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Abstract

Let V1, V2 be hypersurface germs in C
m withm ≥ 2, each having a quasi-homogeneous

isolated singularity at the origin. In our recent article [7] we reduced the biholomor-

phic equivalence problem for V1, V2 to verifying whether certain polynomials, called nil-

polynomials, that arise from the moduli algebras of V1, V2 are equivalent up to scale by

means of a linear transformation. In this paper we illustrate the above result by the ex-

amples of simple elliptic singularities of types Ẽ6, Ẽ7, Ẽ8. The examples of singularities

of types Ẽ6, Ẽ7 motivate a conjecture that implies that just the highest-order terms of

the corresponding nil-polynomials completely solve the equivalence problem in the homo-

geneous case. This conjecture was first proposed in our paper [5] where it was established

for plane curve germs defined by binary quintics and binary sextics. In the present paper

we provide further evidence supporting the conjecture for binary forms of an arbitrary

degree.

1. Introduction

For a hypersurface germ V at the origin in C
m with m ≥ 2 (consid-

ered with its reduced complex structure) let A(V ) be the moduli algebra or

Tjurina algebra of V . Recall that A(V ) is the quotient of the algebra Om

of germs at the origin of holomorphic functions of m complex variables by

the ideal generated by f and all its first-order partial derivatives, where f

is any generator of the ideal I(V ) of elements of Om vanishing on V . This

definition is independent of the choice of f as well as the coordinate system
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near the origin, and the moduli algebras of biholomorphically equivalent hy-

persurface germs are isomorphic. It is well-known that dimCA(V ) < ∞ if

and only if V either is non-singular (in which case A(V ) is trivial) or has an

isolated singularity (see, e.g. [11]).

A well-known theorem due to Mather and Yau (see [18]) states that

hypersurface germs V1 and V2 in C
m having isolated singularities are bi-

holomorphically equivalent if their moduli algebras A(V1) and A(V2) are

isomorphic. Up to isomorphism, there is only one moduli algebra of dimen-

sion 1 and only one moduli algebra of dimension 2. If dimCA(V ) = 1, then

V is biholomorphic to the germ of the hypersurface {z21 + · · ·+ z2m = 0}, and
if dimCA(V ) = 2, then V is biholomorphic to the germ of the hypersurface

{z21 + · · · + z2m−1 + z3m = 0}. In general, it is not easy to tell whether two

given moduli algebras are isomorphic. In our recent article [7] we obtained

a criterion for algebras A(V1), A(V2) of dimension greater than 2 to be iso-

morphic provided the singularity of each of V1, V2 is quasi-homogeneous.

In this paper we apply the criterion found in [7] to particular families of

singularities.

Recall that an isolated singularity of a hypersurface germ V in C
m is

said to be quasi-homogeneous if some (and therefore any) generator f of

I(V ) in some coordinates z = (z1, . . . , zm) near the origin is the germ of

a quasi-homogeneous polynomial, where a polynomial Q(z) is called quasi-

homogeneous if there exist positive integers p1, . . . , pm, q such that

Q(tp1z1, . . . , t
pmzm) ≡ tqQ(z) for all t ∈ C. The singularity of V is said

to be homogeneous if one can choose Q to be homogeneous, in which case

the discriminant of Q does not vanish. By a theorem due to Saito (see

[21]), the singularity of V is quasi-homogeneous if and only if f lies in the

Jacobian ideal J (f) (i.e. the ideal in Om generated by all first-order par-

tial derivatives of f). Hence, for a quasi-homogeneous singularity, A(V )

coincides with the Milnor algebra Om/J (f) for any generator f of I(V ).

Therefore, if the singularity of V is quasi-homogeneous, the algebra A(V )

is a complete intersection ring, which implies that A(V ) is Gorenstein (see

[1]). Recall that a local complex commutative associative algebra A with

1 < dimC A < ∞ is a Gorenstein ring if and only if for the annihila-

tor Ann(m) := {u ∈ m : u · m = 0} of its maximal ideal m one has

dimCAnn(m) = 1 (see, e.g. [12]). The property that A(V ) is Gorenstein

characterizes quasi-homogeneous singularities (see, e.g. [17]). Next, if the
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singularity of V is quasi-homogeneous, the algebra A(V ) is (non-negatively)

graded. More precisely, one has A(V ) = ⊕j≥0Lj, where Lj are linear sub-

spaces of A(V ), with LjLk ⊂ Lj+k and L0 ≃ C. The existence of such

a grading on A(V ) also characterizes quasi-homogeneous singularities (see

[26]).

A criterion for two complex graded Gorenstein algebras of finite vector

space dimension greater than 2 to be isomorphic was given in [7] (see also [9],

[14] for results on algebras over arbitrary fields of characteristic zero). The

criterion is stated in terms of certain polynomials that were first introduced

in [8]. Indeed, as explained in Section 2 below, to every complex Gorenstein

algebra A with 2 < dimCA <∞ one can associate polynomials of a special

form on n := m/Ann(m) = m/mν , called nil-polynomials, of degree ν with

vanishing constant and linear terms, where ν ≥ 2 is the nil-index of m.

In [7] we showed that two complex graded Gorenstein algebras A1, A2 are

isomorphic if and only if some (hence any) nil-polynomials P1, P2 arising

from A1, A2, respectively, are linearly equivalent up to scale, that is, there

exists c ∈ C
∗ and a linear isomorphism L : n1 7→ n2 such that cP1 = P2 ◦ L.

Applying the above isomorphism criterion to the moduli algebras of two

hypersurface germs V1, V2 in C
m having quasi-homogeneous singularities,

one obtains that the biholomorphic equivalence problem for V1, V2 reduces

to the problem of linear equivalence up to scale for any nil-polynomials P1,

P2 arising from A(V1), A(V2), respectively (see Theorem 2.2).

In Section 3 we show how the above criterion works for simple elliptic hy-

persurface singularities. Recall that such singularities split into three types

denoted Ẽ6, Ẽ7, Ẽ8, and a singularity within each type is completely deter-

mined by the value of the j-invariant for the exceptional elliptic curve lying

in the minimal resolution of the singularity (see [22]). The isomorphism

problem for the moduli algebras of simple elliptic singularities has been

extensively studied in purely algebraic terms and is now well-understood.

Namely, it was explained in [2], [23] – and in a very explicit form in [4] –

how one can recover the value of the j-invariant directly from the corre-

sponding moduli algebra. In article [4] for singularities of each of the types

Ẽ6, Ẽ7, Ẽ8 certain forms (homogeneous polynomials) were introduced in an

invariant way; we call them Eastwood forms. Remarkably, it has turned out
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that by using classical invariant theory one can extract the value of the j-

invariant for the exceptional elliptic curve from the Eastwood form of the

singularity.

In Section 3 we use Theorem 2.2 for providing an alternative solution to

the equivalence problem for singularities of each of the types Ẽ6, Ẽ7, Ẽ8. In

our solution, instead of the Eastwood forms we use nil-polynomials arising

from the moduli algebras. For each of the types Ẽ6, Ẽ7, Ẽ8, the Eastwood

forms can in fact be regarded as parts of the corresponding nil-polynomials.

Since the nil-polynomials contain additional terms, they should be easier

to use for distinguishing biholomorphically non-equivalent singularities than

the Eastwood forms. Indeed, while for singularities of types Ẽ6, Ẽ7 our

arguments are similar to those in [4], for singularities of type Ẽ8 there is a

difference. Namely, for Ẽ8-singularities we do not need to resort to classical

invariant theory. Instead, we make elementary comparisons of some of the

homogeneous components of the corresponding nil-polynomials. Utilizing

components other than the Eastwood forms is essential for our arguments

in the Ẽ8-case.

As we will see in Section 3, in order to recover the solution to the equiv-

alence problem for simple elliptic singularities of types Ẽ6, Ẽ7, only the

highest-order terms of the corresponding nil-polynomials (which essentially

coincide with the Eastwood forms) need to be used. Note that singularities

of type Ẽ6 are homogeneous and that the moduli algebra of any singularity

of type Ẽ7 is in fact the moduli algebra of a homogeneous plane curve sin-

gularity. These observations motivate a conjecture that was first proposed

in our recent paper [5] (see Conjecture 4.2 in Section 4 below). The con-

jecture states, in particular, that for homogeneous singularities a solution

to the biholomorphic equivalence problem is encoded in the highest-order

terms of nil-polynomials arising from the moduli algebras of the singular-

ities. For a hypersurface germ V defined by a form Q of degree n with

non-zero discriminant, every nil-polynomial P has degree m(n− 2), and one

can think of its highest-order homogeneous component as a form P̂ [m(n−2)]

defined on the m-dimensional space m(V )/m(V )2, where m(V ) is the max-

imal ideal of A(V ). Any two forms constructed as above coincide up to

scale, and we say that all these mutually proportional forms are associated

to Q (note that such forms were first considered in [4] without introducing

nil-polynomials). Further, two hypersurface germs defined by forms Q1(z),
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Q2(z) with non-zero discriminant are biholomorphically equivalent if and

only if Q1, Q2 are linearly equivalent, that is, there exists C ∈ GL(m,C)

for which Q1(Cz) ≡ Q2(z). It can be shown that for forms with non-zero

discriminant the linear equivalence problem is solved by absolute classical

invariants (see Proposition 4.1). Accordingly, Conjecture 4.2 states that one

can recover all absolute invariants of forms of degree n in m variables from

absolute invariants of forms of degree m(n− 2) in m variables by evaluating

the latter for associated forms.

The treatment of simple elliptic singularities of types Ẽ6 and Ẽ7 in article

[4] and in Section 3 of the present paper effectively verifies Conjecture 4.2

for binary quartics (m = 2, n = 4) and ternary cubics (m = 3, n = 3). In

[5] we showed that Conjecture 4.2 also holds for binary quintics (m = 2,

n = 5) and binary sextics (m = 2, n = 6). In Section 5 of this paper we

give further evidence supporting the conjecture. We consider the following

family of homogeneous plane curve singularities:

Vt := the germ of {ft := zn1 + tzn−1
1 z2 + zn2 = 0}, t ∈ C, n ≥ 4, (1.1)

where the discriminant of the form ft is non-zero, which in terms of the

parameter t means tn 6= −nn/(1 − n)n−1 (see (5.4)). Family (1.1) first

appeared in paper [16], where the plane curves {zn1 +z1a(z2)zα2 +b(z2)zβ2 = 0}
were considered. Here α, β are positive integers, n ≥ 3, and a(z2), b(z2) are

holomorphic nowhere vanishing functions defined near the origin. The germs

of the above curves at the origin were classified in [16] up to biholomorphic

equivalence in many situations (see also [24]). However, the homogeneous

case α = n − 1, β = n, a ≡ 1, b ≡ const, where the discriminant of the

form zn1 + z1z
n−1
2 + bzn2 is non-zero, proved to be of substantial difficulty

to the authors for n ≥ 4. The biholomorphic equivalence problem in the

homogeneous case was eventually solved in later paper [15] as stated in the

theorem below (note that for n ≥ 4 and b 6= 0 the form zn1 + z1z
n−1
2 + bzn2 is

linearly equivalent to ft for some t).

Theorem 1.1. Two germs Vt1 and Vt2 are biholomorphically equivalent if

and only if tn1 = tn2 .

Theorem 1.1 was obtained in [15] by the direct substitution method,

which required enormous calculations. In Section 5 below we prove Theo-

rem 1.1 by a short elementary argument based on classical invariant theory.
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Furthermore, it turns out that the solution to the biholomorphic equivalence

problem for the germs Vt given by Theorem 1.1 can be also recovered in the

spirit of Conjecture 4.2, namely by evaluating a certain absolute invariant

of forms of degree 2(n − 2) for forms associated to ft. This last method for

obtaining a solution to the equivalence problem for Vt is still much easier

than the direct substitution method of [15].

2. A Criterion for Biholomorphic Equivalence

of Quasi-Homogeneous Singularities

In this section we state some of the results of our paper [7]. Let A be a

complex Gorenstein algebra with 2 < dimCA <∞ and m the maximal ideal

of A. Further, let exp2 : m → m be the map

exp2(u) :=
∞∑

k=2

1

k!
uk, u ∈ m.

By Nakayama’s lemma, m is a nilpotent algebra, and therefore the above

sum is in fact finite, with the highest-order term corresponding to k = ν,

where ν ≥ 2 is the nil-index of m (i.e. the largest of all integers µ for which

m
µ 6= 0).

Using the map exp2, one can associate to the algebra A a collection of

polynomials of a special form. For every finite-dimensional complex vector

space W we denote by C[W ] the algebra of all C-valued polynomials on W .

Let Ann(m) := {u ∈ m : u · m = 0} = m
ν be the annihilator of m. A

polynomial P ∈ C[W ] is called a nil-polynomial arising from A if there exist

a linear form ω : m → C and a linear isomorphism ϕ : W → kerω such that

ω(Ann(m)) = C and P = ω ◦ exp2 ◦ϕ. Any nil-polynomial P has a unique

decomposition

P =
ν∑

k=2

P [k] , P [k] :=
1

k!
ω(ϕk),

where every P [k] ∈ C[W ] is homogeneous of degree k. The quadratic form

P [2] is non-degenerate onW , and P [ν] 6= 0. Without loss of generality we may

assume that W = C
K for K := dimCm− 1. In this case there exists a basis

e1, . . . , eK of kerω such that ϕ(w) =
∑K

α=1wαeα for w = (w1, . . . , wK) ∈
C
K , and we write C[W ] = C[w1, . . . , wK ].
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Further, two nil-polynomials P1 ∈ C[W1], P2 ∈ C[W2] arising from

Gorenstein algebras A1, A2, respectively, are called linearly equivalent up

to scale if there exist c ∈ C
∗ and a linear isomorphism L : W1 → W2 such

that cP1 = P2 ◦ L. Clearly, this identity holds if and only if cP
[k]
1 = P

[k]
2 ◦ L

for k = 2, . . . , ν, where ν is the nil-index of each of m1, m2 (note that the

nil-indices of m1, m2 coincide since degP1 = degP2). It follows from results

of [7] (see also [8], [9], [14]) that the map

ψ : m1 → m2, ψ(u+ v) := ϕ2 ◦ L ◦ ϕ−1
1 (u) + c ω̃−1

2 (ω1(v))

is an algebra isomorphism, where ω1, ω2 and ϕ1 : W1 → kerω1, ϕ2 : W2 →
kerω2 are the linear forms and the linear isomorphisms corresponding to P1,

P2, respectively, ω̃2 := ω2|Ann(m2), u ∈ kerω1, v ∈ Ann(m1). Thus, if P1, P2

are linearly equivalent up to scale, the algebras A1, A2 are isomorphic. In

[7] we showed that the converse to this statement also holds if the algebras

A1, A2 are graded.

Thus, we have the following theorem.

Theorem 2.1 ([7]). Let P1, P2 be arbitrary nil-polynomials arising from

Gorenstein algebras A1, A2 of dimension greater than 2, respectively. Sup-

pose that the algebras A1, A2 is graded. Then A1, A2 are isomorphic if and

only if P1, P2 are linearly equivalent up to scale.

Applying Theorem 2.1 to the moduli algebras of quasi-homogeneous singu-

larities, one obtains a solution to the biholomorphic equivalence problem for

such singularities.

Theorem 2.2 ([7]). Let V1, V2 be hypersurface germs in C
m each having a

quasi-homogeneous singularity. Assume that dimCA(V1) > 2, dimCA(V2) >

2. Let furthermore P1, P2 be arbitrary nil-polynomials arising from A(V1),

A(V2), respectively. Then the germs V1, V2 are biholomorphically equivalent

if and only if the nil-polynomials P1, P2 are linearly equivalent up to scale.

3. Application to Simple Elliptic Singularities

In this section we illustrate Theorem 2.2 by the examples of simple

elliptic hypersurface singularities.
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Example 3.1. Consider simple elliptic singularities of type Ẽ6. These are

the homogeneous singularities of the following hypersurface germs at the

origin in C
3:

Vt := the germ of
{
(z1, z2, z3) ∈ C

3 : z31+z
3
2+z

3
3+tz1z2z3 = 0

}
, t3 + 27 6= 0.

Two germs Vt1 , Vt2 are known to be biholomorphically equivalent if and

only if t1 is obtained from t2 by an element of the group generated by the

following parameter changes:

t 7→ ρt, t 7→ 3(6 − t)

t+ 3
, (3.1)

where ρ3 = 1 (see [2], [4], [22]).

We will now give an alternative proof of this statement using Theorem

2.2. Following [2], [4], consider the monomials

z1z2z3, z1, z2, z3, z2z3, z1z3, z1z2,

and let el, l = 0, . . . , 6, respectively, be the vectors in the maximal ideal

m(Vt) of A(Vt) arising from them. These vectors are known to form a basis

of m(Vt), with Ann(m(Vt)) spanned by e0. Then for any linear form ω on

m(Vt), with kerω spanned by el, l = 1, . . . , 6, and for ϕ : C
6 → kerω

given by ϕ(w) :=
∑6

α=1 wαeα, with w = (w1, . . . , w6), the corresponding

nil-polynomial in C[w1, . . . , w6] is proportional to

Pt := − t

18
(w3

1 + w3
2 + w3

3) + w1w2w3 + w1w4 + w2w5 +w3w6.

Consider the cubic terms in Pt:

Qt := P
[3]
t = − t

18
(w3

1 + w3
2 +w3

3) + w1w2w3. (3.2)

If one regards the cubics Qt as forms on m(Vt)/m(Vt)
2, then up to scale they

coincide with the Eastwood forms of Ẽ6-singularities (see formula (3.1) in

[4]). It turns out that any two non-equivalent germs are distinguished by

Qt.

Suppose that for some t1 6= t2 the germs Vt1 and Vt2 are biholomorphi-

cally equivalent. By Theorem 2.2 there exist c ∈ C
∗ and C ∈ GL(6,C) such
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that c · Pt1(w) ≡ Pt2(Cw). Then we have c · Qt1(w
′) ≡ Qt2(C

′w′), where

w′ := (w1, w2, w3) and C ′ is the upper left 3 × 3-submatrix of the matrix

C. It then follows that C ′ is non-degenerate and maps the zero locus of Qt1

onto that of Qt2 . Let Zt be the curve in CP
2 arising from the zero locus of

Qt. This curve has singularities only if either t = 0 or t3 = 216. Hence if

t1 = 0, then t32 = 216, which agrees with (3.1).

If t 6= 0 and t3 6= 216, then Zt is an elliptic curve. The projective

equivalence class of an elliptic curve is completely determined by the value

of the j-invariant for the curve. The value of the j-invariant for Zt is well-

known (see, e.g. [2], [4], [13], [22]):

j(Zt) = − (t3 + 27)3

t3(t3 − 216)3
.

It then follows that t1 and t2 can only be related as described by (3.1).

On the other hand, if t1 and t2 are related as described by (3.1), one

can construct a biholomorphic map between Vt1 and Vt2 . Indeed, for ρ
3 = 1,

ρ 6= 1 the map

z1 7→ ρz1, z2 7→ z2, z3 7→ z3

shows that Vt and Vρt are equivalent, and the map

z1 7→ z1 + z2 + z3, z2 7→ ρz1 + ρ2z2 + z3, z3 7→ ρ2z1 + ρz2 + z3

shows that Vt and V 3(6−t)
t+3

are equivalent (cf. [4]).

Example 3.2. Consider simple elliptic singularities of type Ẽ7. These are

the quasi-homogeneous singularities of the following hypersurface germs at

the origin in C
3:

Vt := the germ of
{
(z1, z2, z3) ∈ C

3 : z41 + tz21z
2
2 + z42 + z23 = 0

}
, t 6= ±2.

Two germs Vt1 , Vt2 are known to be biholomorphically equivalent if and

only if t1 is obtained from t2 by an element of the group generated by the

following parameter changes:

t 7→ −t, t 7→ 2(6 − t)

t+ 2
(3.3)
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(see [4], [22], [23]).

We will now give an alternative proof of this statement using Theorem

2.2. Following [4], [23], consider the monomials

z21z
2
2 , z1, z2, z

2
1 , z1z2, z

2
2 , z

2
1z2, z1z

2
2 ,

and let el, l = 0, . . . , 7, respectively, be the vectors in the maximal ideal m(Vt)

of A(Vt) arising from these monomials. These vectors are known to form a

basis of m(Vt), with Ann(m(Vt)) spanned by e0. Then for any linear form

ω on m(Vt), with kerω spanned by el, l = 1, . . . , 7, and for ϕ : C7 → kerω

given by ϕ(w) :=
∑7

α=1 wαeα, with w = (w1, . . . , w7), the corresponding

nil-polynomial in C[w1, . . . , w7] is proportional to

Pt := − t

48
w4
1 +

1

4
w2
1w

2
2 −

t

48
w4
2

− t

4
w2
1w3 +

1

2
w2
1w5 −

t

4
w2
2w5 +

1

2
w2
2w3 + w1w2w4

+w1w7 + w2w6 + w3w5 −
t

4
w2
3 −

t

4
w2
5 +

1

2
w2
4.

Consider the fourth-order terms in Pt:

Qt := P
[4]
t = − t

48
w4
1 +

1

4
w2
1w

2
2 −

t

48
w4
2. (3.4)

If one regards the quartics Qt as forms on m(Vt)/m(Vt)
2, then up to scale

they coincide with the Eastwood forms of Ẽ7-singularities (cf. formula (3.7)

in [4]). It turns out that any two non-equivalent germs are distinguished by

Qt.

Suppose that for some t1 6= t2 the germs Vt1 and Vt2 are biholomorphi-

cally equivalent. By Theorem 2.2 there exist c ∈ C
∗ and C ∈ GL(7,C) such

that c · Pt1(w) ≡ Pt2(Cw). Then we have c · Qt1(w
′) ≡ Qt2(C

′w′), where

w′ := (w1, w2) and C
′ is the upper left 2× 2-submatrix of the matrix C. It

then follows that C ′ is non-degenerate and maps the zero locus of Qt1 onto

that of Qt2 . Observe that the zero locus of Q0 consists of the complex lines

{w1 = 0} and {w2 = 0}, and for t 6= 0 the zero locus of Qt is

Zt :=

{
w′ ∈ C

2 : w2
1 =

6 +
√
36 − t2

t
w2
2

}
.
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Clearly, for t 6= ±6 the set Zt consists of four complex lines, whereas each of

Z6 and Z−6 is the union of two complex lines. Hence if t1 = 0 then t2 can

only be ±6, which agrees with (3.3).

Suppose now that t1, t2 6= 0,±6 and consider the Möbius transforma-

tion mC′ of CP1 arising from C ′. The transformation mC′ maps the four

points in CP
1 corresponding to Zt1 onto the four points corresponding to

Zt2 . Considering the cross-ratios of these four-point sets and using the fact

that cross-ratios are preserved under mC′ , it is now straightforward to see

that t1 and t2 can only be related as described by (3.3). An alternative proof

of this statement is given in [4]; it uses the invariant theory of quartics in

two variables (see also Section 4 below).

On the other hand, if t1 and t2 are related as described by (3.3), one

can construct a biholomorphic map between Vt1 and Vt2 . Indeed, the map

z1 7→ iz1, z2 7→ z2, z3 7→ z3

shows that Vt and V−t are equivalent, and the map

z1 7→ z1 + z2, z2 7→ z1 − z2, z3 7→
√
t+ 2 z3

shows that Vt and V 2(6−t)
t+2

are equivalent (cf. [4]).

Remark 3.3. In Examples 3.1 and 3.2 linear equivalence of the forms Qt1 ,

Qt2 (see (3.2), (3.4)) can in fact be obtained directly, without referring to

Theorem 2.2. Indeed, in each of these cases Qt is the highest-order term

of a nil-polynomial, and the highest-order terms of any two nil-polynomials

arising from the same Gorenstein algebra are proportional to each other

when regarded as forms on m/m2.

Example 3.4. Consider simple elliptic singularities of type Ẽ8. These are

the quasi-homogeneous singularities of the following hypersurface germs at

the origin in C
3:

Vt := the germ of
{
(z1, z2, z3) ∈ C

3 : z61+tz
4
1z2+z

3
2+z

2
3 = 0

}
, 4t3 + 27 6= 0.

Two germs Vt1 , Vt2 are known to be biholomorphically equivalent if and only

if the following holds:

t1 = ρt2, (3.5)
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where ρ3 = 1 (see [4], [22], [23]).

We will now give an alternative proof of this statement using Theorem

2.2. Following [4], [23], consider the monomials

z41z2, z1, z2, z
2
1 , z1z2, z

3
1 , z

2
1z2, z

4
1 , z

3
1z2,

and let el, l = 0, . . . , 8, respectively, be the vectors in the maximal ideal m(Vt)

of A(Vt) arising from these monomials. These vectors are known to form a

basis of m(Vt), with Ann(m(Vt)) spanned by e0. Then for any linear form

ω on m(Vt), with kerω spanned by el, l = 1, . . . , 8, and for ϕ : C8 → kerω

given by ϕ(w) :=
∑8

α=1 wαeα, with w = (w1, . . . , w8), the corresponding

nil-polynomial in C[w1, . . . , w8] is proportional to

Pt : = − t

1080
w6
1+

1

24
w4
1w2−

t

36
w4
1w3+

1

6
w3
1w4−

t

9
w3
1w5+

t2

18
w2
1w

2
2

+
1

2
w2
1w2w3−

t

6
w2
1w

2
3+

2t2

9
w1w2w4+w1w2w5+w1w3w4−

2t

3
w1w3w5

+
1

2
w2
1w6−

t

3
w2
1w7−

t

18
w3
2+

t2

9
w2
2w3+

1

2
w2w

2
3−

t

9
w3
3+w1w8+w2w7

+
2t2

9
w2w6+w3w6−

2t

3
w3w7+

t2

9
w2
4+w4w5−

t

3
w2
5.

In our arguments we will use, in particular, the third-order terms of Pt

independent of w1:

Qt := − t

18
w3
2 +

t2

9
w2
2w3 +

1

2
w2w

2
3 −

t

9
w3
3.

If one regards the cubics Qt as forms on l(Vt)/m(Vt)l(Vt), where

l(Vt) := {u ∈ m(Vt) : u
4 = 0},

then up to scale they coincide with the Eastwood forms of Ẽ8-singularities

(cf. p. 308 in [4]).

Suppose that for some t1 6= t2 the germs Vt1 and Vt2 are biholomorphi-

cally equivalent. Since 0 is the only value of t for which Pt has degree 6, we

have t1, t2 6= 0. By Theorem 2.2 there exist c ∈ C
∗ and C ∈ GL(8,C) such

that

c · Pt1(w) ≡ Pt2(Cw). (3.6)
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By comparing the terms of order 6 in identity (3.6), we obtain that the first

row in the matrix C has the form (µ, 0, . . . , 0) and

c =
t2
t1
µ6. (3.7)

Next, let ( ∗ , α, β, ∗ , . . . , ∗ ) and ( ∗ , γ, δ, ∗ , . . . , ∗ ) be the second and third

rows in C, respectively, for some α, β, γ, δ ∈ C. Comparing the terms of

order 4 in (3.6) that do not involve w3
1, we see that the matrix

D :=

(
α β

γ δ

)

is non-degenerate. Further, comparing the terms of order 5 in (3.6) we obtain

β =
2

9
(−3αt1 + 3δt2 + 2γt1t2) (3.8)

and

c =

(
α− 2t2

3
γ

)
µ4. (3.9)

We will now compare the terms of order 3 in (3.6) that depend only on

w′ := (w2, w3). We have

c ·Qt1(w
′) ≡ Qt2(Dw

′). (3.10)

Setting

Dt :=

(
1/3 2t/3

0 1

)

one observes

Qt(Dtw
′) = Qt(w

′) :=
t

27
w3
2 − 3∆tw2w

2
3 − 4t∆tw

3
3,

where ∆t := 1 + 4t3/27. Hence (3.10) implies

c ·Qt1(w
′) ≡ Qt2(D̂w

′), (3.11)
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where D̂ := D−1
t2
DDt1 . By (3.8) we have

D̂ =

(
a 0

b d

)

with a := α− 2t2γ/3, b := γ/3, d := δ + 2t1γ/3.

It follows from (3.11) and the non-degeneracy of D̂ that b(a+2t2b) = 0.

If b = 0, the comparison of the three pairs of coefficients in (3.11) yields

c =
t2
t1
a3 =

∆t2

∆t1

ad2 =
t2∆t2

t1∆t1

d3.

Therefore t31∆t2 = t32∆t1 , and we obtain that t1 and t2 are related as in (3.5).

Suppose now that b 6= 0, that is, a = −2t2b. In this situation the comparison

of the three pairs of coefficients in (3.11) yields

c = 54
t2
t1
b3 = 2

t2∆t2

∆t1

bd2 =
t2∆t2

t1∆t1

d3. (3.12)

From identities (3.7), (3.9) and the first equality in (3.12) we obtain ∆t1 = 0,

which is impossible. [We remark that identities (3.12) alone do not lead to

a contradiction, they only imply (t1t2)
3 = (27/4)2.] Thus, if the germs Vt1

and Vt2 are biholomorphically equivalent, then t1 and t2 can only be related

as in (3.5).

On the other hand, if t1 and t2 are related as in (3.5), one can construct

a biholomorphic map between the germs Vt1 and Vt2 . Indeed, for ρ
3 = 1 the

map

z1 7→ z1, z2 7→ ρz2, z3 7→ z3

shows that the germs Vt and Vρt are equivalent (cf. [4]).

Remark 3.5. Observe that in Example 3.4 we utilized not just the highest-

order terms of the nil-polynomials but also some of their lower-order terms.

Thus, in Example 3.4 we relied on Theorem 2.2 in an essential way, which

is in contrast with Examples 3.1 and 3.2 (cf. Remark 3.3).
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4. Homogeneous Singularities

In this section we state a conjecture that was first proposed in our re-

cent paper [5]. The conjecture explains how a solution to the biholomor-

phic equivalence problem in the case of homogeneous singularities can be

extracted from the corresponding nil-polynomials.

We start by recalling the definitions of relative and absolute classical

invariants (see, e.g. [20] for details). Let W be a finite-dimensional complex

vector space and Qn
W the linear space of forms of a fixed degree n ≥ 2 on

W . Define an action of GL(W ) on Qn
W by the formula

(C,Q) 7→ QC , QC(w) := Q(C−1w), where C ∈ GL(W ), Q ∈ Qn
W , w ∈W .

Two forms are said to be linearly equivalent if they lie in the same orbit with

respect to this action. An invariant (or relative classical invariant) of forms

of degree n onW is a polynomial I : Qn
W → C such that for any Q ∈ Qn

W and

any C ∈ GL(W ) one has I(Q) = (detC)kI(QC), where k is a non-negative

integer called the weight of I. It follows that I is in fact homogeneous of

degree k ·dimCW/n. Finite sums of relative invariants constitute the algebra

of polynomial SL(W )-invariants of Qn
W , called the algebra of invariants (or

algebra of classical invariants) of forms of degree n on W . By the Hilbert

Basis Theorem, this algebra is finitely generated.

Next, for any two invariants I and Ĩ the ratio I/Ĩ yields a rational

function on Qn
W that is defined, in particular, at the points where Ĩ does

not vanish. If I and Ĩ have equal weights, this function does not change

under the action of GL(W ), and we say that I/Ĩ is an absolute invariant

(or absolute classical invariant) of forms of degree n on W . If one fixes

coordinates z1, . . . , zm in W , then any element Q ∈ Qn
W is written as

Q(z1, . . . , zm) =
∑

i1+···+im=n

(
n

i1, . . . , im

)
ai1,...,imz

i1
1 · · · · · zimm ,

where ai1,...,im ∈ C. In what follows we will introduce absolute invariants

that will be defined in terms of the coefficients ai1,...,im. Observe that for

any absolute invariant I so defined its value I(Q) is in fact independent of

the choice of coordinates in W . When working in coordinates, we assume

that W = C
m and identify GL(W ) with GL(m,C).
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We say that a non-zero form Q ∈ Qn
Cm is minimal if the germ of Q at

the origin generates the ideal I(V ), where V is the germ of the hypersurface

{Q = 0}. If Q is a binary form (i.e. m = 2), then it can be written as a

product of non-zero linear factors, and the minimality of Q means that each

of the factors has multiplicity one, i.e. Q is square-free. Observe that two

hypersurface germs V1, V2 defined by minimal forms Q1, Q2, respectively,

are biholomorphically equivalent if and only if the forms Q1, Q2 are linearly

equivalent.

For Q ∈ Qn
Cm , let ∆(Q) be the discriminant of Q (see Chapter 13 in

[10] for the definition1). The discriminant is a relative classical invariant of

degree m(n− 1)m−1. Set

Xn
m := {Q ∈ Qn

Cm : ∆(Q) 6= 0}.

Note that Q lies in Xn
m if and only if Q is minimal and the singularity of the

germ of the hypersurface {Q = 0} at the origin is isolated. If Q is a binary

form, then Q ∈ Xn
2 if and only if Q is non-zero and square-free. As stated

in the following proposition, for forms in Xn
m the linear equivalence problem

is solved by absolute classical invariants.

Proposition 4.1 ([5]). 2 For n ≥ 3 the orbits of the GL(m,C)-action on

Xn
m are separated by absolute classical invariants of the kind

I =
I

∆p
, (4.1)

where p is a non-negative integer and I is a relative classical invariant.

In what follows the algebra of the restrictions to Xn
m of absolute invariants of

the form (4.1) is denoted by In
m. By the Hilbert Basis Theorem, this algebra

is finitely generated. It is clear from the proof of Proposition 4.1 given in

[5] that In
m is exactly the algebra of GL(m,C)-invariant regular functions on

the affine algebraic variety Xn
m.

The conjecture proposed in [5], which we will state below, explains

how the solution to the linear equivalence problem for forms in Xn
m given

1The formulas for the discriminant that we use below in the cases m = 2, 3 differ from the one
given in [10] by scalar factors.
2The proof of this proposition given in [5] has been suggested to us by A. Gorinov.
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in Proposition 4.1 can be recovered by considering the corresponding nil-

polynomials. Let V be the hypersurface germ at the origin in C
m de-

fined by a form Q ∈ Xn
m with n ≥ 3. Observe that dimCA(V ) > 2,

and let m(V ) be the maximal ideal of A(V ). It follows from results in

[22] that ν = m(n − 2). If P = ω ◦ exp2 ◦ϕ is a nil-polynomial aris-

ing from A(V ), then P̃ := ω ◦ exp2 is a polynomial on m(V ) satisfying

P̃ (v) = 0, P̃ (u + v) = P̃ (u) for all u ∈ m(V ), v ∈ Ann(m(V )). Fur-

thermore, for the highest-order homogeneous component P̃ [m(n−2)] of P̃ one

has P̃ [m(n−2)](v) = 0, P̃ [m(n−2)](u + v) = P̃ [m(n−2)](u) for all u ∈ m(V ),

v ∈ m(V )2. Thus, P̃ [m(n−2)] gives rise to a form P̂ [m(n−2)] of degree

m(n − 2) on the m-dimensional space m(V )/m(V )2. For any two nil-poly-

nomials P , P ′ the corresponding forms P̂ [m(n−2)], P̂
′[m(n−2)] coincide up to

scale (cf. Remark 3.3), and we say that any of the mutually proportional

forms of degree m(n − 2) arising in this way is associated to the form Q.

Clearly, for any absolute classical invariant I of forms of degree m(n − 2)

on m(V )/m(V )2 and any form Q associated to Q, the value I(Q) is a bi-

holomorphic invariant of V . Note that invariants of this kind were first

considered in article [4], where associated forms were introduced in slightly

different terms. The Eastwood forms for Ẽ6 and Ẽ7 singularities are in fact

forms associated to ternary cubics and binary quartics.

For convenience, we will now make a canonical choice of variables in

m(V )/m(V )2. Consider the factorization maps π1 : Om → Om/J (Q) =

A(V ) and π2 : m(V ) → m(V )/m(V )2. Let ej be the image of the germ of the

coordinate function zj under the composition π2 ◦ π1, j = 1, . . . ,m. Clearly,

the vectors ej form a basis in m(V )/m(V )2, and we denote by w1, . . . , wm the

coordinates with respect to this basis. For an absolute classical invariant I
of forms of degree m(n− 2) in the variables w1, . . . , wm it is easy to observe

that I(Q) is rational when regarded as a function of Q, with Q associated

to Q ∈ Xn
m.

Let Rn
m denote the collection of all invariant rational functions on Xn

m

obtained in this way. Further, let În
m be the algebra of the restrictions to

Xn
m of all absolute invariants of forms of degree n on C

m. Note that Rn
m

lies in În
m (see Proposition 1 in [3]). We propose the following conjecture.

Conjecture 4.2. Rn
m = În

m.



210 A. V. ISAEV [June

Since every element of În
m can be represented as a ratio of two elements of In

m

(see Proposition 6.2 in [19]), Conjecture 4.2 is equivalent to the statement

In
m ⊂ Rn

m. It is clear from Example 3.4 that the conjecture does not hold

for general quasi-homogeneous singularities.

Note that for binary quartics (m = 2, n = 4) and ternary cubics

(m = 3, n = 3) one has m(n− 2) = n, that is, in these cases degQ = degQ

for any form Q associated to Q, whereas in all other situations one has

degQ > degQ. In each of these two exceptional cases Conjecture 4.2 states

that every element of In
m can be recovered from some (possibly different) ab-

solute invariant of forms of the same degree by applying them to associated

forms. The above statement is essentially contained in the arguments given

in [4] and in Section 3 of the present paper for singularities of types Ẽ6 and

Ẽ7. In fact, Conjecture 4.2 is in part motivated by these examples.

Let m = 2, n = 4. Every non-zero square-free binary quartic is linearly

equivalent to a binary quartic of the form

qt(z1, z2) := z41 + tz21z
2
2 + z42 , t 6= ±2

(see pp. 277–279 in [6]). Note that the moduli algebra of the plane curve

germ defined by qt is isomorphic to that of the germ Vt from Example 3.2.

Any form associated to qt is again a binary quartic and is proportional to

qt(w1, w2) := tw4
1 − 12w2

1w
2
2 + tw4

2,

which is the Eastwood form of the corresponding Ẽ7-singularity (cf. (3.4)).

For t 6= 0,±6 the quartic qt is square-free; in this case the original quartic

qt is associated to qt, and it is reasonable to say that for t 6= 0,±2,±6 the

quartics qt and qt are dual to each other.

The algebra of classical invariants of binary quartics is generated by

certain invariants I2 and I3, where the subscripts indicate the degrees (see,

e.g. pp. 101–102 in [6]). For a binary quartic of the form

Q(z1, z2) = a4z
4
1 + 6a2z

2
1z

2
2 + a0z

4
2

the values of the invariants I2 and I3 are computed as follows:

I2(Q) = a0a4 + 3a22, I3(Q) = a0a2a4 − a32, (4.2)



2013] NIL-POLYNOMIALS AND ISOLATED HYPERSURFACE SINGULARITIES 211

and ∆(Q) = I2(Q)3 − 27 I3(Q)2. Define an absolute invariant of binary

quartics as

J :=
I32
∆
. (4.3)

The restriction J|X4
2
generates the algebra I4

2 , and we have

J(qt) =
(t2 + 12)3

108(t2 − 4)2

(cf. [4] and Example 3.2 above).

Consider another absolute invariant of binary quartics:

K :=
I32

27 I23
. (4.4)

Then one obtains K(qt) = J(qt), and therefore K(Q) = J(Q) for any Q ∈ X4
2

and any Q associated to Q. Thus, the absolute invariant K evaluated for

associated quartics yields a generator of I4
2 , which agrees with Conjecture

4.2.

Let m = 3, n = 3. Every ternary cubic with non-zero discriminant is

linearly equivalent to a ternary cubic of the form

ct(z1, z2, z3) := z31 + z32 + z33 + tz1z2z3, t3 + 27 6= 0

(see p. 401 in [25]). Note that the hypersurface germ defined by ct is exactly

the germ Vt from Example 3.1. Any form associated to ct is again a ternary

cubic and is proportional to

ct(w1, w2, w3) := tw3
1 + tw3

2 + tw3
3 − 18w1w2w3,

which is the Eastwood form of the corresponding Ẽ6-singularity (cf. (3.2)).

For t 6= 0, t3 − 216 6= 0 one has ∆(ct) 6= 0; in this case the original cubic ct

is associated to ct, and it is reasonable to say that for t 6= 0, t3 + 27 6= 0,

t3 − 216 6= 0 the cubics ct and ct are dual to each other.

The algebra of classical invariants of ternary cubics is generated by cer-

tain invariants I4 and I6, where, as before, the subscripts indicate the degrees
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(see pp. 381–389 in [6]). For a ternary cubic of the form

Q(z1, z2, z3) = az31 + bz32 + cz33 + 6dz1z2z3

the values of the invariants I4 and I6 are computed as follows:

I4(Q) = abcd− d4, I6(Q) = a2b2c2 − 20abcd3 − 8d6,

and ∆(Q) = I
2
6 + 64I34. Define an absolute invariant of ternary cubics as

J :=
I
3
4

∆
.

The restriction J|X3
3
generates the algebra I3

3 , and we have

J(ct) = − t3(t3 − 216)3

110592(t3 + 27)3

(cf. [4] and Example 3.1 above). Observe that J(ct) = j(Zt)/110592, where

j(Zt) is the value of the j-invariant for the elliptic curve Zt in CP
2 defined

by the cubic ct (see, e.g. [13]).

Consider another absolute invariant of ternary cubics:

K :=
1

4096 J
.

Then one obtains K(ct) = J(ct), and therefore K(Q) = J(Q) for any Q ∈ X3
3

and any Q associated to Q. Thus, the absolute invariant K evaluated for as-

sociated cubics yields a generator of I3
3 , which again agrees with Conjecture

4.2.

As we have seen, verification of Conjecture 4.2 for binary quartics and

ternary cubics is not hard. In [5] the conjecture was established for binary

quintics (m = 2, n = 5) and binary sextics (m = 2, n = 6), which was

much more involved computationally. The proof of Theorem 1.1 in the next

section will provide additional evidence supporting Conjecture 4.2 for binary

forms of an arbitrary degree.
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5. The Family Vt

Observe that the “if” implication in Theorem 1.1 is trivial since the

curve {fρt(z1, z2) = 0}, with ρn = 1, is biholomorphically equivalent to the

curve {ft(z1, z2) = 0} by means of the map z1 7→ ρz1, z2 7→ z2. In this

section we will give two proofs of the “only if” implication. Our first proof

is based on applying classical invariants directly to the forms ft defined in

(1.1), whereas our second proof proceeds along the lines of Conjecture 4.2

and is based on applying classical invariants to forms associated to ft. Both

our proofs are much easier than the proof by the direct substitution method

given in [15].

We will now introduce the invariants required for our proofs. Let Q ∈
Qn

C2 be a binary form of any degree n ≥ 2 written as

Q(z1, z2) =

n∑

i=0

(
n

i

)
aiz

i
1z

n−i
2 ,

where ai ∈ C. The form Q can be represented as a product of linear terms

Q(z1, z2) =

n∏

ν=1

(bνz1 − cνz2),

for some bν , cν ∈ C. The discriminant of Q is then given by

∆(Q) =
(−1)n(n−1)/2

nn

∏

1≤α<β≤n

(bαcβ − bβcα)
2

(see pp. 97–101 in [6]). The discriminant is a relative invariant of degree

2(n − 1) which is non-zero if and only if Q is non-zero and square-free.

Furthermore, if an 6= 0, the discriminant ∆(Q) can be computed as

∆(Q) =
R(Q, ∂Q/∂z1)

nnan
, (5.1)

where for two forms P and S we denote by R(P, S) their resultant (see p.

36 in [20]).



214 A. V. ISAEV [June

Next, define the nth transvectant as

(Q,Q)(n) := (n!)2
n∑

i=0

(−1)i

(
n

i

)
aian−i

(see Chapter 5 in [20]). The transvectant (Q,Q)(n) is an invariant of degree 2.

It is identically zero if n is odd, thus for any odd n we consider the invariant(
Q2, Q2

)(2n)
, which has degree 4. Observe that for the relative invariant I2

of binary quartics defined in (4.2) one has I2(Q) = (Q,Q)(4)/1152.

We now introduce an absolute invariant of binary forms of degree n as

follows:

J(Q) :=





[
(Q,Q)(n)

]n−1

∆(Q)
if n is even,

[(
Q2, Q2

)(2n)](n−1)/2

∆(Q)
if n is odd.

(5.2)

Notice that for the absolute invariant J of binary quartics defined in (4.3)

one has J = J/11523. Next, for even values of n we introduce the following

absolute invariant of binary forms of degree n:

K(Q) :=
(H(Q),H(Q))(2(n−2))

[
(Q,Q)(n)

]2 ,

whereH(Q) is the Hessian of Q. Note that H(Q) ∈ Q2(n−2)
C2 , and the relative

invariant (H(Q),H(Q))(2(n−2)) has degree 4.

Proof 1. In our first proof of the “only if” implication in Theorem 1.1 we

find J(ft), where ft is the binary form defined in (1.1). A straightforward

computation yields

(ft, ft)
(n) = 2(n!)2 if n is even,

(f2t , f
2
t )

(2n) = 2(2n)!
(
(2n)!− 2(n!)2

)
if n is odd.

(5.3)

Therefore, the numerators in (5.2) do not depend on t and are non-zero. We

will now compute the discriminant ∆(ft). Since for ft we have an = 1, one

can apply formula (5.1). The resultant R(ft, ∂ft/∂z1) can be easily found
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by using cofactor expansions, and we get R(ft, ∂ft/∂z1) = (1−n)n−1tn+nn.

Hence

∆(ft) = (1− n)n−1tn/nn + 1. (5.4)

Formulas (5.3) and (5.4) imply

J(ft) =
1

µtn + ν

for some µ, ν ∈ C with µ 6= 0, which yields the desired result. ���

Proof 2. In our second proof of the “only if” implication in Theorem 1.1

we first assume that n ≥ 5 and find the value of the absolute invariant K for

forms associated to ft. Any such form has degree 2(n−2) and is proportional

to

ft(w1, w2) :=

2(n−2)∑

j=n−1

(
2(n − 2)

j

)(
(1− n)t

n

)j+2−n

wj
1w

2(n−2)−j
2

+
(n−1)t2

n2

2(n−2)∑

j=n−1

(
2(n−2)

j

)(
(1−n)t
n

)2(n−2)−j

w
2(n−2)−j
1 wj

2

+

(
2(n − 2)

n− 2

)
wn−2
1 wn−2

2 .

A straightforward computation yields

(ft, ft)
(2(n−2)) = ((2(n − 2))!)2

(
2(n − 2)

n− 2

)
∆(ft),

(H(ft),H(ft))
(2(2n−6)) = ∆(ft)

2(ρ∆(ft) + σ)

(5.5)

for some ρ, σ ∈ C with ρ 6= 0. The expressions in (5.5) imply

K(ft) = ρ′∆(ft) + σ′ = ρ′′tn + σ′′ (5.6)

for some ρ′, σ′, ρ′′, σ′′ ∈ C with ρ′, ρ′′ 6= 0, which leads to the desired result

for n ≥ 5.

Finally, as shown in Section 4, for n = 4 we have 11523 K(ft) = J(ft),

where K is the absolute invariant of binary quartics defined in (4.4). This
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completes the proof. ���

Remark 5.1. It is clear from (5.6) that for n ≥ 5 and suitable a, b ∈ C the

absolute invariant

K ′(Q) :=

[
(Q,Q)(2(n−2))

]2

a(H(Q),H(Q))(2(2n−6)) + b
[
(Q,Q)(2(n−2))

]2

of forms of degree 2(n−2) has the property K ′(ft) = J(ft). Thus, as claimed

above, the example of the family Vt indeed supports Conjecture 4.2.
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(1971), 123-142.

22. K. Saito, Einfach-elliptische Singularitäten, Invent. Math., 23 (1974), 289-325.
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