-self-similar dead-core rate for

the fast diffusion equation. Finally, we give some open problems in §4.

2. Main Results

2.1. The case m = 1

For a solution u of the first equation in (1.2) defined for (x, t) ∈ R ×

(−∞, 0), let

uλ(x, t) := λau(λbx, λt), λ > 0, t < 0.

By the definition of (backward) self-similarity, u is self-similar if and only

if u = uλ for all λ > 0. Hence we must have a = −1/(1 − p) and b =

1/2 + (m − 1)/[2(1 − p)]. Taking λ = 1/(−t), the self-similar solution u is

written in the form

u(x, t) = (−t)−aϕ(x/(−t)b), ϕ(y) := u(y,−1),

and the (temporal) self-similar rate of (1.2) is given by −a. In fact, any

solution of ODE u′ = −up, 0 < p < 1, with u(0) > 0 tends to zero in finite

time T in the rate (T−t)β, where β := 1/(1−p) = −a. Hence the self-similar

rate of (1.2) is the same as the corresponding ODE rate.

For m = 1, surprisingly it was shown in [18] that the dead-core rate is

not self-similar, i.e. its order is not the same as for the corresponding ODE.

Actually, from [18] we have

lim
t→T

Λ(t)

(T − t)β
= 0 (2.1)

for solutions of (1.2) with monotone symmetric initial data. Then the natural

question is about the exact rate for a given solution.

Later, the exact rates for solutions with general initial data were derived

in [17] using the exact solutions constructed in [19] and the braid group

theory. More precisely, let u be a solution of (1.2) with k 6= kp such that
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u develops a dead-core in the finite time T . Suppose that u0 is radially

non-decreasing. Then there exists γn > 0, for each n ∈ N, depending on the

initial datum u0, such that

c1(T − t)β+2βγn ≤ u(0, t) ≤ c2(T − t)β+2βγn , t ∈ (0, T ),

for some positive constants c1, c2. Note that the above result holds for general

higher space dimension when the domain is a ball (cf. [32]).

2.2. The case m 6= 1

We assume further that

u0 ∈ C2([−1, 1]), (um0 )′′ ≤ up0 in [−1, 1], (2.2)

u0 is even and nondecreasing in |x| and T (u0) <∞. (2.3)

It then follows from the strong maximum principle that ut < 0 in QT :=

(−1, 1)× (0, T ), T = T (u0), u(−x, t) = u(x, t) for (x, t) ∈ QT , and ux > 0 in

(0, 1) × (0, T ).

For the steady states, we have the followings:

• (1.2) admits a unique steady state Uk ∈ C2([−1, 1]) for each given k > 0.

• Uk is an even and nondecreasing function of |x| and it is a nondecreasing

function of k.

• There exists k0 = k0(m, p) > 0 such that: if k ∈ (0, k0) then Uk vanishes

on an interval of positive length, if k = k0 then Uk vanishes only at

x = 0, and if k > k0 then Uk is positive.

The following theorem shows that the dead-core occurs in finite time.

Theorem 2.1. Assume 0 < p < 1, m > p and (1.3). Then T (u0) < ∞

for any u0 when 0 < k < k0. For k ≥ k0, for any η,M > 0 there exists

δ = δ(η,M) > 0 such that T (u0) <∞ whenever ‖u0‖∞ ≤M and u0 ≤ δ on

a subinterval of [−1, 1] of length η.

This theorem was proved in [16] for 0 < m < 1 and [4] for m > 1. The

proof is by constructing a suitable super-self-similar solution (cf. [35]).
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The following theorem shows that the dead-core rate is not self-similar

for 0 < m < 1.

Theorem 2.2 ([16]). Let k > 0, 0 < p < m < 1 and assume (1.3), (2.2)

and (2.3) hold.

Then (2.1) holds.

To prove Theorem 2.2, we use the following self-similar variables:

y =
x

(T − t)α
, s = − ln(T − t), z(y, s) :=

[
u(x, t)

(T − t)β

]m
,

where

α =
m− p

2(1 − p)
, β =

1

1− p
.

Then z satisfies the equation

γzγ−1zs = zyy − αγyzγ−1zy + βzγ − zq in Ω, (2.4)

where γ := 1/m, q := p/m, and

Ω := {(y, s) : |y| < eαs, − ln(T ) =: s0 < s <∞} .

The boundary and initial conditions are transformed into

z(eαs, s) = kmeβms, s > s0, (2.5)

z(y, s0) = z0(y) := T−βmum0 (yTα), y ∈ [−T−α, T−α]. (2.6)

Then Theorem 2.2 follows from the following more general theorem.

Theorem 2.3 ([16]). Under the assumptions of Theorem 2.2, the corre-

sponding global solution z of (2.4)-(2.6) satisfies

lim
s→∞

z(y, s) = V1(y) := kp,m|y|
2m

m−p ,

where kp,m = ( (m−p)2

2m(m+p))
m

m−p , uniformly on {|y| < R}, for any R > 0 fixed.
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Note that V1 is a stationary solution of (2.4). In fact, each stationary

solution of (2.4) corresponds to a self-similar solution of ut = (um)xx − up

in R× (−∞, T ).

For the slow diffusion case, let 0 < p < 1 < m,

σ0 =
(m− 1)

m(m− 1 + 2p)
,

and assume that

km−p ≤ σ20
m(m+ p)

2
.

Recall

β =
1

1− p
, α =

m− p

2(1− p)

Then the dead-core rate is self-similar for some solutions for the case m > 1.

More precisely, we have

Theorem 2.4 ([4]). Let u be a solution of (1.2) with u0 satisfying (1.3),

(2.2) and (2.3).

In addition, we assume that the initial datum u0 satisfies

0 ≤ (u0)x ≤ σ0xu
1+p−m
0 for 0 ≤ x ≤ 1.

If m+ p ≥ 2, then

lim
t→T

u(x, t)(T − t)−β = β−β

uniformly on {|x| ≤ C(T − t)α} for any C > 0. In the case m+ p < 2, the

ω-limit set is not empty.

3. Ideas of the Proof of Theorem 2.3

This section is devoted to the proof of Theorem 2.3. There are three

key ingredients of the proof, namely,

(1) Derive some a priori estimates of z from above and below;
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(2) Construct a Lyapunov functional by the method of Zelenyak [40] (see

also [14]);

(3) Classify all the possible steady states for z on the whole real line (a

Liouville’s type theorem).

First, we derive some a priori estimates for global solution z of (2.4) as

follows.

Lemma 3.1 ([16]). Under the assumptions of Theorem 2.2, there hold

z(y, s) ≤ C(1 + |y|)
2

1−q ,

|zy(y, s)| ≤ C(1 + |y|)
1+q

1−q , if |y| ≥ 1,

|zy(y, s)| ≤ C|y|, if |y| ≤ 1,

in {(y, s) : |y| < eαs, − lnT < s <∞} for some constant C > 0.

Furthermore, we have

Lemma 3.2 ([16]). Let t0 ∈ (0, T ). Then, under the assumptions of Theo-

rem 2.2, there exists c > 0 such that u(x, t) ≥ c|x|2/(m−p) for x ∈ (−1, 1), t0 <

t < T .

In terms of similarity variables, it follows from Lemma 3.2 that

z(y, s) ≥ D∗|y|δ in Ω0 := {(y, s) : |y| < eαs, − ln(T−t0) < s <∞} (3.1)

for some positive constant D∗, where δ := 2m
m−p = 2

1−q .

Next, we turn to the construction of a Lyapunov functional. For the

semilinear case, i.e. m = γ = 1 in (2.4), we have

zs = zyy + a(y)zy + g(z) in Ω,

where a(y) = −y/2 and g(z) = βz − zq. Define

ρ = ρ(y) = exp

{∫ y

a(ξ)dξ

}
= e−y2/4,

E[z](s) =
1

2

∫
z2yρdy −

∫
Gρdy, G(z) :=

∫ z

g(ξ)dξ.
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Then, by ignoring the boundary integral, we can easily derive

dE[z](s)

ds
= −

∫
ρz2sdy < 0.

This gives a Lyapunov functional for the semilinear case.

For the quasilinear case, i.e., γ 6= 1, it seems that we can follow the

semilinear case to define

E[z](s) =
1

2

∫
z2yρdy −

∫
Gρdy,

where ρ is re-defined by

ρ(y, z(y, s)) = exp

{
−αγ

∫ y

ξzγ−1(ξ, s)dξ

}
.

However, since ρ also depends on s, we cannot get any useful information

about dE/ds.

Therefore, for the quasilinear case, following an idea of Zylenyak [40] we

define

ρ(y, z(y, s), zy(y, s)) := exp

{
−αγ

∫ y

0
ξψ(ξ; y, z(y, s), zy(y, s))

γ−1dξ

}
,

where ψ(ξ; y, v, w) is the solution of the following backward problem:

ψξξ − αγξψγ−1ψξ + βzγ − zq = 0, ξ ∈ (0, y],

ψ(y; y, v, w) = v, ψξ(y; y, v, w) = w.

For our case, in order to guarantee the backward solution to exist up to

ξ = 0, we need some modifications of the term βzγ − zq to be defined as

follows. Following [14], we take a smooth and nonincreasing function ζ on

R such that

ζ(η) = 0, η ≥ 2, ζ(η) = 1, η ≤ 1, 0 ≤ ζ(η) ≤ 1, η ∈ (1, 2).

Then we define

ĝ(ξ, v) = g(v)

[
1− ζ

(
2v

D∗ξδζ(ξ) +D∗[1− ζ(ξ)]

)]
− v−1ζ

(
2v

D∗ξδζ(ξ) +D∗[1− ζ(ξ)]

)
,
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where the constant D∗ is defined in (3.1). Without loss of generality, we

may assume that D∗ < κ/
(
2δ
)
. Note that ĝ(ξ, v) = g(v) for all ξ whenever

v ≥ κ.

With this modification of g, we have the following lemma.

Lemma 3.3 ([16]). Let ψ(ξ; y, v, w) be defined as the solution of the backward

problem:

ψξξ − αγξψγ−1ψξ + ĝ(ξ, ψ) = 0, ξ < y, (3.2)

ψ(y; y, v, w) = v, ψξ(y; y, v, w) = w, (3.3)

where v > 0 and w ∈ R. Then the solution ψ of (3.2)-(3.3) can be continued

backward to ξ = 0.

Then we can construct a suitable Lyapunov functional as follows. Define

E[z](s) :=

∫ R(s)

0
Φ(y, z(y, s), zy(y, s))dy, R(s) := eαs,

Φ(y, v, w) :=

∫ w

0
(w − σ)P (y, v, σ)dσ −

∫ v

κ
ĝ(y, µ)P (y, µ, 0)dµ,

P (y, v, w) := exp

{
−αγ

∫ y

0
ξψ(ξ; y, v, w)γ−1dξ

}
,

Since z(y, s) ≥ D∗|y|δ in Ω0, z also satisfies the equation

γzγ−1zs = zyy − αγyzγ−1zy + ĝ(y, z) in Ω0.

Then we have

d

ds
E[z](s) = −γ

∫ R(s)

0
P (y, z(y, s), zy(y, s))z

γ−1(y, s)|zs(y, s)|
2dy + J1(s),

where J1 satisfies the property
∫∞
s0

|J1(s)|ds <∞. Thus we have constructed

a Lyapunov functional for (2.4).

Finally, we study the associated ordinary differential equation to (2.4)

on the whole real line R, namely,

V ′′ − αγyV γ−1V ′ + βV γ − V q = 0, y ∈ R. (3.4)
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Recall that

α =
m− p

2(1− p)
, β =

1

1− p
, γ =

1

m
, q =

p

m
, 0 < p < m < 1.

We proved that

Lemma 3.4 ([16]). Let V ∈ C2(R) be a solution of (3.4) such that

V = V (|y|), with V ′ ≥ 0, V > 0 for all y > 0,

and such that V is polynomially bounded. Then

V = V1 := kp,m|y|
2m

m−p or V = V2 := κ

where kp,m = ( (m−p)2

2m(m+p))
m

m−p and κ = (1− p)
m

1−p .

Proof of Theorem 2.3. Let sj be a sequence with sj → ∞ as j → ∞.

We define zj(y, s) = z(y, s + sj) for all j ∈ N and (y, s) ∈ Ω. Define

Ω̃ :=
{
(y, s) ∈ R

2 : y 6= 0
}
. Using a compactness argument, there exists a

subsequence {jl} and a function z∞ ∈ C2,1(Ω̃) such that zjl(y, s) → z∞(y, s)

as l → ∞, locally uniformly in C2,1(Ω̃). Moreover, z∞ satisfies (2.4) in Ω̃.

Consider the Lyapunov functional E[z](s) constructed as above. We deduce

that ∂sz∞(y, s) = 0 and z∞ = z∞(y) satisfies

z′′ − αγyzγ−1z′ + βzγ − zq = 0, y > 0. (3.5)

Then we show that z∞ can be extended to a symmetric C2 solution of (3.5)

on R, in view of the symmetry of z in y. Therefore, the conclusion follows

from the polynomial bound of z∞ and Lemma 3.4. ���

4. Open Problems

As mentioned in the introduction, the classical Type II singularity for

blow-up is found for spatial dimension n ≥ 11. For the dead-core problem,

there is already a rich phenomena for one spatial dimension. In the dead-core

problem, the case when m = 1 is well understood. This includes the exact
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dead-core rates for general symmetric initial data and higher dimensional

radially symmetric case.

However, very little is known for the dead-core for quasilinear equations.

When 0 < m < 1, we only know that the dead-core rate is non-self-similar. It

would be very interesting to determine the exact dead-core rates for general

initial data. As in the works [19, 17], we need to construct a family of special

solutions with the desired dead-core rates and to analyze the spectrum of

the associated linearized operator around the singular steady state.

In the slow diffusion case (i.e., when m > 1), we have found that dead-

core rate is self-similar for certain initial data. This is also surprised to us.

We suspect that there should also be certain initial data which give non-self-

similar dead-core rate(s) for the slow diffusion equation. If so, then it is also

interesting to determine the exact dead-core rates. These questions are all

left open.
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