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Abstract

We prove that, in the random stirring model of parameter T > 0 on an infinite rooted

tree each of whose vertices has at least two offspring, infinite cycles exist almost surely,

provided that T is sufficiently high.

1. Introduction

It has long been recognized in the physics literature that “spatial random

permutations” – laws on permutations defined from spatial models – are

intimately related to the behaviour of low-temperature gases. We begin by

recounting briefly the first such example.

In 1953, Feynman [7] wrote the quantum-mechanical partition function

for helium as a sum over the energy associated to certain interacting Brown-

ian particles that may interchange their positions over a finite-time interval.

He argued that the λ-transition undergone by the gas at low temperature

is reflected by the appearance of large cycles in a measure on permutations

naturally associated to this representation of the partition function.

To describe more precisely this law on permutations, we consider only

the hard-core instance (which formally corresponds to a potential that is +∞

when it is non-zero; the potential for helium is finite, varying from highly
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positive below the atomic radius to slightly negative on the order of this

radius). Fix dimension d ≥ 2, as well as a “time” (or inverse-temperature)

parameter β ∈ (0,∞) and a small “interaction-range” parameter r > 0.

Scatter a large number N of points independently and uniformly in the d-

dimensional torus of volume N , and run from each of them an independent

Brownian motion for time β; the law appearing in Feynman’s repesentation

of the gas is obtained by conditioning the system on the time-β configuration

ofN points coinciding with the time-zero configuration, and on the avoidance

constraint that no pair of points be at distance less than r at any time

t ∈ [0, β]. A random permutation arises by mapping each point at time-zero

to the point at time-β obtained by following the Brownian path beginning

at the point during the period [0, β].

It is anticipated that, when d ≥ 3, and r > 0 is fixed at a small enough

value, cycles of macroscopic volume (of order N) appear in the model, pro-

vided that β exceeds a critical value, and that this behaviour reflects the

condensation of the gas at low-temperature. The behaviour of Feynman’s

model is understood rigorously only in the non-interacting case (where for-

mally r = 0, so that no avoidance conditioning is applied). Here, the exis-

tence of the critical value for the presence of macroscopic cycles was proved

by Sütő [12, 13], who showed that it coincides with the critical density of the

ideal Bose gas identified by Einstein [6]. Some extensions of these results to

other non-interacting models are made in [4]. To the best of our knowledge,

no direct argument has been made to establish the existence of large cycles

in an interacting model in a Euclidean setting.

It is a physically important and mathematically very interesting ques-

tion, then, to prove the presence of large cycles in natural models of spatial

random permutations.

1.1. Main results

In this article, we study the cycles in the random stirring model on

a tree. The random stirring model on a given graph G is the stochastic

process σ mapping [0,∞) to permutations of the vertex set of G which

starts at the identity and under which the transposition associated to each

edge in G is performed at each of the points in a Poisson process with mean
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one, independently for each edge. For each T ∈ [0,∞), we will refer to the

marginal law σT as the random stirring model with parameter T .

Omer Angel [2] has proved that, on a regular tree of degree at least five,

and for a certain interval of values of T , the random stirring model with

parameter T on the tree has infinite cycles almost surely.

We now state our main theorem. Our result develops Angel’s, by dis-

pensing with the hypothesis that vertices have at least four offspring, and

by being applicable for all sufficiently high T (though his result begins to

apply for slightly smaller values of T , as we shortly discuss). Terms from

graph theory are reviewed in Subsection 1.3.

Theorem 1.1. Let G be any infinite rooted tree of uniformly bounded degree

each of whose vertices has at least two offspring. Then there exists T0 ∈

(0,∞) such that if T ≥ T0 then the random stirring model with parameter T

contains infinite cycles almost surely.

The second theorem quantifies the value of T0 for high-degree trees.

Theorem 1.2. Let d ≥ 39. Let G be an infinite rooted tree of uniformly

bounded degree each of whose vertices has at least d offspring. Then we may

choose T0 = 429d−1 in the statement of Theorem 1.1.

1.2. Literature on the random stirring model

The random stirring model (which is also called the random interchange

model) was introduced in [10]. Its physical relevance was indicated by Bálint

Tóth [14], who used it to give a representation of the spin-1/2 Heisenberg

ferromagnet; the lecture notes [8] contain an overview of this topic. Recent

mathematical progress on the model includes the resolution of Aldous’ con-

jecture identifying its spectral gap [5], and a formula for the probability that

the random permutation consists of a single cycle [1].

The emergence of a giant component under percolation on the complete

graph as the percolation parameter p increases through values near 1/n has

been intensively studied. This transition is accompanied by the appearance

of large-scale cycles in the associated random stirring model, as we now

review. Under the uniform measure on permutations on a finite set V ,

the lengths of cycles, normalized by |V |, and listed in decreasing order,
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converge to the Poisson-Dirichlet distribution with parameter one. Studying

a model very closely related to the random stirring model for the complete

graph, Oded Schramm considered the law on permutations of an n-point

set given by composing tn uniform random transpositions [11]. (We will

refer to this law as the (n, t)-random composition model.) Under this law,

say that two vertices are connected if a transposition has been made on

the edge between them. Reflecting the emergence of a giant component

in percolation on the n-point complete graph at parameter p = 1/n, the

(n, t)-random composition model with t = 1 + ε contains a giant connected

component of some density θ(ε) ∈ (0, 1). It is shown in [11] that the ordered

list of cycle lengths normalized by θ(ε)n converges to the Poisson-Dirichlet

distribution of parameter one; that is, a local equilibrium for large cycles

inside the giant connected component is achieved as soon as this component

becomes macroscopic. Nathanaël Berestycki [3] has given a short proof that

a cycle exists of size Θ(n) when t = 1 + ε.

1.3. The cyclic-time random walk

Our analysis of the random stirring model exploits a closely related

dependent random walk which Bálint Tóth discusses in the proof of Theorem

1 in [14] and which Omer Angel in [2] calls the cyclic-time random walk. We

now introduce further notation and define this walk.

We begin by recalling some graph-theoretic notation. The vertex and

edge-sets of a given graph G will be denoted by V (G) and E(G). A graph

is rooted if it has a distinguished vertex, the root, that we will denote by

φ. We write d : V (G) × V (G) → N for the graphical distance on G. A

connected graph without cycles is called a tree. In a tree, there is a unique

simple path Pv leading from any given vertex v to the root; the first element

after v on Pv is called the parent of v, and each vertex is called an offspring

of its parent. For v,w ∈ V (G), v is called a descendent of w if w is a vertex

in Pv; v is called a strict descendent of w if, in addition, it is not equal to w.

Note that the set of descendents of a given vertex induces a subtree of G

(which we call the descendent tree of the vertex). For each vertex v ∈ V (G),

we write Ev for the set of edges incident to v; we write deg(v) =
∣

∣Ev

∣

∣ for

the degree of v. For each edge e ∈ E(G), the incident vertex of e closer to

φ will be called the parent vertex of e and will be denoted by e+; the other,

called the child vertex of e and labelled e−.
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Throughout we take G to be a rooted tree whose vertex degree is uni-

formly bounded and each of whose vertices has at least two offspring. Some-

times we will further invoke the hypothesis that, for some given d ≥ 2,

each vertex in G has at least d offspring. (1.1)

We now present a construction of cyclic-time random walk. Throughout,

fix T ∈ (0,∞). For convenience, suppose that G is embedded in R
2, so that

each element of V (G) is identified with a point in R
2 and each element

e ∈ E(G) with the line segment [v1, v2] ⊆ R
2 where e = (v1, v2) for v1, v2 ∈

V (G). For each v ∈ V (G), let the pole at v, {v}×[0, T ) ⊆ R
3, denote the line

segment of length T that rises vertically from v. Elements of E(G) × [0, T )

will be called bars. The bar b = (e, h) is said to be supported on the edge e

and to have height h. Note that the bar (e, h) is a horizontal line segment

which intersects the poles at e+ and e−; the intersection points (e+, h) and

(e−, h) will be called the joints of (e, h).

The bar set E(G)× [0, T ) carries the product of counting and Lebesgue

measure on its components. (As a shorthand, we will refer to this product

measure simply as Lebesgue measure.)

Let (v, h) ∈ V (G)× [0, T ). Unit-speed cyclic upward motion from (v, h)

is the process [0,∞) → {v} × [0, T ) : t →
(

v, (h + t)modT
)

.

Let B0 ⊆ E(G) × [0, T ) be a collection of bars. Cyclic-time mean-

der XB0

(v,h) : [0,∞) → V (G) × [0, T ), among B0 and with initial condition

(v, h) ∈ V (G) × [0, T ), is the following process. First, X(v,h)(0) = (v, h);

the process pursues unit-speed cyclic upward motion from (v, h) until (the

possibly infinite time at which) it reaches the joint of a bar in B0, when

it jumps to the other joint of this bar. The process XB0

(v,h) then continues

by iterating the same rule, until it is defined on all of [0,∞). The process

is chosen to be right-continuous with left limits. We write XB0 for XB0

(φ,0).

(There are choices of B0 for which these rules fail to define XB0

(v,h) on all of

[0,∞). It is a simple matter to verify that this difficulty does not arise in

the case that is relevant to us and which we now discuss.)

We write PT for a probability measure carrying a bar collection B ⊆

E(G)×[0, T ) having Poisson law with intensity one with respect to Lebesgue

measure. Cyclic-time random meander with parameter T is the random

process XB. We write X in place of XB and call X in shorthand a meander.
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Figure 1: For the graph shown on the left, cyclic-time random meander X departing
from (φ, 0) is illustrated on the right. The right-hand sketch depicts a construction
in R

3 in which the poles associated to vertices are the vertical dashed lines and
the bars in B are the horizontal black lines. Assume that there are no bars in
B supported on edges that connect vertices v and w of φ to their offspring. The
trajectory of the meander from (φ, 0) is divided into three intervals of duration T ,
at the end of which, the meander returns to (φ, 0). These three sub-trajectories are
indicated in black, red and green in the right-hand sketch. As the left-hand sketch
shows, the cycle of φ in the associated permutation thus has three elements.

Cyclic-time random walk (begun at v ∈ V (G) and with parameter T ) is

the vertex-valued process given by projecting X(v,0) : [0,∞) → V (G)× [0, T )

onto V (G). We denote it by Yv and write Y in place of Yφ. Note that

the random stirring model with parameter T is the law of the random map

V (G) → V (G) : v → Yv(T ). See Figure 1 for an illustration.

Following Angel, we say that cyclic-time random walk Y is transient if

there is positive probability that it never returns to the root, in the sense

that there exists s0 > 0 such that φ 6∈ Y (s0,∞).

Theorem 1.1 will follow directly from the next proposition.

Proposition 1.3. Let G be any infinite rooted tree of uniformly bounded

degree each of whose vertices has at least two offspring. Then there exists

T0 ∈ (0,∞) such that if T ≥ T0 then cyclic-time random walk Y is transient.



2013] INFINITE CYCLES IN THE RANDOM STIRRING MODEL 91

Proposition 1.3 and Theorem 1.1 are proved in Section 2. Theorem 1.2

is obtained by reprising these arguments and developing quantitative coun-

terparts to limiting assertions made along the way. Its proof is given in

Appendix A of the online counterpart of this article.

1.4. The sharp transition conjecture and trees of high degree

For any given graph G on which the random stirring model is well-

defined, let T G denote the set of T > 0 such that the random stirring model

on G with parameter T has infinite cycles almost surely. Note that T 6∈ T G

unless the bond percolation on G given by the set of edges that support

a bar in B has an infinite component. As noted in [2], this implies that
[

0,− log(1− pc)
)

∩ T G = ∅, where pc = pc(G) denotes the critical value for

bond percolation on G. Writing Td for the rooted regular tree each of whose

vertices has d offspring, note that pc(Td) = d−1, and thus that, if d ≥ 2, then

[

0, d−1 + 1
2d

−2
)

∩ T
Td = ∅ . (1.2)

Define the critical points T 1
c (G) = inf T G and T 2

c (G) = sup
(

[0,∞) \ T G
)

.

Note that T 1
c (G) ≤ T 2

c (G) trivially. Conjecture 9 of [2] claims that, for any

graph G for which T G is non-empty, these two critical points are equal. The

present work and [2] go some way to verifying the conjecture for high-degree

trees: in Appendix B of the online counterpart of the present article, the

next result is proved.

Theorem 1.4. For any ε > 0, there exists d0 ∈ N such that if d ≥ d0 then
[

d−1 + (76 + ε)d−2,∞) ⊆ T Td .

This deduction and (1.2) show that the discrepancy T 2
c (G) − T 1

c (G) is

O(d−2) for high d. In [9], the discrepancy is shown to be zero for regular

trees of high-degree, thus confirming Conjecture 9 of [2] for such trees.

Acknowledgments. I thank Christophe Garban and Daniel Ueltschi for

useful discussions, and Lőrinc Sárkány and a referee for comments on the

manuscript.

2. Proofs

We now begin to define and describe the elements needed to prove

Proposition 1.3, after which, we will give the proof of this result; Theo-

rem 1.1 will then be an immediate consequence.
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2.1. Preliminaries

Here we record a simple observation regarding future of cyclic-time ran-

dom meander given its past.

Lemma 2.1. Let t > 0. Consider the law PT given X : [0, t] → V (G)×[0, T ).

Let Foundt ⊆ E(G) × [0, T )denote the set of bars in B that X has crossed

during [0, t]. Let the set of time-t untouched bar locations UnToucht ⊆

E(G) × [0, T ) denote the set of bars b ∈ E(G) × [0, T ) neither of whose

joints belongs to X[0,t]. Then the conditional distribution of B is given by

Foundt ∪B(t,∞), where B(t,∞) is a random bar collection with Poisson law of

intensity 11UnToucht
with respect to Lebesgue measure on E(G) × [0, T ).

Proof. That Foundt ⊆ B is known given X on [0, t]; similarly, if X[0,t]

visits the joint of some bar in B, that bar belongs to Foundt. The time-0

distribution of the remaining bars, those in UnToucht, is undisturbed by the

data X[0,t]. ���

2.2. Useful bars

We outline the strategy for proving Proposition 1.3. As time evolves

from the outset, the process X will, with positive probability, jump across

several bars in B, so that Y may start to move away from φ. For each t > 0,

we will identify a subset Ut of Foundt of “useful” bars that, roughly speaking,

act as regeneration points for the trajectory Y : [0, t] → V (G). Among other

properties, these bars have been crossed by X only once before time t, so

that, subsequently to crossing a useful bar, the walk Y is a descendent of

the child vertex of the edge on which the bar is supported. If the walk

is to return to φ, it must later pass back along each edge that supports

a useful bar; however, we will choose a definition of useful bar so that, in

endeavouring to return, the walk necessarily runs a positive probability of

jumping out into a previously unvisited sub-tree. If the walk arrives in such

a sub-tree, we will argue that there is a significant chance that it moves

forward from there for a short while, thereby generating further useful bars

(the number of which grows linearly with the period T ). That is, to return

to the root, the walk must “undo” each useful bar; but any attempt to do

so will generate many more such bars with a uniformly positive probability.
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This means that the walk returns to the root only with small probability, if

T is chosen to be high.

We now identify the subset Ut ⊆ Foundt. Some more notation is needed.

Definition 2.2. For any subset A ⊆ V (G), let HA ∈ [0,∞], HA = inf
{

t ≥

0 : Y (t) ∈ A
}

, denote the hitting time of A by Y ; the convention inf ∅ = ∞

is used.

Let t > 0 and take B ∈ Foundt, with B = (e, s) ∈ E(G) × [0, T ). Then

we define B to be an element of Ut if each of the following conditions is

satisfied:

• He+ < He− < t;

•
{

s ∈ [0, t] : Y (s) = e+
}

= [He+,He−);

• He− −He+ ≤ T/2; and

• the set
{

s ∈ [0, t) : Y (s) = e−
}

takes the form of an interval whose

right-hand endpoint is strictly less than t.

In other words, a bar (e, s) ∈ B crossed before time t is useful (at time t) if,

in its history strictly before time t, the walk Y has made a jump and arrived

at the edge e’s parent vertex e+, and has then, without intervening jumps

and before a duration T/2 has passed, jumped to the child vertex e−, before

jumping again to one of the offspring of e−, without then returning to e−.

2.3. The return to a useful bar

Each vertex in G having at least two offspring, we note that, for (e, s) ∈

Ut, each of e+ and e− has an offspring, u+ and u−, such that Y[0,t] ∩
{

u+, u−
}

= ∅; indeed, there are deg(e+) − 2 ≥ 1 choices for u+ and

deg(e−) − 2 ≥ 1 for u−, because Y until time t has visited at most one

offspring of e+ and at most one offspring of e−. This fact explains how we

will be able to treat the elements of Ut as obstacles for the return of Y to φ

after time t. We will argue that, conditionally on returning to e− after time

t, there is positive probability that Y arrives at either u+ or u−.

We make some definitions before proving a lemma to this effect.

Definition 2.3. The time t ∈ [0,∞) is called a frontier time of X : [0,∞) →

V (G)× [0, T ) if Y (t) 6∈ Y[0,t).
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Figure 2: The return of X to the pole at the child vertex of an edge e supporting
a bar in Ut is depicted. In the left-hand figure, the locale of G near e is shown,
including the beginnings of the descendent trees of u+ and u−; correspondingly,
the dotted line segments at the base of the right-hand sketch indicate the graph
structure. The red arrows indicate the trajectory of the meander X until time t.
The blue arrows indicate the trajectory of X just prior to its return to the pole of
e− at time Ht,e− .

Definition 2.4. For t ≥ 0 and A ⊆ V (G), let Ht,A ∈ [t,∞] be given by

Ht,A = inf
{

s ≥ t : Y (s) ∈ A
}

. For x ∈ V (G), we write Ht,x = Ht,{x}.

Definition 2.5. Let t > 0. Consider PT given X : [0, t] → V (G) × [0, T )

and let (e, s) ∈ Ut. Also given Ht,e− < ∞, we say that X makes a frontier

departure from e if, after time Ht,e− , at the moment of departure of Y from

{e+, e−}, Y arrives at an offspring of either e+ or e− that it has never visited

before.

Lemma 2.6. Assume (1.1). Let t > 0. Consider PT given X : [0, t] →

V (G) × [0, T ); choosing (e, s) ∈ Ut such that e+ 6= φ measurably with re-

spect to X[0,t], condition further on Ht,e− < ∞. Then X makes a frontier

departure from e with probability at least d−1
d+1

(

1− e−(d−1)T/2
)

.

Proof. Let U+ (and U−) denote the set of offspring of e+ (and e−) that

Y has not visited during [0, t]. Since the only offspring of e+ that Y has
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visited by time t is e−, and there is only one offspring of e− that has been

so visited, we have that

|U+| ≥ deg(e+)− 2 and |U−| ≥ deg(e−)− 2 . (2.1)

In Figure 2, u+ ∈ U+ and u− ∈ U− have been fixed for the purpose

of illustration. Writing η = Ht,e−, we will apply Lemma 2.1 to study the

conditional distribution of X(η + ·) : [0,∞) → V (G) × [0, T ). Note that

(e−, s) is the first joint of a bar in Foundη encountered on the pole at e−

by unit-speed cyclic upward motion from X(η). Indeed, X has visited the

pole at e− before time η during a single interval of time, arriving there at

the joint (e−, s); now, returning to e− at time η, this point is the first joint

of an element of Foundη to be located on a journey upwards from X(η).

Note also that, given X[0,η], were X after time η to remain at e− until

encountering the joint (e−, s), it would jump to (e+, s) at the moment of this

encounter. Let the “jump” event J occur if X does indeed remain at the

pole at e− until meeting (e−, s); let I ⊆ [0, T ) denote the interval of heights

through which X passes after time η and before encountering (e−, s) in the

case that J occurs.

Note that X[0,η]∩
(

U−× [0, T )
)

= ∅, so that {(e−, u−)}× I ⊆ UnTouchη

for every element u− of U−. In the notation of Lemma 2.1, under PT given

X[0,η], J
c occurs if and only if B(η,∞) contains a bar with a joint in {e−}× I;

the fact that {(e−, u−)} × I ⊆ UnTouchη for every u− ∈ U− and (2.1)

thus ensures that, under PT given X[0,η] and Jc, there is probability at least

1−2/deg(e−) that the element of B(η,∞) of lowest height among those having

a joint in {e−} × I is supported on (e−, u−) for some u− ∈ U−. In this way,

we see from Lemma 2.1 and the strong Markov property that

PT

(

Y (τ) ∈ U−
∣

∣

∣
X[0,η], J

c
)

≥
deg(e−)− 2

deg(e−)
. (2.2)

On the other hand, conditionally on X[0,η] and on J , X after time η

leaves the pole at e− by crossing the bar (e, s) to arrive at (e+, s). Let

χ = Hη,V (G)\{e−} denote the moment of this arrival. Noting that (e, s) ∈ Ut

and that X[t,χ) ∩
(

{e+} × [0, T )
)

= ∅, we see that
(

{e+} × [0, T )
)

∩ X[0,χ)
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consists of an interval of length at most T/2 whose upper endpoint is X(χ),

so that

(e+, rmodT ) 6∈ X[0,χ] for all r ∈ (χ, χ+ T/2) . (2.3)

Moreover,
(

U+ × [0, T )
)

∩X[0,χ] = ∅. In light of these facts, we will see that

Lemma 2.1 implies that

PT

(

Y (τ) ∈ U+
∣

∣

∣
X[0,η], J

)

≥
deg(e+)− 2

deg(e+)

(

1− e−(d−1)T/2
)

. (2.4)

Indeed, (2.3) implies that unit-speed upward cyclic motion from (e+, s) will

meet no joint of a bar in Foundχ for a duration of at least T/2. Whenever

u+ ∈ U+, which is to say that u+ is a neighbour of e+ such that u+ 6∈ Y[0,χ),

(e+, u+)×[0, T ) ⊆ UnTouchχ. Since any offspring of e+ except for e− belongs

to U+, we have that |U+| ≥ d − 1. Applying Lemma 2.1, the conditional

probability that there exists a bar in B\Foundχ = B(χ,∞) with a joint at Y (χ)

having a height lying in the modulo-T reduction of (χ, χ + T/2) is at least

1− exp
{

− (d−1)T/2
}

; note also that, by (2.1), the conditional probability,

given the presence of such a bar, that the first such bar encountered by

upward cyclic motion from Xχ is supported on an edge of the form (e+, u+)

for some u+ ∈ U+ is at least 1 − 2/deg(e+). Hence, we obtain (2.4) by

applying Lemma 2.1 (and the strong Markov property) at time χ.

The lemma follows from (2.2) and (2.4), since min
{

deg(e+),deg(e−)
}

≥

d+ 1. ���

2.4. Departing after the return

We now extend the notion of a useful bar, making it relative to a non-

zero start time.

Definition 2.7. Let s > 0, and let t > s. Let Founds,t ⊆ E(G) × [0, T )

denote the set of bars crossed by X during [s, t).

Let (e, r) ∈ Founds,t. We declare that (e, r) ∈ Us,t if each of the following

conditions is satisfied:

• e+ is a strict descendent of Y (s);

• d
(

Y (s), Y (Hs,e+)
)

> d
(

Y (s), Y (r)
)

for all r ∈ [s,Hs,e+);

•
{

r ∈ [s, t] : Y (r) = e+
}

= [Hs,e+,Hs,e−);
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• Hs,e+ −Hs,(−e) ≤ T/2; and

• the set
{

r ∈ [s, t) : Y (r) = e−
}

takes the form of an interval whose

right-hand endpoint is strictly less than t.

In fact, the set U0,t may be smaller than Ut, because we do not require

the second of the above conditions in defining Ut. The stricter definition

permits the union property recorded in the next lemma.

Definition 2.8. Let t > 0. A time s ∈ [0, t] is called a t-regeneration time

if
{

r ∈ [0, t] : Y (r) = Y (s)
}

is an interval. If this interval has right-hand

endpoint strictly less than t, then the first jump made by Y after time s is

in the direction away from the root.

Lemma 2.9. Let t > s > 0. Let X : [0,∞) → V (G) × [0, T ) be such that s

is a t-regeneration time. Then Us and Us,t are disjoint subsets of Ut.

Proof. Let (e, r) ∈ Us, (with e ∈ E(G) and r ∈ [0, T )). Note that Y[s,t] lies

in the descendent tree of Y (s), a vertex which is itself a strict descendent

of e−. Hence, Us ⊆ Ut. The other inclusion is similarly established. No

vertex associated to a joint of a bar in Us is a descendent of Y (s), while

every vertex associated to a joint of a bar in Us,t is a strict descendent of

Y (s). This ensures the disjointness of the two sets. ���

Lemma 2.10. Assume (1.1). Given ε > 0, there exists T0 > 0 such that,

for T ≥ T0, the PT -probability that

|U0,T | ≥

(

d(d− 1)2

(d+ 1)2

(

1− e−(d+1)T/2
)

− ε

)

T (2.5)

is at least 1− ε.

Proof. Let Td denote the rooted regular tree each of whose vertices has d

offspring. We first prove the lemma when G = Td.

Let β > 1. Let Z : N → N, Z(0) = 0, denote nearest-neighbour random

walk with bias β to the right and with reflection at zero. This is the Markov

chain with transition probabilities pn,m = δm,n+1
β

β+1 + δm,n−1
1

β+1 for n ≥ 1

and p0,m = δm,1. We call n ∈ Z a renewal point for Z (and write n ∈ RG)

if m ∈ N and Z(m) = Z(n) implies that m = n. We call n a strong

renewal point for Z (and write n ∈ SRG(Z)) if {n, n + 1} ⊆ RG. Note

that the conditional distribution given Z : [0, n] → Z and n ∈ SRG(Z) of
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Z(n+ ·)−Z(n) is given by Z conditioned to make three rightward steps and

then to remain at values of at least two. This conditional distribution being

independent of Z : [0, n] → Z given n ∈ SRG(Z), we see that the strong

renewal points form a renewal sequence (in the sense that the differences

of consecutive terms are independent and have a common law). It is easy

to confirm that, for each n ∈ N
+, P(n ∈ SRG(Z)) = β(β−1)

(β+1)2
. Hence, the

renewal theorem implies that

n−1
∣

∣

∣
SRG(Z) ∩

{

1, . . . , n
}

∣

∣

∣
→

β(β − 1)

(β + 1)2
, almost surely. (2.6)

Let W : [0,∞) → V (G) denote continuous-time random walk on G

departing from φ (whose jumps are given by exponential rate-one clocks on

the edges of G). Write M : [0,∞) → N, M(s) = d
(

φ,W (s)
)

, where recall

that d(·, ·) denotes graphical distance on G. Let J : N → N, J(0) = 0,

denote the jump chain of M , that records in discrete-time the successive

states visited by M . Let D : N → (0,∞), where D(0) is the time for W to

make its first transition, and D(n) for n ∈ N
+ is the length of time that W

spends at its new location after its n-th transition.

Taking β = d, note that J : N → N and Zβ : N → N are equal in law.

Note that Y : [0, T ) → V (G) has the distribution of W : [0, T ) → V (G).

Thus, we wish to argue that (2.5) holds for the process W : [0, T ) → V (G).

The process W making transitions at rate at least d+ 1 except when at the

root, the law of large numbers implies that, for any ε > 0, there exists an

almost surely finite random variable T0 such that W : [0, T ) → V (G) makes

at least T (d+1)(1−ε) transitions if T ≥ T0. Clearly then, for ε > 0, we have

that W (T ) ≥ T (d− 1)(1 − ε) if T ≥ T0 (where the law of the almost surely

finite T0 may have changed). Every strong renewal point j for J for which

0 < j ≤ T (d − 1)(1 − ε) corresponds to an element of U0,T , provided that

D(j) ≤ T/2. For any given k ∈ N
+, conditionally on a choice of J : N → N

such that J(k) > 0, and on the values
{

D(i) : i 6= k
}

, the conditional

probability that D(k) ≤ T/2 is at least 1− e−(d+1)T/2.

Recalling (2.6), we see that, for any ε > 0, there exists a deterministic

T0 > 0 such that T ≥ T0 implies that

∣

∣U0,T

∣

∣ ≥

(

d(d− 1)

(d+ 1)2
− ε

)

T (d− 1)
(

1− ε
)

(

1− e−(d+1)T/2
)
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with probability at least 1 − ε. This yields the statement of the lemma in

the case that G = Td.

The general case may be reduced to the special one. Assume now

that G satisfies (1.1). It is straightforward to construct a coupling C of

the continuous-time random walks W Td and WG with the property that at

any moment of time at which WG makes a transition towards the root, W Td

is either at the root or makes a transition towards the root, while at any

moment of time at which W Td makes a transition away from the root, so

does WG. We omit the details of this standard construction. Under C, let

T1 denote the supremum of times at which W Td is at the root, and let m

denote the maximal distance from the root attained by WG before T1. Let

T2 = inf
{

t ≥ T1 : d
(

φ,WG
)

= m
}

. It is easily verified that, if T > T2 and

s ∈ (T2, T ) is a moment at which a bar in UTd
0,T is crossed by W Td , then s is

also a moment at which a bar in UG
0,T is crossed by WG. Hence, whenever

T > T2,
∣

∣UG
0,T

∣

∣ ≥
∣

∣UTd
0,T

∣

∣ −
∣

∣UTd
0,T2

∣

∣ under C. The random variable T2 being

finite C-almost surely, we infer the statement of the lemma for the graph G

from this statement for Td. ���

Lemma 2.11. Assume (1.1). Given ε > 0, there exists T0 > 0 such that

the following holds. Let T ≥ T0. Fix t > 0. Consider PT given X : [0, t] →

V (G)× [0, T ) such that t is a frontier time. Then the conditional probability

that

|Ut,t+T | ≥

(

d(d− 1)2

(d+ 1)2
(

1− e−(d+1)T/2
)

− ε

)

T (2.7)

and that t is a (t+ T )-regeneration time is at least 1/4.

Remark. Define

c1,T =
d(d− 1)2

2(d+ 1)2

(

1− e−(d+1)T/2
)

.

Let X : [0,∞) → V (G) × [0, T ) be such that t ∈ [0,∞) is a frontier time

of X. We say that X makes a rapid advance from t if Y (s) is a descendent of

Y (t) for all s ∈ [t, t+T ] and if |Ut,t+T | ≥ c1,TT . In these terms, Lemma 2.11

implies that there exists T0 such that, if T ≥ T0, then, under PT given

X : [0, t] → V (G) × [0, T ) such that t is a frontier time, the conditional

probability that X makes a rapid advance from t is at least 1/4.
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Proof of Lemma 2.11. Let D denote the descendent tree of Y (t), (with

root Y (t)). In this proof, we use the term G-process to refer to the con-

ditional distribution of X(t + ·) given data X : [0, t] → V (G) × [0, T ) as

specified in the statement of the lemma. By the D-process, we mean cyclic-

time random meander in D from X(t). In this way, each process is defined

on [0,∞). Note that the D- and G-processes may be coupled by using the

same collection of elements in B supported on edges in D. The two processes

then coincide during [0, T ] provided that the G-process departs from the pole

at Y (t) by jumping to the pole indexed by an offspring of Y (t), and does not

return to the pole at Y (t) during [0, T ]. The probability that this happens is

at least d−1
d+1 by Lemma 2.1 and a basic hitting estimate. By Lemma 2.10, the

random variable Ut,t+T under the D-process satisfies (2.7) with probability

arbitrarily close to one (provided that T is chosen to be high enough). If

the coupling works, then the bound applies to the G-process as well. The

bound d ≥ 2 gives the statement of the lemma (where in fact 1/4 might be

replaced by any value less than 1/3). ���

Definition 2.12. Let t > 0 and let the bar (e, r) denote any given element

of Ut. Write ec = V (G) \
{

e+, e−
}

. We say that X makes a return to e if

Ht,e− < ∞. If X makes a return to e, we say that the return is good if

1. X makes a frontier departure from e, and then

2. X makes a rapid advance from the frontier time HH
t,e−

,ec.

Define

c2,T =
d− 1

4(d+ 1)

(

1− e−(d−1)T/2
)

.

Lemma 2.13. Assume (1.1). There exists T0 > 0 such that the following

holds. Let T ≥ T0. For any t > 0 and any (e, r) ∈ E(G)×[0, T ) with e+ 6= φ,

under PT given (e, r) ∈ Ut and Ht,e− < ∞, the probability that the return of

X to e is good is at least c2,T .

Proof. This is implied by Lemma 2.6 and the remark that follows Lemma 2.11,

as well as by Lemma 2.1. ���
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2.5. Damage limitation after a bad return

We need a lemma that controls the damage done by a return to a useful

bar which turns out not to be good.

Lemma 2.14. Let t > 0. Let e denote the element of Ut that is crossed last

by X : [0, t] → V (G) × [0, T ). Let p(e+) denote the parent of e+. Then,

conditionally on e+ 6= φ and Ht,p(e+) < ∞, we have that, almost surely,

Ut \ UH
t,p(e+)

contains at most two elements.

Proof. We write U t for the set of edges that support a bar in Ut. Note that,

for each t > 0, these two sets are in one-to-one correspondence, since no two

elements in Ut are supported on the same edge. Hence, it suffices to derive

the statement of the lemma with U replaced by U .

Note that the elements of U t, enumerated
(

e1, . . . , ek
)

in the order in

which the constituent edges are crossed by Y : [0, t] → V (G) × [0, T ), have

the property that, in the list
(

e−1 , . . . , e
−
k

)

, each entry is a descendent of

each of its precursors. By definition, e = ek. For 1 ≤ i ≤ k − 1, note

that inf
{

s ≥ t : ei 6∈ Us

}

= Ht,e−i
. Note also that if Ht,e−i

< ∞ then

ei ∈ UH
t,e

−

i

, because the fourth requirement in the definition of {Ut : t ≥ 0}

in Subsection 2.2 is chosen so that a given bar leaves this process not at,

but only momentarily after, a return by Y to the child vertex of the edge

supporting this bar. Thus, U t \ UH
t,p(e+)

may contain no edges other than e

and
(

p(e+), e+
)

. ���

2.6. Establishing the main results

Proof of Proposition 1.3. We fix T0 > 0 high enough to satisfy the

hypotheses of each of the preceding lemmas. We now form the process

X : [0,∞) → V (G) × [0, T ) iteratively. We will construct an increasing

sequence
{

τi : i ∈ N
+
}

of times at which the present number of useful bars

is gauged.

At the first step, provided that the positive probability event that |Ut| ≥

2 for some t > 0 occurs, we set τ1 = inf
{

t ≥ 0 : |Ut| ≥ 2
}

. (We wait for two

elements to appear in Ut because if there is only one, it may be supported on

an edge incident to φ, and we have not set up the tools to handle this case.)

Otherwise, we set τj = −∞ for each j ∈ N
+, in a formal device indicating
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that our effort to determine that X does not have a periodic trajectory

has failed. (In the case that τ1 6= −∞, note that |Uτ1 | = 2, because the

convention that X be right-continuous means that X crosses a bar at time

τ1, and is no longer at the child vertex of the second bar to become useful,

permitting this bar to join Ut at time t = τ1.)

Let k ∈ N
+. Suppose that 0 < τk < ∞. (As will be apparent, we

set τk = ∞ in the case that it becomes evident at the k-th stage of the

construction that X does not have a periodic trajectory. For definiteness, if

τk is set equal to ∞ in the subsequent definition, then we automatically also

set τl = ∞ for all l > k.)

If |Uτk | ≤ 1, set τl = −∞ for all l ≥ k + 1.

Otherwise, let (ek, tk) denote the bar in Uτk that is the last to be crossed

by X before time τk. Let χk = Hτk,e
−

k
.

If χk = ∞, then set τk+1 = ∞.

If χk < ∞ and the return of X to ek is good, recalling that eck denotes

V (G) \ {e+k , e
−
k }, we take τk+1 = Hχk,e

c
k
+ T .

If χk < ∞ and the return of X to ek is not good, we take τk+1 =

Hχk,p(e+), where recall that p(e+) denotes the parent of e+. Note that

Hχk,p(e+) may be infinite.

For k ∈ N
+, set uk = |Uτk |. As a convention, we take uk = 0 if τk = −∞

and uk = ∞ if τk = ∞.

For t ∈ [0,∞), let σt denote the sigma-algebra generated by
{

Xs : 0 ≤

s ≤ t
}

. For k ∈ N
+, write σ′

k = στk , where, in a standard definition,

στk =
{

A ⊆ Ω : A ∩
{

τk ≤ t
}

∈ σt for each t > 0
}

.

We now define three σ′
k-measurable random variables, pk, qk and rk.

To define each of them, consider PT given
{

Xt : 0 ≤ t ≤ τk
}

. Then pk is

set equal to the conditional probability that χk < ∞. Let qk denote the

conditional probability, given further that χk < ∞, that the return of X to

ek is good. Let rk denote the conditional probability, given that χk < ∞

and that the return of X to ek is not good, that Hχk,p(e+) < ∞.

Note that uk is σ
′
k-measurable. Note also that, by the definition of a good

return, and Lemmas 2.9 and 2.14, we have that, σ′
k

(

·
∣

∣uk > 1
)

-almost surely,

the conditional distribution of uk+1 − uk given
{

Xt : 0 ≤ t ≤ τk
}

stochasti-

cally dominates the law ∞δ1−pk+c1,TTδpkqk+∞δpk(1−qk)(1−rk)−2δpk(1−qk)rk .
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The latter distribution is parametrized by (rk, pk, qk), and stochastically

dominates the one obtained by replacing the values of each of pk and rk

by 1. Moreover, by Lemma 2.13, qk ≥ c2,T , σ
′
k

(

·
∣

∣uk > 1
)

-almost surely.

To summarise these deductions, σ′
k

(

·
∣

∣uk > 1
)

-almost surely, the conditional

distribution of uk+1 − uk given
{

Xt : 0 ≤ t ≤ τk
}

stochastically dominates

the law c1,TTδc2,T − 2δ1−c2,T .

The data
{

u1, . . . , uk
}

being σ′
k-measurable, we infer that, given such

data for which uk > 1, the conditional distribution of uk+1−uk also stochas-

tically dominates the law c1,TTδc2,T − 2δ1−c2,T . Let Q : N+ → R denote the

random walk on R whose increments are independent and have the law

c1,TTδc2,T − 2δ1−c2,T , with initial condition Q(1) = 2. Let ρ ∈ N denote the

first time at which Q is at most one, and define Q∗ : N
+ → R by

Q∗(i) =

{

Q(i) if i ≤ ρ ,

0 if i > ρ ,

for each i ∈ N
+.

We find that, conditionally on τ1 < ∞,
{

ui : i ∈ N
+
}

stochastically

dominates
{

Q∗(j) : j ∈ N
+
}

. Hence, we find that the probability that

ui → ∞ as i → ∞ is at least the probability that
{

Q(i) : i ∈ N
}

is a

sequence of terms all of which exceed one and which tend to infinity. By the

law of large numbers, this occurrence has positive probability provided that

c2,T c1,TT − 2
(

1− c2,T
)

> 0 . (2.8)

Note that the left-hand side is non-decreasing and tends to infinity in the

limit of high T ; as such, we may adjust the value of T0 > 0, if necessary, so

that, for T > T0, the condition (2.8) is satisfied.

Clearly, if X : [0,∞) → V (G) × [0, T ) has a periodic orbit, then τk

eventually assumes the value −∞. Hence, provided that T > T0, with

positive probability, X does not have a periodic orbit, so that φ 6∈ Y (t,∞)

for sufficiently high t. This completes the proof of Proposition 1.3. ���

Proof of Theorem 1.1. By Proposition 1.3, there is positive probability

that X = X(φ,0) has an aperiodic orbit, in which case, members of the

semi-infinite sequence
{

Y (kT ) : k ∈ N
}

form the consecutive elements of
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part of some infinite cycle in the associated random stirring model with

parameter T .

Should X have a periodic orbit, we may search in successive generations

away from the root for an edge e such that no bar in B is supported on e.

The conditional distribution of X(e−,0) is then given by cyclic-time random

meander in the descendent tree of e−. Proposition 1.3 being applicable to

this tree, there is a further uniformly positive probability that X(e−,0) has

an aperiodic orbit. This procedure may continue until a meander with such

an orbit is located. ���
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13. András Sütő, Percolation transition in the Bose gas, II, J. Phys. A, 35(2002), No.33,
6995-7002.
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