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Abstract

A well-known theorem of Quillen says that if r(z, z̄) is a bihomogeneous polynomial

on Cn positive on the sphere, then there exists d such that r(z, z̄)‖z‖2d is a squared norm.

We obtain effective bounds relating this d to the signature of r. We obtain the sharp

bound for d = 1, and for d > 1 we obtain a bound that is of the correct order as a function

of d for fixed n. The current work adds to an extensive literature on positivity classes for

real polynomials. The classes Ψd of polynomials for which r(z, z̄)‖z‖2d is a squared norm

interpolate between polynomials positive on the sphere and those that are Hermitian sums

of squares.

1. Introduction

Let r(z, z̄) be a real polynomial on Cn. A basic question one can ask is

whether r(z, z̄) ≥ 0. One way to show that a polynomial is nonnegative is

to write it as a sum of Hermitian squares

N
∑

j=1

|fj(z)|2 (1.1)

for holomorphic polynomials fj, i.e., as the squared norm ‖f(z)‖2 of a holo-

morphic mapping f . There exist, however, nonnegative polynomials that
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cannot be written as a squared norm; to construct an easy example, take r

nonnegative but with zero set a real hypersurface. For a much more subtle

example, consider Example VI.3.6 in [4]:

r(z, z̄) = (|z1z2|2 − |z3|4)2 + |z1|8 . (1.2)

This polynomial is non-negative, its zero set is a complex line, and yet it

cannot even be written as a quotient of squared norms.

Thus the condition that a real polynomial is a squared norm is too

restrictive, and one is motivated to formulate other less restrictive positivity

conditions. See [4, 11, 1, 2, 5] and the references within. A theorem of

Quillen [11], proved independently by Catlin and D’Angelo [1], states that

if a bihomogeneous polynomial

r(z, z̄) =
∑

|α|=|β|=m

cαβz
αz̄β (1.3)

is positive on the unit sphere, then there exists an integer d such that

r(z, z̄)(‖z‖2)d = r(z, z̄) ‖z‖2d is a squared norm, and hence r is a quotient

of squared norms. Thus one obtains a Hermitian analogue of Hilbert’s 17th

problem.

With this motivation, we define a set of positivity classes Ψd of bihomo-

geneous polynomials by

Ψd = {r : r(z, z̄) ‖z‖2d is a Hermitian sum of squares}, (1.4)

Ψ∞ =

∞
⋃

d=0

Ψd. (1.5)

Ψ0 consists of the squared norms themselves, and, by the theorem mentioned

above, Ψ∞ contains the polynomials positive on the sphere. It is not difficult

(Proposition 6.1) to construct polynomials that show

Ψ0 ( Ψ1 ( Ψ2 ( Ψ3 ( . . . . (1.6)
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Every real polynomial r has a holomorphic decomposition

r(z, z̄) =

N+
∑

j=1

|fj(z)|2 −
N−
∑

j=1

|gj(z)|2 (1.7)

for holomorphic polynomials fj, gj . When N+ and N− are minimal (which

occurs when f1, . . . , fN+ , g1, . . . , gN−
are linearly independent), we say that

r has signature pair (N+, N−) and rank N+ + N−. While f and g are not

unique, the signature pair (N+, N−) is.

We will be particularly concerned with Ψ1. This class is connected

to the study of proper holomorphic mappings between balls in complex

Euclidean spaces of different dimensions. For example, if f : Cn → CN

is a polynomial that takes the unit ball to the unit ball properly, then

‖f(z)‖2 − 1 = p(z, z̄)(‖z‖2 − 1). In particular, if f is of degree d and fd

is the degree d part of f , then ‖fd(z)‖2 = pd−1(z, z̄)‖z‖2. Polynomials in

Ψ1 also arise when studying the second fundamental form of more general

mappings between balls. See the recent work by Ebenfelt [6] and the refer-

ences within. For example, by proving that p(z, z̄)‖z‖2 must be of rank at

least n, Huang [8] proved that all proper mappings between balls that are

sufficiently smooth on the boundary are equivalent to the linear embeddings

if N < 2n− 1.

Our main result for the positivity class Ψ1 is the following.

Theorem 1.1. Let r(z, z̄) be a real polynomial on Cn, n ≥ 2, and suppose

that r(z, z̄) ‖z‖2 is a squared norm. Let (N+, N−) be the signature pair of r.

Then

(i)

N−
N+

< n− 1. (1.8)

(ii) The above inequality is sharp, i.e., for every ε > 0 there exists r with
N−

N+
≥ n− 1− ε.

Remark 1.1. The case for n = 1 is trivial; ‖z‖2 = |z|2 and so r(z, z̄) |z|2
has the same signature as r. Therefore, if r(z, z̄) |z|2 is a squared norm, then

r is a squared norm and N− = 0.
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When d > 1, the combinatorics becomes more involved. We obtain the

following bound.

Theorem 1.2. Let r(z, z̄) be a real polynomial on Cn, n ≥ 2, d ≥ 1, and

suppose that r(z, z̄) ‖z‖2d is a squared norm. Let (N+, N−) be the signature

pair of r. Then

(i)

N−
N+

≤
(

n− 1 + d

d

)

− 1. (1.9)

(ii) For each fixed n, there exists a positive constant Cn such that for each

d there is a polynomial r ∈ Ψd with N−

N+
≥ Cnd

n−1.

Since
(

n−1+d
d

)

is a polynomial in d of degree n− 1, the second item says

that the bound we obtain is of the correct order, although we do not believe

it to be sharp for all n (it is sharp when n = 2).

For bihomogeneous polynomials we obtain bounds for the ratios of pos-

itive and negative eigenvalues for the classes Ψd. A very interesting problem

is to find the smallest d so that a positive polynomial is in Ψd; see the work

of To and Yeung [12]. An upper bound must involve the magnitude of the

coefficients. To see this, consider an example from [5]:

(|z|2 + |w|2)4 − λ |zw|4 . (1.10)

As λ → 16, one requires larger and larger d. On the other hand, our results

give an effective lower bound on d given the numbers N− and N+.

We also address the analogous question for real polynomials, i.e., what

can we say about a polynomial p ∈ R[x1, . . . , xn] if it is known that (x1 +

· · · + xn)
dp(x) has non-negative coefficients? Pólya proved in [9] that for

each p positive on the positive quadrant, there exists a d such that (x1 +

· · ·+ xn)
dp(x) has only positive coefficients. Recent work (for example [10])

focuses on finding an upper bound on d given information about p. Our

work can be thought of as finding lower bounds on d given the signature of

p in a somewhat more general setting.

When we complexify a real polynomial we obtain a Hermitian symmet-

ric polynomial, i.e., one satisfying r(z, w̄) = r(w, z̄). Hermitian symmetric
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polynomials arise naturally in complex geometry, in particular, degree d Her-

mitian symmetric polynomials arise as globalizable metrics on the dth power

of the universal bundle over the complex projective space; see [5].

Questions about multiples of ‖z‖2d also arise in several contexts. As

mentioned above, Huang [8] proved that p(z, z̄)‖z‖2 must have rank at least

n. Generalizing this result, in [3] it was shown that the rank of p(z, z̄)‖z‖2d
is bigger than or equal to the rank of ‖z‖2d. A theorem of Pfister says the

if p ≥ 0 for a polynomial p of n real variables, there exists a polynomial q

such that q2p is a sum of at most 2n squared polynomials. Thus [3] shows

that Pfister’s theorem fails in the Hermitian context.

Finally, ratios of the sort considered have been studied recently by

Grundmeier [7] in the context of group invariant hyperquadric CR map-

pings. In particular, Grundmeier studied the canonically defined group-

invariant mappings from the ball to the hyperquadric. This problem can

be seen as studying the proportions of positive and negative eigenvalues of

group-invariant polynomials of the form p(z, z̄)(‖z‖2 − 1).

The authors would like to acknowledge Peter Ebenfelt, whose question

led to this research. We would also like to express our gratitude to John P.

D’Angelo for many fruitful conversations. Finally, we thank Iris Lee for her

sense of humor.

2. Preliminaries

Let r(z, z̄) be a real-valued polynomial on Cn. We use a linear algebra

setting. Suppose deg r ≤ 2D. Let Z = (1, z1, . . . , zn, z
2
1 , z1z2, . . . , z

D
n )t be

the vector of all monomials up to degree D, with Z∗ its conjugate transpose.

Then r(z, z̄) = Z∗CZ where C is a constant Hermitian matrix. The rank of

r is the rank of C, and the signature of r is (N+, N−) if and only if C has

N+ positive and N− negative eigenvalues. Therefore, when we apply linear

algebra terminology to r we are referring to properties of the matrix C.

When r is diagonal, the fj and gj appearing in the holomorphic de-

composition (1.7) are monomials. In this case, questions about r(z, z̄) and

r(z, z̄) ‖z‖2d for z ∈ Cn can be reformulated as questions about polynomials
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on {x ∈ Rn : xk ≥ 0 }. Indeed, if in (1.7), each fj, gj is a monomial cαz
α

for some multi-index α, then

|cαzα|2 = |cα|2
n
∏

k=1

(|zk|2)αk . (2.1)

If mj : R
n → R is given by mj(x) := |cα|2 xα, then |fj(z)|2 = mj(|z1|2 , . . .,

|zn|2). Thus we can study r by studying an associated real polynomial p

on {x ∈ Rn : xk ≥ 0 } with N+ positive and N− negative coefficients.

Observe that ‖z‖2 is itself a diagonal polynomial and is associated with

ℓ(x) :=
∑n

k=1 xk.

One can therefore formulate the associated problem for real polynomials.

We consider real polynomials p(x) for which p(x)ℓ(x)d has only nonnegative

coefficients. Such polynomials are nonnegative on {x ∈ Rn : xk ≥ 0 }.
Since it is not hard to see how to go from a real polynomial p(x) on Rn to

its Hermitian analogue r(z, z̄) on Cn, if we construct a p(x) with signature

(N+, N−), we automatically also construct an r(z, z̄) with the same signature

(N+, N−).

3. Diagonal Case for d = 1

In this section we focus on the diagonal case. The combinatorics in this

special case gives insight into the general case, and furthermore, we obtain

somewhat stronger results.

The polynomials we construct to establish the sense in which our bounds

are sharp are all diagonal. Thus the second part of Theorem 1.1 follows

immediately from the last part of the next theorem.

Theorem 3.1. Suppose p is a polynomial on Rn, n ≥ 2, and set ℓ(x) :=
∑n

j=1 xj . Suppose S(x) := p(x)ℓ(x) has only nonnegative coefficients. Let

N+ denote the number of monomials in p with positive coefficients, and let

N− denote the number of monomials in p with negative coefficients.

(i) If N− > 0, then N+ ≥ n.

(ii) N−

N+
< n− 1.

(iii) For every ε > 0, there exists p with N−

N+
> n− 1− ε.
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0 z2

0 yz

N xy

P xz

P x2 P y2

y2zxyzx2z

xz2

x3 x2y xy2 y3

Figure 1: A diagram for a second-degree p(x, y, z) with one negative term.

Before proving the theorem, we describe a useful visualization for our

constructions. Consider homogeneous polynomials in n = 3 variables. To

avoid subscripts x, y, z. Thus we consider polynomials p(x, y, z) such that

S(x, y, z) = p(x, y, z)(x+y+z) has only nonnegative coefficients. In Figure 1,

we show a diagram for the polynomial p(x, y, z) = x2 + y2 + xz − xy. We

arrange the monomials in a lattice and mark positive coefficients by a P

in a thick circle and negative coefficients by an N in a thin circle. In this

first diagram, we indicate which monomial each circle represents, though we

refrain from doing so for larger diagrams. Zero coefficients are marked with

dotted circle and do not really come into play. We also mark by gray triangles

the monomials appearing in the product S(x, y, z) = p(x, y, z)(x + y + z).

The vertices of each triangle point to monomials of p that contribute to that

term of S. We ignore the magnitude of the coefficients; we are only interested

in their signs. If a term in the product S receives contributions from both

positive and negative terms in p, we can increase the positive coefficients

so that the sum of the positive contributions is bigger than the sum of the

negative contributions, thus ensuring that S has only positive coefficients.

For S to have only positive coefficients, each nonzero term in S must get

at least one positive contribution, and hence each triangle must have one

vertex pointing to a P in the diagram of p. We do not show triangles that

receive no contribution from a term in p.

Figure 2 shows the diagram for a polynomial p with 6 negative coef-

ficients. The key point is that each gray triangle has at least one vertex
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P P

P

P NN

N N

N NP P

P

Figure 2: Diagram for an example with 6 negative terms.

pointing to a P in the diagram. It is not hard to argue that, if we have 6

negative terms, we must have at least 7 positive terms. Thus this figure is in

some sense optimal. An explicit polynomial having the diagram of Figure 2

is

p(x, y, z) = 2xyz4 + 2x3z3 + 2y3z3 + 2x2y2z2 + 2x4yz + 2xy4z + 2x3y3

− x2yz3 − xy2z3 − x3yz2 − xy3z2 − x3y2z − x2y3z. (3.1)

With 7 positive and only 6 negative coefficients, N−/N+ is far from the

predicted bound of 2. Furthermore, this polynomial is already of degree 6.

To obtain polynomials with ratio close to the bound, we must take the degree

to be very large, and it is impractical to give diagrams for specific examples.

However, the pattern in Figure 2 can be extended to obtain our “sharp”

examples; the idea is to make the interior of the diagram as in Figure 3.

(We omit the triangles.)

In order to make the diagram correspond to a polynomial, we must make

this pattern part of a finite diagram. We will show that if we take all terms

on the boundary to be positive, no negative terms will appear in S. Because

of these boundary terms, we will have slightly more than one positive term

for every two negative terms.
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N N P N N P

N P N N P N N

N N P N N P

N P N N P N N

N N P N N P

N P N N P N N

Figure 3: Interior of an optimal diagram for n = 3.

Proof of Theorem 3.1. For any polynomial p in n variables, write p =
∑D

j=0 pj where each pj is homogeneous of degree j. Since we obtain S by

multiplying p by a homogeneous polynomial of degree one, if S =
∑D

j=0 Sj

with Sj homogeneous of degree j + 1, Sj is simply pjℓ. One shows easily

that, for each statement above, if it holds for each pj , it holds for p. Thus

for the remainder of the proof, we assume all polynomials are homogeneous

and that like terms have been collected, so that a polynomial is a sum of

distinct monomials.

Proof of (i). Suppose that in p, the coefficient of xβ is negative. This

coefficient contributes to the coefficients of n distinct terms in S associated

with multi-indices β+ek, 1 ≤ k ≤ n, where ek is the vector with 1 in the kth

position and zero elsewhere. For each k, there must be a multi-index α(k)

associated with a positive coefficient in p for which α(k) + ej = β + ek for

some j. We claim that if k1 6= k2, α(k1) cannot equal α(k2). Suppose, on the

contrary, that there is a single multi-index α different from β and integers

1 ≤ j1, j2, k1, k2 ≤ n with j1 6= j2 and k1 6= k2 such that α + ej1 = β + ek1

and α+ej2 = β+ek2 . Then ek1 −ej1 −ek2 +ej2 = 0. eji 6= eki since α 6= β,

so it must be that ek1 = ek2 and ej1 = ej2 . This is a contradiction. We

conclude that there are indeed at least n distinct multi-indices α for which

the coefficient of xα in p is positive.
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Proof of (ii). Let N be the set of multi-indices α for which the coefficient

of xα in p is negative, and let P be the set of all multi-indices for which the

coefficient of xα is positive. Since |N | = N− and |P| = N+, the result will

follow if whenever N is nonempty, there exists a function f : N → P for

which f−1({β}) has at most n− 1 elements for each β ∈ P.

Consider α ∈ N . The negative coefficient cα in p contributes to n terms

in S, among them the one associated with α′ := α + en. The other multi-

indices from p that contribute to this term are α′ − ej for 1 ≤ j ≤ n− 1. In

order for the coefficient of xα
′

in S to be non-negative, there must exist j

for which α′ − ej ∈ P. We choose j0 to be minimal with this property and

set f(α) := α′ − ej0 = α+ en − ej0 .

Fix β ∈ P and consider f−1({β}). If α is such a pre-image, β = f(α) =

α + en − ej for some j between 1 and n − 1. Thus α must be of the form

β − en + ej for 1 ≤ j ≤ n− 1, i.e., |f−1({β})| ≤ n− 1.

Since p(x)ℓ(x) has nonnegative coefficients, if we look at the least mono-

mial xβ0 in p (according to our monomial order) with nonzero coefficient, we

find that it must be positive because it is the only coefficient of p contribut-

ing to the coefficient of x1x
β0 in S. Furthermore, f−1({β0}) is empty; such

a pre-image would be of the form β0+ej −en. Since xβ0+e
j−e

n
< xβ0 in the

monomial order, xβ0+e
j−e

n
does not appear in p with non-zero coefficient.

This proves that the inequality is in fact strict.

Proof of (iii). We construct a family {pD : D ∈ N} of polynomials with pD

homogeneous of degree D such that N−(pD)/N+(pD) → n− 1 as D → ∞.

For each multi-index α, set

γ(α) :=















n− 1 if αk = 0 for some k

n− 1 if αk ≥ 1 for all k and
∑n−1

k=1 kαk −D ≡ 0modn

−1 otherwise.

(3.2)

We then define

pD(x) :=
∑

|α|=D

γ(α)xα. (3.3)
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We claim that SD = pDℓ has only non-negative coefficients. Consider the

term in SD corresponding to the n-tuple A = (A1, A2, . . . , An). The coeffi-

cient of this term is

c(A) :=

n
∑

k=1

γ(A− ek), (3.4)

where we take γ(A − ek) to be 0 if Ak = 0. Since all negative coefficients

are equal to −1 and all positive coefficients are equal to n− 1, to show that

c(A) ≥ 0, it suffices to show that if there exists k1 such that γ(A−ek1) = −1,

there exists k2 6= k1 such that γ(A− ek2) = n− 1.

If γ(A− ek1) = −1, then by our definition of γ(α), Ak1 − 1 ≥ 1 and, for

all k 6= k1, Ak ≥ 1. Thus all n of the numbers γ(A − ek) are non-zero. We

consider two cases.

In the first case, suppose there exists k 6= k1 such that Ak−1 = 0. Then

γ(A− ek) = n− 1 and c(A) is indeed non-negative.

In the second case, for all k, Ak − 1 > 0. For each k, we consider

n−1
∑

j=1

j(A − ek)j −D =

n−1
∑

j=1

jAj −D − k. (3.5)

Since k ranges over {1, 2, . . . , n}, the n numbers in (3.5) are consecutive and

thus range over all congruence classes modulo n. Therefore there exists a k2
for which

∑

jAj −D − k2 ≡ 0modn, so that γ(A − ek2) = n − 1. Thus in

this case as well, c(A) is non-negative.

Now consider N−(pD)/N+(pD). By (ii), this is bounded above by n− 1.

Thus (iii) will follow if we show that this ratio is bounded below by a function

of n and D that tends to n− 1 as D tends to infinity.

Since we will let D → ∞, but n is fixed, we may assume without loss of

generality that D > 3n. As above, write SD(x) =
∑

|A|=D+1 c(A)x
A. Define

a subset of multi-indices A of length D + 1 by

I(SD) := {A : |A| = D + 1 and Ak ≥ 2 for all k }. (3.6)

These “interior” multi-indices are those for which no zero appears in a multi-

index associated with a term in pD contributing to c(A). Thus exactly n

non-zero coefficients from pD contribute to c(A), with precisely n − 1 of
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them negative. Since each negative coefficient in pD contributes to at most

n terms in SD,

nN−(pD) ≥ (n− 1)|I(SD)|. (3.7)

To determine the size of I(SD), consider the function on I(SD):

g(A) := (A1 − 2, A2 − 2, . . . , An − 2). (3.8)

One checks that g is a bijection between I(SD) and {B = (B1, . . . , Bn) :

Bk ≥ 0 and |B| = D − 2n+ 1 }. Since |{B : Bk ≥ 0 and |B| = D + 1− 2n}|
equals the number of monomials of degree D + 1− 2n in n variables,

|I(SD)| = |{B : Bk ≥ 0 and |B| = D + 1− 2n}| =
(

D − n

n− 1

)

. (3.9)

Combining with (3.7) gives

N−(pD) ≥
n− 1

n

(

D − n

n− 1

)

. (3.10)

Since pD has a non-zero coefficient for every monomial of degree D in n

variables,

N−(pD)
N+(pD)

=
N−(pD)

(

D+n−1
n−1

)

−N−(pD)

≥
n−1
n

(

D−n
n−1

)

(

D+n−1
n−1

)

− n−1
n

(

D−n
n−1

) .

(3.11)

Since n is fixed and we will take a limit as D → ∞, we need only determine

the leading-order term in the numerator and the denominator of the last

expression. The numerator is a polynomial in D of degree n−1 with leading

coefficient n−1
n

· 1
(n−1)! , whereas the denominator is a polynomial in D of

degree n− 1 with leading coefficient 1
(n−1)! − n−1

n
· 1
(n−1)! . Thus

lim
D→∞

n−1
n

(

D−n
n−1

)

(

D+n−1
n−1

)

− n−1
n

(

D−n
n−1

) =

n−1
n

· 1
(n−1)!

1
(n−1)! − n−1

n
· 1
(n−1)!

= n− 1. (3.12)

This completes the proof of (iii) and of the theorem. ���
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4. The general case for d = 1

If it were possible to replace an arbitrary r for which r(z, z̄) ‖z‖2 is a

squared norm with a diagonal r̃ of the same signature for which r̃(z, z̄) ‖z‖2
is a squared norm, the results of the previous section would imply the general

results. Although it appears that such a reduction to the diagonal case is

not possible, we show that it is possible to replace an r as above with an r̃

with

r̃(z, z̄) =
〈

[

I 0
0 −I

]

[

Ã
B̃

]

Z,
[

Ã
B̃

]

Z
〉

(4.1)

with the same signature as r, but with
[

Ã
B̃

]

in a partial row-echelon form.

We first establish an elementary proposition.

Proposition 4.1. If

(

‖f(z)‖2 − ‖g(z)‖2
)

‖z‖2 (4.2)

is a squared norm, then for every λ ∈ [0, 1]

(

‖f(z)‖2 − λ‖g(z)‖2
)

‖z‖2 (4.3)

is also a squared norm.

Proof. For any λ ∈ [0, 1],

(

‖f(z)‖2 − λ‖g(z)‖2
)

‖z‖2

=
(

‖f(z)‖2 − ‖g(z)‖2
)

‖z‖2 + (1− λ)‖g(z)‖2‖z‖2

=
(

‖f(z)‖2 − ‖g(z)‖2
)

‖z‖2 + ‖
√
1− λ g ⊗ z‖2. (4.4)

Since a sum of squared norms is itself a squared norm, the claim holds. ���

The next lemma is of critical importance.

Lemma 4.1. Suppose r(z, z̄) =
〈[

IN+
0

0 −IN
−

]

[

A
B

]

Z,
[

A
B

]

Z
〉

has signa-

ture pair (N+, N−) (so that A and B have rank N+ and N−, resp.), and

suppose that r(z, z̄) ‖z‖2 is a squared norm. Then there exists r̃(z, z̄) =
〈[

IN+
0

0 −IN
−

] [

Ã
B̃

]

Z,
[

Ã
B̃

]

Z
〉

with the same signature pair as r such that

r̃(z, z̄) ‖z‖2 is also a squared norm and the matrix
[

Ã
B̃

]

is in row-echelon
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form up to permutation of rows. We will say that such a matrix is in partial

row-echelon form.

Proof. For clarity, we suppress the subscripts on our identity matrices and

write r(z, z̄) =
〈[

I 0
0 −I

] [

A
B

]

Z,
[

A
B

]

Z
〉

. Because unitary matrices of the form
[

U1 0
0 U2

]

(with U1 and U2 unitary and of dimension N+ ×N+ and N− ×N−,

resp.) commute with
[

I 0
0 −I

]

, we may write

r(z, z̄) =
〈[

U1 0
0 U2

]∗ [
U1 0
0 U2

]

[

I 0
0 −I

] [

A
B

]

Z,
[

A
B

]

Z
〉

=
〈[

U1 0
0 U2

]

[

I 0
0 −I

] [

A
B

]

Z,
[

U1 0
0 U2

]

[

A
B

]

Z
〉

=
〈

[

I 0
0 −I

]

[

U1A
U2B

]

Z,
[

U1A
U2B

]

Z
〉

.

(4.5)

By choosing the Ui appropriately, we put A and B individually into

row-echelon form. We do not achieve a reduced row-echelon form. We may

not be able to eliminate non-zero entries above the pivots, and our pivots

need not be 1s. Note that the matrix C :=
[

A
B

]

need not be in row-echelon

form, even after permuting the rows.

What kinds of transformations can we apply to C to reduce it further?

Let T be an (N+ + N−) × (N+ + N−) matrix. Then 〈I ′TCZ, TCZ〉 =

〈I ′CZ, CZ〉 if and only if T ∗I ′T = I ′. Consider the leftmost column of C.

If it does not have a pivot of either A or B, we set it aside. If it has a pivot

of A or a pivot of B, but not both, we again put the column aside. The row

containing the pivot may now also be set aside. If we never reach a column

with both a pivot of A and a pivot of B, then C is already in the desired

form.

Suppose, then, that we reach a column containing both a pivot of A and

a pivot of B. Consider the two rows containing the pivots. Both contain

only zeros to the left of the pivot. We represent these two rows by the 2× 2

matrix
[

a1 a2
b1 b2

]

, (4.6)

where a1 and b1 are non-zero complex numbers and a2 and b2 are row vectors

containing the rest of the entries of the two rows under consideration. Thus

in order to find a transformation T so that r(z, z̄) = 〈I ′TCZ, TCZ〉 and TC
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has a single pivot in this column, appearing in the position formerly occupied

by a1, it suffices to find a 2 × 2 matrix T such that T ∗ [ 1 0
0 −1

]

T =
[

1 0
0 −1

]

and T
[ a1 a2
b1 b2

]

=
[

a′1 a′2
0 b′2

]

.

If T = [tij], the first of these requirements yields

|t11|2 − |t21|2 = 1 (4.7)

t̄11t12 − t̄21t22 = 0 (4.8)

|t22|2 − |t12|2 = 1. (4.9)

In order for the second to be satisfied, we require

b′1 = t21a1 + t22b1 = 0. (4.10)

Thus we need t21 = −t22
b1
a1
. An elementary calculation shows that T is

necessarily of the form

[

eiθt22 −eiθt22

(

b1
a1

)

−t22
b1
a1

t22

]

where t22 also satisfies

|t22|2
(

1−
∣

∣

∣

∣

b1
a1

∣

∣

∣

∣

2
)

= 1. (4.11)

Thus for this r, if |a1| > |b1|, it is possible to replace C with a matrix C ′ of

the same rank in which a′1 is non-zero, but b′1 = 0.

The only situation left to consider is when |a1| ≤ |b1|. In this case we

modify r. Since r(z, z̄) = ‖AZ‖2−‖BZ‖2 and r(z, z̄)‖z‖2 is a squared norm,

by Proposition 4.1, for any λ ∈ [0, 1],
(

‖AZ‖2 − λ ‖BZ‖2
)

‖z‖2 is a squared

norm, and r̃(z, z̄) := ‖AZ‖2 − λ ‖BZ‖2 and r have the same signature pair.

Observe,

r̃(z, z̄) = ‖AZ‖2 − ‖
√
λBZ‖2

=
〈

I ′
[

A√
λB

]

Z,
[

A√
λB

]

Z
〉

.
(4.12)

Thus if both a1 and b1 are non-zero, but |a1| ≤ |b1|, through an appropriate

choice of λ, we can replace r with an r̃ having the same signature pair as

r with matrix C̃ having non-zero entries in precisely the same positions as

in C, but with the property that |a1| >
√
λ|b1|. We may thus now apply

a transformation T as above to achieve the desired reduction of the matrix
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C̃. Continuing in this manner, we eventually obtain an r̃ with the same

signature as the original r, but with the matrix
[

Ã
B̃

]

in partial row-echelon

form. ���

We can now prove the first part of Theorem 1.1.

Lemma 4.2. Let r(z, z̄) be a real polynomial on Cn, n ≥ 2, and suppose

that r(z, z̄) ‖z‖2 is a squared norm. Let (N+, N−) be the signature pair of r.

Then

N−
N+

< n− 1. (4.13)

Proof. Let Zk denote the vector of all holomorphic monomials in n vari-

ables of degree at most k. Order the monomials as above, and note that

multiplication by zj preserves the order. In light of Lemma 4.1, we may

assume r(z, z̄) = 〈I ′CZk, CZk〉 where C is in partial row-echelon form and

I ′ is the diagonal matrix
[

I 0
0 −I

]

with signature (N+, N−).

Let Cj be the matrix defined by

(

CZk

)

zj = CjZk+1. (4.14)

Because C is in partial row-echelon form, Cj is as well. Then

r(z, z̄) ‖z‖2 =
n
∑

j=1

|zj |2 〈I ′CZk, CZk〉

=

n
∑

j=1

〈I ′CjZk+1, CjZk+1〉

=

〈













I ′ 0 · · · 0

0 I ′ · · · 0
...

...
. . .

...

0 0 · · · I ′

























C1

C2
...

Cn













Zk+1,













C1

C2
...

Cn













Zk+1

〉

= 〈Ĩ ′C̃Zk+1, C̃Zk+1〉. (4.15)

The matrix C̃ is not in partial row-echelon form and is not even of full rank.

It is, however, in a special form that we can exploit. Although several rows

may have their leading term in the same column, since each Cj is in partial
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row-echelon form, each column can contain the leading terms for at most n

rows.

At this point, the precise ordering of the rows of C̃ is not important; we

are only interested in the numbers of rows associated with positive (resp.,

negative) entries of I ′ and the linear relationships between the two sets. We

thus re-order the rows. Let P be the matrix containing the nN+ rows of C̃

associated with positive entries in I ′ and let Q be the matrix consisting of

the nN− rows associated with negative entries of I ′. Since C̃∗Ĩ ′C̃ is positive

semidefinite, so is

[

P

Q

]∗ [
InN+ 0

0 −InN−

][

P

Q

]

= P ∗P −Q∗Q, (4.16)

and hence the rows of Q are in the linear span of the rows of P . Within P

and Q, we may assume that, if the leading term of row i appears in column

j, then the leading term of row i+1 is either in column j or in some column

to the right of column j.

Let m+ denote the number of columns of P containing the leading term

of at least one row of P , and let e+ = nN+ − m+. We think of e+ as the

number of “extra” rows. Since we can find m+ rows of P with leading terms

inm+ distinct columns, rank(P t) ≥ m+ and nullity(P t) = nN+−rank(P t) ≤
nN+ −m+ = e+.

More is true; let h denote the number of columns of Q that contain the

leading term of a row of Q, but for which the corresponding column of P is

not one of the m+ counted above. We thus have a collection of m++h rows

of C̃ that are linearly independent. On the other hand, since all rows of Q

are in the linear span of the rows of P , rank(P t) ≥ m+ + h. Thus

nullity(P t) = nN+ − rank(P t) ≤ nN+ −m+ − h = e+ − h. (4.17)

In particular, h ≤ e+.

Q has exactly nN− rows. However, by distinguishing two types of rows

of Q, we can estimate the number of rows of Q in terms of the number of

rows of P . Our first type of row of Q is one with leading term in one of

the h columns counted above. Since no row of P has leading term in such a

column, there could be as many as n rows of Q with leading term in a single
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such column. Q therefore has at most nh such rows. The second type of

row of Q is one with leading term in one of the m+ columns corresponding

to a column of P containing a leading term. Since one of the at most n rows

with a leading term in this column must be in P , Q has at most (n− 1)m+

rows of the second type.

This number (n−1)m+ is still an overestimate for two reasons. First, of

the m+ columns, the left-most has only a single entry, and it appears in P .

To see this, consider the initial monomials of the fj and gj . Let zα be the

one that comes first in the monomial order. If it were the initial monomial

of, say, gJ , then z1gJ would have an initial monomial z1z
α coming before

the initial monomial of any of the zkfj, contradicting the fact that z1gJ is

in the span of the zkfj. Thus zα is the initial monomial of one of the fj.

Since all the fj have distinct initial monomials and because our monomial

order is multiplicative, the left-most column of
[

P
Q

]

containing a non-zero

entry is that corresponding to z1z
α, and it contains precisely one non-zero

entry. Second, we must account for the additional e+ rows in P that also

have leading term in one of the m+− 1 columns. Thus (n− 1)(m+− 1)− e+

is still an upper bound for the number of rows in Q of this second type. We

find:

nN− ≤ nh+ (n − 1)(m+ − 1)− e+

≤ ne+ + (n − 1)m+ − e+ − (n− 1)
(4.18)

= (n − 1)(e+ +m+)− (n − 1)

< (n − 1)nN+. ���

5. Upper bound on N−/N+ for d > 1

Lemma 5.1. Let r(z, z̄) be a real polynomial on Cn, n ≥ 2, and suppose

that r(z, z̄) ‖z‖2d is a squared norm. Let (N+, N−) be the signature pair of

r. Then

N−
N+

<

(

n− 1 + d

d

)

− 1. (5.1)

Proof. We follow the proof of Lemma 4.2. When we multiply 〈I ′CZk, CZk〉
by ‖z‖2d instead of ‖z‖2, we obtain

(

n−1+d
d

)

matrices Cj rather than n. More
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explicitly, order the degree d multi-indices and let α be the jth multi-index.

Let Cj be the matrix defined by

(

CZk

)

zα = CjZk+d. (5.2)

As above, since C is in partial row-echelon form and the monomial order is

multiplicative, Cj is in partial row-echelon form as well. Then

r(z, z̄) ‖z‖2d =

〈













I ′ 0 · · · 0

0 I ′ · · · 0
...

...
. . .

...

0 0 · · · I ′

























C1

C2
...

C(n−1+d
d )













Zk+d,













C1

C2
...

C(n−1+d
d )













Zk+d

〉

= 〈Ĩ ′C̃Zk+d, C̃Zk+d〉.
(5.3)

In the matrix C̃, each column contains the leading term of at most
(

n−1+d
d

)

rows, though, as above, the left-most non-zero column contains only a single

non-zero entry since it comes about by multiplying the least monomial zα

in all the fj by zd1 . Thus in a manner identical to the above we obtain:

(

n− 1 + d

d

)

N− <

((

n− 1 + d

d

)

− 1

)(

n− 1 + d

d

)

N+. (5.4)

���

Remark 5.1. The proof does not use anything about ‖z‖2d except that

it is a squared norm, its matrix of coefficients is diagonal, and it has rank
(

n−1+d
d

)

. Therefore we also obtain the following statement.

Corollary 5.1. Let r(z, z̄) be a real polynomial on Cn, and consider s(z, z̄) =
∑L

j=1 |zαj |2, where α1, . . . , αL are distinct multi-indices. Suppose r(z, z̄)s(z, z̄)

is a squared norm. If (N+, N−) is the signature pair of r, then

N−
N+

< L− 1. (5.5)
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6. A class of examples for d > 1

Lemma 5.1 merely gives an upper bound forN−/N+ for d > 1; it remains

to determine whether the result is sharp.

We first discuss the case n = 2. Lemma 5.1 gives N−/N+ < d, which

we claim is sharp for all d. To prove this, we construct a family {pD} of

polynomials in two real variables such that pD(x, y)(x + y)d has all non-

negative coefficients and the ratio N−(pD)/N+(pD) of negative to positive

coefficients tends to d as D → ∞. The idea of the construction is quite

simple; define pD(x, y) =
∑

cjx
D−jyj where the first and last coefficients are

positive and the interior coefficients repeat a pattern of d negatives followed

by a positive.

More explicitly, suppose D = (d+1)m for m ∈ N and define pD(x, y) =
∑D

j=0 γ(D − j, j)xD−jyj, where

γ(D − j, j) =

{

2d − 1 j ≡ 0mod d+ 1

−1 otherwise
. (6.1)

For this family, N−(pD)/N+(pD) = dD/(D + d + 1), which tends to d as

D → ∞. It only remains to verify as we did in the proof of part (iii) of

Theorem 3.1 that the coefficients of pD have been chosen so that SD has all

nonnegative coefficients. We omit the details.

When n = 3, Lemma 5.1 gives

N−
N+

<

(

n− 1 + d

d

)

− 1 =
(d+ 1)(d + 2)

2
− 1. (6.2)

When d = 1, this gives N−/N+ < 2, which we know to be sharp. It remains

open whether (5.1) is sharp for d > 1.

Remark 6.1. For n = 3, we were able to construct polynomials p for which

S := p · ℓd has all non-negative coefficients and with

N−(p)
N+(p)

≥
⌊

(d+ 2)2

3

⌋

− 1− ε. (6.3)

We omit the details; we simply mention that the construction can be done

by considering the diagram to be an infinite plane and by using a pattern of
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Figure 4: Diagrams illustrating the first step in the induction for the proof of
Lemma 6.1. Here, ν = 0, ν = 1, and ν = 2; and d = 3.

P s generated by two generalized knight moves. Computer experimentation

suggests this bound may, in fact, be optimal. Therefore, we suspect (6.2) is

not sharp.

Next we find examples that show that the bound (5.1) is of the right

order, i.e., for a fixed n, of order dn−1. This lemma is the last part of the

proof of Theorem 1.2.

Lemma 6.1. Fix d > 1 and n > 2. There exists a polynomial p ∈ R[x1, . . . , xn]

for which Sd(p) := p · ℓd has all non-negative coefficients and with

N−(p)
N+(p)

≥
(

1

2
n(n−1)

2

)

dn−1 = C(d, n). (6.4)

Proof. The proof is by induction on the number of variables n. When

n = 2, we proved above that we can find polynomials for which p · ℓd has

non-negative coefficients with the ratio N−/N+ arbitrarily close to d. Thus

there exists a polynomial for which the ratio exceeds d/2. Thus the result

holds for n = 2.

We proceed to the inductive step. To simplify notation, we dehomog-

enize by setting xn = 1. We therefore seek nonhomogeneous polynomials

p(x1, . . . , xn−1) such that the product p(x1, . . . , xn−1)(x1 + · · ·+ xn−1 + 1)d

has nonnegative coefficients. Suppose that for n−1 there exists p′ such that

N−(p′)
N+(p′)

≥ C(d, n− 1)− ε/2. (6.5)

That is, p′ is a nonhomogeneous polynomial in (n−1)−1 = n−2 variables and

multiplying by (x1 + · · · + xn−2 + 1)d yields a polynomial with nonnegative
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coefficients.

Let x = (x′, xn−1) where x′ ∈ Rn−2 so that p′(x′) =
∑

α γ
′(α)x′α. We

define

p(x) =
k
∑

j=0

∑

α

γ(α, j)x′αxjn−1 (6.6)

for appropriately chosen coefficients γ(α, j) and for k large. For each j

between 1 and k − 1, take γ(α, j) = γ′(α). In other words, for each of these

j we simply repeat the pattern of positives and negatives from p′. For j = 0

and j = k, we take sufficiently large positive coefficients to guarantee that

pℓd has only non-negative coefficients.

When n = 3, the situation is illustrated in the first diagram of Figure 4.

In the diagram, thick circles are positive coefficients and thin circles are

negative coefficients, as before. A “row” in the diagram corresponding to a

fixed power of x2 (a fixed j) is marked with a thick line. Finally, the shaded

circles are the coefficients that contribute to a single coefficient in p · ℓ3.
Therefore any such triangle (or simplex in higher dimensions) must contain

a positive coefficient, as it does in our diagram. By translating this triangle,

we can see the different collections of terms in p that contribute to different

monomials in S. Notice that we cannot place this triangle any differently

so that it includes only negative terms. Further notice that on the marked

“row” we have a diagram for n = 2. This is how we are using the inductive

hypothesis. The diagram illustrates only what happens in the “interior” and

not on the boundary, where j = 0 or j = k.

By taking a large enough degree to make the contribution to N+ from

the “rows” j = 0 and j = k arbitrarily small in the ratio, we find

N−(p)
N+(p)

≥ C(d, n− 1)− ε. (6.7)

We can now improve upon this technique; suppose that instead of using

p′ that satisfied (6.5) for d we take a p′ satisfying the equation for d − 1.

We can then take γ(α, j) = γ′(α) only for even j between 1 and k and can

take all γ(α, j) for odd j to be negative. After possibly making the positive

coefficients larger, we conclude that p · ℓd has positive coefficients. This

process is illustrated in the second diagram of Figure 4. Notice that only
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every second “row” contains positives, and that we took the positives to be

closer together by exactly one on the rows that do contain positives.

Again by making the degree large enough we obtain a p such that

N−(p)
N+(p)

≥ 1 + 2C(d− 1, n − 1)− ε. (6.8)

By repeating this procedure (as illustrated by skipping two “rows” in the

last diagram of Figure 4) we can lower d by ν to obtain a p such that

N−(p)
N+(p)

≥ ν + (ν + 1)C(d− ν, n− 1)− ε. (6.9)

Picking ν = ⌊d2⌋ we obtain a polynomial with

N−(p)
N+(p)

≥
⌊

d

2

⌋

+

(⌊

d

2

⌋

+ 1

)

C

(⌈

d

2

⌉

, n − 1

)

− ε. (6.10)

Let us prove C(d, n) ≥ Cnd
n−1 by induction. For n = 2, we have seen that

we can take C2 = 1
2 . Assume the bound C(d, n − 1) ≥ Cn−1d

n−2 holds for

n− 1. We compute for n > 2,

⌊

d

2

⌋

+

(⌊

d

2

⌋

+ 1

)

C

(⌈

d

2

⌉

, n− 1

)

− ε ≥
(

d

2

)

Cn−1

(

d

2

)n−2

=
Cn−1

2n−1
dn−1.

(6.11)

We are allowed to drop the ε because we are dropping
⌊

d
2

⌋

from the right-

hand side. Therefore we can take Cn = Cn−1

2n−1 and C2 = 1
2 to obtain Cn =

1
2n(n−1)/2 , and therefore (6.4) holds. ���

We have finished the proof of Theorem 1.2. As our final proposition, we

show that the classes Ψj are distinct for all j.

Proposition 6.1. For all j = 0, 1, 2, . . . ,

Ψj ( Ψj+1. (6.12)

Proof. As above, we need only construct real polynomials. Define

qk(x) = xk1 + xk2 + xk−1
2 x3 + xk−1

2 x4 + · · ·+ xk−1
2 xn − εx1x

k−1
2 . (6.13)
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The only monomial of

−εx1x
k−1
2 (x1 + x2 + · · ·+ xn)

d (6.14)

that does not appear in

(xk2 + xk−1
2 x3 + xk−1

2 x4 + · · ·+ xk−1
2 xn)(x1 + x2 + · · ·+ xn)

d (6.15)

for all d = 1, 2, . . . , is the term −εxd+1
1 xk−1

2 . It appears in xk1(x1 + x2 +

· · ·+ xn)
d when k = d+1, but not for any smaller d. By taking ε > 0 small

enough we obtain that qk · ℓd+1 has all positive coefficients in this case.

Therefore qd+1 is in Ψd+1, but not in Ψd. Notice that qd+1 /∈ Ψd even if

we make the negative coefficient arbitrarily small. ���

References

1. David W. Catlin and John P. D’Angelo, Positivity conditions for bihomogeneous poly-
nomials, Math. Res. Lett., 4 (1997), 555-567.

2. John P. D’Angelo, Hermitian analogues of Hilbert’s 17-th problem, Adv. Math.
226(2011), 4607–4637.
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