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Abstract

By using the method of differential subordination, we obtain some sufficient condi-

tions for strongly p-valent starlikeness.

1. Introduction and Preliminaries

Let f(z) and g(z) be analytic in the unit disk U = {z : |z| < 1}. The

function f(z) is subordinate to g(z) in U , written f(z) ≺ g(z), if g(z) is

univalent in U, f(0) = g(0) and f(U) ⊂ g(U).

Let Ap denote the class of functions f of the form

f(z) = zp +
∞∑

n=1

ap+nz
p+n (p ∈ N = {1, 2, 3, · · · }) (1.1)

which are analytic in U . A function f ∈ Ap is said to be p-valent starlike of

order α in U if it satisfies

Re
zf ′(z)

f(z)
> pα (z ∈ U) (1.2)

for some α(0 ≤ α < 1). We denote this class by S∗
p(α). For −1 ≤ b < a ≤ 1

and 0 < β ≤ 1, a function f ∈ Ap is said to be in the class S∗
p(β, a, b) if it
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satisfies

zf ′(z)

f(z)
≺ p

(
1 + az

1 + bz

)β

. (1.3)

It is easy to know that each function in the class S∗
p(β, a, b) is p-valently

starlike in U . Also we write

S∗
p(β, 1,−1) = S̃∗

p(β) and S∗
p(1, a, b) = S∗

p(a, b).

Note that S∗
p(1 − 2α,−1) = S∗

p(α)(0 ≤ α < 1) and S̃∗
p(β)(0 < β ≤ 1) is the

class of strongly starlike p-valent functions of order β in U .

A number of results for strongly starlike functions in U have been ob-

tained by several authors (see, e.g., [1, 3-11]). The object of the present

paper is to derive some criteria for functions in the class Ap to be strongly

starlike p-valent of order β in U .

To prove our results, we need the following lemma due to Miller and

Mocanu [2].

Lemma 1.1. Let g(z) be analytic and univalent in U and let θ(w) and ϕ(w)

be analytic in a domain D containing g(U), with ϕ(w) 6= 0 when w ∈ g(U).

Set

Q(z) = zg′(z)ϕ(g(z)), h(z) = θ(g(z)) +Q(z)

and suppose that

(i) Q(z) is starlike univalent in U , and

(ii) Re
zh′(z)
Q(z) = Re

{
θ′(g(z))
ϕ(g(z)) +

zQ′(z)
Q(z)

}
> 0 (z ∈ U).

If p(z) is analytic in U, with p(0) = g(0), p(U) ⊂ D and

θ(p(z)) + zp′(z)ϕ(p(z)) ≺ θ(g(z)) + zg′(z)ϕ(g(z)) = h(z), (1.4)

then p(z) ≺ g(z) and g(z) is the best dominant of (1.4).

Applying Lemma 1.1 we prove

Lemma 1.2. Let k and m be integers, m 6= 0, λ be real, −1 ≤ b < a ≤

1, 0 < β ≤ 1 and suppose that one of the following conditions is satisfied:

(i) λm > 0, µ > 0 and max{|k − 1|β, |k|β, |m + k − 1|β} ≤ 1;
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(ii) λm > 0, µ = 0 and max{|k − 1|β, |m + k − 1|β} ≤ 1;

(iii) λ = 0, µ > 0 and max{|k − 1|β, |k|β} ≤ 1;

(iv) λ = µ = 0 and |k − 1|β ≤ 1.

If p(z) is analytic in U, p(0) = 1, and p(z) 6= 0(z ∈ U) when m < 0 (with

λ < 0), k > 0, and if

λ(p(z))m + µp(z) +
zp′(z)

(p(z))k
≺ h(z), (1.5)

where

h(z) = λ

(
1 + az

1 + bz

)mβ

+ µ

(
1 + az

1 + bz

)β

+
β(a− b)z

(1 + az)1+(k−1)β(1 + bz)1−(k−1)β

(1.6)

is (close-to-convex) univalent in U , then

p(z) ≺

(
1 + az

1 + bz

)β

and (1+az
1+bz

)β is the best dominant of (1.5).

Proof. We choose

g(z) =

(
1 + az

1 + bz

)β

, θ(w) = λwm + µw, ϕ(w) =
1

wk

in Lemma 1.1. In view of −1 ≤ b < a ≤ 1 and 0 < β ≤ 1, the function g(z)

is analytic and convex univalent in U (see [10]). Noting that

Re g(z) >

(
1− a

1− b

)β

≥ 0 (z ∈ U),

the functions θ(w) and ϕ(w) are analytic in D = {w : w 6= 0} containing

g(U), with ϕ(w) 6= 0 when w ∈ g(U).

Since |k − 1|β ≤ 1, the function

Q(z) = zg′(z)ϕ(g(z)) =
zg′(z)

(g(z))k
=

β(a− b)z

(1 + az)1+(k−1)β(1 + bz)1−(k−1)β
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is starlike univalent in U because

Re
zQ′(z)

Q(z)
= −1 + (1 + (k − 1)β)Re

1

1 + az
+ (1− (k − 1)β)Re

1

1 + bz

> −1 +
1 + (k − 1)β

1 + |a|
+

1− (k − 1)β

1 + |b|

≥ 0 (z ∈ U). (1.7)

Further we have

θ(g(z)) +Q(z)

= λ

(
1 + az

1 + bz

)mβ

+µ

(
1 + az

1 + bz

)
+

β(a− b)z

(1 + az)1+(k−1)β(1 + bz)1−(k−1)β

= h(z)

and
zh′(z)

Q(z)
= λm

(
1 + az

1 + bz

)(m+k−1)β

+ µ

(
1 + az

1 + bz

)kβ

+
zQ′(z)

Q(z)
. (1.8)

If |m+ k − 1|β ≤ 1, then

∣∣∣∣∣arg
{(

1 + az

1 + bz

)(m+k−1)β
}∣∣∣∣∣ <

|m+ k − 1|βπ

2
≤

π

2
(z ∈ U). (1.9)

If |k|β ≤ 1, then

∣∣∣∣∣arg
{(

1 + az

1 + bz

)kβ
}∣∣∣∣∣ <

|k|βπ

2
≤

π

2
(z ∈ U). (1.10)

Consequently, if one of the conditions (i)-(iv) is satisfied, then it follows

from (1.7)-(1.10) that

Re
zh′(z)

Q(z)
= λmRe

{(
1+az

1+bz

)(m+k−1)β
}
+µRe

{(
1+az

1+bz

)kβ
}
+Re

zQ′(z)

Q(z)

> 0 (z ∈ U).

Thus h(z) is (close-to-convex) univalent in U . The other conditions of

Lemma 1.1 are seen to be satisfied. Therefore, by using Lemma 1.1, we

conclude that p(z) ≺ g(z) and g(z) is the best dominant of (1.5). The proof

of Lemma 1.2 is completed. ���
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2. Main Results

Theorem 2.1. Let −1 ≤ b < a ≤ 1 and λ ≥ 0. If f ∈ Ap satisfies

f(z)f ′(z) 6= 0(0 < |z| < 1) and

∣∣∣∣1 +
zf ′′(z)

f ′(z)
+

(
λ

p
− 1

)
zf ′(z)

f(z)
− λ

∣∣∣∣ <
a− b

1 + |b|

(
λ+

1

1 + |a|

)
(z ∈ U),

(2.1)

then f ∈ S∗
p(a, b).

Proof. For f ∈ Ap satisfying f(z)f ′(z) 6= 0(0 < |z| < 1), the function

p(z) =
zf ′(z)

pf(z)

is analytic in U with p(0) = 1 and p(z) 6= 0(z ∈ U). By taking

k = m = β = 1, λ ≥ 0 and µ = 0

in Lemma 1.2, (1.5) and (1.6) become

λp(z) +
zp′(z)

p(z)
= 1 +

zf ′′(z)

f ′(z)
+

(
λ

p
− 1

)
zf ′(z)

f(z)

≺
(a− b)z

1 + bz

(
λ+

1

1 + az

)
+ λ

= h(z). (2.2)

Since h(z) − λ is univalent in U, h(0) = λ, and

|h(z) − λ| ≥

∣∣∣∣
(a− b)z

1 + bz

∣∣∣∣Re
(
λ+

1

1 + az

)
≥

a− b

1 + |b|

(
λ+

1

1 + |a|

)

for |z| = 1(z 6= − 1
a
,−1

b
), it follows from (2.1) that the subordination (2.2)

holds. Hence an application of Lemma 1.2 yields

p(z) ≺
1 + az

1 + bz
,

that is, f ∈ S∗
p(a, b). ���

Remark 2.1. If we let a = 1, b = 0 and λ = p
α
(α > 0), then Theorem 2.1

reduces to the result of Yang [12, Theorem 2].
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Theorem 2.2. Let m be an integer, m 6= 0, λm ≥ 0 and 0 < β < 1
|m| . If

f ∈ Ap satisfies f(z)f ′(z) 6= 0(0 < |z| < 1) and

∣∣∣∣
(
pf(z)

zf ′(z)

)m(
1 +

zf ′′(z)

f ′(z)
−

zf ′(z)

f(z)
− λ

)∣∣∣∣ < B (z ∈ U), (2.3)

where

B =

√
x
mβ
0

(
λ2 +

β2

4

(
x0 +

1

x0
+ 2

))
> |λ| (λ real)

and x0 is the positive root of the equation

β(1 +mβ)x2 + 2m(2λ2 + β2)x− β(1−mβ) = 0, (2.4)

then f ∈ S̃∗
p(β) and the bound B in (2.3) is the largest number such that

zf ′(z)

f(z)
≺ p

(
1− z

1 + z

)β

. (2.5)

Proof. Let m be an integer, m 6= 0, and define

p(z) =
pf(z)

zf ′(z)
,

where f ∈ Ap satisfies f(z)f ′(z) 6= 0(0 < |z| < 1). Then p(z) is analytic in

U , p(0) = 1, p(z) 6= 0(z ∈ U), and

λ(p(z))m+
zp′(z)

(p(z))1−m
=

(
pf(z)

zf ′(z)

)m(
λ+

zf ′(z)

f(z)
−

(
1+

zf ′′(z)

f ′(z)

))
(z ∈ U).

(2.6)

Putting

k = 1−m, a = 1, b = −1, λm ≥ 0, µ = 0 and 0 < β ≤
1

|m|

in Lemma 1.2 and using (2.6), we find that if

(
pf(z)

zf ′(z)

)m(
λ+

zf ′(z)

f(z)
−

(
1 +

zf ′′(z)

f ′(z)

))
≺ h(z), (2.7)
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where

h(z) = λ

(
1 + z

1− z

)mβ

+
2βz

(1 + z)1−mβ(1− z)1+mβ
(2.8)

is (close-to-convex) univalent in U , then

p(z) ≺

(
1 + z

1− z

)β

,

which gives that f ∈ S̃∗
p(β).

Letting 0 < θ < π and x = cot2 θ
2 > 0, we deduce from (2.8) that

|h(eiθ)|2 =

∣∣∣∣
1 + eiθ

1− eiθ

∣∣∣∣
2mβ ∣∣∣∣λ+

2βeiθ

1− e2iθ

∣∣∣∣
2

= xmβ

(
λ2 +

β2

4

(
x+

1

x
+ 2

))
= g(x) (say)

and

g′(x) =
β

4
xmβ−2(β(1+mβ)x2+2m(2λ2+β2)x−β(1−mβ)) (x > 0). (2.9)

Since 0 < β < 1
|m| , it follows from (2.9) that the function g(x) takes its

minimum value at x0, where x0 is the positive root of the equation

β(1 +mβ)x2 + 2m(2λ2 + β2)x− β(1−mβ) = 0.

Thus, in view of h(e−iθ) = h(eiθ)(0 < θ < π), we have

inf
|z|=1(z 6=±1)

|h(z)| = min
0<θ<π

|h(eiθ)|

=

√
x
mβ
0

(
λ2 +

β2

4

(
x0 +

1

x0
+ 2

))
= B, (2.10)

which implies that h(U) contains the disk |w| < B for |h(0)| = |λ| < B.

Hence, if the condition (2.3) is satisfied, then the subordination (2.7) holds

and thus f ∈ S̃∗
p(β).
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For the function

f(z) = zp exp

{
p

∫ z

0

1

t

((
1− t

1 + t

)β

− 1

)
dt

}
∈ Ap, (2.11)

we find after some computations that f ∈ S̃∗
p(β) and that

(
pf(z)

zf ′(z)

)m(
λ+

zf ′(z)

f(z)
−

(
1 +

zf ′′(z)

f ′(z)

))
= h(z). (2.12)

Furthermore we conclude from (2.10) and (2.12) that the bound B in (2.3)

is the largest number such that (2.5) holds true. The proof of the theorem

is completed. ���

Corollary 2.1. Let m be an integer, m 6= 0, 0 < β < 1
|m| . If f ∈ Ap satisfies

f(z)f ′(z) 6= 0(0 < |z| < 1) and

∣∣∣∣
(
pf(z)

zf ′(z)

)m(
1 +

zf ′′(z)

f ′(z)
−

zf ′(z)

f(z)

)∣∣∣∣ < Bm (z ∈ U), (2.13)

where

Bm =
β√

(1 +mβ)1+mβ(1−mβ)1−mβ
,

then f ∈ S̃∗
p(β) and the bound Bm in (2.13) is the largest number such that

(2.5) holds true.

Proof. Putting λ = 0 in Theorem 2.2, we get

x0 =
1−mβ

1 +mβ

and

B =
β√

(1 +mβ)1+mβ(1−mβ)1−mβ
> 0.

Therefore Corollary 2.1 follows immediately from Theorem 2.2. ���

Remark 2.2. Nunokawa et al. [4, Main theorem] proved that if f ∈ A1 is

univalent in U and satisfies
∣∣∣∣∣∣

1 + zf ′′(z)
f ′(z)

zf ′(z)
f(z)

− 1

∣∣∣∣∣∣
< B1 (z ∈ U), (2.14)
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where

B1 =
β√

(1 + β)1+β(1− β)1−β
(0 < β < 1),

then f ∈ S̃∗
1(β).

Obviously Corollary 2.1 with p = m = 1 yields the above result obtained

by Nunokawa et al. [4] using another method. Furthermore we have shown

that the bound B1 in (2.14) is the largest number such that

zf ′(z)

f(z)
≺

(
1− z

1 + z

)β

.

Theorem 2.3. Let m ∈ N,λ > 0 and 0 < β ≤ 1
m
. If f ∈ Ap satisfies

f(z)f ′(z) 6= 0(0 < |z| < 1) and

∣∣∣∣arg
{(

pf(z)

zf ′(z)

)m(
λ+

zf ′(z)

f(z)
−

(
1 +

zf ′′(z)

f ′(z)

))}∣∣∣∣

<
mβπ

2
+ arctan

β

λ
(z ∈ U), (2.15)

then f ∈ S̃∗
p(β) and the bound mβπ

2 +arctan β
λ
in (2.15) is the largest number

such that (2.5) holds true.

Proof. Let

h(z) =

(
1 + z

1− z

)mβ (
λ+

2βz

1− z2

)
(z ∈ U)

for m ∈ N,λ > 0 and 0 < β ≤ 1
m
. Then h(0) = λ > 0 and

h(eiθ) =

(
cot

θ

2

)mβ

e
mβπ

2
i

(
λ+

βi

2

(
cot

θ

2
+ tan

θ

2

))
(0 < θ < π).

From this we have

arg h(eiθ) =
mβπ

2
+ arctan

(
β

2λ

(
cot

θ

2
+ tan

θ

2

))

≥
mβπ

2
+ arctan

β

λ
(0 < θ < π),
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which, in view of h(e−iθ) = h(eiθ), implies that

inf
|z|=1(z 6=±1)

| arg h(z)| =
mβπ

2
+ arctan

β

λ
.

Thus h(U) contains the sector

| argw| <
mβπ

2
+ arctan

β

λ
.

The remaining part of the proof of the theorem is similar to that in the

proof of Theorem 2.2 and so we omit it. Also the function f(z) defined by

(2.11) shows that the bound in (2.15) is the largest number such that (2.5)

holds true. ���

Setting m = λ = 1, Theorem 2.3 reduces to the following:

Corollary 2.2. Let 0 < β ≤ 1. If f ∈ Ap satisfies f ′(z) 6= 0(0 < |z| < 1)

and ∣∣∣∣arg
(
1−

f(z)f ′′(z)

(f ′(z))2

)∣∣∣∣ <
βπ

2
+ arctan β (z ∈ U), (2.16)

then f ∈ S̃∗
p(β) and the bound βπ

2 + arctan β in (2.16) is the largest number

such that (2.5) holds true.

If we let

0 < β <
1

m
and

mβπ

2
+ arctan

β

λ
=

π

2
,

then Theorem 2.3 yields

Corollary 2.3. Let m ∈ N and 0 < β < 1
m
. If f ∈ Ap satisfies f(z)f ′(z) 6=

0(0 < |z| < 1) and

Re

{(
f(z)

zf ′(z)

)m(
β tan

mβπ

2
+

zf ′(z)

f(z)
−

(
1 +

zf ′′(z)

f ′(z)

))}
> 0 (z ∈ U),

(2.17)

then f ∈ S̃∗
p(β) and the result is sharp.

Theorem 2.4. Let m ∈ N and 0 < β < 1
m
. If f ∈ Ap satisfies f(z)f ′(z) 6= 0

(0 < |z| < 1) and

∣∣∣∣λ
(
zf ′(z)

pf(z)

)m

+ 1 +
zf ′′(z)

f ′(z)
−

zf ′(z)

f(z)
− ρ

∣∣∣∣ < ρ (z ∈ U), (2.18)
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where

ρ = β tan

(
(1 +mβ)π

4

)
and 0 < λ < 2ρ, (2.19)

then f ∈ S̃∗
p(β).

Proof. By taking

k = 1, m ∈ N, a = 1, b = −1, λ > 0, µ = 0, 0 < β <
1

m

and

p(z) =
zf ′(z)

pf(z)

in Lemma 1.2, we see that if

λ(p(z))m +
zp′(z)

p(z)
= λ

(
zf ′(z)

pf(z)

)m

+ 1 +
zf ′′(z)

f ′(z)
−

zf ′(z)

f(z)
≺ h(z), (2.20)

where

h(z) = λ

(
1 + z

1− z

)mβ

+
2βz

1− z2
(2.21)

is (close-to-convex) univalent in U , then f ∈ S̃∗
p(β).

Letting 0 < θ < π and x = cot θ
2 > 0, it follows from (2.21) that

h(eiθ) = λ

(
1 + eiθ

1− eiθ

)mβ

+
2βeiθ

1− e2iθ

= λxmβ cos
mβπ

2
+ i

(
λxmβ sin

mβπ

2
+

β

2

(
x+

1

x

))
(x > 0).

Further we deduce that for x > 0,

0 < Re
1

h(eiθ)
=

λxmβ cos mβπ
2(

λxmβ cos mβπ
2

)2
+
(
λxmβ sin mβπ

2 + β
2

(
x+ 1

x

))2

≤
λxmβ cos mβπ

2(
λxmβ cos mβπ

2

)2
+
(
λxmβ sin mβπ

2 + β
)2
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=
λ cos mβπ

2

(λ2xmβ + β2x−mβ) + 2λβ sin mβπ
2

≤
cos mβπ

2

2β
(
1 + sin mβπ

2

) =
1

2ρ
(0 < θ < π), (2.22)

where ρ is given by (2.19). Noting that h(e−iθ) = h(eiθ)(0 < θ < π), (2.22)

leads to

|h(eiθ)− ρ|2 − ρ2 = |h(eiθ)|2
(
1− 2ρRe

1

h(eiθ)

)
≥ 0 (0 < |θ| < π). (2.23)

In view of 0 < h(0) = λ < 2ρ, (2.23) implies that

{w : |w − ρ| < ρ} ⊂ h(U).

Consequently, if the condition (2.18) is satisfied, then the subordination

(2.20) holds, and so f ∈ S̃∗
p(β). ���

Corollary 2.4. Let m ∈ N and 0 < β < 1
m
. If f ∈ Ap satisfies f(z)f ′(z) 6=

0(0 < |z| < 1) and

∣∣∣∣β
(
zf ′(z)

pf(z)

)m

+ 1 +
zf ′′(z)

f ′(z)
−

zf ′(z)

f(z)
− ρ

∣∣∣∣ < ρ (z ∈ U), (2.24)

where ρ is given as in Theorem 2.4, then f ∈ S̃∗
p(β) and the bound in (2.24)

is the largest number such that

zf ′(z)

f(z)
≺ p

(
1 + z

1− z

)β

.

Proof. Note that 0 < β < ρ. Putting λ = β in Theorem 2.4 and using

(2.24), it follows that f ∈ S̃∗
p(β).

For the function

f(z) = zp exp

{
p

∫ z

0

1

t

((
1 + t

1− t

)β

− 1

)
dt

}
∈ Ap,
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it is easy to verify that f ∈ S̃∗
p(β),

β

(
zf ′(z)

pf(z)

)m

+1+
zf ′′(z)

f ′(z)
−
zf ′(z)

f(z)
=β

((
1 + z

1− z

)mβ

+
2z

1− z2

)
=h1(z) (say)

and

lim
z→i

|h1(z)− ρ| = β

∣∣∣∣e
mβπ

2
i + i− tan

(
(1 +mβ)π

4

)∣∣∣∣

= β tan

(
(1 +mβ)π

4

)

= ρ. (2.25)

The proof of Corollary 2.4 is completed. ���
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