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Abstract

The optimal dimensions N are determined so that each smooth manifold of dimen-

sion n admits a totally real immersion or an independent map to C
N . Detailed results

comparing these two optimal dimensions, as well as some related results, are presented for

four-manifolds.

1. Introduction

We consider two classes of smooth maps Mn → CN . All manifolds are

assumed to be connected (unless otherwise mentioned) and to have countable

topology.

Definition 1. AmapMn → CN is called a totally real immersion (embedding)

if f is an immersion (embedding) and for f∗ : TM → TCN we have

f∗(TM) ∩ Jf∗(TM) = {0}. (1)

Here we have identifiedCN withR2N together with the natural anti-involution

J .
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Definition 2. A map f :Mn → CN is called an independent map if

df1(p) ∧ · · · ∧ dfN (p) 6= 0

for f = (f1, . . . , fN ) and for all p ∈M .

We are interested in the optimal value ofN for all manifolds of dimension

n. Sections 2 and 3 provide an exposition of [3], which gives some details

not presented here. Section 4 discusses a special case where our two types

of maps are related in a perhaps unexpected way.

2. Existence

Theorem 2.1. Any map f : Mn → CN may be approximated by a totally

real embedding, provided N ≥ [3n
2
] and n ≥ 2.

Remark. For N and n satisfying these inequalities, any map of M into CN

may be approximated by an embedding [6] and in particular any totally real

immersion may be approximated by a totally real embedding.

Theorem 2.2. Any map f : Mn → CN may be approximated by an inde-

pendent map, provided N ≤ [n+1
2

].

The proofs of these theorems depend on a well-known result from dif-

ferential topology. Let J1(M,W ) be the space of one-jets of maps from M

to W . Denote the lift of any map

f :M →W

by

j1(f) :M → J1(M,W ).

Theorem. If Σ ⊂ J1(M,W ) is stratified by locally closed submanifolds and

dimM < codimΣ then there exists some F :M → W with (j1(F )M)∩Σ =

∅.

The proof is straightforward, see for instance [1].
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To prove Theorem 2.1 we take Σ to be given in local coordinates over

an open set U by

Σ = {(p, q, a1, . . . , an) : p ∈ U, q ∈ R2N , rank (A, JA) < 2n}

where

A = (a1 · · · an)

is a real N ×n matrix and (A, JA) is the N × 2n matrix obtained by juxta-

position. To prove Theorem 2.2 we set r = [n+1
2

] and use

Σ = {(p, q, α1, . . . , αn), rankA < r}

where A is the complex r × n matrix

A = (α1 · · ·αn).

It is easy to verify that these are stratified subsets and that the given values

of N lead to

dimM < codimΣ.

3. Optimality

To explain our examples, we find necessary bundle-theoretic conditions

for totally real immersions and for independent maps.

Lemma 3.1. (a) If M has a totally real immersion into CN then there ex-

ists a bundle Q of rank r = N − n such that

(C⊗ TM)⊕Q ∼= Nε.

(b) If M has an independent map into CN then there exists a bundle B of

rank r = n−N such that

C⊗ TM ∼= Nε⊕B.

Here Nε is the trivial complex vector bundle over M of rank N .

Remark. An application of the Gromov h-principle shows that these con-

ditions are also sufficient. See a discussion of this in [4]. We will make use

of the sufficiency below.
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Proof of Lemma 3.1.

(a) The condition (1) is equivalent to the fiber injectivity of

φf : C⊗ TM → T 1,0(CN )

where φf (v) is defined, for v ∈ C⊗ TM , by

φf (v) = f∗(v) − iJf∗(v).

Thus if M has a totally real immersion into CN then

(C⊗ TM)⊕Q ∼= Nε

where Q is the bundle in T 1,0 normal to φf (C⊗ TM).

(b) The map

ψf : C⊗ TM → T 1,0

given by

ψf (v) =
∑

dfj(v)∂zj

is surjective on the fibers. So

C⊗ TM ∼= Nε⊕B.

with B = kerψf . ���

3.1. Totally real immersions

We need to find a manifold of dimension n that does not have a totally

real immersion into CN for N = [3n
2
] − 1. We provide four families of

examples according to the residue of the dimension of M modulo 4. Let

M4k = CP2 × · · · ×CP2 = (CP2)×k

be the product of k copies of the complex projective plane. The manifolds

we use and the ensuing arguments are similar to those given by Forster [2],

but we use orientable manifolds as far as possible.

Theorem 3.1.

• M4k does not admit a totally real immersion into CN for N = 6k − 1.
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• M4k+1 =M4k ×S1 does not admit a totally real immersion into CN for

N = 6k.

• M4k+2 = M4k ×RP2 does not admit a totally real immersion into CN

for N = 6k + 2.

• M4k+3 =M4k ×RP2 × S1 does not admit a totally real immersion into

CN for N = 6k + 3.

Denote the total Chern class of a complex vector bundle B over M by

c(B) = 1 + c1(B) + · · ·+ ck(B)

where cj(B) ∈ H2j(M ;Z) and k = min(rankB, [dimM
2

]). We have the fol-

lowing well-known result (see e.g. [5, Section 14]).

Lemma 3.2. Let a denote the first Chern class of the hyperplane line bundle

O(1) on CP2. Then

c(C⊗ TCP2) = 1− 3a2.

We need to show that in the first two cases of Theorem 3.1 there is no

bundle Q of rank 2k − 1 and in the last two cases no bundle Q of rank 2k

such that (C⊗TM)⊕Q is trivial. We shall show this forM4k+1 andM4k+3.

The other two cases, which are very similar to these, are done in [3]. So first

we assume that there is some Q with

(C⊗ TM4k+1)⊕Q ∼= Nε

for some N and show that the rank of Q is at least 2k.

Let a1, . . . , ak be the pull-backs of a to M under the corresponding

projections to CP2, so that a3i = 0 for all i. We have

c(C ⊗ TM4k+1) · c(Q) = 1.

Thus c(Q) = (1+3a21) · · · (1+3a2k). Since a
2
1 · · · a

2
k 6= 0, this implies that the

rank of Q is at least 2k.

Next we assume that there exists some Q with

(C⊗ TM4k+3)⊕Q = Nε

for some N and show that the rank of Q is at least 2k + 1. Let a1, . . . ak be

as before and let b1 be the pull-back of the generator in H2(RP2;Z) given
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by the Chern class of the complexification of the tautological line bundle on

RP2. We have

c(C ⊗ TM4k+3) · c(Q) = 1

which now gives

c(Q) = (1 + 3a21) · · · (1 + 3a2k)(1 − b1).

This implies that the rank of Q is at least 2k + 1.

3.2. Independent maps

The same manifolds M4k+r (0 ≤ r ≤ 3) show that Theorem 2.2 is also

optimal.

Theorem 3.2.

• M4k does not admit an independent map into CN for N = 2k + 1.

• M4k+1 = M4k × S1 does not admit an independent map into CN for

N = 2k + 2.

• M4k+2 = M4k ×RP2 does not admit an independent map into CN for

N = 2k + 2.

• M4k+3 =M4k ×RP2 ×S1 does not admit an independent map into CN

for N = 2k + 3.

The proofs are similar to those of Theorem 3.1 and can be found in [3].

For instance, to show that M4k+1 does not admit an independent map into

CN for N = 2k + 2 we start with

C⊗ TM4k+1 ∼= Nε⊕B

for some N which gives us

c(B) = c(C⊗ TM4k+1) = (1− 3a1)
2 · · · (1− 3a2k).

So the rank of B is at least 2k and since N + rankB = 4k + 1, this leads to

N ≤ 2k + 1.
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4. New Results for Four-Manifolds

The fact that the same set of examples demonstrates the optimality of

both Theorems 2.1 and 2.2 suggests that for some class of manifolds the two

conditions

(C⊗ TM)⊕Q ∼= Nε.

and

C⊗ TM ∼= Nε⊕B.

are related. As a first step in exploring this, we present a result for four-

dimensional manifolds.

Theorem 4.1. Let M be either an open or an orientable four-manifold.

Then M has a totally real immersion into C5 if and only if M admits an

independent map into C3.

This result is false (in both directions) for non-orientable 4-manifolds:

Theorem 4.2. RP4 admits an independent map into C3, but no totally real

immersion into C5. Moreover, the connected sum of RP4 and RP2 ×RP2

admits a totally real immersion into C5, but no independent map into C3.

Proof of Theorem 4.1. The hypothesis on M implies that H4(M ;Z) is

either zero or is torsion-free. We will also use that 2c1(C⊗ TM) = 0.

Let M have such a totally real immersion. So there exists a Q of rank

1 with

(C⊗ TM)⊕Q ∼= 5ε (2)

and we want to find a B (also of rank 1) such that

C⊗ TM ∼= 3ε⊕B. (3)

From

c((C ⊗ TM)⊕Q) = 1

we derive

c2(C⊗ TM) = c1(C⊗ TM)2.

Thus

2c2(C⊗ TM) = 0
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which implies

c2(C⊗ TM) = 0.

Dimensional considerations imply that C ⊗ TM ∼= 2ε ⊕ B′, where B′ is

a rank two complex vector bundle. Note that c2(B
′) = c2(C ⊗ TM) and

so c2(B
′) = 0. Since c2(B

′) coincides with the Euler characteristic of the

underlying real oriented bundle, B′ admits a global nowhere zero section

(see [5, Theorem 12.5]). Thus

C⊗ TM ∼= 2ε⊕B′ ∼= 2ε⊕ ε⊕B = 3ε⊕B

and so M admits an independent map into C3.

Now, conversely, we start with

C⊗ TM ∼= 3ε⊕B

for some B of rank 1 and prove that there exists some Q (also of rank 1)

with

(C⊗ TM)⊕Q ∼= 5ε.

We see that

c(C⊗ TM) = c(B).

This yields

c1(C⊗ TM) = c1(B),

so that

2c1(B) = 0

which implies that

(c1(B))2 = 0

by the hypothesis on M . From Theorem 2.1 and Lemma 3.1(a) we have

(C⊗ TM)⊕Q′ ∼= 6ε

for some Q′ of rank 2. It remains to show that Q′ ∼= Q⊕ ε, which will follow

from c2(Q
′) = 0; the latter equation holds since

c(Q′) = c(B)−1 = (1 + c1(B))−1 = 1 + c1(B). ���
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Remark. We further observe that when (2) and (3) hold, it follows that

Q ∼= B and that these line bundles have trivial square since their first Chern

classes have order 2. Moreover, from the Corollary below we see that when

M is orientable these line bundles are in fact trivial, so that M admits a

totally real immersion into C4.

We use the following lemma in the proof of Theorem 4.2.

Lemma 4.3.

(a) M4 has a totally real immersion into C5 if and only if the dual Pontrya-

gin class p1(M) is zero.

(b) M4 admits an independent map into C3 if and only if the Pontryagin

class p1(M) is zero.

Proof. Assume thatM4 has a totally real immersion into C5, so there exists

a line bundle Q such that (2) holds. The dual Pontryagin class is defined by

taking any immersion ofM into some Rm and setting p1(M) = −c2(C⊗N),

where N is the normal bundle of the immersion. Thus TM ⊕ N is trivial.

Since

(C⊗ TM)⊕ (C⊗N)

is also trivial, we see that c2(C⊗N) = c2(Q) = 0. Thus p1(M) = 0.

Conversely, assume p1(M) = 0. As before, we have (C⊗TM)⊕Q′ ∼= 6ε

with Q′ of rank 2. We have p1(M) = −c2(Q
′), so Q′ ∼= Q ⊕ ε and we then

can conclude that (C⊗ TM)⊕Q is trivial.

On the other hand, the first Pontryagin class of M is equal, up to sign,

to c2(C⊗ TM). Thus if

C⊗ TM = 3ε⊕B,

with B of rank 1, we have p1(M) = 0.

Finally, suppose that p1(M) = 0, i.e. c2(C ⊗ TM) = 0. We can write

C ⊗ TM ∼= 2ε ⊕ B′, where rankB′ = 2. So c2(B
′) = 0, which implies that

B′ ∼= ε⊕B, yielding C⊗ TM ∼= 3ε⊕B, as required. ���

Theorem 4.2 is now an immediate consequence of the following lemma.

Lemma 4.4. p1(RP4) = 0 and p1(RP4) 6= 0, while the opposite is true for

the connected sum of RP4 and RP2 ×RP2.
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Proof. Note first that for a closed connected non-orientable 4-manifold

M the coefficient homomorphism H4(M ;Z) → H4(M ;Z2) induced by re-

duction mod 2 is an isomorphism, as follows from the long exact sequence

induced by the short exact sequence

0 → Z → Z → Z2 → 0

of coefficient groups, making use of the fact that H4(M ;Z) ∼= Z2. It is well

known that for any real vector bundle overM this coefficient homomorphism

sends p1 to (w2)
2 (see e.g. [5, Problem 15-A]). So p1(M) = 0 if and only if

((w2(M))2 = 0; and p1(M) = 0 if and only if ((w2(M))2 = 0.

For RP4 we have w(RP4) = (1 + x)5 = 1+ x+ x4, where x denotes the

generator in 1-dimensional cohomology. So w2(RP4) = 0 and therefore also

p1(RP4) = 0. In addition, w(RP4) = 1+ x+ x2 + x3, so w2(RP4) = x2 and

it follows that p1(RP4) 6= 0.

Now let M = RP4#(RP2×RP2). As this manifold is cobordant to the

disjoint union of its two “summands”, its Stiefel-Whitney and dual Stiefel-

Whitney numbers are the sums of the corresponding characteristic numbers

of its summands. We have determined these characteristic numbers for RP4,

and need only add to them the corresponding characteristic numbers for

RP2 ×RP2. One easily computes that for both (w2)
2 and (w2)

2 the char-

acteristic numbers of RP2 × RP2 are nonzero. It follows that p1(M) 6= 0,

while p1(M) = 0. ���

In the case of an orientable four-manifold, we can obtain the following

more precise result.

Corollary 4.1. Let M be an orientable 4-manifold. Then p1(M) is zero if

and only if p1(M) is zero, and these conditions are equivalent to the existence

of a totally real immersion of M into C4. When these conditions fail, M

admits no totally real immersion into C5, nor an independent map into C3.

Proof. LetM be an orientable 4-manifold. Suppose thatM admits a totally

real immersion into C5. In this case, we know that (C⊗ TM)⊕Q is trivial

for a complex line bundle Q. Hence we have c1(C⊗ TM) = −c1(Q).

Since M is orientable, the top exterior power of TM is a trivial real

line bundle, hence the top exterior power of C ⊗ TM is a trivial complex
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line bundle, and so (e.g., by using the splitting principle) c1(C⊗ TM) = 0.

Hence Q is a trivial line bundle.

It follows that C⊗TM is stably trivial, and therfore is trivial for dimen-

sional reasons. In turn, this implies that M admits a totally real immersion

into C4.

Similarly, if an orientable 4-manifold M admits an independent map

into C3, then in fact M admits a totally real immersion into C4. ���

Remark. We provide a summary of the results in this section for a four-

dimensional manifold M , in terms of the following list of conditions that the

manifold may satisfy:

(1) M admits a totally real immersion into C5.

(2) M admits a totally real immersion into C4.

(3) M admits an independent map into C3.

(4) M admits an independent map into C4.

(5) C⊗ TM is trivial.

(6) The first dual Pontryagin class of M vanishes.

(7) The first Pontryagin class of M vanishes.

Then:

(a) Conditions (2), (4), and (5) are equivalent for all 4-manifolds, and plainly

imply the remaining conditions.

(b) Conditions (1) and (6) are equivalent for all 4-manifolds. The same holds

for Conditions (3) and (7).

(c) Conditions (1), (3), (6), and (7) are all satisfied if M is open.

(d) All seven conditions are equivalent if M is orientable.

(e) By Theorem 4.2, conditions (1) and (3) are not equivalent for compact

non-orientable manifolds; indeed, neither implies the other.

(f) The conditions (1), (3), (6), and (7) are satisfied by the non-orientable

manifolds RP2 ×R2 and RP2 × S2, but these manifolds do not satisfy

the conditions (2), (4), and (5), since in both case the first Chern class

of the complexified tangent bundle is nonzero.
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It seems unlikely that such complete results can be obtained for manifolds

of larger dimension.

5. A geometric approach to Theorem 4.1

Here is an alternative proof that the equation (3),

C⊗ TM = 3ε⊕B,

implies, for orientable M4, that there exists some Q satisfying equation (2),

(C⊗ TM)⊕Q = 5ε.

The zero set of a generic section σ1 of the line bundle B is a (possibly not

connected) 2-dimensional orientable submanifold Y ⊂ M . In the usual way

we have 2c1(B) = 0 and so this is also true for the restriction of B to

Y . But since Y is orientable we may conclude that also c1(B|Y ) = 0, which

implies that B|Y is trivial. Let σ2 be a nonzero section of B|Y and extend σ2
smoothly to a section over M . These two sections provide a fiber-surjective

map M ×C2 → B. In light of (3), we then have a fiber-surjective map

M ×C5 → C⊗ TM

and this leads to (2).
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