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Abstract

Let D ⊂ Rd be a bounded domain and denote by P(D) the space of probability

measures on D. Let

L =
1

2
∇ · a∇+ b∇

be a second order elliptic operator. Let µ ∈ P(D) and δ > 0. Consider a Markov

process X(t) in D which performs diffusion in D generated by the operator δL and is

stopped at the boundary, and which while running, jumps instantaneously, according to

an exponential clock with spatially dependent intensity V > 0, to a new point, according

to the distribution µ. The Markov process is generated by the operator Lδ,µ,V defined by

Lδ,µ,V φ ≡ δLφ+ V (

∫
D

φ dµ− φ).

Let φδ,µ,V denote the solution to the Dirichlet problem

Lδ,µ,V φ = 0 in D;

φ = f on ∂D,

where f is continuous. The solution has the stochastic representation

φδ,µ,V (x) = Exf(X(τD)).
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One has that φ0,µ,V (f) ≡ limδ→0 φδ,µ,V (x) is independent of x ∈ D. We evaluate this

constant in the case that µ has a density in a neighborhood of ∂D. We also study the

asymptotic behavior as δ → 0 of the principal eigenvalue λ0(δ, µ, V ) for the operator

Lδ,µ,V , which generalizes previously obtained results for the case L = 1

2
∆.

1. Introduction and Statement of Results

Let D ⊂ Rd be a bounded domain with C2,α-boundary (α ∈ (0, 1]) and

let P(D) denote the space of probability measures on D. Let

L =
1

2
∇ · a∇+ b∇ (1.1)

be a second order elliptic operator. Assume that the coefficients a = {ai,j}ni,j=1

and b = {bi}ni=1 are in C1,α(D̄) and that a(x) is positive definite for each

x ∈ D̄. Fix a measure µ ∈ P(D) and fix δ > 0. Consider a Markov process

X(t) in D which performs diffusion in D generated by the operator δL and is

stopped at the boundary, and which while running, jumps instantaneously,

according to an exponential clock with spatially dependent intensity V , to a

new point, according to the distribution µ. That is, the probability that the

process X(·) has not jumped by time t is given by exp(−
∫ t∧τD
0 V (X(s))ds),

where τD = inf{t ≥ 0 : X(t) 6∈ D} is the first exit time from D. From its

new position after the jump, the process repeats the above behavior inde-

pendently of what has transpired previously. We assume that V > 0 in D̄

and that V ∈ Cα(D̄). Denote probabilities and expectations for the pro-

cess starting from x ∈ D by P δ,µ,V
x and E

δ,µ,V
x . We will call the process a

jump-diffusion.

Let Lδ,µ,V denote the operator defined by

Lδ,µ,V φ ≡ δLφ+ V (

∫

D

φ dµ − φ).

The operator Lδ,µ,V generates the jump-diffusion X(t), and consequently,

φ(X(t ∧ τD))−
∫ t∧τD
0 Lδ,µ,V φ(X(s))ds is a martingale.

Let φδ,µ,V denote the solution to the Dirichlet problem

Lδ,µ,V φ = 0 in D;

φ = f on ∂D,
(1.2)
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where f is continuous. It follows that φδ,µ,V (X(t∧ τD)) is a martingale; thus

φ(x) = E
δ,µ,V
x φδ,µ,V (X(t∧ τD)), for all t. Letting t→ ∞ gives the stochastic

representation

φδ,µ,V (x) = Eδ,µ,V
x f(X(τD)). (1.3)

In this paper we investigate the behavior of φδ,µ,V as δ → 0; that is, in the

small diffusion limit. Since L0,µ,V φ = V (x)(
∫

D
φdµ − φ(x)), one expects

that limδ→0 φδ,µ,V (x) will be independent of x ∈ D, and we can prove this

trivially via the stochastic representation in (1.3). We wish to calculate the

constant

φ0,µ,V (f) ≡ lim
δ→0

φδ,µ,V (x), x ∈ D. (1.4)

Let ex,δ(·) ≡ P
δ,µ,V
x (X(τD) ∈ ·) denote the exit distribution of the jump-

diffusion. If we calculate the weak limit νµ,V of ex,δ as δ → 0, then this will

give us φ0,µ,V (f) =
∫

∂D
fdνµ,V .

The above jump-diffusion process arises naturally in the context of a

system of switching diffusions with a fast motion and a slow motion. Let

(φδ,sys, ψδ,sys) denote the solution to the system of boundary value problems

given by

δLφ+ V (ψ − φ) = 0 in D;

1

δ
Lψ + V(φ− ψ) = 0 in D;

φ = f on ∂D; ∇ψ · n = 0 on ∂D,

(1.5)

where L and V are as above, and L and V are another such pair. Let

µ be the invariant probability measure for the diffusion generated by L
with normal reflection. The above system of equations corresponds to a

Markov process (X(t), κ(t)). The coordinate κ(t) has two states—1 and

2. When κ(·) = 1, X(·) performs δL diffusion in D until it reaches the

boundary. When κ(·) = 2, X(·) performs 1
δ
L diffusion in D with reflec-

tion at the boundary. The process κ(t) jumps from state 1 to state 2 with

X(·)-dependent intensity V (X(t)) and from state 2 to state 1 with inten-

sity V(X(t)). Let Ex,k denote the expectation starting from (x, k). Let

τD,1 = inf{t ≥ 0 : X(t) ∈ ∂D, κ(t) = 1}. Then φδ,sys(x) = Ex,1f(X(τD,1))
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and ψδ,sys(x) = Ex,2f(X(τD,1)). One can show that

lim
δ→0

φδ,sys(x) = lim
δ→0

ψδ,sys(x) =

∫

∂D

f(y)νµ,V (dy),

where νµ,V is the limiting exit distribution for the jump-diffusion as defined

above. The heuristic explanation for this is as follows. If one observes the

process X(·) only when κ(·) is in state 1, one sees a process very similar

to our jump-diffusion process. Indeed, when κ jumps from state 1 to state

2, X(·) starts to run under a very fast clock according to the reflected L-
diffusion. However, the time for the clock V to ring and return the κ(·)
process to state 1 is on order unity; by this time the distribution of the fast-

running X(·) process is almost at its invariant distribution µ. Thus, when

κ(·) jumps back to state 1 and we begin observing the X(·) process again,

it starts up from a position that is distributed almost like µ.

Returning to our jump-diffusion processs, we note that the constant in

(1.4) depends very strongly on the behavior of µ near the boundary. In this

paper, we treat the case that supp(µ)∩ ∂D 6= ∅ and that µ has a density in

a neighborhood of the boundary. The density may vanish on the boundary.

Let L̃ denote the formal adjoint of L:

L̃ =
1

2
∇ · a∇− b∇−∇ · b.

Theorem 1. Let D ⊂ Rd, d ≥ 1, be a bounded domain with a C2,α-boundary

(α ∈ (0, 1]) and let µ ∈ P(D). Assume that V > 0 on D̄. Let Dǫ = {x ∈ D :

dist(x, ∂D) < ǫ}.
Assume that for some ǫ > 0, the restriction of µ to Dǫ possesses a density:

µ(dx)|Dǫ ≡ µ(x)dx. Assume that for some k ≥ 0, the following conditions

hold. If k is even, assume that µ ∈ Ck(D̄ǫ); if k is odd, assume that µ ∈
Ck+1(D̄ǫ). Assume that

dβµ

dxβ
≡ 0 on ∂D, for all |β| ≤ k − 1, if k ≥ 1;

dβµ

dxβ
6≡ 0 on ∂D, for some |β| = k, if k ≥ 0.

Assume that V ∈ C2,α(D̄), if k = 0, 2, and that V ∈ Ck(D̄), if k ≥ 4 is

even; assume that V ∈ Ck+1(D̄), if k is odd.
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Assume that ai,j , bi ∈ C1,α(D̄), if k = 0, 2, and that ai,j , bi ∈ Ck−1(D̄), if

k ≥ 4 is even; assume that ai,j, bi ∈ C1,α(D̄), if k = 1, and that ai,j, bi ∈
Ck(D̄), if k ≥ 3 is odd.

Let n denote the inward unit normal to D at ∂D. Let σ denote Lebesgue

measure on ∂D.

If k is even, then the solution φδ,µ,V to (1.2) satisfies (1.4) with

φ0,µ,V (f) =

∫

∂D
f
√

(n · an)V − k+1

2 L̃
k
2µdσ

∫

∂D

√

(n · an)V − k+1

2 L̃
k
2µdσ

.

If k is odd, then the solution φδ,µ,V to (1.2) satisfies (1.4) with

φ0,µ,V (f) =

∫

∂D
fV − k+1

2 a∇(L̃
k−1

2 µ) · ndσ
∫

∂D
V − k+1

2 a∇(L̃
k−1

2 µ) · ndσ
.

In particular then, if k = 0, one has

φ0,µ,V (f) =

∫

∂D
f
√

(n · an) µ√
V
dσ

∫

∂D

√

(n · an) µ√
V
dσ

,

and if k = 1, one has

φ0,µ,V (f) =

∫

∂D
fV −1a∇µ · ndσ

∫

∂D
V −1a∇µ · ndσ .

Remark. If µ has compact support, the behavior of φ0,µ,V (f) is completely

different. In this case, φ0,µ,V (f) can be studied usingWentzell-Freidlin action

functionals. Assuming the uniqueness of the minimum of a certain such

functional, φ0,µ,V (f) will have the form f(x0) for some x0 ∈ ∂D.

Define the contraction semigroup

T
δ,µ,V
t f(x) = Eδ,µ,V

x (f(X(t)); τD > t), f ∈ C0(D̄),

where C0(D̄) is the space of continuous functions on D̄ vanishing on ∂D.

The infinitesimal generator of this semigroup is an extension of the oper-

ator Lδ,µ,V , defined on C2(D̄) ∩ {φ : φ,Lδ,µ,V φ ∈ C0(D̄)} with the ho-

mogeneous Dirichlet boundary condition. The operator T δ,µ,V
t is compact
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(see [6] where the case of constant coefficients is considered); thus, the

resolvent operator for T δ,µ,V
t is also compact, and consequently the spec-

trum σ(Lδ,µ,V ) of Lδ,µ,V consists exclusively of eigenvalues. By the Krein-

Rutman theorem, one deduces that −Lδ,µ,V possesses a principal eigenvalue,

λ0(δ, µ, V ); that is, λ0(δ, µ, V ) is real and simple and satisfies λ0(δ, µ, V ) =

inf{Re(λ) : λ ∈ σ(−Lδ,µ,V )} [5]. It is known that λ ∈ σ(−Lδ,µ,V ) if and

only if exp(−λt) ∈ σ(T δ,µ,V
t ) [4]. Thus, since ||T δ,µ,V

t || < 1, it follows that

λ0(δ, µ, V ) > 0. We have

sup
f∈C0(D̄),||f ||≤1

||T δ,µ,V
t f || = sup

x∈D
P δ,µ,V
x (τD > t);

thus, a standard result [7] allows us to conclude that

lim
t→∞

1

t
log sup

x∈D
P δ,µ,V
x (τD > t) = −λ0(δ, µ, V ).

It is well known that this is equivalent to

lim
t→∞

1

t
logP δ,µ,V

x (τD > t) = −λ0(δ, µ, V ), x ∈ D. (1.6)

In the case that L = 1
2∆, that is the case that the underlying motion is

Brownian motion, the papers [6], [1] investigated the behavior of the prin-

cipal eigenvalue λ0(δ, µ, V ) as δ → 0. (Actually, in those papers, one finds

the operator γL 1

γ
,µ,V φ = 1

2∆φ + γV (
∫

D
φdµ − φ) with γ → ∞.) The key

calculations contained in Proposition 1 of this paper for the case of a gen-

eral diffusion operator L generalize calculations in [1] for the operator 1
2∆.

Using the methods of [1] along with Proposition 1, one obtains the following

generalization of the results in [1].

Theorem 2. Let the assumptions of Theorem 1 be in effect for some k ≥ 0.

Then the principal eigenvalue λ0(δ, µ, V ) of the operator −Lδ,µ,V behaves

asymptotically as follows:

(i) If k is even,

lim
δ→0

δ−
k+1

2 λ0(δ, µ, V ) =

∫

∂D

√

(n · an)V − k+1

2 L̃
k
2µdσ√

2
∫

D
1
V
dµ

; (1.7)
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(ii) If k is odd,

lim
δ→0

δ−
k+1

2 λ0(δ, µ, V ) =

∫

∂D
V − k+1

2 a∇(L̃
k−1

2 µ) · ndσ
2
∫

D
1
V
dµ

. (1.8)

Remark 1. We note that if µ has compact support, then there exist con-

stants c1, c2 > 0 such that exp(−c2δ−
1

2 ) ≤ λ0(δ, µ, V ) ≤ exp(−c1δ−
1

2 ), for

small δ > 0. This was proven in [1, 6] for the case L = 1
2∆. The same type

of proof works for general L.

Remark 2. As with the Dirichlet problem in Theorem 1, the eigenvalue

problem in Theorem 2 can also be connected to a system of switching diffu-

sions. If in the second equation in (1.5), one multiplies V by say 1
δ

1

2 , then

the principal eigenvalue for the system will have the same asymptotic be-

havior as δ → 0 as does the principal eigenvalue for our jump-diffusion. To

see this heuristically, we note that the principal eigenvalue for the system is

connected to the switching diffusions via the analog of (1.6). Now observe

the X(·) process only when κ(·) is in state 1. The point is that for almost

all of the time up to the exit time, the process is running with κ(·) in state

1. The reason for this is that the speed of the clock for jumping back from

state 2 to state 1 is now very fast. However, since this clock speed is still

slower than the clock of the diffusion while κ(·) is in state 2 ( 1

δ
1
2

as opposed

to 1
δ
), the distribution of X(·) will almost be the invariant measure µ when

κ(·) jumps back to state 1 and we begin observing the X(·) process again.

If µ 6≡ 0 on ∂D, then Theorem 2 gives

λ0(δ, µ, V ) ∼
∫

∂D

√

(n · an) µ

V
1
2

dσ
√
2
∫

D
1
V
dx

δ
1

2 , as δ → 0. (1.9)

Theorem 2 is proven under the assumption that V > 0 in D̄. This condition

is essential. Note that if V vanishes in a sub-domain A ⊂ D, then as long as

the processX(t) remains in A, it never jumps, and thus starting from a point

in A, the probability that X(t) does not exit D by time t is greater than the

probability that a δL-diffusion process does not exit A by time t; thus, in light

(1.6) and the corresponding equation for the δL diffusion process, it follows

that λ0(δ, µ, V ) ≤ δλA0 (L), where λ
A
0 (L) > 0 is the principal eigenvalue for

−L in A. In particular, λ0(δ, µ, V ) is on a smaller order than in (1.9).
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Now consider the case that V > 0 in D but V ≡ 0 on ∂D. On the one

hand, since the process needs to not jump in order to exit D, allowing the

jump mechanism to weaken at the boundary should help the process exit.

Thus, if µ 6≡ 0 on ∂D, one might expect that λ0(δ, µ, V ) will be on a larger

order than δ
1

2 . But on the other hand, if V ≡ 0 in Dǫ, then by the argument

in the previous paragraph, λ0(δ, µ, V ) ≤ λD
ǫ

0 (L)δ. Thus, we expect that if V

vanishes identically on the boundary to high enough order, then λ0(δ, µ, V )

will be on a smaller order than δ
1

2 .

Now let Vǫ ≡ ǫ+ V̂ ,where V̂ > 0 in D and V̂ ≡ 0 on ∂D, and substitute

Vǫ for V in the righthand side of (1.9). If V̂ vanishes to the first order on ∂D,

then the right hand side of (1.9) is on the order (ǫ
1

2 log ǫ)−
1

2 ; in particular, it

converges to ∞. This suggests that if V vanishes to first order on ∂D, then

λ0(δ, µ, V ) will be on a larger order than δ
1

2 . If V̂ vanishes to second order

on ∂D, then the right hand side of (1.9) stays bounded and bounded from 0

as ǫ → 0. This suggests that if V vanishes to second order, then λ0(δ, µ, V )

will be on the order δ
1

2 , as in (1.9). If V̂ vanishes to third order on ∂D,

then the right hand side of (1.9) goes to 0 as ǫ→ 0. This suggests that if V

vanishes to third order or higher, then λ0(δ, µ, V ) will be on a smaller order

than δ
1

2 .

Open Question: Consider the case that µ 6≡ 0 on ∂D, so that if V were

strictly positive in D̄, then (1.9) would hold. Assume that V > 0 in D and

that V vanishes identically on ∂D to the order k, k ≥ 1. At what order does

λ0(δ, µ, V ) approach 0 when δ → 0?

Added in proof: The problem has been solved by Iddo Ben Ari [2].

In Section 2 we present several auxiliary results which then allow for

a quick proof of Theorem 1. The proof of one of the auxiliary results is

deferred to Section 3.

2. Auxiliary Results and Proof of Theorem 1

In this section we present three lemmas and one proposition, from which

the theorem will follow quickly. We begin however with a useful construction

of the process X(·) up to its exit time from ∂D. On a common probability

space with probability measure Pδ, let {Yn}∞n=0 be an independent sequence

of diffusion processes, where each Yn(·) is a diffusion corresponding to the
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operator δL and stopped upon reaching the boundary, and where Y0(0) =

x ∈ D, and the distribution of Yn(0) for n ≥ 1 is µ. (We have purposely

suppressed the dependence of Pδ on x. Note that Yn does not depend on

x for n ≥ 1.) Let Ft,n = σ(Yn(s), 0 ≤ s ≤ t) denote the filtration up

to time t for the process Yn(·). Denote the exit time of Yn(·) from D by

τD,n. Let Jn be a stopping time for Yn(·) satisfying Pδ(Jn > t|Ft,n) =

exp(−
∫ t∧τD,n

0 V (Yn(s))ds). Now define by induction:

X(t) = Y0(t), for 0 ≤ t < J0 ∧ τD,0;

if Jn−1 < τD,n−1, then

X(t) = Yn(t−
n−1
∑

k=0

Jk), for

n−1
∑

k=0

Jk ≤ t <

n−1
∑

k=0

Jk + Jn ∧ τD,n.

Recall that eδ,x(·) = P
δ,µ,V
x (X(τD) ∈ ·) denotes the exit distribution of

the process X(·) from D starting from X(0) = x. Let J denote the first

jump time of X(·). Since the distribution of τD,0 converges to the point

mass at ∞ as δ → 0, we have limδ→0 Pδ(τD,0 < J0) = 0; equivalently,

limδ→0 P
δ,µ,V
x (τD < J) = 0. Since P δ,µ,V

x (X(τD) ∈ ·|J < τD) is independent

of x ∈ D, we conclude that the weak limit of eδ,x (which will be shown to

exist) is independent of x ∈ D. Indeed, from the above considerations and

the above construction of X(·), we have

w− lim
δ→0

eδ,x = w− lim
δ→0

eδ, (2.1)

where

eδ(·) ≡ Pδ(Y1(τD,1) ∈ ·|τD,1 < J1).

(Note that the 1 appearing in four places on the righthand side above can

be replaced by any n ≥ 2 without changing the value of the expression.)

For each k = 0, 1, · · · , let ek0(·) denote the probability measure on ∂D
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with density ek0(x) given by

ek0(x) = (

∫

∂D

√

(n · an)V − k+1

2 L̃
k
2µdσ)−1

√

(n · an)(x)V − k+1

2 (x)L̃
k
2 µ(x),

k ≥ 0, k even;

ek0(x) = (

∫

∂D

V − k+1

2 a∇(L̃
k−1

2 µ) · ndσ)−1 V − k+1

2 (x)a(x)(∇(L̃
k−1

2 µ) · n)(x),

k ≥ 1, k odd.

From (1.3) and (2.1), to prove the theorem we need to prove that if µ satisfies

the conditions of the theorem for a particular k ≥ 0, then eδ converges weakly

to ek0 .

From now on we assume that µ satisfies the conditions of the theorem

for a particular k ≥ 0. Fix m ≥ 1 and let {Aj}m+1
j=1 be a partition of D̄

into m+1 disjoint connected sets satisfying the following conditions: (i) Aj

has a nonempty interior, for all j; (ii) Aj ∩ ∂D has a nonempty interior in

the relative topology of ∂D, for all j 6= m + 1; (iii) ek0(A1 ∩ ∂D) > 0; (iv)

dist(Am+1, ∂D) > 0. To prove the theorem, it is enough to show that

lim
δ→0

eδ(A1 ∩ ∂D) = ek0(A1 ∩ ∂D). (2.2)

Let uδ,V denote the solution to

δLu− V u = 0 in D;

u = 1 on ∂D.
(2.3)

Let Eδ denote expectations corresponding to Pδ . As is well-known, uδ,V has

the stochastic representation

uδ,V (x) = Eδ(exp(−
∫ τD,1

0
V (Y1(t)))|Y1(0) = x).

Lemma 1.

Pδ(Y1(0) ∈ Aj, τD,1 < J1) =

∫

Aj

uδ,V dµ, j = 1, · · · ,m+ 1. (2.4)
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Proof. For x ∈ D, we have

Pδ(τD,1 < J1|Y1(0) = x)

=

∫ ∞

0
Pδ(J1 > t, τD,1 = dt|Y1(0) = x)

=

∫ ∞

0
EδPδ(J1 > t, τD,1 = dt|Ft,1, Y1(0) = x)

=

∫ ∞

0
Eδ(exp(−

∫ t∧τD,1

0
V (Y1(s))ds)1dt(τD,1)|Y1(0) = x)

= E(exp(−
∫ τD,1

0
V (Y1(t))dt)|Y1(0) = x) = uδ,V (x).

The result follows from this. ���

Lemma 2. There exists a constant c = c(a, b, d, V ) > 0 depending on the

coefficients a, b of L, on V and on the dimension d such that

uδ,V (x) ≤ c exp(−dist(x, ∂D)

cδ
1

2

).

In particular then by Lemma 1, for some c1 > 0,

Pδ(Y1(0) ∈ Am+1, τD,1 < J1) ≤ c1 exp(−
dist(Am+1, ∂D)

c1δ
1

2

). (2.5)

Proof. Let Vmin = minx∈D̄ V (x). From the stochastic representation of

uδ,V , we have for any t > 0,

uδ,V (x) ≤ exp(−tVmin) + Pδ(τD,1 ≤ t|Y1(0) = x)

≤ exp(−tVmin) + Pδ( max
0≤s≤t

|Y1(s)− x|

≥ dist(x, ∂D)|Y1(0) = x). (2.6)

Since L has been written in divergence form, the drift of Y1 is δ(b+ 1
2∇ · a).

Let B = maxx∈D̄ |b(x) + 1
2∇ · a(x)| and let A = max|v|=1 maxx∈D̄(v, a(x)v).

From [5, Theorem 2.2-ii], it follows that

Pδ( max
0≤s≤t

|Y1(s)− x| ≥ λ|Y1(0) = x) ≤ 2d exp(−(λ− δBt)2

2dδAt
), for λ > δBt.

(2.7)
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Letting λ = dist(x, ∂D) and t = (dist(x, ∂D))δ−
1

2 in the above inequality

and substituting the resulting estimate on the right hand side of (2.6), we

obtain

uδ,V (x) ≤ exp(−δ− 1

2dist(x, ∂D)Vmin)+2d exp(−δ− 1

2dist(x, ∂D)
(1 − δ

1

2B)2

2dA
),

for small δ > 0, from which the lemma follows. ���

The key result for proving Theorem 1 is the following proposition, whose

proof is postponed to section 3.

Proposition 1. Let the assumptions of Theorem 1 be satisfied for some

k ≥ 0. Let j ∈ {1, · · · ,m}. If k is even, then

lim
δ→0

δ−
k+1

2

∫

Aj

uδ,V dµ =
1√
2

∫

Aj∩∂D

√

(n · an)V − k+1

2 L̃
k
2µdσ.

If k is odd, then

lim
δ→0

δ−
k+1

2

∫

Aj

uδ,V dµ =
1

2

∫

Aj∩∂D
V − k+1

2 a∇(L̃
k−1

2 µ) · ndσ.

Lemma 3. Let µ satisfy the assumptions in Theorem 1 for some k ≥ 0. Let

j ∈ {1, · · · ,m} be such that ek0(Aj ∩ ∂D) > 0. Then

lim
δ→0

Pδ(Y1(τD,1) ∈ Aj ∩ ∂D|Y1(0) ∈ Aj , τD,1 < J1) = 1.

Proof. Define

uδ,V,j(x) = Eδ(1∂D−Aj
(Y1(τD,1)) exp(−

∫ τD,1

0
V (Y1(t)))|Y1(0) = x).

An argument just like that used in the proof of Lemma 1 shows that

Pδ(Y1(0) ∈ Aj, τD,1 < J1, Y1(τD,1) ∈ ∂D −Aj) =

∫

Aj

uδ,V,j dµ. (2.8)

An argument just like that used in the proof of Lemma 2 shows that

uδ,V,j(x) ≤ c exp(−dist(x, ∂D −Aj)

cδ
1

2

). (2.9)
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Let N > 0 be a positive integer and let A
1

N

j = {x ∈ Aj : dist(x, ∂Aj) <
1
N
}.

By Lemma 1 and (2.8), we have

Pδ(Y1(τD,1) ∈ ∂D −Aj|Y1(0) ∈ Aj , τD,1 < J1)

=

∫

A
1
N
j

uδ,V,jdµ+
∫

Aj−A
1
N
j

uδ,V,jdµ

∫

Aj
uδ,V dµ

. (2.10)

Proposition 1 of course also holds with Aj replaced by A
1

N

j . Using the fact

that uδ,V,j ≤ uδ,V , applying Proposition 1 with Aj and with A
1

N

j , and using

(2.9), we obtain

lim sup
δ→0

Pδ(Y1(τD,1) ∈ ∂D −Aj |Y1(0) ∈ Aj , τD,1 < J1) ≤
ek0(A

1

N

j ∩ ∂D)

ek0(Aj ∩ ∂D)
.

(2.11)

Letting N → ∞ completes the proof of the lemma. ���

We can now prove (2.2), which will complete the proof of Theorem 1.

Recall that by assumption ek0(A1) > 0. Thus, by Lemmas 1 and 3, it follows

that

Pδ(Y1(0) ∈ A1, Y1(τD)∈A1∩∂D, τD,1 < J1)=
(

1+o(1)
)

∫

A1

uδ,V dµ, as δ→0.

(2.12)

By Lemmas 1 and 3 and Proposition 1, it follows that

Pδ(Y1(0) ∈ Aj , Y1(τD) ∈ A1 ∩ ∂D, τD,1 < J1) = o(δ
k+1

2 ), for j ∈ {2, · · · ,m}.
(2.13)

Using (2.12), (2.13) and Lemma 2, we have

eδ(A1 ∩ ∂D) = Pδ(Y1(τD,1) ∈ A1 ∩ ∂D|τD,1 < J1)

=
Pδ(Y1(τD) ∈ A1 ∩ ∂D, τD,1 < J1)

Pδ(τD,1 < J1)

=

∑m+1
j=1 Pδ(Y1(0) ∈ Aj, Y1(τD) ∈ A1 ∩ ∂D, τD,1 < J1)

∑m+1
j=1 Pδ(Y1(0) ∈ Aj, τD,1 < J1)

=

(

1 + o(1)
) ∫

A1
uδ,V dµ+ o(δ

k+1

2 )
∑m

j=1

∫

Aj
uδ,V dµ+ o(δ

k+1

2 )
, as δ → 0. (2.14)
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Now from (2.14) and Proposition 1, we have

lim
δ→0

eδ(A1 ∩ ∂D) = ek0(A1 ∩ ∂D). (2.15)

3. Proof of Proposition 1

For the proof of the proposition in the case of even k, we will need the

following lemma.

Lemma 4. Let n denote the unit inward normal to D at ∂D. One has

lim
δ→0

δ
1

2 (n · a∇uδ,V )(x) = −
√

2V (x)(n · an)(x), uniformly over x ∈ ∂D.

Proof. The proof of the result in the case that L = 1
2∆ was given in [6]. In

the proof, it was shown that everything could be reduced to local consider-

ations. In particular, it was enough to prove that the above equation holds

pointwise under the assumption that the boundary had constant curvature.

We can thus make the same assumptions here, and we can also assume that

L and V have constant coefficients. More specifically, note that L is given

in non-divergence by

L =
1

2

d
∑

i,j=1

ai,j(x)
∂2

∂xi∂xj
+

1

2

d
∑

i,j=1

∂ai,j

∂xi
(x)

∂

∂xj
+

d
∑

j=1

bj(x)
∂

∂xj

≡ 1

2

d
∑

i,j=1

ai,j(x)
∂2

∂xi∂xj
+

d
∑

i=1

Bj(x)
∂

∂xj
. (3.1)

Thus for the proof we may assume that L = 1
2

∑d
i,j=1 ai,j

∂2

∂xi∂xj
+
∑d

i=1Bj
∂

∂xj
,

where ai,j and Bj are constant. Similar to what was done in [6], for zero

curvature, we take D = {x ∈ Rd : 0 < x1 < 1} and consider (n · a∇uδ,V )(0);
for curvature R > 0, we assume that D = AR

2
,R ≡ {x ∈ Rd : R

2 < |x| < R}
and consider (n · a∇uδ,V )(x), for some x with |x| = R; and for negative

curvature −R < 0, we assume that D = AR,2R ≡ {x ∈ Rd : R < |x| < 2R}
and consider (n · a∇uδ,V )(x), for some x with |x| = R. We will consider the

cases of zero curvature and positive curvature; the case of negative curvature

being handled similarly to the case of positive curvature.
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We begin with the case of zero curvature. Let {ej}dj=1 denote the stan-

dard basis vectors. Let H1 denote the hyperplane x1 = 0. The interior unit

normal to D on ∂D ∩H1 is constant and equal to e1; that is,

n = e1. Let y denote the projection of n·a onto H1. Then y+(n·an)e1 =
n · a. Since uδ,V = 1 on H1, we have

(n · a∇uδ,V )(0) = lim
t→0+

uδ,V (tn · a)− uδ,V (0)

t
= lim

t→0+

uδ,V (tn · a)− uδ,V (ty)

t

= lim
t→0+

uδ,V (ty + t(n · an)e1)− uδ,V (ty)

t

= n · an lim
t→0+

∂uδ,V

∂x1
(ty + st(n · an)e1)

= (n · an)(n · ∇uδ,V )(0), (3.2)

where 0 < st < t. Since uδ,V depends only on x1 and since n = e1, we can

reduce the calculation of (n∇uδ,V )(0) to a one-dimensional problem. So we

write uδ,V = uδ,V (x) with 0 < x < 1. Now u solves the constant coeffi-

cient equation 1
2δa1,1u

′′
δ,V + δB1u

′
δ,V − V u = 0 with the boundary condition

uδ,V (0) = uδ,V (1) = 1. The quantity (n · ∇uδ,V )(0) above is now given by

u′δ,V (0). One can solve this explicitly and check that limδ→0 δ
1

2u′δ,V (0) =

−
√

2V
a1,1

. Substituting this in (3.2) and noting that a1,1 = n · an, we obtain

limδ→0(n · a∇uδ,V )(0) = −
√

2(n · an)V .

Now we turn to the case that the curvature is R > 0. We let D = AR
2
,R

and consider the boundary point Re1. We need to evaluate limδ→0(n ·
a∇uδ,V )(Re1). We first reduce the calculation to the calculation of the nor-

mal derivative, similar to (3.2). Note that the inward unit normal n =

n(Re1) at Re1 satisfies n = −e1. For small t > 0, let zt denote the

point on |x| = R which is closest to Re1 + tn · a. Define the vector wt

by zt + wt = Re1 + tn · a. (Note that Re1, zt and wt take on the roles

played by 0, ty and t(n · an)e1 respectively in the case of zero curvature.)

Of course limt→0+ |zt − Re1| = 0. Since the curvature is positive, we have

|wt| < (n · an)t; however limt→0+
|wt|
t

= n · an. Note also that the direction
wt

|wt| of wt approaches the direction of n as t → 0+. Thus, since uδ,V = 1 on

|x| = R, we have

(n · a∇uδ,V )(Re1) = lim
t→0+

uδ,V (Re1 + tn · a)− uδ,V (Re1)

t
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= lim
t→0+

uδ,V (zt + wt)− uδ,V (zt)

t

= lim
t→0+

|wt|
t

uδ,V (zt + wt)− uδ,V (zt)

|wt|
= (n · an)(n · ∇uδ,V )(Re1). (3.3)

We now consider (n · ∇uδ,V )(Re1). Let (r, θ) with θ ∈ Sd−1 denote po-

lar coordinates. We rewrite the constant coefficient operator L in polar

form. Of course now the operator will no longer have constant coeffi-

cients; however by the localization mentioned above, we may consider instead

the constant coefficient operator obtained by evaluating the coefficients at

Re1. Call the resulting operator L. We have L = 1
2(n · an) d2

dr2
+ B d

dr
+

terms involving differentiation with respect to θ and maybe also r, where

B is a certain constant whose form is irrelevant for our purposes. Now uδ,V

solves δLuδ,V − V uδ,V = 0 for R
2 < r < R, and uδ,V = 1 at r = R

2 and

r = R. It follows that uδ,V is a function of r alone. Thus uδ,V satisfies the

one-dimensional equation 1
2δ(n ·an)u′′δ,V +δBu′δ,V −V uδ,V = 0 for R

2 < r < R

and u(R2 ) = u(R) = 1, and (n · ∇uδ,V )(Re1) becomes −u′δ,V (R). We have

thus reduced the problem to the previous case of zero curvature, and con-

clude that limδ→0(n · a∇uδ,V )(Re1) = −
√

2(n · an)V . ���

Proof of Proposition 1. Let µ0(·) be an arbitrary probability measure on

D̄ which has a density µ0(x) which satisfies the same smoothness assump-

tions in D̄ that the density µ satisfies in Dǫ, and which satisfies the same

vanishing conditions on ∂D that the density µ satisfies there. An easy ar-

gument then shows that to prove the proposition, it suffices to prove it with

Aj replaced by D̄, dµ replaced by dµ0 and µ(x) replaced by µ0(x). We will

first prove the proposition for the case k = 1, which is easier than the case

k = 0. We then show how to go from the case k = 1 to the case k = 3, from

which it will be clear how to proceed for odd k. After that we will prove the

proposition for k = 0 and then we show how to go from the case k = 0 to

the case k = 2, from which it will be clear how to proceed for even k.

In light of the above paragraph, we consider
∫

D
uδ,V µ0dx. Since k = 1,

µ0 vanishes on ∂D, but ∇µ0 does not vanish identically on ∂D. Using (2.3)

and the fact that µ0 vanishes on ∂D, and recalling that n denotes the inward
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unit normal, integration by parts gives

δ−1

∫

D

uδ,V µ0dx =

∫

D

Luδ,V
µ0

V
dx

=

∫

D

uδ,V L̃
µ0

V
dx+

1

2

∫

∂D

a∇(
µ0

V
) · ndσ. (3.4)

(Note that by assumption, µ0 and V are C2-functions so there is no problem

with the integration by parts.) By Lemma 2, uδ,V converges to 0 boundedly

pointwise on D. Also, since µ0 vanishes on ∂D, we have ∇(µ0

V
)·n = 1

V
∇µ0 ·n

on ∂D. Thus, letting δ → 0 in (3.4), we obtain

lim
δ→0

δ−1

∫

D

uδ,V µ0dx =
1

2

∫

∂D

V −1a∇µ0 · ndσ.

We now turn to the case k = 3. In the case k = 3, µ0 and all its derivatives

up to order 2 vanish on ∂D; in particular, the last term on the right hand

side of (3.4) is 0. Thus, using (2.3) again, integrating by parts and using

the fact that the second order derivatives of µ0 vanish on ∂D, we have from

(3.4),

δ−2

∫

D

uδ,V µ0dx = δ−1

∫

D

uδ,V L̃
µ0

V
dx

=

∫

D

(Luδ,V )
1

V
L̃
µ0

V
dx

=

∫

D

uδ,V L̃
1

V
L̃
µ0

V
dx+

∫

∂D

a∇(
1

V
L̃
µ0

V
) · ndσ. (3.5)

(Note that by assumption, µ0 and V are C4-functions and ai,j and bi are

C3-functions, so there is no problem with the integration by parts.) Using

Lemma 2 again and the fact that µ0 and all its derivatives up to order 2

vanish on ∂D, we obtain

lim
δ→0

δ−2

∫

D

uδ,V µ0dx =

∫

∂D

V −2a∇(L̃µ0) · ndσ.

The same technique is used repeatedly to handle larger values of odd k, the

smoothness requirements in the statement of Theorem 1 being the smooth-

ness required to implement the integration by parts.
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Now we turn to the case k = 0. Let w solve the equation

L̃
w

V
= 0 in D;

w = µ0 on ∂D.
(3.6)

Note that by the smoothness assumptions on a, b, V, µ0, it follows that w is

the solution to an elliptic equation with Cα(D̄)-coefficients and continuous

boundary data. Thus, w ∈ C2,α(D) ∩ C(D̄) [3].

We will show below that

lim
δ→0

δ−
1

2

∫

D

uδ,V (µ0 − w)dx = 0. (3.7)

Thus, it is enough to show that

lim
δ→0

δ−
1

2

∫

D

uδ,V wdx =
1√
2

∫

∂D

√

(n · an) µ0√
V
dσ. (3.8)

Using (2.3) and (3.6), and integrating by parts, we have

δ−
1

2

∫

D

uδ,Vwdx = δ
1

2

∫

D

(Luδ,V )
w

V
dx = −δ

1

2

2

∫

∂D

µ0

V
a∇uδ,V · ndσ, (3.9)

where we have used the fact that

1

2

∫

∂D

a∇(
w

V
) · ndσ −

∫

∂D

w

V
b · ndσ =

∫

D

L̃
w

V
dx = 0

by (3.6). (Actually, since w is not necessarily C2 up to the boundary, in the

above integrals one should replace D by D− D̄ǫ and ∂D by ∂(D − D̄ǫ) and

then let ǫ→ 0.) Letting δ → 0 in (3.9), and using Lemma 4, we obtain (3.8).

It remains to prove (3.7). By Lemma 2, we have

|δ− 1

2

∫

D−Dǫ

uδ,V (µ0−w)dx| ≤ sup
x∈D

(µ0(x)+w(x))|D|δ− 1

2 c exp(− ǫ

cδ
1

2

). (3.10)

We also have

|δ− 1

2

∫

Dǫ

uδ,V (µ0 − w)dx| ≤ sup
x∈Dǫ

|µ0(x)− w(x)|(δ− 1

2

∫

D

uδ,V dx). (3.11)

Now (3.8) holds for every µ0 in a wide class; in particular, it holds for µ0
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which are uniformly positive on D̄. In such a case, it follows by the maximum

principal that w is uniformly positive on D̄. (The principal eigenvalue for L̃

coincides with that of L, and is consequently negative. Thus the generalized

maximum principal holds: L̃v = 0 in D and v > 0 on ∂D guarantees that

v > 0 on D̄. Apply this with v = w
V
.) By considering (3.8) with such a

uniformly positive w, it follows that δ−
1

2

∫

D
uδ,V dx is bounded as δ → 0.

Using this, the proof of (3.7) now follows from (3.10), (3.11) and the fact

that limǫ→0 supx∈Dǫ |µ0(x)− w(x)| = 0.

We now turn to the case k = 2. Since µ0 and all its derivatives up to

order one vanish on ∂D, we can write (3.4) as

δ−
3

2

∫

D

uδ,V µ0dx = δ−
1

2

∫

D

uδ,V L̃
µ0

V
dx. (3.12)

As with the case k = 0, we define an auxiliary function w. Let w solve the

equation

L̃
w

V
= 0 in D;

w = L̃
µ0

V
on ∂D.

(3.13)

(By assumption, µ0 and its first order partial derivatives vanish on ∂D, but

not all of its second order partial derivatives vanish on ∂D. It then follows

from the maximum principal that L̃µ0

V

 0 on ∂D.) The same argument

used to show (3.7) shows that

lim
δ→0

δ−
1

2

∫

D

uδ,V (L̃
µ0

V
− w)µ0dx = 0. (3.14)

In light of (3.12) and (3.14), it is enough to prove that

lim
δ→0

δ−
1

2

∫

D

uδ,Vwdx =
1√
2

∫

∂D

√

(n · an)V − 3

2 L̃µ0dσ. (3.15)

Using (2.3), integrating by parts and using (3.13), we have

δ−
1

2

∫

D

uδ,Vwdx = δ
1

2

∫

D

(Luδ,V )
w

V
dx = −δ

1

2

2

∫

∂D

1

V
(L̃
µ0

V
)a∇uδ,V · ndσ,

(3.16)



564 ROSS G. PINSKY [December

where we have used the fact that

1

2

∫

∂D

a∇(
w

V
) · ndσ −

∫

∂D

w

V
b · ndσ =

∫

D

L̃
w

V
dx = 0

by (3.13). Since µ0 and all its first order partial derivatives vanish on ∂D,

we have L̃µ0

V
= 1

V
L̃µ0 on ∂D. Using this and Lemma 4, and letting δ → 0 in

(3.16), we obtain (3.15). The same technique is used repeatedly to handle

larger values of even k, the smoothness requirements in the statement of

Theorem 1 being the smoothness required to implement the integration by

parts. ���
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