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Abstract

We review some of the important results on deconvolution, particularly the multi-

channel deconvolution problem, for the setting of Euclidean space, focusing on the central

role of the Hörmander strongly coprime condition in this area of analysis. We then address

the problem of deconvolution in the Heisenberg group setting, beginning with the results

of [16]. We also extend the results of [16] to three solid tori, a higher dimensional analogue

of the three squares considered in [9]. The work of [16] on multi-channel deconvolution is

ongoing research, with several important issues still to be fully explored. We address some

of these issues, with particular attention to extension of the strongly coprime condition.

We also recall the related result of [16] providing a means to extend a deconvolution from

a complex space to the Heisenberg group setting and consider a few extensions of this

result.

1. Introduction

The Pompeiu problem is an area of integral geometry dealing with the

issue of characterizing the conditions when a function is uniquely determined

by integral averages over a set S or collection of sets {Si}
m
i=1, assuming

integrals over all translations and rotations. Consider a given set S ⊂ X,

and let J represent the group of translations and rotations in X. If the

vanishing of the integrals

∫

γ·S
f(x)dµγS(x) = 0 for all γ ∈ J
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where µS is area measure on the set S, implies that f ≡ 0, then the set S is

said to possess the Pompeiu property. Variations in the conditions for the

Pompeiu problem include the space of functions for f , the ambient space

X, the group action used for the translations of the given set, and potential

alternative weights on the set S. The Pompeiu problem seeks to characterize

the conditions under which the Pompeiu property holds. In certain cases,

especially where the set S or each set {Si}
m
i=1 is rotation invariant, the

integral conditions reduce to only translation of the given set(s). In this

paper we deal with the cases where the ambient space X is Euclidean space,

usually Cn, in which case translations are by w ∈ Cn, or the Heisenberg

group Hn, where the translations are described below in Section 3. Here we

define the Pompeiu transform P as

(Pf) (γ) =

∫

γ·S
f(x)dµγS(x) γ ∈ J .

In many of the cases we consider, we utilize only translations of a collection

of sets {Si}
m
i=1, in which case the transform reduces to

(Pf) (y) =

(∫

Š1

f(y − x)dµ1(x), . . . ,

∫

Šm

f(y − x)dµm(x)

)

= ((f ∗ T1)(y), . . . , (f ∗ Tm)(y))

where the Tj are defined by 〈φ, Tj〉 =
∫
Šj
φ(x)dµj(x). Since the transform

has reduced to translations by members y ∈ X, we have also given the

expression in terms of convolutions. Looking at this transform as a system of

convolution equations also gives insight into the approaches used for this type

of problem and ties in to many interesting issues arising in this area of study.

See also the survey [8] for additional insight and connections to interesting

related topics. In this context, the Pompeiu property refers to injectivity

of this integral transform and thus corresponds to unique characterization

of the function f in terms of the given collection of integral information.

For an injective integral transform, the inverse will exist, and our goal is to

find a means to represent the inverse operator. As this Pompeiu transform

has been represented as a collection of convolutions, (f ∗ T1, . . . , f ∗ Tm),

this issue becomes a question of deconvolution. The goal is to produce
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deconvolvers (ν1, . . . , νm) that will allow recovery of the function f through

deconvolution, i.e.

f ∗ T1 ∗ ν1 + · · ·+ f ∗ Tm ∗ νm = f.

The multi-sensor deconvolution problem addresses conditions under which

such ν1, . . . , νm exist and also how to determine them for given T1, . . . , Tm.

In the next section we briefly review some of the work on the multi-sensor

deconvolution problem in Euclidean space and then in Section 3 we address

the extension of this issue to the Heisenberg groups setting. Section 4 recalls

the Heisenberg deconvolution results [16] for the cases of a ball and a sphere

or of two spheres of appropriate radii, while in Section 5 this type of decon-

volution result is extended to the case of three solid tori. Section 6 recalls

the result of [16] for extension of a given deconvolution of radial distribu-

tions from the space Cn to Hn, and this result is also extended to the three

solid tori. This result on extensions of deconvolutions may assume the radial

distributions T1, . . . , Tm satisfy the Hörmander strongly coprime condition

on Cn in order to imply deconvolution on Cn. In Section 7 we discuss the

relation to an extension of the Hörmander strongly coprime condition and

current work we are doing in this direction. Finally Section 8 discusses some

of the additional issues for deconvolution in the Heisenberg group setting.

2. Basics of Deconvolution and Hörmander Strongly Coprime

Condition

We assume we are given a collection of convolutions (f ∗ T1, . . . , f ∗Tm)

representing the signal received on multiple channels, 1, . . . ,m, and the goal

is to recover the function f representing the original signal. This problem

reduces to finding deconvolvers (ν1, . . . , νm) satisfying the conditions

T̂1ν̂1 + · · · + T̂mν̂m ≡ 1, (2.1)

called the analytic Bezout equation. In addition we would like these distri-

butions (ν1, . . . , νm) to be in the space of compactly supported distributions.

This condition (2.1) is equivalent to T1 ∗ ν1 + · · · + Tm ∗ νm = δ. Assuming
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we find such ν1, . . . , νm, then we can recover the signal f by convolving the

received signals with these deconvolvers:

f ∗ T1 ∗ ν1 + · · · + f ∗ Tm ∗ νm = f ∗ (T1 ∗ ν1 + · · · + Tm ∗ νm)

= f ∗ δ = f

Assuming the existence of (ν1, . . . , νm) satisfying the analytic Bezout equa-

tion (2.1), we can apply the Paley-Weiner estimates to each of the compactly

supported distributions |ν1|, . . . , |νm| to attain the estimate

|T̂1(ξ)|+ · · · + |T̂m(ξ)| ≥ C
1

(1 + |ξ|)N
e−B|Im(ξ)|

for some C,N,B > 0. Such a set of convolvers (T1, . . . , Tm) is said to be

strongly coprime. A theorem of Hörmander [23] implies the existence of

compactly supported distributions (ν1, . . . , νm) satisfying the analytic Be-

zout equation (2.1)

T̂1ν̂1 + · · ·+ T̂mν̂m ≡ 1,

or T1 ∗ ν1 + · · ·+ Tm ∗ νm = δ, if and only if the convolvers (T1, . . . , Tm) are

strongly coprime. Whereas the deconvolution problem for a single convolu-

tion operator Cµ(f) = f ∗µ is shown in [13] to always be ill-posed in the sense

of Hadamard, the multichannel deconvolution problem for a set of strongly

coprime system of convolution equations is then well-posed. Furthermore

this result of Hörmander settles the issue of existence of a set of compactly

supported deconvolvers (ν1, . . . , νm). The deconvolution paper of Berenstein

and Yger [10] provided impetus as well as important methods and results

for the modern research in multi-channel deconvolution. In addition to ex-

tending work on the Pompeiu problem to the problem of deconvolution, this

paper provided constructive results in a number of particular cases. They

are able to give explicit formulas to determine deconvolvers ν1, . . . , νm from

the compactly supported distributions T1, . . . , Tm using the operations of

derivation, integration, convolution, and summation.

We also mention that recent research on deconvolution has included a

different approach based on non-periodic sampling and frames. This work

of Casey and Walnut includes a method for deconvolution for systems of

convolution equations using nonperiodic sampling [12, 13, 25, 26]. A recent

result addresses a local version of the three squares result [22].
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Our focus here is extension of the work on the Pompeiu problem in

the Heisenberg setting to the naturally associated questions in inversion of

the Pompeiu transform through deconvolution. We begin by transference of

the Pompeiu problem and the problem of deconvolution into the Heisenberg

group setting.

3. Heisenberg Group Setting of Pompeiu Problem and

Deconvolution

We consider the standard representation of the Heisenberg group Hn as

the boundary of the Siegel upper half space in Cn+1, as described, for in-

stance, in [3]. Standard results on the injectivity of the Pompeiu transform

have been given for cases of balls, spheres, and solid tori in [1, 2, 3]. These

results rely on analytic methods based on the Gelfand transform on inte-

grable radial or polyradial functions on Hn, i.e. L1
0(H

n) = {f ∈ L1(Hn) :

f(U ·g) = f(g) for all U ∈ U(n) and g ∈ Hn} and L1
0(H

n) = {f ∈ L1(Hn) :

f(τ · g) = f(g) for all τ ∈ Tn and g ∈ Hn}. In this Heisenberg setting, the

translations for the Pompeiu problem can be defined based on the Heisen-

berg group action [z, t] · [w, s] = [z + w, t + s + 2Im z · w̄], also written as

g ·h where g = [z, t], h = [w, t], and z,w ∈ Cn, t, s ∈ R. We note the space

of left-invariant vector fields on Hn are spanned by Zj = ∂
∂zj

+ iz̄j
∂
∂t and

Z̄j =
∂
∂z̄j

− izj
∂
∂t , for j = 1, . . . , n, together with the extra direction T = ∂

∂t ,

generated by the commutators [Z̄j , Zk] = 2iδj,kT . The translations of the

set S ⊂ Hn by an element of g ∈ Hn are given by g · S = {g · h : h ∈ S}.

Because of the nature of the analytic methods applied to this problem, we

usually consider S ⊂ Cn × {0}. This approach relates to Strichartz’s defi-

nition of the Radon transform for Hn [24] and yields integral conditions of

the form
∫
S Lgf(z, 0)dµS(z), where Lg is left translation by g ∈ Hn and µS

is Lebesgue measure on S. We note that it is also possible to consider a set

S ⊂ Hn of the same dimension as the ambient space, such as several versions

of the Heisenberg ball considered in [19], by extending the above techniques.

The problem of deconvolution for the Heisenberg setting is a direct ex-

tension of the integral conditions for the Pompeiu problem. Given a collec-

tion of sets S1, . . . , Sm ⊂ Cn × {0} similarly define the Pompeiu transform

(Pf) (g) = ((f ∗ T1) (g), . . . , (f ∗ Tm) (g))
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where Tj are defined by 〈φ, Tj〉 =
∫
Sj
φ(z, 0)dµSj (z). In most cases these sets

S1, . . . , Sm are either radial or polyradial, although we are also interested in

the more general case in which radial symmetry is not assumed. In general

we will assume the sets S1, . . . , Sm are chosen so the transform P is injec-

tive, and the goal is to invert this transform. It is also possible to vary this

definition to address other issues, such as variations in the dimension of the

set or including the use of rotations. The issue of rotations is particularly

important, and we address some aspects of it in this paper. It is conventional

to use a continuum of rotations, as done in the results in [11, 17]. However

when considering the problem of deconvolution, it is helpful to reduce to

finite number of rotations. In this case T1, . . . , Tm may represent m rota-

tions of the same set S. The ususal approach will be to find deconvolvers

µ1, . . . , µm satisfying the analytic Bezout equation (2.1), as described above.

The appropriate version of the analytic Bezout equation is given by using

the Gelfand transform, which extends the Fourier transform to the setting

of radial or polyradial functions on Hn. The first steps in this analysis are

demonstrating the existence of the deconvolvers for specific cases, and ide-

ally providing an appropriate extension of the strongly coprime condition to

the Heisenberg setting. It is then also possible to consider construction of

the deconvolvers µ1, . . . , µm from the given distribution T1, . . . , Tm, or other

issues in deconvolution.

For radial and polyradial functions the Fourier transform extends into

the Heisenberg setting as the Gelfand transform, based either upon bounded

U(n)-spherical funtions for L1
0(H

n) or bounded Tn-spherical functions for

L1
0(H

n). In line with the approach to harmonic analysis for Hn outlined in

[24], these are based on the joint eigenfuntions of the Heisenberg subLapla-

cian

L = −
1

2

n∑

j=1

ZjZ̄j + Z̄jZj

and iT , representing the extra direction. These bounded U(n)-spherical

functions are given by

Ψλ
k,k =

(
k + n− 1

k

)−1

e2πiλte−2π|λ||z|2L
(n−1)
k (4π|λ||z|2) (λ, k) ∈ R∗ × Z+
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and

J ρ
n−1 = (n− 1)!2n−1Jn−1(ρ|z|)

(ρ|z|)n−1
ρ ∈ R+.

The spectrum for the Gelfand transform for U(n)-spherical functions can be

represented by the Heisenberg fan H composed of a central Bessel ray Hρ

and infinitely many Laguerre rays Hk,± converging to the Bessel ray. These

may be denoted by

H = Hρ ∪ (∪∞
k=1Hk,+ ∪Hk,−)

= {(0, ρ) : ρ ≥ 0} ∪
(
∪∞
k=1

{(
λ, 4|λ|

(
k +

n

2

))
: λ ∈ R∗

})
.

Here the Laguerre rays correspond to (λ, k) ∈ R∗ × Z+, also indexing the

Ψλ
k,k, while the Bessel ray corresponds to ρ ∈ R+, also indexing the J . The

U(n)-spherical Gelfand transform is then defined for f ∈ L1
0(H

n), yielding

f̃(p), defined for each p ∈ H and given by

f̃(λ, k) =

∫

Hn

f(g)Ψλ
k,k(g)dm(g) and f̃(0; ρ) =

∫

Hn

f(g)J ρ
n−1(g)dm(g).

The radial and polyradial agree for n = 1, and for higher dimensions n

the polyradial can be formed based on a Cartesian product. These bounded

Tn-spherical functions are given by

ψλ
k,k(z, t) = e2πiλte−2π|λ||z|2

n∏

j=1

L
(0)
kj

(4π|λ||zj |
2) for (λ,k) ∈ R∗ × (Z+)

n,

and

Jρ(z) =

n∏

j=1

J0(ρj |zj |) for ρ ∈ (R∗)n.

Thus for f ∈ L1
0(H

n), the Gelfand transform f̃ is defined by

f̃(λ,k) =

∫

Hn

f(g)ψλ
k,k(g)dm(g), and f̃(0; ρ) =

∫

Hn

f(g)Jρ(g)dm(g).

This transform f̃ is a function on the Heisenberg brush,

Hb = ∪k∈(Z+)n{(λ, |λ|(4k1 + 2), . . . |λ|(4kn + 2)) : λ ∈ R∗}
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∪{(0, ρ21, . . . , ρ
2
n) : ρ ∈ (R+)

n},

where the point (λ, |λ|(4k1 + 2), . . . , |λ|(4kn + 2)) coresponds to ψλ
k and the

point (0, ρ21, . . . , ρ
2
n) corresponds to Jρ. We note this is the appropriate

version of the Heisenberg brush for our purposes, as found in [3, p. 204]. It

corresponds to the version of the Heisenberg fan for n = 1 extended to many

variables, and its importance for us relates to convergence on the Heisenberg

brush in the relative subspace topology carrying over to convergence in the

associated Gelfand transform. This follows from the formula [20, p. 199]

e−|τ ||zi|
2

L
(0)
ki

(2|τ | · |zi|) = J0

(√
|τ |(4ki + 2)|zi|

)
+O(k

−3/4
i ).

In application of these transforms to radial or polyradial domains, it is

also helpful to define functions

Ψ
(n−1)
k (x) =

∫ x

0
e−t/2L

(n−1)
k (t)tn−1dt

and

jn(x) =
Jn(x)

xn

.

In some cases it is helpful to consider these issues from the perspec-

tive of the group Fourier transform and the Weyl calculus. Here the trans-

forms will be operator-valued functions of the operators of position P =

(P1, . . . , Pn) and momentum Q = (Q1, . . . , Qn), where Pju(x) = xju(x) and

Qju(x) = 1
i
∂u
∂xj

(x). The group Fourier transform on Hn is based on the

infinite-dimensional representations

π±λ = e2πi(±λt±λ1/2x·P+λ1/2y·Q) for λ ∈ R+ \ {0},

and the one-dimensional representations

π(ξ,η) = e2πi(x·ξ+y·η) for (ξ, η) ∈ Rn ×Rn,

attained in the limit as λ→ 0. For additional details we refer to [3, 21]. In

the Pompeiu context this perspective has been used to unify the Bessel and

Laguerre parts of the spectrum [2, 3, 18], as is also done in the conditions

for deconvolution.
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4. Deconvolution Results of Chang, Eby, and Grinberg

Recent work in the article [16] gives a good introduction to the decon-

volution problem in the Heisenberg group setting. We recall here the main

results of this paper in which deconvolving sequences {ν1,j} and {ν2,j} are

constructed for each of two cases: a ball and a sphere of the same radius

and two balls of appropriate radii. For the first case of a ball and sphere of

the same radii, we first define the distributions Sr and Tr as

〈φ, Sr〉 =

∫

|z|=r
f(z, 0)dσr(z) and 〈φ, Tr〉 =

∫

|z|≤r
f(z, 0)dµr(z),

where σr and µr are the Lebesgue measures on the sphere and ball. We also

define compact sets {Kj}, based on the Bessel zeros of the relevant Gelfand

transforms, forming

Kj = {p = (x, y) ∈ H : x2 + y2 ≤ N2
j },

where (x, y) = (λ, |λ|(4k + 2)) or (x, y) = (0, ρ2), and where Nj is three

quarters of the distance between the jth zero of T̃r(0; ρ) and the (j + 1)st

zero of S̃r(0; ρ).

Theorem 4.1 ([16], Theorem 1). Let Sr and Tr be the distributions defined

above. Consider the sequence of compact sets {Kj} ⊂ H, which forms a

compact exhaustion of the Heisenberg fan H, as given above. There exist

sequences of functions {ν1,j} and {ν2,j} with the property that

S̃rν̃1,j + T̃rν̃2,j ≡ 1 on Kj.

It is also true that

S̃rν̃1,j + T̃r ν̃2,j ≡ 0 on V c
j ,

where each Vj is an open set defined above such that Kj ⊂ Vj ⊂ Kj+1.

Here we briefly outline the proof, which is based on the idea of inverting

each of the distributions, yielding 1

S̃r
, each valid on a set that stays away

from the associated zeros. The majority of the “work” in the proof relates to

setting up the appropriate sets on which to invert S̃r and T̃r, then patching

these together in an organized fashion. A fundamental role is also played by
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the convergence of points in the Heisenberg fan H, based on the subspace

topology, and the corresponding convergence in the transform. The first

step is formation of appropriate neighborhood systems separating Bessel

zeros. This yields neighborhoods {Ci} separated from the Bessel zeros of T̃r

and neighborhoods {C
′

i} separated from the Bessel zeros of S̃r. Using the

subspace topology for the Heisenberg fan H these neighborhoods are then

extended to neighborhoods {Ci,ji} and {C
′

i,j
′

i

} in H that also cover parts of

the Laguerre rays. We also fill in additional neighborhoods {Di} and {D
′

i}

of the remaining Laguerre zeros, in order to cover the entire Heisenberg fan

H. The next step is construction of “local identities” and “local inverses” on

each of these neighborhoods, away from the zero sets. Finally, the inverses

on each of these neighborhoods are all put together in organized fashion for

the compact exhaustion {Kj}. Beginning with the inverse on Ki−1 we paste

on the inverses on the neighborhoods covering the additional zeros in Ki.

This pasting is done using the construction ρ = ρ1 + ρ2 − ρ1 ∗ ρ2.

In the next case of two balls of different radii, we now define the distri-

butions T1 and T2 as

〈φ, T1〉 =

∫

|z|≤r1

f(z, 0)dµr1(z) and 〈φ, T2〉 =

∫

|z|≤r2

f(z, 0)dµr2(z),

where µr1 and µr2 are the Lebesgue measures on the balls.

Theorem 4.2 ([16], Theorem 2). We assume that r1 and r2 satisfy the

conditions

1.
(
r1
r2

)
6∈ Q(Jn) = {γx

γy : Jn(x) = Jn(y) = 0, γ ∈ R∗},

2.
(
r1
r2

)2
6∈ Q(Ψ

(n−1)
k ) = {γx

γy : Ψ
(n−1)
k (x) = Ψ

(n−1)
k (y) = 0, γ ∈ R∗},

for all k ∈ Z+.

Then T̃1 and T̃2 do not have any common zeros. Consider the sequence of

compact sets {Kj} ⊂ H given below, which forms a compact exhaustion of

the Heisenberg fan H. There exist sequences of functions {ν1,j} and {ν2,j}

with the property that

S̃rν̃1,j + T̃rν̃2,j ≡ 1 on Kj.
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It is also true that

S̃rν̃1,j + T̃r ν̃2,j ≡ 0 on V c
j ,

where each Vj is an open set defined above such that Kj ⊂ Vj ⊂ Kj+1.

Here the compact exhaustion {Kj} is formed similarly to the above case,

based on separation of consecutive zeros of T̃1(0; ρ) and T̃2(0; ρ). The same

overall outline is used for the proof in this case, however we must give closer

attention to a few additional issues. We still have simple zeros along the

Bessel ray Hρ, but they are not necessarily interlacing. However they can

still be grouped together in appropriate neighborhoods, and they are still

isloated, allowing for separation. In addition the zeros may coalesce as j

becomes infinite, requiring us to adjust the neighborhood sizes for different

sets Kj in the compact exhaustion. However, separation of the zeros is still

provided, and the rest of the procedure goes through.

Although these deconvolving sequences are not a complete solution of

the problem of deconvolution in the sense given in [10], they do provide

a means for recovery of the function f from the signals received by the

deconvolvers f ∗ T1, . . . , f ∗ Tm. Observe that in these two cases we have

f ∗ T1 ∗ ν1,j + f ∗ T2 ∗ ν2,j = f ∗ (T1 ∗ ν1,j + T2 ∗ ν2,j)

= fj

where f̃j agrees with f̃ on Kj but vanishes outside of Vj. Clearly fj ap-

proaches f as j goes to infinity. For the more complete solution it is still

possible to consider the issue of convergence of each deconvolving sequence

to a single compactly supported distribution. In addition it is possible to

consider explicit construction of the deconvolvers from T1, . . . , Tm using the

operations of derivation, integration, convolution, and summation.

These two cases, Theorem 4.1 and 4.2 are representative of two possi-

ble behaviors for the zero sets in the case of simple zeros, either a uniform

separation or have a coalescing of zeros as j approaches infinity. It is signif-

icant that the procedure allows construction of the deconvolving sequences

in both cases. However, for purposes of convergence the case of uniform

separation between the zero sets is much easier. In this case it is easy to

show convergence of the deconvolving sequences to a compactly supported
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distribution. For the other case, the sequence converges to a distribution,

but the space in which it converges appears to vary depending upon the

closeness of these zero sets as j becomes large [16]. This relates to the issue

of N -well approximation of the ratio r1/r2 by ratios of zeros of the relevant

zero sets, for J1. Also see [16] for more information on this point. In addition

we are continuing to explore further this issue of convergence of the sequence

of distributions and its relation to the joint distribution for the zero sets of

the convolvers.

5. Extension to Case of Three Solid Tori

Although the results of our paper Chang, et al. [16] form a good in-

troduction of the issue of deconvolution for the Pompeiu problem into the

Heisenberg group setting, these results are incomplete and leave room for

further investigation of a number of important issues. This is not surprising,

as the situation for the Pompeiu problem in the Heisenberg group setting

is much more complicated and not as much is known as in the Euclidean

setting. However, we establish the above cases for the Pompeiu problem

with a ball and a sphere, as well as the case of two balls. The other issue

of extending a given convolution from Euclidean space to the Heisenberg

group setting is treated in [16], as described below. This also relates to the

issue of extending the Hörmander result for strongly coprime distributions,

as we describe below. Although the two results from [16] given above both

deal with cases in which a pair of deconvolvers are formed for a given pair

(f ∗T1, f ∗T2), it is not difficult to visualize how this procedure would extend

to the case of (f ∗ T1, . . . , f ∗ Tn). Here we treat one specific example for

three convolution equations (f ∗ T1, f ∗ T2, f ∗ T3), and we produce three

deconvolving sequences {ν1,j}, {ν2,j}, {ν3,j}, which allow deconvolution and

recovery of f . This example is an extension of the three squares result of

[9] to a higher dimensional analogue involving instead three solid tori. We

furthermore observe below in Section 6 how this result will also allow us to

carry over the approach to extension from the Bessel ray developed in [16].

In order to state the three squares theorem of [9] we first state the integral

conditions and the relevant definitions.
∫

τ(P)
f(x)dx = 0 for all τ ∈ J and P ∈ P (5.1)
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where J is the group of all translations of R2. The three squares result of

Berenstein and Taylor states the following.

Theorem 5.1 ([9], Theorem 1). Suppose P is a finite family of squares

with sides parallel to the coordinate axes. Then f ≡ 0 is the only continuous

solution of equation (5.1) if and only if P contains three squares of side

length a1, a2, a3 such that a1/a2, a2/a3, a3/a1 are irrational.

The case where rotations are used and the squares are no longer parallel

to the axes is discussed later in this section. The methods applied to yield

the Heisenberg deconvolution results of [3] depend upon application of the

Gelfand transform for a set that is radial or polyradial. For this reason we

generalize the square as a product of intervals to a product of disks, or a

solid torus. The injectivity of the Pompeiu transform in Hn for (n + 1)

solid tori has been established in [2, 3], subject to the appropriate numerical

criteria on the radii. Here we show that the deconvolution result of [16]

for two balls of appropriate radii described above will also extend to the

case of three solid tori of appropriate radii. Thinking of these as Cartesian

products of disks in C1, this gives one extension of the above result for

three squares from R2 to C2 ⊂ H2. The result of [2, 3] implies that when

the appropriate condition for radii is met, these three solid tori will jointly

possess the Pompeiu property, and the associated Pompeiu transform will

be injective. This is the transform associated to the integrals

∫

|z1|,|z2|≤r1

Lgf(z, 0)dµr1(z) for all g ∈ H2

∫

|z1|,|z2|≤r2

Lgf(z, 0)dµr2(z) for all g ∈ H2

∫

|z1|,|z2|≤r3

Lgf(z, 0)dµr3(z) for all g ∈ H2,

also expressible as convolution equations

((f ∗ Tr1) (g), (f ∗ Tr2) (g), (f ∗ Tr3) (g))

for the distributions Tj, for j = 1, 2, 3, defined by

〈Tj , φ〉 =

∫

|z1|,|z2|≤rj

φ(z, 0)dµrj (z).
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Our next result then yields the existence of sequences of deconvolving dis-

tributions {ν1,j}, {ν2,j}, and {ν3,j}

Theorem 5.2. We assume that r1, r2, and r3 satisfy the conditions

1.
(
r1
r2
, r2r3 ,

r3
r1

)
6∈ Q(J1) =

{
γx
γy : J1(x) = J1(y) = 0, γ ∈ R∗

}

2.
(
r1
r2
, r2r3 ,

r3
r1

)2
6∈ Q(Ψ

(0)
k ) =

{
γx
γy : Ψ

(0)
k (x) = Ψ

(0)
k (y) = 0, γ ∈ R∗

}
, for all

k ∈ Z+.

Then T̃1, T̃2, and T̃3 do not have any common zeros. Consider the sequence

of compact sets {Kj} ⊂ Hb given below, which forms a compact exhaus-

tion of the Heisenberg brush Hb. Then there exist sequences of functions

{ν1,j}, {ν2,j}, and {ν3,j} with the property that

T̃r1 ν̃1,j + T̃r2 ν̃2,j + T̃r3 ν̃3,j ≡ 1 on Kj

and

T̃r1 ν̃1,j + T̃r2 ν̃2,j + T̃r3 ν̃3,j ≡ 0 on V c
j

In particular, note how these sequences of deconvolvers yield a limiting

process to recover f , as described in [16], as follows

(f ∗ Tr1 ∗ ν1,j + f ∗ Tr2 ∗ ν2,j + f ∗ Tr3 ∗ ν3,j )̃ |Kj

= (f ∗ (Tr1 ∗ ν1,j + Tr2 ∗ ν2,j + Tr3 ∗ ν3,j))̃ |Kj = f̃ |Kj

and

(f ∗ Tr1 ∗ ν1,j + f ∗ Tr2 ∗ ν2,j + f ∗ Tr3 ∗ ν3,j )̃ |V c
j

= (f ∗ (Tr1 ∗ ν1,j + Tr2 ∗ ν2,j + Tr3 ∗ ν3,j))̃ |V c
j
= 0.

Thus the deconvolvers yield a sequence {fj} given by fj = f ∗ Tr1 ∗ ν1,j +

f ∗ Tr2 ∗ ν2,j + f ∗ Tr3 ∗ ν3,j, and clearly fj → f as j → ∞

We give a brief illustration of how this result is an extension of the

proof established for the deconvolution results of [16, Theorem 1 and 2]. It

is primarily an extension of the methods established there to the Heisenberg

brush Hb and to additional distributions.

Proof. Our proof begins with the existence of the appropriate neighbor-

hoods separating the zero sets of the relevant Gelfand transforms. We begin
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with the Bessel zeros and expand outward to include the Laguerre zeros.

Consider

T̃r1(0; ρ), T̃r2(0; ρ), and T̃r3(0; ρ).

For j = 1, 2, 3, we have that

T̃rj (0; ρ) =
J1(rjρ1)

(rjρ1)

J1(rjρ2)

(rjρ2)
.

Since the Bessel functions have isolated and simple zeros, the zero sets for

these transforms extend from isolated simple zeros by the Cartesian prod-

uct structure. Thus the conditions on the radii guarantee we do not have

simultaneous vanishing of all the distributions for any p ∈ Hb. Again let

Vj = {zeros of T̃rj} and let Uj = Vj ∩Hρ be the Bessel zeros. The procedure

established for constructing the deconvolving sequences {ν1,j}, {ν2,j}, and

{ν3,j} first requires a system of neighborhoods {Ci}, {C
′

i}, and {C
′′

i } sepa-

rating the zeros of T̃r1(0; ρ), T̃r2(0; ρ), and T̃r3(0; ρ). Such neighborhoods can

be shown to exist based on an extension of the one-dimensional results using

the product structure. Furthermore, these neighborhoods cover the Bessel

part of the spectrum(Hρ)b. Also utilize the auxiliary neighborhood systems

{Bi}, {B
′

i}, and {B
′′

i }, slightly smaller, and {Vi}, {V
′

i }, and {V
′′

i }, slightly

larger, as in [16, Theorems 1 and 2] to facilitate extension from the central

Bessel part to the Laguerre rays Hk,±. This extension is made using the

same idea as in the proofs of the [16] results, but using the product concept.

Here we define both Ba
i,j and Bb

i,j using

Ba
i,j =

{
(x, y) : (M−

i )2 ≤ x2 + y2 ≤ (M+
i )2 and |

y

x
| ≥ 4(j + n/2)

}
,

and

Bb
i,j =

{
(x, z) : (M−

i )2 ≤ x2 + z2 ≤ (M+
i )2 and |

z

x
| ≥ 4(j + n/2)

}
,

where M+
i and M−

i are the appropriate upper and lower bounds. Here we

choose both a jai and jbi to be such that, for each j ≥ jai exactly one of the

Laguerre zeros on the ray (Hj,±)b is inside of B
a
i,j ∩ (Hj,±)b, and likewise for

jbi with respect to Bb
i,j. Then letting ji = max{jai , j

b
i }, we can let

Bi,ji =
{
(x, y, z) : (M−

i )2 ≤ x2 + y2 ≤ (M+
i )2, (M−

i )2 ≤ x2 + z2 ≤ (M+
i )2,

∣∣∣y
x

∣∣∣ ≥ 4(ji + n/2), and
∣∣∣ z
x

∣∣∣ ≥ 4(ji + n/2)
}
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These same ji are carried over to form similar neighborhood systems for

{Ci,ji}, {C
′

i,j
′

i

}, {C
′′

i,j
′′

i

},

We then cover the rest of the Laguerre spectrum of Hb with neighbor-

hoods {Dj}, {D
′

j}, and {D
′′

j }, also separating the zeros within these Laguerre

rays.

From here the proof proceeds identically to the cases of [16, Theo-

rem 1 and 2]. The “local identities” for each of these compact neigh-

borhoods are formed. Likewise form the appropriate “local identities” for

the additional neighborhoods for the Laguerre rays, also separating the ze-

ros there. These are then patched together using the construction ρ =

ρ1 + ρ2 − ρ1 ∗ ρ2 to produce local identities on the Kj and which avoid the

appropriate zero sets. This finally yields {ρ1,j}, {ρ2,j}, and {ρ3,j}, such that

(ρ̃1,j + ρ̃2,j + ρ̃3,j )̃ |Kj ≡ 1 and (ρ̃1,j + ρ̃2,j + ρ̃3,j )̃ |V c
j
≡ 0 and also such that

each ρ̃i,j is supported away from the zeros of T̃ri(0; ρ) in Kj ∩ (Hρ)b.

We then invert each of T̃ri on the appropriate sets, using the construction

from [16, Theorem 1 and 2]. Here φj ∈ C∞ satisfies φj(t) =
1
t for |t| ≥ Mj

and φj(t) = 0 for |t| ≤ Mj/2, for appropriately chosen Mj . The formation

of the φj ◦ Tr1 , φj ◦ Tr2 , and φj ◦ Tr3 on the appropriate sets completes the

inversion. The deconvolving sequences {ν1,j}, {ν2,j}, and {ν3,j}, given by

ν1,j = ρ1,j ∗ (φj ◦ Tr1), ν2,j = ρ2,j ∗ (φj ◦ Tr2), and ν3,j = ρ3,j ∗ (φj ◦ Tr3), will

then have the desired properties. ���

The article [16] also considers this result from the perspective of the

Weyl calculus, in which the Bessel and Laguerre parts of the spectrum are

unified in an operator-valued Bessel function. This perspective is useful

because this unification of conditions emphasizes the close relation between

the Euclidean and Heisenberg settings, as observed in [18]. We mention that

a similar expression of Theorem 5.2 is also possible, in which the conditions

for the radii become the following:

ker

{
j1

(
ri

√
|λ|(P 2

1 +Q2
1)

)}
∩ ker

{
j1

(
rj

√
|λ|(P 2

2 +Q2
2)

)}
= {0}

for i 6= j and i, j ∈ {1, 2, 3} .

We return to the significance of this perspective later, particularly in relating

the results in Euclidean and Heisenberg settings.
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Rotations play an important role in the Pompeiu problem, and par-

ticularly in Euclidean space a significant part of the research addresses is-

sues including rotations. Much of what has been done in the Heisenberg

groups setting depends on radial Gelfand transform and addresses radial

sets. However there have been some attempts to include rotations, including

[14, 15, 19], and we are also considering this issue in the current work. The

standard use of rotations in the Pompeiu problem allows the reduction to

one set when a continuum of rotations are used, beginning with the work of

[11] and including some results in the Heisenberg setting, such as [14, 15].

However, in certain cases a finite number of rotations of a given set have

been used, such as the result of [10, 7] extending the three squares theorem

to three rotations of a given square. This particular result has the advan-

tage of no longer requiring exceptional sets for the lengths of the sides of

the squares, provided the rotations are properly selected. We restate this

theorem for rotations of three squares from [10, 7], where S is any square

with sides parallel to the coordinate axes.

Theorem 5.3 ([10, 7]). Let f ∈ L1
loc ∩ C(R2), and θ1, θ2 ∈ (0, π/2). Con-

sider integral conditions for three rotations of a square

∫

S
f(x− y)dµS(x) = 0 for all y ∈ R2,

∫

θ1·S
f(x− y)dµθ1,S(x) = 0 for all y ∈ R2,

and ∫

θ2·S
f(x− y)dµθ2,S(x) = 0 for all y ∈ R2,

Assume θ1 and θ2 satisfy the following condition:

For all k ∈ Z \ {0}, y ∈ R, we have

either 1. (cos θ1k − sin θ1y) 6∈ (Z \ {0}) and (sin θ1k + cos θ1y) 6∈ (Z \ {0})

or 2. (cos θ2k − sin θ2y) 6∈ (Z \ {0}) and (sin θ2k + cos θ2y) 6∈ (Z \ {0}).

Then we may conclude f ≡ 0.

Regarding the condition given in the theorem, it is stated in general form

to apply to a wide range of possibilities for θ1, θ2. For instance, the case of

θ1 = π/6 and θ2 = π/4 clearly satisfies the condition, based on properties of

irrational numbers, while the case of θ1 = π/6 and θ2 = π/3 clearly does not
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satisfy these conditions. It is an interesting but subtle aspect of the Pompeiu

problem that certain groups of three rotations will meet the condition and

thus possess the Pompeiu property, while others will not.

Although our above result for three complex tori is a direct extension of

the three squares result, there are added complexities in extending to a result

for rotations of the complex tori. The main issue in going from a Cartesian

product of two intervals in R2 to a Cartesian product of two disks in C2,

the corresponding Fourier transforms go from sine functions, whose zeros

are periodically distributed, to Bessel functions (of the first kind) J1 whose

zeros are asymptotic to a sine function. The problem becomes considerably

harder from this irregularity in the distribution of the zeros. Although these

zero sets are well known and thoroughly described, this added irregularity in

the distribution introduces a higher level of difficulty to the problem. There

is a subtle point with exact location of the zeros and avoiding overlapping,

and the problem is more complex since the distance between consecutive

zeros is not fixed. However, we can state a corresponding result as follows,

first for injectivity of the Pompeiu transform for three rotations of solid tori

in C2, where the solid torus Sr = {(z1, z2) ∈ C2 : |z1| ≤ r, |z2| ≤ r}.

Proposition 5.4. Let f ∈ L1
loc ∩C(C2), and let θ1 and θ2 be two rotations

from z1 to z2. Suppose that f satisfies the integral conditions

∫

Sr

f(z−w)dµr(z) = 0 for all w ∈ C2

∫

θ1Sr

f(z−w)dµr,θ1(z) = 0 for all w ∈ C2

∫

θ2Sr

f(z−w)dµr,θ2(z) = 0 for all w ∈ C2

We assume θ1 and θ2 satisfy the following condition.

For all ξ ∈ Cn, one of the transforms T̂r(ξ), T̂r,θ1(ξ), T̂r,θ2(ξ) is non-zero.

Then we can conclude that f ≡ 0.

The condition for the rotations of this theorem can also be more expres-

sively written in a form comparable to that for Theorem 5.3 as follows:

Assume θ1 and θ2 satisfy the following condition.

For all k ∈ Γ, ξ ∈ R, we have
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either 1. (cos θ1k − sin θ1ξ) 6∈ Γ and (sin θ1k + cos θ1ξ) 6∈ Γ,

or 2. (cos θ2k − sin θ2ξ) 6∈ Γ and (sin θ2k + cos θ2ξ) 6∈ Γ.

Here θ1 and θ2 are rotations of the form given in [14] for rotations of complex

ellipsoids. Also the set Γ = {βj : J1(rβj) = 0}∞j=1 represents the sequence of

zeros of the Bessel function J1 and is required for the reduced condition on

the rotations. Note that we left this condition for θ1 and θ2 in unsimplified

form. In this case the condition for injectivity is fairly complex, and thus

we do not have good information regarding which rotations are allowable.

Extending this result to H2 would be essentially the same, with additional

conditions on the rotations corresponding to the zero sets for the Laguerre

part of the spectrum.

Proposition 5.5. Let f ∈ L∞ ∩ C(H2), and let θ1 and θ2 be two rotations

from z1 to z2. Suppose that f satisfies the integral conditions

∫

Sr

Lgf(z, 0)dµr(z) = 0 for all g ∈ H2,

∫

θ1Sr

Lgf(z, 0)dµr,θ1(z) = 0 for all g ∈ H2,

∫

θ2Sr

Lgf(z, 0)dµr,θ2(z) = 0 for all g ∈ H2.

We assume θ1 and θ2 satisfy the following conditions.

1. For all ρ ∈ (R+)
2
, one of the transforms T̃r(0; ρ), T̃r,θ1(0; ρ), T̃r,θ2(0; ρ) is

non-zero.

2. For all (λ,k) ∈ R∗ × (Z+)
2
one of the transforms T̃r(λ,k), T̃r,θ1(λ,k),

T̃r,θ2(λ,k) is non-zero.

Then we can conclude that f ≡ 0.

As a brief outline of the proofs for these two results, we mention that

the conditions given above are those needed to ensure the Fourier transforms

of the appropriate distributions, or Gelfand transform for the Heisenberg

setting, do not all vanish for any given point. From there the standard

methods are used to yield the results. Note that both of these results include

conditions for the rotations of the solid torus, that these must avoid a certain

exceptional set related to the zeros of the Bessel function J1, and in the

second case there is the additional condition relating to zeros of Ψ
(0)
k

from
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the Laguerre part of the spectrum. It would be possible to state the above

rotation of three squares result of [10, 7] in the same format, involving zeros

of the sine function. However, in that case it is easy to reduce the condition

to a simpler form, and to find rotations that provide injectivity, based on

periodic distribution of zeros and on properties of irrational numbers arising

from the rotations. However, the same question is not as easy when extended

to solid tori. We leave this as an open question to simplify the condition

to more fully describe the conditions for which rotations lead to injectivity.

Also we would like to demonstrate examples of specific cases of rotations

for which the condition provides injectivity. These results are fairly direct

extensions of the well known results for three squares and for three rotations

of a given square, stated primarily for the purpose of comparison. The result

for three solid tori provides an additional example, in the realm of polyradial

distributions rather than radial, to which we can apply the deconvolution

procedure established above and in [16]. We finally mention that we can

easily prove, based on established methods, that the Pompeiu property does

hold in each of these cases if a continuum of rotations is provided. This

applies to rotations of a solid torus in Cn with a translation group provided

by either Cn or Hn.

6. Extending Deconvolution from the Bessel Ray

The work we have done for the deconvolution problem in the Heisen-

berg group setting has dealt with cases of radial distributions or polyradial

distributions. In each of these cases there is a central Bessel ray, or prod-

ucts of rays for polyradial, where the Gelfand transform corresponds to the

Fourier-Bessel transform in the associated Euclidean space Cn. We consider

the issue of expanding from a given convolution on the Euclidean space to

Cn to a deconvolution for the Heisenberg group Hn. In addition we are con-

cerned with the related issue of extending the Hörmander strongly coprime

condition. In the case of T1, . . . , Tm radial distributions on Cn satisfying

the Hörmander strongly coprime condition, the existence of compactly sup-

ported distributions ν1, . . . , νm such that

T̂1(ξ)ν̂1(ξ) + · · · + T̂m(ξ)ν̂m(ξ) ≡ 1 ξ ∈ Cn,
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which can also be expressed in terms of the Gelfand transform on the central

Bessel ray as

T̃1(0; ρ)ν̃1(0; ρ) + · · ·+ T̃m(0; ρ)ν̃m(0; ρ) ≡ 1 ρ ∈ R+.

Our goal is to extend the Euclidean deconvolution from the central Bessel

ray Hρ to the entire Heisenberg fan. We must find compactly supported

distributions µ1, . . . , µm satisfying

T̃1(p)µ̃1(p) + · · ·+ T̃m(p)µ̃m(p) ≡ 1 p ∈ H.

and such that µ̃j(0; ρ) = ν̃j(0; ρ) = ν̂j(ξ) for j ∈ {1, . . . ,m}, where |ξ| = ρ.

We first recall the result from [16] for extension from Bessel ray for two

radial distributions.

Theorem 6.1 ([16], Theorem 5). Consider Sr and Tr radial distributions

satisfying the Hörmander strongly coprime condition on Cn, i.e. such that

there exist ν1 and ν2, radial, compactly supported distributions satisfying

T̂r(ξ)ν̂1(ξ)+ Ŝr(ξ)ν̂2(ξ) ≡ 1 for all ξ ∈ Cn. Also assume that for all (λ, k) ∈

R∗ × Z+ either S̃r(λ, k) 6= 0 or T̃r(λ, k) 6= 0. There there exist µ1, µ2 such

that

S̃r(p)µ̃1(p) + T̃r(p)µ̃2(p) ≡ 1 for all p ∈ H,

and such that µ̃1(0; p) = ν̂1(ξ) and µ̃1(0; p) = ν̂1(ξ) for all ρ ∈ R+ and for

all ξ ∈ Cn, where |ξ| = ρ.

This result provides the desired extension for cases including ball and

sphere of a fixed radius and the two balls of appropriate radii mentioned

above. Furthermore it applies to many other cases and related problems

and can be easily extended. A direct corollary of the methods used to prove

the above method allows extension to m radial, compactly supported dis-

tributions, T1, . . . , Tm satisfying the Hörmander strongly coprime condition

provided they do not all vanish for any point (λ, k) ∈ R∗ × Z+. It is simi-

larly possible to extend to the case of polyradial distributions satisfying the

Hörmander strongly coprime condition and not all vanishing for any point

(λ,k) ∈ R∗ × (Z+)
n.
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Corollary 6.2. Let T1, . . ., Tm be radial distributions satisfying the

Hörmander strongly coprime condition on Cn, i.e. such that there exist

ν1, . . . , νm, radial, compactly supported distributions satisfying T̂1(ξ)ν̂1(ξ)

+ · · · + T̂m(ξ)ν̂m(ξ) ≡ 1 for all ξ ∈ Cn. Also assume that for all (λ, k) ∈

R∗×Z+ there exists j ∈ {1, . . . ,m} such that T̃j(λ, k) 6= 0. There there exist

µ1, . . . , µm such that

T̃1(p)µ̃1(p) + · · ·+ T̃m(p)µ̃m(p) ≡ 1 for all p ∈ H,

and such that µ̃j(0; ρ) = ν̂j(ξ) for j ∈ {1, . . . ,m} and for all ρ ∈ R+ and for

all ξ ∈ Cn, where |ξ| = ρ.

Corollary 6.3. Consider T1, . . . , Tm be polyradial distributions satisfying

the Hörmander strongly coprime condition on Cn, such that there exist

ν1, . . . , νm, polyradial, compactly supported distributions satisfying T̂1(ξ)ν̂1(ξ)+

· · · + T̂m(ξ)ν̂m(ξ) ≡ 1 for all ξ ∈ Cn. Also assume that for all (λ,k) ∈

R∗ × (Z+)
n there exists j ∈ {1, . . . ,m} such that T̃j(λ,k) 6= 0. There there

exist µ1, . . . , µm such that

T̃1(p)µ̃1(p) + · · ·+ T̃m(p)µ̃m(p) ≡ 1 for all p ∈ H,

and such that µ̃j(0; ρ) = ν̂j(ξ) for j ∈ {1, . . . ,m} and for all ρ ∈ (R+)
n and

for all ξ ∈ Cn, where |ξj| = ρj.

In this study of deconvolution in the Heisenberg group setting Hn, it

turns out to be very useful to make use of what is known from Cn. We

have also considered the related problem of extending a given deconvolution

for Cn to work on all of Hn. All of this turns out to be relevant when

considering a potential extension of the strongly coprime condition into the

Heisenberg setting, as we discuss in the next section.

7. Extension of the Strongly Coprime Condition

This ability to extend an existing convolution for Cn to the Heisenberg

setting Hn by expanding from the central Bessel ray corresponds directly to

the desired extension of the Hörmander strongly coprime condition to the

Heisenberg setting. This strongly coprime condition is one of the primary
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results in the deconvolution problem, and we are working on finding an ap-

propriate extension. The above results outline a method of extension for

a given (radial) deconvolution from the central Bessel ray Hρ, representing

Euclidean space, to the entire Heisenberg fan H representing the Heisen-

berg group setting. Based on these results it appears the desired extension

should be possible. Although we have not yet proven this result in full gener-

ality, such an extension has been demonstrated at least for specialized cases

where the convolvers and deconvolvers are radial or polyradial. The method

of this extension depended upon the collection of sets used in separating the

zero sets as the “platform” on which the deconvolving sequences were con-

structed. Furthermore these “platforms” facilitate interpolation between the

given Euclidean deconvolution on the central Bessel ray Hρ and the patching

together of local inverses 1
T̃1

, . . . , 1
T̃n

on the Laguerre rays Hk,± away from

the central ray, where the zeros are locally finite. In effect this blends to-

gether the method of applying local inverses, as in [16, Theorem 1], with

extant deconvolution structure on the central Bessel ray Hρ which derives

from the Hörmander strongly coprime condition.

Thus the extension of the Hörmander strongly coprime condition for the

radial case appears to be based on two main criteria. The first condition is to

satisfy the Euclidean version of the strongly coprime condition on the central

Bessel ray Hρ and thereby establish the existence of compactly supported

deconvolvers on this ray. Then the second condition would be avoidance

of common zeros on the Laguerre rays combined with the existence of the

appropriate collection of sets to separate the zeros on these rays. Using the

procedure for extension given above and in [16, Theorem 5], this procedure

provides a means to extend the deconvolution from the central Bessel ray

to the entire spectrum of the Heisenberg fan, H. The situation for the

polyradial case is much the same. Thus extension from the central Bessel ray

Hρ to the rest of the Heisenberg fan H is possible because of the “platforms”

used to separate the zeros, the locally finite nature of the zeros, and the

ability to piece together the local inverses 1

T̃1

, . . . , 1

T̃n
away from their zero

sets. It is thus a direct extension of the deconvolution method developed in

[16], the relation between the Bessel and Laguerre parts of the spectrum of

the Heisenberg fan H, and the subspace topology of this Heisenberg fan H

and its relation to the Gelfand transform.
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For this next fundamental result in deconvolution of finding a suitable

version of the Hörmander strongly coprime condition that extends to the

Heisenberg group setting, Hn, we are very close to establishing a general

result. We have connected this problem to the issue of extending a given

deconvolution from the central Bessel ray Hρ for which we have the result

[16, Theorem 5] also extended to greater generality in Corollary 6.2 and

Corollary 6.3. Based on the issues of the structure of zero sets, the topology

of the Heisenberg fan and brush H and Hb, and its relation to the Gelfand

transform, this is where the essential issue will be. We are continuing our

efforts to resolve the remaining points, and we expect to attain a more

general result in the sequel.

In our ongoing work on this issue we first intend to establish a general

result for the case of radial distributions, as well as the case of polyradial

distributions, as these are the cases to which the Gelfand transform applies.

More generally a larger goal would be to move beyond the rotation invariant

distributions of the radial or polyradial cases, however this would require a

new approach and a new set of tools as the Gelfand transform would not

apply to such cases. Our current work in the extension of a given deconvo-

lution from the complex space Cn to the Heisenberg group Hn has outlined

a means to provide an extension to the Heisenberg fan or brush, particularly

in the radial and polyradial cases. Although these appear close to yield-

ing an extension of the Hörmander strongly coprime condition, there is still

more work to do. And particularly for the more general case of compactly

supported distributions not assumed to be radial or polyradial, we are just

at the beginning of this interesting problem.

8. Further Questions and Issues

As mentioned above, there are still a number of important points to

study related to the Pompeiu transform in the Heisenberg group setting and

particularly for the related problem of its inversion through deconvolution.

One of the most important of these was just treated in the last section, re-

lated to both the extension of a given deconvolution from Euclidean space to

the Heisenberg setting and the related extension of the Hörmander strongly

coprime condition to a suitable version for the Heisenberg setting. We ap-

pear to be very close to this result, at least for the radial and polyradial
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cases. Recall that the Pompeiu results in the Heisenberg setting are directly

analogous to those from Euclidean space within the context of the group

Fourier transform and the Weyl calculus, as first demonstrated in [2, 3] for

the cases of balls and solid tori. In [17] this type of result was extended to

more general distributions including moments, and it was observed in the

paper [18] that many results should carry over to the Heisenberg setting, and

particularly that deconvolution should be able to work. At this point, we

have a similar conjecture for the extension of a version of the Hörmander re-

sult for strongly coprime distributions and for extension from complex space

Cn to the Heisenberg group setting, Hn. Based on our current work on

this problem, at least the case for radial and polyradial distributions should

carry over based on the approach of extending from the central Bessel ray,

as outlined above. Although the formulation for the Weyl calculus and abil-

ity to give results we need are based on special formulations for the radial

and polyradial cases, it is also important to consider extensions to the more

general cases. Some of the relevant issues are mentioned briefly below. We

are continuing to investigate one other topic related to deconvolution which

we originally considered in [16], the relation of distribution of the zero sets

to the convergence of the deconvolving sequences. Although it was easy to

demonstrate convergence to a compactly supported distribution in the case

where there was a uniform separation in the zero sets, this issue had more

subtleties in the case where the zero sets coalesced. Within this question we

must also consider the issue of N -well approximation of the ratio of radii ri
rj

by the appropriate zero set, which is directly related to the strongly coprime

condition. See [16] for more information on this issue. It turns out the space

of convergence for the deconcolving sequences is directly related to some very

interesting arithmetic issues related to location of the zeros for T̃1, . . . , T̃m.

We are continuing to explore these issues in relation to convergence and in

relation to extension of the strongly coprime condition.

Some of the new results of this paper involved an extension of the three

squares theorem of [9] for R2 to a higher dimensional analogue of three solid

tori for C2 and H2. This Pompeiu result for three tori allowed us to extend

the Heisenberg deconvolution method beyond a pair of distributions. The

same approach used for three tori in H2 will generalize to (n+1) tori in Hn.

These results also generalized to allow extension of a given deconvolution

for such distributions from Cn to Hn. This gives an additional example of

a specific case where the strongly coprime condition for Euclidean space can
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partially extend to the Heisenberg setting, implying existence of deconvolv-

ing sequences in the Heisenberg setting provided additional conditions on

the Laguerre zeros are satisfied. The version of the three squares theorem

using three appropriate rotations of a given square was also addressed for

three rotations of a solid torus in C2 or H2. We raised the issue of finding a

simplification of the condition for the rotations, which is much more complex

due to the nature of the zero sets. Ideally would like to simplify the condi-

tion and be able to say something describing which finite sets of rotations

will work. More fully describing these cases will also be an important part

of extending from Pompeiu results to deconvolution. This is an important

issue to consider, as we would like to address the issue of rotations within

our work on deconvolution in the Heisenberg setting. Such work may form

important first steps related to the issue of rotation and the important issues

discussed below.

Many other important topics remain for deconvolution in the Heisenberg

setting, and even for the Pompeiu problem much remains to be explored in

this setting. This includes several topics in the Pompeiu problem which

have only recently been addressed in the Heisenberg setting, such as sets of

higher codimension [15] or sets of the same codimension as the ambient space

[19]. In each of these areas there are additional issues to be explored for the

Pompeiu setting, plus more topics related to the extension to deconvolution.

The issue of rotation plays a central role in the Pompeiu problem, and we

have begun consideration of this issue, including [14] and some of the results

in Section 5. In addition we have some current work dealing with certain

cases of non-radial sets in the direction of the work of [11]. Much more work

remains to more fully extend the work on this aspect of the Pompeiu problem

into the Heisenberg setting. Furthermore, in order to carry over the work

on the Pompeiu problem with rotations to the problem of deconvolution

it is good to be able to reduce to a finite number of such rotations, as

discussed in Section 5. Both of these topics will be important ongoing areas

of investigation related to rotations and the Pompeiu problem.

We mention that both the Pompeiu problem and its extension to the

problem of deconvolution have local forms. For instance, in the Euclidean

setting the work of [4] on the local Pompeiu problem was extended in [6]

to include inversion of the Pompeiu transform. We have begun work on
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the local problem for the Heisenberg group setting, and this is a very in-

teresting and important problem. We expect interesting developments in

this direction in future work. As a final point, the local versions of these

issues open the problem to new perspectives and approaches, for instance

the work on the problem of deconvolution from the perspective of frames

and irregular sampling [12, 13, 25, 26], including a local version of the three

squares theroem [22]. This new perspective provides an interesting alterna-

tive approach to deconvolution, and in particular has provided the ability

to prove local results. It is also worthwhile to consider how such approaches

may extend to the Heisenberg setting.
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23. L. Hörmander, Generators for some rings of analytic functions, Bull. Amer. Math.

Soc., 73 (1967), 943-949.

24. R. Strichartz, Lp harmonic analysis and Radon transforms on the Heisenberg group,
J. Funct. Anal., 96 (1991), 350-406.

25. D. Walnut, Nonperiodic sampling of bandlimited functions on unions of rectangular
lattices, J. Fourier Anal. Appl., 2 (1996), 435-452.

26. D. Walnut, Solutions to deconvolution equations using nonperiodic sampling, J.

Fourier Anal. Appl., 4 (1998), 669-709.


	1. Introduction
	2. Basics of Deconvolution and Hormander Strongly Coprime Condition
	3. Heisenberg Group Setting of Pompeiu Problem and Deconvolution
	4. Deconvolution Results of Chang, Eby, and Grinberg
	5. Extension to Case of Three Solid Tori
	6. Extending Deconvolution from the Bessel Ray
	7. Extension of the Strongly Coprime Condition
	8. Further Questions and Issues

