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0. Introduction and Statement of Results

0.0. In [6] it was shown that the vector space spanned by the involutions
in a Weyl group carries a natural Hecke algebra action and a certain bar
operator. These were used in [6] to construct a new basis of that vector
space, in the spirit of [2], and to give a refinement of the polynomials P, ,
of |2] in the case where y, w were involutions in the Weyl group in the sense
that P, ,, was split canonically as a sum of two polynomials with cofficients
in N. However, the construction of the Hecke algebra action and that of
the bar operator, although stated in elementary terms, were established in
a non-elementary way. (For example, the construction of the bar operator
in [6] was done using ideas from geometry such as Verdier duality for l-adic
sheaves.) In the present paper we construct the Hecke algebra action and
the bar operator in an entirely elementary way, in the context of arbitrary
Coxeter groups.

Let W be a Coxeter group with set of simple reflections denoted by
S. Let [ : W — N be the standard length function. For z € W we set
€z = (=)@ Let < be the Bruhat order on W. Let w — w* be an
automorphism of W with square 1 which leaves S stable, so that I(w*) = I(w)
for any w € W. Let I, = {w € W;w* ™! = w}. (We write w*~! instead of
(w*)~1.) The elements of I, are said to be x-twisted involutions of W.
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Let u be an indeterminate and let A = Z[u,u™!]. Let £ be the free A-
module with basis (T} )wew with the unique A-algebra structure with unit
T such that

(i) TyTyw = Ty if L(ww') = l(w) + 1(w") and
(ii) (Ts+1)(Ts —u?) =0 forall s € S.

This is an Iwahori-Hecke algebra. (In [6], the notation $) is used instead of
9.)

Let M be the free A-module with basis {a,;w € I.}. We have the
following result which, in the special case where W is a Weyl group or
an affine Weyl group, was proved in [6] (the general case was stated there
without proof).

Theorem 0.1. There is a unique $H-module structure on M such that for
any s € S and any w € I, we have

(1) Tsayw = uay + (u+ 1)agy if sw =ws* > w;

(ii) Tsaw = (u? — u — D)ay + (v — u)asy if sw = ws* < w;
(iil) Tsay = agws* if SW # ws* > w;
)

(iv) Tsaw = (u? — 1)ay + vlasws if sw # ws* < w.

The proof is given in §2 after some preparation in §1.

Let 7 : $ — $ be the unique ring involution such that u™T, = u‘”Tm_,l1
for any x € W,n € Z (see [2]). We have the following result.

Theorem 0.2. (a) There exists a unique Z-linear map =~ : M — M such
that hm = hm for all h € $,m € M and @ = a1. For any m € M we have
m=m.

(b) For any w € I, we have Gy = ewTJ_llawq.

The proof is given in §3. Note that (a) was conjectured in 6] and proved
there in the special case where W is a Weyl group or an affine Weyl group;
(b) is new even when W is a Weyl group or affine Weyl group.

0.3. Let A = Z[v,v~!] where v is an indeterminate. We view A as a subring
of A by setting v = v?. Let M = A®4 M. We can view M as an A-
submodule of M. We extend =~ : M — M to a Z-linear map ~ : M — M
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in such a way that v"m = v™="m for m € M,n € Z. For each w € I,
we set a, = v"""a, € M. Note that {a/;w € I} is an A-basis of M.
Let Aco = Z[v™'], Acg = v ' ZWv7!], Mg = 3 eq, Aoy C M, M =
Zwel* A<0aiu C M.

Let § = A®4 $H. This is naturally an A-algebra containing §) as an A-
subalgebra. Note that the $)-module structure on M extends by A-linearity
to an $-module structure on M. We denote by ~: A — A the ring involution
such that v™ = v™™ for n € Z. We denote by ~: § — § the ring involution
such that v" T, = v_”TI__l1 for n € Z,x € W. We have the following result
which in the special case where W is a Weyl group or an affine Weyl group
is proved in [6, 0.3].

Theorem 0.4. (a) For any w € L, there is a unique element

Ay = v W) Z P]yay € M

yeLy<w

(Py . € Z[u]) such that Ay = Ay, Pg,, =1 and for any y € L, y < w, we
have deg Py, < (l(w) —I(y) — 1)/2.

(b) The elements A,, (w € L) form an A-basis of M.
The proof is given in §4.

0.5. As an application of our study of the bar operator we give (in 4.7)
an explicit description of the Mobius function of the partially ordered set
(I, <); we show that it has values in {1, —1}. This description of the Mdbius
function is used to show that the constant term of P/, is 1, see 4.10. In §5
we study the “K-spherical” submodule M K of M (where K is a subset of
S which generates a finite subgroup W of S). In 5.6(f) we show that M
contains any element A, where w € I, has maximal length in WxgwWig.
This result is used in §6 to describe the action of u=1(Ts + 1) (with s € 9)
in the basis (A, ) by supplying an elementary substitute for a geometric
argument in [6], see Theorem 6.3 which was proved earlier in [6] for the
case where W is a Weyl group. In 7.7 we give an inversion formula for the
polynomials P;,, (for finite W) which involves the Mébius function above
and the polynomials analogous to Py, with * replaced by its composition
with the opposition automorphism of W. In §8 we formulate a conjecture
(see 8.4) relating Py, for certain twisted involutions y,w in an affine Weyl
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group to the g-analogues of weight multiplicities in [4]. In §9 we show that
for y <w in L, P, is equal to the polynomial P, ,, of [2] plus an element
in 2Z[u]. This follows from [6] in the case where W is a Weyl group.

0.6. Notation. If I is a property we set é;p = 1 if I is true and oy = 0 if II
is false. We write 0, , instead of d,—,. For s € S,w € I, we sometimes set
sew = sw if sw = ws* and s e w = sws™ if sw # ws*; note that sew € I,.

For any s € S,t € S,t # s let msy = my s € [2,00] be the order of st.
For any subset K of S let W be the subgroup of W generated by K. If
J C K are subsets of S we set Wil = {w € Wk;l(wy) > l(w) for any y €
Wy —{1}}, "Wk = {w € Wg;l(yw) > l(w) for any y € Wy — {1}}; note
that /Wy = (Wj)~l. For any subset K of S such that W is finite we
denote by wg the unique element of maximal length of Wi
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Reduction modulo 2.

1. Involutions and Double Cosets

1.1. Let K, K’ be two subsets of S such that Wi, Wy are finite and let Q
be a (Wg, Wg)-double coset in W. Let b be the unique element of minimal
length of Q. Let J = K N (bK'b~ 1), J' = (b~1Kb) N K’ so that b=1Jb = J’
hence b='Wjib = Wy. If x € Q then x = cbd where ¢ € WI%, d € Wk are
uniquely determined; moreover, I(z) = I(c) + I(b) + I(d), see Kilmoyer [3,
Prop. 29]; see also [1, 2.7.4, 2.7.5]. We can write uniquely d = z¢ where
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z € Wy, € 7 Wgr; moreover, I(d) = I(z) + I(¢/). Thus we have 2 = cbzc’
where ¢ € Wf‘é, z € Wy,d e "Wy are uniquely determined; moreover,
I(z) = 1(c) + 1(b) 4 I(2) + I(¢). Note that b := wxwsbwg: is the unique

element of maximal length of Q; we have I[(b) = l(wg ) +1(b) +1(wg) —l(wy).

1.2. Now assume in addition that K’ = K* and that  is stable under
w — w*!. Then b* ' € Q, b*! € Q, I(b*~1) = 1(b), [(b*~') = I(b), and
by uniqueness we have b*~! = b, ol = l~), that is, b € L, bel,. Also we
have J* = K* N (b'Kb) = J' hence Wy = (W;)*. If z € QN1,, then
writing = cbzc as in 1.1 we have x = 2*~1 = * " 1h(b~12*~1b)c*~! where
e (IWr) L =W o te (WE) ™ =T Wie, 07l € b Wb =
W«. By the uniqueness of ¢, z, ¢, we must have ¢*~! = ¢, ¢! = ¢,
b=12*71p = 2. Conversely, if ¢ € WI%, 2z € Wye,d € 7" Wg- are such that
d*~1 = ¢ (hence ¢*~1 = /) and b=12*71b = 2 then clearly cbzd € QN L,.
Note that y — b~ 'y*b is an automorphism 7 : Wy« — W« which leaves
J* stable and satisfies 72 = 1. Hence I, := {y € Wy;7(y)™! = y} is well
defined. We see that we have a bijection

(a) Wi x 1. = QNL, (c,2) = cbzc* L.

1.3. In the setup of 1.2 we assume that s € S, K = {s}, so that K’ = {s*}.
In this case we have either

sb=bs*, J = {s}, QNI = {b,bs* = b}, I(bs*) = I(b) + 1, or

sb#bs*, J =10, QN 1T, = {b, sbs* = b}, I(sbs*) = 1(b) + 2.

1.4. In the setup of 1.2 we assume that s € S,t € S,t # s, m := my; < 00,
K = {s,t}, so that K* = {s*,t*}. We set 8 = [(b). For i € [1,m] we set
s; = sts--- (i factors), t; = tst--- (i factors).

We are in one of the following cases (note that we have sb = bt* if and
only if tb = bs*, since b*~! = b).

(i) {sb,tb} N {bs*,bt*} =0, J =0, QN L. = {&, (i € [0,m]), & = & =
b, Eom = Eb = b} where &y = s; bst, &) =t bt;, 1(&2) = 1(€h;) =
B + 2i.

(i) sb = bs*, tb # bt*, J = {s}, QNL = {&;, 2410 € [0,m — 1])}
where &; = t;7'b0tY, (&) = B+ 26, &1 = t;'bst,, = s bt]
U(&ip1) = B+2i+1, & = b,Eym_1 = b.
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(iii) sb # bs*, tb = bt*, J = {t}, QN L. = {&2,&i+1(¢ € [0,m — 1])} where
Coi = 87 b}, 1(&2) = B + 20 &oip1 = s; bt = thbst, [(&aiq1) =
B+2i+1, 5 =b,§&m-1="0.

(iv) sb=bs*, th=0bt", J = K, modd, QNL = {€ = &) = b, &ai11, ;1 (i €
[0,(m —1)/2]),&m = &, = b} where & = sb, & = tstb, & = ststsb, .. ;
rh = tb, a = stsb, xy = tststh, .. .; [(§aiy1) = 1(h;4,) = B+ 2i + 1.

(v) sb=bs* tb=>bt*J =K, m even, QNI = {& = &) = b, 541,81 (1 €
[0,(m —2)/2]),&n = &, = b} where & = sb, &3 = tsth, &5 = ststs), .. .;
§] = tb, & = stsb, & = tststh, ... 1(&aip1) = UEy) = B+ 20 + 1,
Em = 57/71 = bsy, = bt}, = spb = t;,b, [(Em) = l(f;n) = [ +m.

(vi) sb = bt*, th = bs*, J = K,Nm odd, QNI = {& = &) = b, &2, 8,(i €
[0,(m —1)/2]),&n = &, = b} where & = stb, &4 = tstsb, g = stststb,
s & = tsb, & = ststh, & = tststsb, ...; (&) = U(E;) = B + 24,
Em =&, =bsh, =btl, =tyb=syb, (&) =1(E,) =B +m.

(vii) sb = bt*, tb = bs*, J = K, meven, QNI = {{ = & = b,&2,85,(i €
[0,m/2]),&m = &, = b} where & = stb, {4 = tstsb, { = stststb, .. .;
&, = tsb, £y = ststb, & = tststsh, ... U(Ex) = 1(E;) = B + 2i.

2. Proof of Theorem 0.1

2.1. Let M = Q(u) ®4 M (a Q(u)-vector space with basis {a,,w € L}).
Let H = Q(u) ®4 9 (a Q(u)-algebra with basis {T,;w € W} defined by
the relations 0.0(i),(ii)). The product of a sequence &1, &s,. .. of k elements
of £ is sometimes denoted by (£;&---)p. It is well known that § is the
associative Q(u)-algebra (with 1) with generators T5(s € S) and relations
0.0(ii) and

(TsTiTs -+ ) = (TTy - - - ) for any s # ¢t in S such that m :=mg; <

For s € S we set Ty = (u+ 1)"1(Ty — u) € §. Note that Ty, T are

invertible in $: we have T, = (u? —u) Y (Ts + 1 +u — u?).

2.2. For any s € S we define a Q(u)-linear map T : M — M by the formulas
in 0.1(i)-(iv). For s € S we also define a Q(u)-linear map Ts : M — M by
Ty = (u+1)"YTs —u). For w € I, we have:
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o
(1) asw = Tsay if sw = ws* > w; agys = Tsay if sw # ws* > w.

2.3. To prove Theorem 0.1 it is enough to show that the formulas 0.1(i)-(iv)
define an ﬁ—module structure on M.

Let s € S. To verify that (T 4+ 1)(Ts — u2) = 0 on M it is enough to
note that the 2 x 2 matrices with entries in Q(u)

u u+1
w—u  ui-u—1

( u02 u21—1 )

which represent T} on the subspace of M spanned by @y, a5y (With w €
I, sw = ws* > w) or by ay, asws (With w € I, sw # ws* > w) have eigen-
values —1, u?.

Assume now that s # ¢ in .S are such that m := m,; < co. It remains to
verify the equality (TsTiTs - )m = (LTI )m - M — M. We must show
that (TsTiTs -+ Ymaw = (TiTsTy - - - )may, for any w € I.. We will do this by
reducing the general case to calculations in a dihedral group.

Let K = {s,t}, so that K* = {s*,t*}. Let Q be the (Wg, Wg~)-double
coset in W that contains w. From the definitions it is clear that the subspace
Mg, of M spanned by {a,;w’ € QN1L} is stable under Ty and T;. Hence it
is enough to show that

(a) (T Ty Yupt = (TTSTy  Yupa for amy 1 € Mo,

' = w we see that w' — w*~! maps  into itself. Thus € is as

Since w*~
in 1.2 and we are in one of the cases (i)-(vii) in 1.4. The proof of (a) in the
various cases is given in 2.4-2.10. Let b € ), J C K be as in 1.2. Let s;, t;

be as in 1.4.

Let $x be the subspace of § spanned by {Ty;y € Wk}; note that 9k
is a Q(u)-subalgebra of £.

2.4. Assume that we are in case 1.4(i). We define an isomorphism of
vector spaces ® : Hxg — Mg by T, — agpee—1 (c € Wg). From defini-
tions we have T,®(T,) = ®(T,T,), T:®(T.) = ®(T;1.) for any ¢ € Wk.
It follows that for any = € $x we have Ty®(z) = ®(Tyz), T,P(x) =
O(Tyx), hence (TsTiTs - ) ®(z) — (T Ty - - - ) ®(x) = (T TiTs -+ ) —
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(T,TT, - )mx) = 0. (We use that (TsTiTs - ) = (TTT) -+ )y in Hk.)
Since ® is an isomorphism we deduce that 2.3(a) holds in our case.

Assume that we are in case 1.4(ii). We define 7,7/ by r = s, 7' =t if m
is odd, r = t, v’ = s if m is even. We have

Ty T. T; T

agy = agy = Qgy =3 Aom—2>
T, T, T, T,

ag, = gy = ags = Ao

We have s{y = {ps* = &1 hence ag, 5 uag, + (u + 1)ag,. We show that
r'om—2 = Lom—21"" = fom—1

We have 1'&y,,—9 = ---tstbt*s*t* --- where the product to the left (resp.
right) of b has m (resp. m — 1) factors). Using the definition of m and the
identity sb = bs* we deduce 7'&op,_9 = -+ stsbt*s*t* ... = ... sths*t*s* - -
(in the last expression the product to the left (resp. right) of b has m — 1
(resp. m) factors). Thus 1’2 = &om—1. Using again the definition of m
we have 9,1 = -+ stht*s*t* - - - where the product to the left (resp. right)
of b has m — 1 (resp. m) factors. Thus &a,—1 = Eop—or’* as required.

We deduce that

T,
Aty _o — UGEy, o T (u + 1)a§2'm71'

We set ap = uag, + (u + l)ag,, ap, = uag, + (u+ lag, .., a;, | =
UGg,,, _, + (U + 1)ag,, . Note that ag,,ag,,ae,,...,as,, , together with
a..a..,...,a. form a basis of Mg and we have
SRS Eam—1
T T, T, T T,
ag, =5 ag, = ag, £33 Aoy o — a’&mi1

T. , T, , Ty , T T. ,
(]JEO$CL£14CL£3$G§54 ”‘—>a527n71'

We define an isomorphism of vector spaces ® : Hx — Mg by 1 — ag,,
Ty = agy, TsTy — agy, ..., Tp---TST, — ag,, , (the product has m — 1
factors), Ts — 0/51, T, T, — a’§3, ooy T T agmi1 (the product has m
factors). From definitions for any ¢ € Wi we have

(a) Ts®(T,) = O(TTe) if sc > ¢, TL®(T¢) = ®(TiTe) if te > ¢,
(b) T;10(T,) = ®(T;7'T,) if sc < ¢, T, '®(T,) = ®(T; ' T,) if te < c.

Since Ty, = w?T; ' + (u? — 1) both as endomorphisms of M and as ele-
ments of £ we see that (b) implies that T,®(T,) = ®(T,T,) if sc < c.
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Thus Ts®(1.) = ®(T,1,) for any ¢ € Wk. Slmllarly, T ®(T,) = ®(T;1%)
for any ¢ € Wg. It follows that for any = € $x we have T,®(z) =
¥(Tua). Tid(e) = 0(Tiw), hence (LIT, - )2(e) ~ (T )0()
O(T,TiTs - - - )a—(TiTsTy - - - )x) = 0 where the products TsTiTs - -+, Ty T Ty - - -
have m factors. (We use that T,T;T;--- = TyTsT; -+ in ﬁK) Since ® is
an isomorphism we deduce that (1757375 - )u — (11151 - -+ )u = 0 for any
1 € Mq. Hence 2.3(a) holds in our case.

2.5. Assume that we are in case 1.4(iii). By the argument in case 1.4(ii)
with s, ¢ interchanged we see that (a) holds in our case.

2.6. Assume that we are in one of the cases 1.4(iv)-(vii). We have J = K
that is, K = bK*b~'. We have = Wgb = bWgk~. Define m’ > 1 by
m = 2m’ + 1 if m is odd, m = 2m/ if m is even. Define s',t by s’ = s,t/ =t
if m’is even, s’ = t,t' = s if m’ is odd.

2.7. Assume that we are in case 1.4(iv). We define some elements of §f as

follows:

7]0 = TS ’ + Tt m! (1 + u — u2)(Tsm,71 + Ttmlfl)
+(1 + U= u3 + U4)(Ts7n’72 + Tt7n’72) + e
1 +u—w? =+t +u® = (=) 2P
HE™ 2 g (T (T, 4 T)
+1+u—w? = +ut +u® = (=) 22
+( 1) —1u2m -1 + (_1)m’u2m’)’

m = Tsno,ns =Tin, - M2m—1 = Ty Momy —3, Nomr +1 = TsMomy -1,

/

m = Ttn()v 77§ = Tsnll’ s ’ném’—l = TS'ném’—fi’ ném’—l—l = Tt'ném’—l‘
For example if m = 7 we have

m = Tats + Tist + (1 +u—u*)Tis + (1 4+ u — v?) Ty

+(1+u—u? = +ut) T+ (1 +u—u? —u® +uh)T,

+(1 +u—u® —ud +u' +u® —ub),
m = (u+1) "N (Tsest — uTise + (—u+ 1) Tps + (—u + u®) Ty

+(—u+2u® — )T, + (—u + 2u® — u®)T) + (—u+ 2u® — 2u® + u7)),
n = (u+ 1) "N (Thsts — uTsts + (—u+u®)Ths + (—u + u®) Ty
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+(—u+2u® — )T, + (—u + 2u® — W®)T) + (—u + 2u3 — 2u® +u7)),
n3 = (u+ 1) (Thstst — uTot + (—u® +u°) Ty + (—u® + )Ty
+(—u? + 2u® — ")),
s = (u+ 1) (Tasts — v’ Tis + (—® + 0°) Ty + (—u® +u°)T;
+(—u? + 2u® —u")),
ns = (u+ 1) (Tastst — 0Ty + (—u® + u')),
s = (u+ 1) (Tiststs — u’Ts + (—u° + u)),
N = 777 =(u+1)" (Tstststs — u7).

One checks by direct computation in Hx that
(a) N = 1y = (u+ 1) (Tg,,, —u™)

and that the elements 7o, 71, 71,13, 13, - - - N2m/—1, Moy 1, Im are linearly in-
dependent in H; they span a subspace of $Hx denoted by .6} From (a) we

deduce:
(b) (Ts’T’t’Ts’ ce T;ETsTth)m’—i-lT]O = (Tt’Ts’Tt’ e TsT;thTt)m’—i-lno-

‘We have
o1 1 1 1
Ty m=mn0T7 n3=m,- Ty Mom—1 = N2m =3, T N2m/+1 = Nom/—1,
o—1

;o -1/ _ 7 -1/ R/ -1/ W
Ty mi=mn0Ts n3 =m0 Ty Nomr—1 = Nomr—3: Ly Moy 41 = Mgy —1-

It follows that 5’)}2 is stable under left multiplication by Ty and T3 hence it
is a left ideal of §. From the definitions we have

[¢]
a§1 = Tsag()’ a£3 = ﬂa£17 e 7a£27n’71 = Ela£27u’737 a§2TrLI+1 = Tsla£27n’717
[¢]
agr = Thag,, aer = Tsaer, ..., ag =Tgae Qg =Tyag
§1 t 60’ §3 $ 517 527n’ 1 s §2m/737 527n’+1 527n’ 1

o—1

—1
T agl—a&),T Qgs = CL&,...,Tt, T,

527n’ 1 527n’ 37 527n 41 a§2m’71 ’

o—1
-1
Tt aﬂ:agO,TS agé:agi,... T 5/

—1
/ T Q¢! = Q¢! .
2m/ — 5 14 527n’+1 §2TFL/71

2m/
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Hence the vector space isomorphism @ : fj;_{:)MQ given by ng; 41— ag,, 1
Moin1 ag,., (i € [0,(m —1)/2]), no — ag, satisfies ®(Tsh) = TP (h),
®(Tih) = T,®(h) for any h € H5. Since (TsTiTs - )mh = (LTT; - )mh
for h € .6}, we deduce that 2.3(a) holds in our case.

2.8. Assume that we are in case 1.4(v). We define some elements of $x as
follows:

o = TSm/_1 + Ttm/—l + (1 o uz)(TSm’—2 + Ttm’—2)

+(1 B U2 + u4)(TS7n’73 + Ttmlf?)) + e
(1= u? ot = (1) RN, + T
F(1 = ut e (1) T2 )

(ifm>4),n =1 (it m=2),

o

m = Tsno,m3 =Ty, ..., Mom—1 = TyMopr—3, Nomr = T'sMom/—1,
77{[ = Tt’r/O) 77{’) = TSU&? s ’ném’—l = Ts'ném’—i’n ném’ = Tt'ném’—l‘

For example if m = 4 we have

m = To+ T+ (1—u?),

m o= (u+ 1) YTy — uTy —uT} + (—u + u? + u?)),

M= (w4 1) (T —uTs —uTi + (—u+v? +u?)),

n3 = (u+1)"YThy — uThs + u’Tys — u?),

My = (u+ 1) (Tsts — uls + w?Ts — ),

m = ny = (u+1)"*(Tops—uTss —uTys +u* T+ Ths —u* Ty —u T +-ut).

If m = 6 we have

no = Tst + Tis + (1 —u)Ts + (1 —u®)T; + (1 — u? + u?),
m o= (u+1)"YTys — uTy — uTys + (—u + u? + u) T,
+(—u+u* + )T + (—u+u? + 0 —ut —uP)),
m o= (u+ 1) (Tt — uTs — uTs + (—u+ u® + u®)Ty
+(—u+u? + )Ty + (—u+u? + 0 —ut —uP)),
ny = (u+ 1) (Tists — uThsr — v2Ths — uTs — 0T, + (—u® + u* +u%)),
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= (u+ 1) (Tyrer — uTsps — uTyp — Ty — u3Ty + (= + ut + uP)),
= (u+ 1) (Tststs — uTstst — u*Tsts — uTsp + u' Ty — u°),

= (u+ 1) (Tistst — uThsts — wTrst — u’Tis + u' Ty — ),

= 16 = (u+ 1) "2 (Tutotst — uTststs — uTpstst + u*Topst + uThsts

— 3Ty — u3Thgr + Ty + u' Ty — T — Ty + u6).

If m = 8 we have

N =

m =

ns =

Tits + Tyst + (1 — u”) T + (1 = u) T + (1 — u? +u")T

+(1 —u? +uM)Ty + (1 —u? +u* — ub),

(u+ 1) (Tt — uTsts — uTise + (—u + u? + u*) Ty + (—u + u? + ) Tis
+(—utu? +ud —ut =)+ (—u+u? +ud -t = )T

+(—u 4 u? +ud —ut —u® b 4 u")),

(u+ 1) (Thsts — uTsts — uTpst + (—u +u? +u®) Ty + (—u +u? + u?)Tis
+(—u+u® + v —ut = )T+ (—u+u? + o —ut — )T,
+(—u+u® +u —ut =’ +ub + ")),

(u+ 1) (Thstst — uTises + u”Thse — u T — uTys + (—u® + ut 4 u°) T
H(—ud +ut )Ty + (- ut - u® - —u)),

(u+ 1) (Toasts — uTspst + 0> Tigs — T — w3 Tis + (—u® 4+ ut 4+ u®) Ty
+(—u? + ut + )T + (—u? + vt + u® = u® —u)),

(u+ 1) "N (Typsrst — uTstses + W Tspst — uSTaps + u' Ty — Ty — udT;
+(—u® +ub +uh)),

(u+ 1) N (Tiststs — uTpsist + u*Tysts — w3 Thse + u*Ths — u Ty — uTy
+(—u® +ub +uh)),

(u+ 1) N(Tyststst — uTiststs + W Tisest — uPTisps + u*Tis — u’Ths

+ulT; — "),

(u+ 1) N (Topstots — ulststst + u*Tapsts — u Tspsr + u'Tops — u” Ty
+uTy — "),

s = (u+ 1) (Topststst — uTstststs — uTbststst + u* Thststs

+u Tagsest — w Tpsts — w3 Tispst + u Tspst + utTpsts — u?Ts — u Ty

+uSTy + 8T — ' Ty — u'T, + uS).
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One checks by direct computation in $H that

(a) o = 1y = (u+1)72 Y (—u)" W,
yeWk

and that the elements 1o, 71,7}, 73,75, - - - N2m/—1, My 1 Im are linearly in-
dependent in $x; they span a subspace of $x denoted by ﬁ}r{ From (a) we
deduce:

o

(b) (Ts’Tt’Ts’ e TthnTS)m’—l-an = (Tt’Ts’T;t’ o TsT;thTt)m’—i-lT]O-

We have

o—1 o—1
—1 —1
Tem = noTy m3=m1 Ty Nomr—1 = M2mr =3, L Momr = N2my —1,
o1 1 1 o1
/ — / / — / / / /
Ty m = nosTs n3=mn1 s Ty Nopr—1 = Moy —3s LTy Moy = Moy —1-

It follows that .6} is stable under left multiplication by T and T} hence it

is a left ideal of 5. From the definitions we have

. o
ag, = Tsagy, agy, = Trag,, ... Ay 1 = Ttla&?’ﬂ’—y Wam = Ts,a&m/_l’
i o
agi _ Tt(lfm agé — Tsa§i7 . ’afém/_l E Tslaf;m/_:;’ agém/ = Tt/afém/_lv
e} -1 1 1 7 -
TS ag, = Agy, T’t gz = Agy, - - - 7irt’ gt 1 = W g TS/ Wamr = Wamr—>
o -1 1 1 7 -
Tt aﬁi = Qg Ts aﬁé = aﬂ’ e ’TS' aﬁém’fl - agém’*?” Tt/ aﬁém/ B aﬁém/,l

Hence the vector space isomorphism & : f)}:)MQ given by m9;41 —
Uorirs Thivt — ag, (i € [0,(m —2)/2]), no — agy, Mm > ag,, satisfies
®(Tsh) = T,@(h), ®(T1h) = T,®(h) for any h € H};. Since (I} Ts -+ )mh =
(T,TsTy - - - )mh for h € .6}, we deduce that 2.3(a) holds in our case.

2.9. Assume that we are in case 1.4(vi). We define some elements of §y as

follows:

o = Ta, + T, + (1 —u—u))(Ts,  +T, )
+l-u—w?+u )Ty,  + Ty, )+

+(1 —u— W wtut—ud -+ (_1)m’—2u2m’—4



368 G. LUSZTIG [September

+(_1)m’—1u2m’—3+(_1)m’—1u2m’—2)(T51 +Tt1)

2 m’—1u2m’—2

+A+u—u?—ud+ut U -4 (=1)
+(_1)m’u2m’—1 + (_1)m’u2m’)’
ne = Tsno,na =Ting, - s N2my = ToMom/ —2,N2m/+1 = TvN2ny s

o

My = Teno,ny = Tstly, -+ Momr = To M 25 Moy 41 = T M-
For example if m = 7 we have

mo = Tats + Tost + (1 —u— u”)Ths + (1 — u — u?) Ty
+(1—u—w?+ud+u )T+ (1 —u—u? +u® +uhT

+(1 —u—u® 4+ u® +ut —u® —ub),

My = Tast — uTs + U’ Ty + (u? — ud — uHTy + (u® — u® — uM)T,
+(u? —ud —ut +u® 4 u°),
My = Thsts — uTist + 0Ty + (02 — u® — )Ty + (u? — u® — u")T,
+(u? —u® —ut + ud + ub),
M = Tasts — uTstst + u*Tsps — u Ty + u' Ty + u' Ty + (u? — u® — u®),
ny = Tistst — ulysts + u 2T — w3 Ty + v Ty + Ty 4 (u — u® — uF),
6 = Tststst — uTststs + u*Tapst — W Tsps + u' Ty — u’Ty + ub,
Wé = Tyststs — WTistst + w2 Tyses — wPThsy + uThs — Ty + UG,
mr = np = (u+ 1) (Tupststs — uTststst — uTbststs 0 Topsts + 0 Thstsr —u* Tpst

W Tysps + 0 Tsps + u' T — uP Ty — T + uTs + ubT; — ).
One checks by direct computation in $Hx that

(a) M =1 = (w+1)7" Y (—u)™ 0T,
yeEWK

and that the elements 1o, 12, 75, 74, M, - - - N2m/, Mays» m are linearly indepen-
dent in $Hx; they span a subspace of $Hx denoted by .6;2 From (a) we

deduce:

(b) (TS’T%’TS’ e TtTS)m’+1770 = (Tt’Ts’T;t’ t TsTt)m’+1770-
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We have
1 1 1 o1
no = Ty m2sme =T Nay- o sMem—2 =Ty Nem/sNomy = Ty Moy 41,
o—1

_ -1 1 _ =1/ ! _ =11 ! _
no = Ty Nyny =Tg Ny sMopr—o = Tyt Moy Moy = Ty M2my 41

It follows that .6} is stable under left multiplication by T and T} hence it
is a left ideal of 5. From the definitions we have

o
a£2 = Tsa&)’ a£4 = ﬂa§27 Tt 7a£27n’ = Tsl a§2m’72 ? a527n’+1 = Ttl a§2'm”
o
ag, = Ttago’aﬁi - Tsagé e = Tt/a&ém' 2’ gém’+1 =Ty,
1 1 1 o1
a&) = TS a§27 a§2 = th a54’ e ’a52m’—2 = TSI a£2m’ ’ a§2m’ = Ttl a§2’m/+17
1 1 o1
ag, =T, lag,ag, = T lag, - vag =Ty lag ag =Ty ag,,,,.

Hence the vector space isomorphism & : f)}:)MQ given by m2; — ag,,,
My = agy, (i € [0,(m—1)/2]), nm = ag,, satisfies ®(Tsh) = Ts®(h), ®(Tih) =
T;®(h) for any h € 5’)}2 Since (TsTiTs -+ )mh = (T, TsT; - - - )mh for h € .6},
we deduce that 2.3(a) holds in our case.

2.10. Assume that we are in case 1.4(vii). We define some elements of £
as follows:

o = TS ! + Tt ! (1 - uz)(TSm/,l + Ttm/,l)

+(1—2u*+u )(Ts bt T, )+
=202 20t e (1)
( ) m'=1 2 ))(Ts1 +Tt1)
+(1 — 2U -+ 2U — et (_1)m1_12u2(m1_1) + (_1)m/u2m/)’

n2 = Tsno,ma = Tinzy- oMoy = ToMom/—2,
Tlé - ﬂn(% 772 = Tsné7 .. 7ném’ = E’ném’—2'

For example if m = 8 we have

no = Tstst + Tysts + (1 — u?) Tgs + (1 — u) Tyse + (1 — 20% + uh) Ty
+(1 = 2u? + uh Ty + (1—20u® + 2u* —u®) T, + (1-2u” + 2u? —ub)T}
+(1 = 2u® + 2ut — 2u° 4+ u®),
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Ny = Tasts + u>Ther + (u2 — u4)T8t + (u2 — u4)Tt8 + (u2 —out + u6)T5
+(u? — 2ut + uO) Ty + (u? — 2u* 4 2u® — ),
/ 2 2 4 2 4 2 4 6
Ty = T;tstst“‘u Tsts+(u —Uu )Tst+(u —Uu )TZS—F(’LL —2u”+u )Ts
+(u? = 2ut + uh T} + (u? — 2ut 4 2u8 — uB),

Ny = Tystsrs + ulTe + (ut — u® Ts—l—(u —u )Tt+(u4—2u6—|-u8),
/

( )
Ny = Tststst +u AT+ (u4 u6)TS + (u —u )Tt + (u4 — 28 + us),
Ne = Tstststs +u Tt + (UG US)

6 ( )

Ne = T’tststst +u T + UG u

)
8
)

ns = 778 = Titststst + u®.

One checks by direct computation in $y that
(a) M = N, = T,y + U™

and that the elements 1o, 12, 75, 74, M, - - - N2m/, Mays» T are linearly indepen-
dent in $Hx; they span a subspace of $Hx denoted by .6;2 From (a) we
deduce:

(C) (T;t’Ts’ ce T’th)m’UO = (TS,E, ce TsT’t)m’no-
We have

o = Ts_1n27 n = Tt_17747 s M2m/—2 = T371n2m’7
mo = Tp 'nh i =Ty "0ty T 0 = Ty iy
It follows that ﬁ}r{ is stable under left multiplication by T and T} hence it

is a left ideal of 5. From the definitions we have

ag, = Tsago,a54 = Tta&,. .o ,a52 , = T8/a52 /g
CLgl = ﬂa&o, CLEZ1 = Tsagé, N ,agém = ﬂ/agl

2 2m/ — 2
_ 1 _ -1 _ 71,
aSO - TS a£2 ’ a£2 - J"t a£47 Tt a§2m’ 2 T 527n”
_ -1 _ 1
ag, = T, g, ag =T ag,, . oag, ,  =Ti ag, .

Hence the vector space isomorphism ¢ : S{];_{:)MQ given by m2; — ag,,,
Ny > agy, (i € [0,m/2]) satisfies ®(Tsh) = Ty®(h), ©(T3h) = Ty ®(h) for any
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h e 53} Since (TsTiTs -+ )mh = (TiTsT; - -+ )b for h € ﬁ}r{, we deduce that
2.3(a) holds in our case. This completes the proof of Theorem 0.1. O

2.11. We show that the $-module M is generated by a;. Indeed, from
2.2(i) we see by induction on [(w) that for any w € I, a, belongs to the
$H-submodule of M generated by a;.

3. Proof of Theorem 0.2
3.1. We define a Z-linear map B : M — M by B(u"ay) = ewu_"T;*law*
for any w € I,,n € Z. Note that B(ay) = ay.
For any w € I,,s € S we show:
(a) B(Tsay) = T, 1B(ay).

Assume first that sw = ws* > w. We must show that B(ua, + (u+1)asy) =
T 'B(ay) or that

u_lewTu}law* — (u_1 + 1)ewT8_*i)*as*w* = Ts_lewTu}law*
or that
Tu}law* — (u+ 1)T1;*1T8:1as*w* = uTu}lTs_*law*
or that
Toryr — (U4 1)ageys = .
This follows from 0.1(i) with s, w replaced by s*, w*.

Assume next sw = ws* < w. We set y = sw € I, so that sy > y. We
must show that B((u? —u — 1)asy, + (u? — u)ay) = T, ! B(as,) or that

-2 -1 -1 -2 -1 W oo e |
—(u —uT = ey Toeasmy + (U —u )T ay = =T €y Toe gy
or that
-2 _ -1 —1p—1 -2 _ I\l _ _p—lp—2
(T —uT = DT T asey + (u " —u” )T ay = =T 0 T agey
or that

—(u_2 —u = 1)T821as*y* + (U_2 - u_l)ay* = —Ts_*2as*y*
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or that
—(1—u—uH)agy + (1 —w)Tsay = —(Tor + 1 — u?)agey.

Using 0.1(i),(ii) with w, s replaced by y*, s* we see that it is enough to show
that

—(1—u-— u2)a8*y* + (1 — w)(uay + (u+ 1)agy~)
= —( 2 —u-— Dagey — (U2 —u)ay — (1 - u2)a8*y*

which is obvious.

Assume next that sw # ws* > w. We must show that B(agys) =
T 'B(a,) or that

ewTL;%U*sas*w*s = Ts_lewT;}aw*
or that

TAT AT ageyes = T T e
or that

As*qp*s = Ts*aw*-
This follows from 0.1(iii) with s, w replaced by s*, w*.

Finally assume that sw # ws* > w. We set y = sws* € I, so that
sy > y. We must show that B((u? — 1)asys+ + u?ay) = T; 1 B(asys+) or that

(u™? = 1)y Ty Ogryrs + u" "€y T aye = T;leyT;;*sas*y*s
or that
(u™? = DI T gy s +u T aye = T T T T ey
or (using 0.1(iii) with w, s replaced by y*, s*) that
(™ = DT T aye +u™ Tl aye = T T T ay

or that
(w2 =T w2 =T1,'77!
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which is obvious. O

This completes the proof of (a). Since the elements T, generate the
algebra §), from (a) we deduce that B(hm) = hB(m) for any h € ,m € M.
This proves the existence part of 0.2(a).

For n € Z,w € I, we have
B(B(u"ay)) = ewB(u_"T;*law*) = eweuw U Ty 1T Ly = u™ay,.

Thus B? = 1. The uniqueness part of 0.2(a) is proved as in [6, 2.9]. This
completes the proof of 0.2(a). Now 0.2(b) follows from the proof of 0.2(a).

4. Proof of Theorem 0.4

4.1. For w € I, we have

a, = Z Pyl
yel,
where r, ., € A is zero for all but finitely many y. (This r,,, differs from
that in [6, 0.2(b)].)

For s € S we set T! = u~1T,. We rewrite the formulas 0.1(i)-(iv) as
follows.

(i) Tlal, = a!, + (v +v71)al, if sw =ws* > w;

(ili) Tlal, = aly,q if sw # ws™ > w;

)

(i) Tlal, = (u—1—u"Yal, + (v —v1)d, if sw = ws* < w;
)
)

(iv) Tlal, = (u —uY)al, + al, e if sw # ws* < w.

4.2. Now assume that y € L, sy > y. From the equality T’ Tg(_/y)
(where T! = T! +u~! — u) we see that

D Fagd, + (00D T, (if sy =ys*) or Y Tasgeral, (if sy # ys”)
T T xT

is equal to

2 : — 2 : —_— —1\ 7/
TI7yax + rx,y(v twv )asx

x;sTr=x8*,sx>1 T;8T=x8*,sT>T
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/
ST

—1—ubHd + Toy(v—vNa

>

T;sr=xs*,sx<T

— E— —1y ./
E TayGsper + E Toy(u—u " ay
T;STHXTS* ,ST>T x'sm;éws* sx<x
E Tx7yaszs* + ( —u) E Try ya
T;sTHXTS* sT<T
—_— e — —1 /
E Tyl + E Toay(V+ 07" )ay
T;sr=xs* sxr>x T;8T=x8*,5x<T
—_— —1\ .,/ [ -1\ 7
E : T%y(“’ —1-u )a:c + E : TS%y(” -V )a:c

r;sr=xs* sx<x

_l’_

T;sTHXTS* sT<T

_l’_

T;STHXTS* ,ST>T

2.
2

[
TSIS*vyaCC +

Tsxs* ya +

T;sr=xs* sxr>x

Try(u—u™")d

D

x'sm;éws* sx<x

—u E rxya

Hence when sy = ys* > y and x € L,, we have

Toz,y(V — v 4 (ut - W)y if sz =xs* > x,

— gy + Tozg(v+ v if sz = s <
Tszsty + (u_1 — 1 —u)ryy, if sz # xs™ > x,

—Toy + Tozsry if sT # 5™ < x;

when sy # ys* > y and x € L, we have

Tz,sys*

Tx,sys*

Tz (V

Tozy(V + v_l)

—vT) (T L)y if se = 2t >

— Ty if sz =as" <,

Tx,sys*

Tsxs*y + (u

)Ty if sz #£ st > 2,

Tx,sys*

Applying ~we

(a)

. *
Tsws g if ST # x8" < 2.

see that when sy = ys* > y and x € I, we have

—1

Tsz,y('U —v)+ (u— U_I)Tz7y if sx = xs™ > =,

—2rgy + Tz y(v + v if sz = s <
Topsty + (0 —1— u_l)rny if sz # xs* > x,

—Tay + Tepsry if 5T # 15" <
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when sy # ys* > y and = € I, we have

(b) Ty sys* = Ts:c7y(v_1 —v)+(u+1-— u_l)rx7y if sz = 28" > x,
Tasyst = Tsoy(V+ v — Tyy if sz = xs* < x,
Twsyst = Tspsty + (U — u_l)rx,y if sx # xs* > x,
Te,sys* = Tsxs*y if sz 7é zs* < x.
4.3. Setting r;mw = v_l(w)H(x)er, r;’,w = v_l(“’)*l(x)m for z,w € I, we

can rewrite the last formulas in 4.2 as follows.

When z,y € L,, sy = ys* > y we have

N iy -1 —1\,/ s o
Uy sy = UV Ty (VT —0) + (u—u" )y, if sz = 28" > x,
_ / ! -1y = _ *
Uy gy = — 20, g v(o+0) if sr =8t <,
! =2 —1\,.7 : *
VI sy = U Toggey + (u—1—u"")ry  if sz # 25" >,

_ / 2./ . *
VIy sy = ~Toy T U Tspeny if 57 £ 25" <.

When z,y € L, sy # ys* > y, we have

vzrz/n,sys* = Téx,yv_l(’l)_l —v)+ (u+1-— u_l)rgw if sz = xs™ > x,
027“;:731/3* =7l U v(iv+v~ ) — réc,y if sz = xs* < =,

U2Tgc7sy3* = 27{9:(:3*7;/ + (u— u_l)r;,y if sx # xs* >z,

VTl e = VThgeey if 5T # 25 < 2.

When z,y € 1, sy = ys* > y we have

(v+ v_l)vrlsy = v_lr;/Ly(v — o H + @t =) y if sz =m5" >z,
(v+ v_l)vrlsy = —2r + rgLyv(v + o7 if sz = zs* <z,
(v+ v_l)vrlsy = v_zr;/zs* gt (w™t—1—w)r” y if sz # xs" > 7,
(v+ v_l)vrlsy = —ry,+ v2rgm* if sz # xs™ < x.
When z,y € I,, sy # ys* > y, we have
2.1 o -1 -1 if
VT syst = Tspy¥V (V=0 )+ (u” Vel — ) y if s2=125" >z,
v2rg78y8* = T ,v(v+ vl — Ty if sz =15 <,
I N e (e u) y if sz # x8* > w,
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2.1 2.1

— ] *
VT syse = U Tgpeny if 8T # 28™ < .

Proposition 4.4. Let w € I,.
(a) If x € L, 140 # 0 then z < w.
(b) If x € I, < w we have 1, € Z[v™?], v}/, € Zlv~?].

W

We argue by induction on [(w). If w = 1 then r;,, = 6,1 so that the
result holds. Now assume that I(w) > 1. We can find s € S such that
sw < w. Let y = sew € I, (see 0.6). We have y < w. In the setup of (a)
we have 7, sey 7# 0. From the formulas in 4.3 we deduce the following.

If sz = xs* thenry, , # 0or 7, , # 0hence (by the induction hypothesis)
st <yorzx<y;if x <y then z < w while if sz < y we have sz < w hence
by [5, 2.5] we have x < w.

If sz # xs* then r/ #0or réc,y # 0 hence (by the induction hypoth-
esis) szs* < yor x < y; if x <y then x < w while if sxs* < y we have

sTs*y

szs® < w hence by [, 2.5] we have x < w.
We see that < w and (a) is proved.

In the remainder of the proof we assume that x < w. Assume that

sy = ys*. Using the formulas in 4.3 and the induction hypothesis we see that

v(v+v ), € vZv72), v(w+v )Y, € v*Z[v™?]; hence 1), ,, € Z[[v]],
wa Z[[v=?]]. Since r,,, € Zlv,v'], v}, € Zlv,v'], it follows that
w € L%, i € 2077

Assume now that sy # ys*. Using the formulas in 4.3 and the induction
hypothesis we see that v*r), , € v*Z[v"?], v*r) ,, € v*Z[v?]; hence 1/, , €
Zv=2), v, € Z[v™2]. This completes the proof. O

Proposition 4.5. (a) There is a unique function ¢ : I, — N such that
#(1) = 0 and for any w € I, and any s € S with sw < w we have p(w) =
d(sw) + 1 (if sw = ws*) and p(w) = P(sws*) (if sw # ws*). For any
w € I, we have l(w) = ¢(w)mod 2. Hence, setting k(w) = (—1)Lw)+o(w))/2
for w € I, we have k(1) = 1 and k(w) = —k(s e w) (see 0.6) for any
s €S, w e I, such that sw < w.

(b) If z,w € L.,z < w then the constant term of rl, ,, is 1 and the constant

is k(z)k(w) (see 4.4(b)).

T, w

term of vy ,,
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We prove (a). Assume first that * is the identity map. For w € I, let
¢(w) be the dimension of the —1 eigenspace of w on the reflection repre-
sentation of W. This function has the required properties. If x is not the
identity map, the proof is similar: for w € L, ¢(w) is the dimension of the
—1 eigenspace of w1 minus the dimension of the —1 eigenspace of T" where
T is an automorphism of the reflection representation of W induced by .

We prove (b). Let n,, (resp. nj,,) be the constant term of 77, ,, (resp.

T4 ). We shall prove for any w € I, the following statement:

(c) If v € L,z <w then nj,,, = 1 and nj , = nf n7,, € {1,-1}.

We argue by induction on I(w). If w = 1 we have 7, , = 1y, , = 1 and (c)
is obvious. We assume that w € I,,w # 1. We can find s € S such that
sw < w. We set y = s e w. Taking the coefficients of v? in the formulas in
4.3 and using 4.4(b) we see that the following holds for any = € I, such that
r < w:

r_ "o "o
Mg = N ys Mg gy = — Mgy I 8T > T,

(by [5, 2.5(b)], we must have z < y) and

r_ " "

nx,w - nsom,y) T, w = nsom,y lf sr <z

(by [5, 2.5(b)], we must have s e x < y).

Using the induction hypothesis we see that nfmw =1 and

"
T, W
"
T, W

o "o
= —njgny, if sz >,

= Y goun, if sz < .
Also, taking = 1 we see that

(d) n/ll,w = _”/l/,y'

Returning to a general x we deduce

" o
Tw T 1,x
"

T, W

" :
ny 4 if sz >,

o " 72
= N geg Ty if ST < T

Applying (d) with w replaced by = we see that ny , = —nf ., if sz < . This
shows by induction on () that nf , = k() for any = € I.. Thus we have
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Ny = 1Y 07, = k(x)k(w) for any x < w. This completes the inductive
proof of (c¢) and that of (b). The proposition is proved. a
4.6. We show:

(a) For any x, z € I, such that x < z we have Zyel*_m<y<z ToyTyz = Og -

Using the fact that ~: uM — M is an involution we have

I T 7 _ —
a, =a,= E Ty,2 0y = E Ty,2 0y = E g Ty, 2T,y ly-

y€el, y€el, y€L. €l

We now compare the coefficients of a), on both sides and use 4.4(a); (a)
follows.

The following result provides the Mobius function for the partially or-
dered set (L, <).

Proposition 4.7. Let v,z € L,z < z. Then 3 oy < <, K(@)k(Y) = sz

)

We can assume that x < z. By 4.4(b), 4.5(b) for any y € I, such that
z <y < z we have

Toylys = Ul(y)_l(x)vl(z)_l(x)r;yré,z e '@ (k(2)k(y) + v 2Z[v 7).

Hence the identity 4.6(a) implies that

Z oAU o (2)k(y) + strictly lower powers of v is 0.
yeliz<y<z

In particular, Zyel*;xgygz k(z)k(y) = 0. The proposition is proved.
4.8. For any w € I, we have
(a) Twaw = 1.

Indeed by 4.4(b) we have 1y € Z[v™2], Tow € Z[v~2] hence 1, is a
constant. By 4.5(b) this constant is 1.

4.9. Let w € I,. We will construct for any x € I, such that z < w an
element u, € A~ such that
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(b) uy € A_g, Uz — Uy = Zyel*;x@gw r2yUy for any @ < w.

The argument is almost a copy of one in [5, 5.2]. We argue by induction
on l(w) — l(x). If (w) — I(x) = 0 then x = w and we set u; = 1. Assume
now that {(w) — I[(x) > 0 and that u, is already defined whenever z < w,
l(w) —l(z) < l(w) —l(x) so that (a) holds and (b) holds if = is replaced by
any such z. Then the right hand side of the equality in (b) is defined. We
denote it by a, € A. We have

Oy + O = E Txyly + E T yly

yeLz<y<w yel;z<y<w

= E , T yly + E , Ty (Uy + E , Ty,2Uz)
yeLgz<y<w yelgr<y<w z€ly<z<w

- Z Tayly + Z Tz Uz
yel;x<y<w z€Lx<z<w

z€lgr<z<w y€li;x<y<z

= E E ToyTy Uz = E 0z U, = 0.

z€lx<z<{w yelv;a<y<z z€l;z<z<w

(We have used 4.6(a), 4.8(a).) Since o + @, = 0 we have o, = Y 7 10"
(finite sum) where =, € Z satisfy v, +v_, = 0 for all n and in particular
v = 0. Then u, = =3 (mv" € Ay satisfies 1, — uy = a,. This

completes the inductive construction of the elements wu,.

J— /
We set Ay = >, c1, < Uy@y € M. We have
— = ol = —_—
A, = E uyay, = E Uy E Tz.y0y
yeLy<w yelgy<w  zeliz<y
_ / /
= E ( E Tayly)ay = E Ugay = Ay
z€ljx<w yelv;z<y<w zeLz<w

We will also write u, = 7y, € A so that

/
A, = g Ty,wly-

y€Ly<w
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Note that my, = 1, Ty € Ag if y <w and

7ry7w = : : Tyvz’n-zﬂl)'

z€liy<z<w
We show that for any = € I, such that x < w we have:
(c) W)=, .\, € Z[v] and has constant term 1.

We argue by induction on {(w)—I(z). If l(w)—I(z) = 0then x = w, T3, =1
and the result is obvious. Assume now that [(w) — I(z) > 0. Using 4.4(b)
and 4.5(b) and the induction hypothesis we see that

E — —U(y)+(z)

yelr<y<w yelgz<y<w
is equal to
Z v ) () g () HWIHW) = =) +U) Z r(z)k(y)
yeLr<y<w yeLr<y<w

plus strictly higher powers of v. Using 4.7, this is —v~{®)+@) plus strictly
higher powers of v. Thus,

—lw)H=) 1 plus strictly higher powers of .

Tew — Tgaw = —V

Since T € vZ[v], it is in particular a Z-linear combination of powers of v
strictly higher than —I(w) + I(z). Hence

— T = —y Hw)H() 4 plus strictly higher powers of v.

This proves (c).

We now show that for any x € I, such that < w we have:
(d) =@ e Zlu,uT.

We argue by induction on {(w)—I(z). If l(w)—I(z) = 0then x = w, Ty, =1
and the result is obvious. Assume now that [(w) — I(z) > 0. Using 4.4(b)

and the induction hypothesis we see that

E — E —U(y)+i(z) 7
7":1:7y7-ry71‘u - v ( ) ( )rw’yﬂ-y7w

yeLz<y<w yeLlgz<y<w
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belongs to

Z v—l(y)+l(w)v—l(w)+l(y)Z[v2’ 1)_2]
yelr<y<w

hence to v~ W)+ (@) Z[v2 v=2]. Thus,

Tzw — Tzw € v—l(w)+l(:c)z[v27 '0_2].

)

It follows that both 7, and 7, ., belong to v_l(w)+l(x)Z[v2, v~2]. This proves
(d).

Combining (c), (d) we see that for any = € I, such that x < w we have:
(e) V!, = Py

w Where P7 € Zlu] has constant term 1.

We have
Ay =07l Z P ay.

yeLy<w
Also, P, = 1 and for any y € L, y < w, we have deg Py, < (l(w) —
l(y) —1)/2 (since my € A-p). Thus the existence statement in 0.4(a) is
established. To prove the uniqueness statement in 0.4(a) it is enough to
prove the following statement:

(f) Let m,m' € M be such that m = m, m' =m/, m —m' € M.,. Then

m=m'.

The proof is entirely similar to that in [6, 3.2] (or that of [5, 5.2(e)]). The
proof of 0.4(b) is immediate. This completes the proof of Theorem 0.4.
O

The following result is a restatement of (e).

Proposition 4.10. Let y,w € I, be such that y < w. The constant term of
Py, € Zu] is equal to 1.

5. The Submodule M¥ of M

5.1. Let K be a subset of S which generates a finite subgroup Wx of W and
let K* be the image of K under x. For any (Wy, Wi+)-double coset 2 in W
we denote by dqo (resp. bg) the unique element of maximal (resp. minimal)
length of Q. Now w — w*~! maps any (W, Wg+)-double coset in W to



382 G. LUSZTIG [September

a (Wx, Wg)-double coset in W; let IX be the set of (W, W+)-double
cosets ) in W such that  is stable under this map, or equivalently, such
that dg € I, or such that bg € I,. We set

Py = Z u'® e N[u].
zeWg

If in addition K is *-stable we set

Py.= »  u'™eNu

zeWgk,x*=x

Lemma 5.2. Let Q) € I*K. Let x € I, N Q and let b = bg. Then there exists
a sequence x = Ty, T1,...,Tyn = b in I, NQ and a sequence s1,S9,...,8, in
S such that for any i € [1,n] we have x; = s; ® T;_1.

We argue by induction on [(x) (which is > I(b)). If [(x) = I(b) then z = b
and the result is obvious (with n = 0). Now assume that {(z) > I(b). Let
H=KnN(ObK*™ ). By 1.2(a) we have z = cbzc*~! where ¢ € Wk, z € Wiy
satisfies bz = 2*b and I(z) = I(c) +1(b) +1(2) +1(c). If ¢ # 1 we write ¢ = s/,
se K,d € Wk, ¢ < cand we set 1 = 'bzd”*~'. We have 21 = szs* € Q,
l(x1) < l(z). Using the induction hypothesis for x1 we see that the desired
result holds for z. Thus we can assume that ¢ = 1 so that x = bz. Let
7 : Wi+ — Wy~ be the automorphism y + b~ ly*b; note that 7(H*) = H*
and 72 = 1. We have z € I, where I, := {y € Wgy~;7(y)"! = y}.

Since I(bz) > I(b) we have z # 1. We can find s € H* such that sz < z.
If sz = z7(s) then sz € I, bsz € Q, l(bsz) < I(bz). Using the induction

hypothesis for bsz instead of x we see that the desired result holds for x = bz.
(We have bsz = tbz = bzt* where t = (7(s))* € H.)

If sz # z7(s) then sz7(s) € I, bsz7(s) € Q, I(bsz7(s)) < I(bz). Using
the induction hypothesis for bsz7(s) instead of z we see that the desired
result holds for x = bz. (We have bsz7(s) = tbzt* where t = (7(s))* € H.)
The lemma is proved. O

5.3. For any Q € IX we set

aq = Z Ay € M.

wel,NQ
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Let M¥ be the A-submodule of M spanned by the elements an(Q € 1K),
In other words, M K consists of all m = Zwel* My € M such that the
function I, — A given by w +— my,, is constant on I, N Q for any Q € I,.

Lemma 5.4. (a) We have MK = ﬂseKM{S}.
(b) The A-submodule MX s stable under —: M — M.
(c) Let S= 3 e, T € H and let m € M. We have Sm € MK,

We prove (a). The fact that MK c M} (for s € K) follows from
the fact that any (Wi, W )-double coset in W is a union of (W, Wy )-
double cosets in W. Thus we have M* C NyexM {s}, Conversely let m €
ﬂseKM{s}. We have m = Zwel* My € M where my, € A is zero for all
but finitely many w and we have m,, = mgey if w € I, s € K. Using 5.2 we
see that mg = mp, = my whenever z,2’ € I, are in the same (Wx, Wi+ )-
double coset © in W. Thus, m € M. This proves (a).

We prove (b). Using (a), we can assume that K = {s} with s € S. By
1.3,if Q € Iis}, then we have Q = {w, sew} for some w € I, such that sw >
w. Hence it is enough to show that for such w we have ay T dgen € M5}
We have @y + Gsew = Y ycr, Mats With m, € A and we must show that
My = Mgey for any x € L. If we can show that fa, + Gsew € M} for some
f € A—{0} then it would follow that for any = € I, we have fm, = fmgses
hence m, = Mmge; as desired. Thus it is enough to show that

(d) (u™! 4+ Day F asw € MU if w € 1, is such that sw = ws* > w,
(e) ay + asys+ € M} if w € 1, is such that sw #+ ws* > w.

In the setup of (d) we have

(u_1 + Day + asw = (u+ 1) (ay + asw) = (Ts + 1)aw = Ts + 1(ay)
= u X(Ts + 1)ay

(see 0.1(i)); in the setup of (e) we have

Ay + Qsps* = (Ts + 1)aw =T+ 1(@) = u_z(TS + 1)(@)

(see 0.1(iii)). Thus it is enough show that (T + 1)(ay) € M} for any

w € I,. Since @, is an A-linear combination of elements a,,z € I, it is
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enough to show that (75 + 1)a, € M {3}, This follows immediately from
0.1(i)-(iv).

We prove (c). Let m’ = Sm = > 1 my,ay, my, € A. For any s € K
we have S = (T + 1)h for some h € § hence m’ € (Ts + 1)M. This implies
by the formulas 0.1(i)-(iv) that m!, = w!

sy for any w € IL; in other words

we have m’ € M{*}. Since this holds for any s € K we see, using (a), that

m’ € M¥. The lemma is proved. O

5.5. For Q,Q € IE we write Q < € when dg < dq. This is a partial order

on IX. For any Q € IE we set

(I/Q _ ,U—l(dgz)aQ — Z Ul(x)_l(dﬂ)a;-

zeQNIK

Clearly, {af,; Q' € IX} is an A-basis of M¥. Hence from 5.4(b) we see that

a’Q = E 7’9/79(15/
Vel

where 7o/ o € A is zero for all but finitely many €. On the other hand we

have
(a) ab = E v—l(w)‘f‘l(dﬁ)ma;
zeQNL,yelv;y<z
hence
I(x)=I(d
ToO = E ol @tda)y,

2z€QNL;dor <z

It follows that
(b) rQa = 1
(we use that rq, 4, = 1) and

(c) T Q 20 = Q<.
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Indeed, if for some z € Q N1, we have dqy < z, then dg < dg. We have

do=an= Y Taady = Y roo . Tarmdgy:.

eIk VelkK Qelk
Hence
(d) E TQ”,Q’TQ’,Q = (5979//
Qelk

"o K

for any €, Q" in I}.
Note that
r_

(e) ag = ag, mod M .

Indeed, if z € QNIE z # dg then I(z) — I(dg) < 0.

5.6. Let Q € IX. We will construct for any €' € IX such that Q' < Q an

element ug € A such that

(b) uq € A<0, uQ — uqQ = ZQ”EI?;Q’<Q”<Q Q! QU for any Q < Q.

The proof follows closely that in 4.9. We argue by induction on [(dg)—(dgq).
If I(dq) — l(dg) = 0 then Q = Q' and we set ugy = 1. Assume now that
l(dq) —I(dgr) > 0 and that uq, is already defined whenever €y < Q, I(dq) —
I(dg,) < U(dq) — l(dq) so that (a) holds and (b) holds if €' is replaced by
any such Q7. Then the right hand side of the equality in (b) is defined. We
denote it by ag € A. We have aqg: + @gr = 0 by a computation like that in
4.9, but using 5.5(b),(c),(d). From this we see that ag: = > .z 7,v" (finite
sum) where 7, € Z satisfy v, + v—, = 0 for all n and in particular vy = 0.
Then ugr = — ), oM™ € A satisfies g7 — uqr = ag/. This completes

the inductive construction of the elements ug:.

We set Aq = ZQ’GI?;Q’SQ ugrag € Mo N M%. We have

(c) A = Aq.
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(This follows from (b) as in the proof of the analogous equality A, = A, in

4.9.) We will also write ug = ma,o € A< so that

Aqg = E 7rQ/7Qa§2/.
QeI ;<

‘We show
(d) Ao — Ay, € M .

Using 5.5(a) and 7o/ o € A (for ' < Q) we see that Aq = aj; mod M _;

it remains to use that Ag, = al’iﬂ mod M _g.

Applying 4.9(f) to m = Aq, m' = Ay, (we use (c),(d)) we deduce:
(e) AQ = AdQ.

In particular,

(f) For any Q € TX we have Aq, € M¥.

5.7. We define an A-linear map ¢ : M — Q(u) by ((ay) = ul(w)(z_ﬁ)dw)
(see 4.5(a)) for w € I,. We show:

(a) For any x € W,m € M we have {(Tym) = u*® ¢ (m).

We can assume that x = s, m = a,, where s € S,w € I,. Then we are in one

of the four cases (i)-(iv) in 0.1. We set n = l(w), d = ¢(w), A = Th

identities to be checked in the cases 0.1(i)-(iv) are:

@

u—1
u+1°
u2un)\d _ uun)\d + (u + 1)un+1>\d+1’
wum = (u? —u— Du" A+ (u? — w)u AL
u2un>\d — Un+2)\d,

w2 = (u? — Du" N+ w22

respectively. These are easily verified.
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5.8. Assuming that K* = K, we set

Riw = Z ul(y)(u__:)qﬁ(y) € Qu).
yeEWry*=y =1 “

Let Q € IX. Define b, H, 7 as in 5.2. Let
WH = {c € Wg;l(w) < I(wr) for any r € Wg}.
Using 1.2(a) we have ), con1, ((aw) = Zcewfg ¢ (ap) R+ +(u) hence

(a) Y Claw) = Pr(u®)Py(u®) 7 (ap) R v (u).

weNNL,

We have the following result.

Proposition 5.9. Assume that W is finite. We have

(a) R y(u) = PS(’U,2)PS7*(’U,)_1.

We can assume that W is irreducible. We prove (a) by induction on |S|.
If |S] <2, (a) is easily checked. Now assume that |S| > 3. Taking sum over
all Q € I¥ in 5.7(a) we obtain

Rsu(u) = Pr(u?) Y Pr(u?)"'¢(ap) R 7 (u)

Qelk

where b, H,7 depend on 2 as in 5.2. Using the induction hypothesis we

obtain

Rs(u) = Prc(u?) Y ((ay)Prrer(u) ",

Qelk

We now choose K C S so that Wi is of type
Ap—1,Bn-1,Dn-1, A1, B, A5, D7, Bz, I5(5), H3
where W is of type

AnanyDna G27F47 E67E77E87 H37 H4
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respectively. Then there are few (Wgk, Wg+) double cosets and the sum
above can be computed in each case and gives the desired result. (In the
case where W is a Weyl group, there is an alternative, uniform, proof of (a)
using flag manifolds over a finite field.)

5.10. We return to the general case. Let Q € IX and let b, H, T be as in
5.2. By 5.4(c) we have Sa, € M¥. From 0.1(i)-(iv) we see that Sa, =
>_yeant, fyay where fy € Z[u] for all y. Hence we must have Sa, = fag for
some f € Z[u]. Appplying ¢ to the last equality and using 5.7(a) we obtain
Py (u?)(ap) = [ eart, C(ay). From 5.8(a), 5.9(a) we have

Z ¢(ay) = Pr(u®)¢(ap) P - (u) ™"

yEQﬂI*

where b, H, 7 depend on Q as in 5.8. Thus f = Py« ,(u). We see that

(a) Say, = P+ - (u)aq.

5.11. In this subsection we assume that K* = K. Then Q := Wy € IX.
We have the following result.

(a) Ag = v WK gq,

By 5.6(f) we have Aqg = fagq for some f € A. Taking the coefficient of a,,,
in both sides we get f = v~(“K) proving (a).

Here is another proof of (a). It is enough to prove that v—{(“K)aq is
fixed by = By 5.10(a) we have u~'¥x)Sa; = u="WK)Pg  (u)ag. The left
hand side of this equality is fixed by ~since a; and w {*x)S are fixed by
" Hence v 2 (WK)P g, (u)ag is fixed by = Since v WK P (u) is fixed by ~
and is nonzero, it follows that v="“K)aq is fixed by 7 as desired.

6. The action of u~!(T; + 1) in the basis (A,)

6.1. In this section we fix s € S.

Let y,w € I,. When y < w we have as in 4.9, 7, = v_l(w)H(y)P;’w SO
that my, € Ao if y < w and my, ., = 1; when y £ w we set 7, ,, = 0. In any
case we set as in [0, 4.1]:
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(8) Ty = Sy + 0+ 102 0 020
where 1, ,, € Z, 1y, ,, € Z. Note that
(b) ,u;,w #£0 = y < w, e = —¢€y,

(¢) ty#0 = y <w, ey = €y

6.2. As in [6, 4.3], for any y,w € I, such that sy < y < sw > w we define
M ., € A by:

s . 2 : / / / /
My,w - :u‘y,w - Ny;c:u‘:mw - 55w,ws*,ufy,sw + lusy7w68y7y5*
el y<z<w,sr<x
if €, = €y,
M=l (v +vTh)
y7w y7w
if e, = —€y.

The following result was proved in [6, 4.4] assuming that W is a Weyl
group or affine Weyl group. (We set ¢ = u= (T + 1) € H.)

Theorem 6.3. Let w € I,.

(a) If sw = ws* > w then cs Ay = (v + V™) Agw + 3 et ismcrcsnw M wAz-
(b) If sw # ws* > w then csAy = Asws + Y, M A
(c) If sw < w then csAy = (u+u~1)A,.

z€Lc;sz<z<sws*

(In the case considered in |6, 4.4] the last sum in the formula which
corresponds to (b) involves sz < z < sw instead of sz < z < sws*; but as

shown in loc.cit. the two conditions are equivalent.)

We prove (c). We have sw < w. By 5.6(f) we have A, € M}, Hence
it is enough to show that csm = (u 4+ u~1)m where m runs through a set of
generators of the A-module M}, Thus it is enough to show that cs(ag +
asez) = (U +u~1)(az + asey) for any z € I,. This follows immediately from
0.1(1)-(iv).

Now the proof of (a),(b) (assuming (c)) is exactly as in [6, 4.4]. (Note
that in [6, 3.3], (¢) was proved (in the Weyl group case) by an argument
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(based on geometry via [6, 3.4]) which is not available in our case and which
we have replaced by the analysis in §5.)

7. An inversion formula

7.1. In this section we assume that W is finite. Let M = Hom A(M,A).
For any w € I, we define @/, € M by ay,(ay) = 0y for any y € I.. Then
{al;w € L.} is an A-basis of M. We define an $-module structure on M
by (hf)(m) = f(h’m) (with f € M, m € M, h € ) where h — h’ is the
algebra antiautomorphism of $) such that T — T for all s € S. (Recall that
T! = u~'T,.) We define a bar operator —: M — M by f(m) = f(m) (with
fe M, m e M); in m the lower bar is that of M and the upper bar is
that of A. We have hf = hf for f € M, h €9.

Let o : W — W be the involution = — wgzr*wg = (wgzwg)* which
leaves S stable. We have I, = wgl, = Liwg. We define the A-module M
and its basis {b}; 2z € L} in terms of ¢ in the same way as M and its basis
{al,;w € L.} were defined in terms of . Note that M, has an $)-module
structure and a bar operator ~: M, — M analogous to those of M.

We define an isomorphism of A-modules ® : M — M, by ®(d.,) =
K(w)Vyg- Here r(w) is as in 4.5(a). Let h ht be the algebra automor-
phism of $ such that T! + —T"/~! for any s € S. We have the following
result.

Lemma 7.2. For any f € M, h € $ we have ®(hf) = hT®(f).

It is enough to show this when /A runs through a set of algebra generators
of $ and f runs through a basis of M. Thus it is enough to show for any
w € I, s € S that ®(Tsal,) = —T, '®(al,) or that

(a) ®(Tsd,) = —r(w)T b,

wwg

/ .

We write the formulas in 4.1 with * replaced by ¢ and a, replaced by b

wws*
TiWns = Yipuos + (V407 g if sw = ws* < w,
Tibys = (u—1— u_l)béuwS + (v— v_l)b/swws if sw =ws* > w,
Tibrws = Yowsrwg if sw # ws™ <w,
Tilps = (U —u )b + Vipgrag i SW # ws™ > w.
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Since T~ = T! + u=! — u we see that

(b) — T Wy = —(u '+ 1= Wby — (V40 g if sw = ws* <w
—T;_lb/wws = by — (v — v_l)b/swwS if sw=ws">w
/—177/ -1 / / .
Ty Vg = —(U = U)biyyg — Dgysrg if sW # ws™ <w
—T;_lb/wws = —Vopsrwg i SWF# ws* > w

Using again the formulas in 4.1 for Tja;, we see that for y,w € L. we have

(Tyd,)(ay) = a3, (Toay)

= Gay—ys*>y0yw + Osy—ys*>y0syw (U + 071) + Gsy—ysr <yOyw(u — 1 — ™)
+0sy—ys<yOsyaw(V — V1) + Oaystyse sysyst w + Osystys <yOyw(t — u™")
H0systys* <yOsys*,w

= sw=ws*>wly,w + Osw=ws*<wOy,sw(V +U_1)+5sw:ws*<w5y,w(U—1—U_1)
F0sw=ws*>w0y,sw(V — v 1) + O swws*<wdy,sws*
+5sw;«éws*<w5y,w (u— u_l) + 5sw;éws*>w5y,sws*

= (Sswews*>wiy + Oswmws*<w(V + 0 1) aky + Fswmws<w(u — 1 —u~b)al,
HOaw=wse>w(V = )iy + Sswwar <wls:

+5sw7$ws*<w(u - u_l)dgu + 58w7ﬁws*>wdlsws*)(ay)‘

Since this holds for any y € I, we see that

Ial A1 —1\ A/
Tgaw = 5sw=ws*>waw + 5sw:ws*<w(v +v )agw

—1\ A/
+5sw:ws*<w(u —1—-u )aw
—1\ A7 A~
+5sw:ws*>w(v —v )agw + 5sw7éws*<wagwg*

—1\ A/ a1
+5sw7éws*<w(u —u )aw + 58w7éw8*>wasws*'

Thus we have

Ial Al —1\al - _ *

Tity, = Gy + (V=0 ")ay, if sw=ws" > w,

T/A/ . 1 —1\ A/ —1\ a7 if _ *
way, = (u—1—u"")a, + (v+v77)ay, if sw=ws" <w,
~ N .

Tlal, = ALy if sw # ws*™ > w,

/I~ 1 — ~l N; .
Tlal, = (u—u"hal, +al, . if sw # ws* < w.
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so that
(¢) ®(Tiay,) = K(w)byy, + (v — v_l)m(sw)bswwS if sw=ws">w
~ 1 *
®(Thay,) = (u—1—u"")k(w)b +(v+v~ Dk K (8W) Vg I SW=wS" <w
D (Tiay,) = K(5WS )by grpg i sW # W™ > w
O(Tlal) = (u — u™ Hr(w)b), + K(sws™ )by e g i sW # ws™ < w.

From (b), (c) we see that to prove (a) we must show:
/{(w)b/wws + (v— v_l)m(sw)b;wwS
= k(Wb — K(w)(v —v l)b/swwS if sw =ws* > w,

(u—1—-uYk ( )b;,wS +(w+ov Yk (sw)b;wws
= —r(w)(u t+1- )by — K(w) (v + 07 )b’swws if sw =ws* < w,
K(5wS")Wpsrwg = —H(W) s

(u — u Y r(w)b, + K(sws*)b.

1

if sw # ws* > w,

sws*wg

— )b, — K(w)b,

= _"Q(w)(u wwg sws*wg

if sw # ws* < w.

This is obvious. The lemma, is proved. O

Lemma 7.3. We define a map B : M — M by B(f) = & 1®(f)) where
the bar refers to M,. We have B(f) = f for all f € M.

We show that
(a) B(hf) = hB(f)

for all h € $,f € M. This is equivalent to @ 1(®(hf)) =
or (using 7.2) to hi®(f) = ®(h® 1(®(f))) or (using 7.2) to
(W)1®(®~1(D(f))); it remains to use that hf = (k).

Next we show that
(b) B(ag,) = g

2(f)
(@(f) =

he
hi

Indeed the left hand side is

O~ (R (a),g)) = 27 (s(ws)by) = w(ws) ™ (b)) = dyyg
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Indeed for y € I, we have

@(ay) = d;us (ay) = &fws( Z Fr,yaéc) = 77wsﬂﬂs‘syﬂvs = 5y,ws = d;us (a;)
€L ;x<y

(we use that 74w = 1). This proves (c).

Since hf = hf for all h € §,f € M we see (using (a),(b),(c)) that
the map f — W from M into itself is $H-linear and carries a,, ¢ to itself.
This implies that this map is the identity. (It is enough to show that a;,,
generates the $-module M after extending scalars to Q(v). Using 7.2 it is
enough to show that b} generates the $-module M after extending scalars
to Q(v). This is known from 2.11.) We see that f = B(f) for all f € M.
Applying ~to both sides (an involution of M) we deduce that f = B(f) for
all f € M. The lemma is proved.

7.4. Recall that % =>

in M, is

el y<w Tywdy for w € L. The analogous equality

(a) b, = Z 7o b, for z € L.

z,2Yx
z€lo;x<z

Here 75 , € A. We have the following result.
Proposition 7.5. Let y,w € 1, be such that y < w. We have

Tyw = H(y)’%(w)rizw&yws'

We show that for any y € I, we have

. 2 : N
= T‘y,w(lw.

wely<w

D>|

(a)

/
Y

Indeed for any = € I, we have

’ § : = Y S =
y( rx/,xax,) - 5y§xry7~’v - 5y§1‘ry71'
o' €l;z' <z

= Y rywil(a)).

wely<w

Q>

ylar) =

®>|
@~
—~
S
S~
~
|
Q>
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Using (a) and 7.3 we see that for any y € I, we have

@)= Y. Ty,

wely<w

It follows that ®(a}) = 3_, cr..y<w Ty,w®(d,) that is,

K/(y)ngU)s = Z Ty,wﬁ(w)béuws'

wely<w

Using 7.4(a) to compute the left hand side we obtain

"i(y) Z rﬁjws,yws bzuws = Z ry7w"£(w)b;uws'

wel;wws<ywg welgy<w

Hence for any w € I, such that y < w we have ry ,k(w) = K(y)rs

The proposition follows.

7.6. Recall that for y,w € L, y < w we have P/, = vl(w)_l(y)wy,w where

Tyw € A satisfies my, o, = 1, Ty € Ao if y < w and

(a) Tyw = Z Tyt Tt w-

tel;y<t<w

Replacing * by ¢ in the definition of PJ,, we obtain polynomials Py, Y € Z[u]
(z,2 € I,z < 2) such that Pys = vl(z)_l(x)wiz where 77 , € A satisfies

ﬂg,z = 17 7T;<Z7z € A<0 if x < z and

R — O <
(b) Tz = § 74:(:7t’7-rt’,z'

t'elo;x<t! <z

The following inversion formula (and its proof) is in the same spirit as |2,

3.1] (see also [7]).

Theorem 7.7. For any y,w € I, such that y < w we have

Z ”(y)”(t)P;tPgis,tws = Oyu-
tely<t<w
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The last equality is equivalent to

(a‘) Z "i(y)"i(t)ﬂy7t7rfull)s,tw$ = 5y,w'

tel;y<t<w
Let My ., be the left hand side of (a). When y = w we have M, ,, = 1. Thus,
we may assume that y < w and that My ,» = 0 for all ¥/, w’ € I, such that
y <, l(w') —1(y) <l(w) —I(y). Using 7.6(a),(b) we have

— § § T ® o
My,w - ’{(y)’{(t) Tyvmpmvtrwws,x’wspm’ws,tws
telo;y<t<w z,x’ €l y<z<t<z'<w
— T
= E ﬁ(y)ﬁ(az)ry,ﬂww&x,wsMx,x/.

z,z' €l ;y<z<z'<w

The only x,z’ which can contribute to the last sum satisfy z = 2’ or z =

y, 2’ = w. Thus

Myw= Y. K@)y g mws + Myw-
z€l;y<z<w

(We have used 4.8(a).) Using 7.5 we see that the last sum over z is equal to

"i(y)"i(w) Z mrx,w - 07

el y<z<w

see 4.6(a). Thus we have M., = My,. Since My, € A_g, this forces
M, , = 0. The theorem is proved.

8. A (—u) Analogue of Weight Multiplicities?

8.1. In this section we assume that W is an irreducible affine Weyl group.
An element x € W is said to be a translation if its W-conjugacy class is
finite. The set of translations is a normal subgroup 7 of W of finite index.
We fix an element sy € S such that, setting K = S — {so}, the obvious
map Wx — W/T is an isomorphism. (Such an s( exists.) We assume that
x is the automorphism of W such that x — wgxwg for all £ € Wi and
y — wrgy ‘wg for any y € T (this automorphism maps sg to so hence it

maps S onto itself). We have K* = K.
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Proposition 8.2. If x is an element of W which has mazimal length in its
(Wi, W) double coset Q then z* = x71,

Note that 7o := QN T is a single W-conjugacy class. If y € Tq then

*—1 *—1

Yyt = wrgywg € To. Thus w — w maps some element of €} to an
element of 2. Hence it maps 2 onto itself. Since it is length preserving it

maps z to itself.

8.3. Let Q,Q be two (Wk,Wk)-double cosets in W such that @ < Q.
As in 5.1, let dg (resp. dgs) be the longest element in  (resp. Q). Let
Py, do € Z[u] be the polynomial attached in [2] to the elements dg,dg of
the Coxeter group W. Let G be a simple adjoint group over C for which W
is the associated affine Weyl group so that 7T is the lattice of weights of a
maximal torus of G. Let V be the (finite dimensional) irreducible rational
representation of G whose extremal weights form the set To. Let Ngr o be
the multiplicity of a weight in 7o/ in the representation V. Now Py, 4,
is the u-analogue (in the sense of [4]) of the weight multiplicity N/ o; in

particular, according to [4], we have
Nora = Py, dg lu=1-
We have the following

Conjecture 8.4. P7 . (u) = Py dq(—u).

8.5. Now assume that Q (resp. ) is the (Wg, Wk )-double coset that
contains sop (resp. the unit element). Let g < ey < --- < e, be the
exponents of Wy (recall that e; = 1). The following result supports the

conjecture in 8.4.

Proposition 8.6. In the setup of 8.5, assume that Wy is simply laced. We

have:

(a) Adgy = v )ag + (=1) 30,y (—u) =0 ) agy;

(b) Pagy dg(u) = Zje[l,n] u
(C) dQ/ do

(
() = 2 e~
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We prove (a). It is enough to show that

v—l(d(z)aﬂ+(_1)6n Z (_u)—ejv—l(dﬂz)aﬂl
jell,n]

is fixed by ~ Let H = K NsgK sg. We have H = H* and Wy is contained in
the centralizer of sg. Let 7 : Wy — W be the automorphism y — soy*sg =
y*. We have do = wg, dg = wgwgsowg, l(dg) = 2l(wk) — l(wg) + 1 and
we must show that

(d) o R+ wr) =1y 4 (—1)n Z (—u)" 0" WK)gq, is fixed by .
jeln]

Let S =3 oy, To € 9. Using 5.10(a) we see that
S(CLSO + a]_) = PH7*CLQ + PK7*CLQ/.
Hence

v 2 WK)S (v Hay, + ag))
= U_l(wH)PH’*U_m(wK)"‘l(wH)_laQ + U_l(wK)_1PK7*,U_l(wK)aQ,'

Since v~2(WK)S and v='(as, + a1) are fixed by - we see that that the left
hand side of the last equality is fixed by ~, hence

v_l(wH)PH’*U_H(U)K)‘H(U’H)_laQ + v_l(wK)_lpK’*v_l(wK)aQ,

is fixed by . Since plwH)p i, is fixed by “and divides Px ., we see that

'U_2l(wK)+l(wH)_1aQ + U_l(wK)+l(wH)_1PK7*PE1*'U_I(U)K)QQ/

is fixed by ~ Hence to prove (d) it is enough to show that

o)) -1p o Pyl g, — (—1)en $ (—u) ol gg,
JE[Ln]

is fixed by ~ Now v~{*x)aq, is fixed by 7 see 5.11(a). Hence it is enough to
show that

v—l(U)K)H(wH)—lPK’*PI}’l* — (=1)e Z (—u)~% is fixed by ~.
j€[l,n]
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This is verified by direct computation in each case. This completes the proof
of (a). Now (c) follows from (a) using the equality [(wxwgsowg) —l(wg) =
2e,, and the known symmetry property of exponents; (b) follows from [4].

8.7. In this subsection we assume that Wi is of type Ag with K = {s1, s2}.
Note that sf = so, s5 = s1. We write ijig--- instead of s;, s, - (the
indices are in {0,1,2}). Let Qi,Q9,Q3,Q4,Q5 be the (Wg,Wg) double
coset of 01210,0120,0210,0 and unit element respectively. We have dgo, =
1210120121, dg, = 121012012, dg, = 121021021, do, = 1210121, do, = 121.
A direct computation shows that

Adg, = v H(aq, + aq, + ag; + (1 — w)ag, + (1 —u + u?)ag,).
This provides further evidence for the conjecture in 8.4.

8.8. In this subsection we assume that K = {s1,s2} with s1s9 of order 4
and with sgso = s9sg, sgs1 of order 4. Note that x* = x for all x € W.
Let Q1,$9,Q3 be the (Wg, Wk) double coset of sgs;1s0, 5o and unit element
respectively. We have dg, = 1212010212, dq, = 12120121, dq, = 1212
(notation as in 8.7). A direct computation shows that

—10

Adﬂl =v""(ag, +ag, + (1 + u2)a93)-

This provides further evidence for the conjecture in 8.4.

9. Reduction Modulo 2

9.1. Let Ay = A/2A = (Z/2)[u,u™1], Ay = A/2A = (Z/2)[v,v"!]. We
regard As as a subring of A, by setting u = v?. Let 2 = §/26; this is
naturally an Ag-algebra with Ag-basis (T;)zew inherited from $ and with
a bar operator ~: £ — 9 inherited from that $). Let My = Ao ® 4 M =
M/2M. This has a $)2-module structure and a bar operator ~: My — My
inherited from M. It has an As-basis (ay)wer, inherited from M. In this
section we give an alternative construction of the £)»-module structure on
My and its bar operator.

Let H be the free A-module with basis (ty)wew with the unique A-
algebra structure with unit ¢; such that

twbw = tww if l(ww') = l(w) + I(w") and
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(ts +1)(ts —v?) =0 forall s € S.

Let ~ : X — H be the unique ring involution such that v"t, = v_”t;_ll
for any x € W,n € Z (see [2]). Let Ho = H/2H; this is naturally an A,-
algebra with A,-basis (t;)zew inherited from H and with a bar operator
~: Hy — Ho inherited from that of . Let h — h*® be the unique algebra
antiautomorphism of H such that ¢,, — t,«-1. (It is an involution.)

We have Ho = H5 @ HYy where Hb (resp. Hb) is the A-submodule of Ho
spanned by {t,;w € L.} (resp. {ty;w € W —L}). Let m: Hy — H), be the
projection on the first summand. Note that for £ € Hs we have

(a) &'® = ¢ if and only if & = & + & + &,® where & € Hb, & € Ha.
(b) (&) = (&)

Lemma 9.2. The map Ho x Hy — Hb, (h, &) = ho& = m(hEh®) defines an
Ha-module structure on the abelian group M.

Let h,h' € Ha, & € HYy. We first show that (h+h)o& =hol+h o or
that w((h+R)E(R+R)®) = m(h&h®) + m(WER'®). Tt is enough to show that
7(h&éh'®) = w(W ER®). This follows from 9.1(b) since (R/Eh®)® = hE®H® =
hen'®.

We next show that (hh/) o & = ho (W o &) or that w(hhEN/®h®) =
m(hw (R ER'®*)W®).  Setting & = h'¢h'® we see that we must show that
7(h&'h®) = w(hm(€))h®). Setting n = & — 7(¢') we are reduced to show-
ing that m(hnh®) = 0. Since & € H), we have ¢* = ¢ Hence ¢4 =
(WO)MAR'® — D/ER/® so that €% = ¢/, We write & = & + &) + &*
as in 9.1(a). Then 7(¢) = & and n = & + &®  We have hnh®
heLh® + hELMh® = ¢ 4 (* where ¢ = hehh®. Thus 7(hnh®) = 7((+C*) =0
(see 9.1(b)). Clearly we have 10¢& = ¢. The lemma is proved.

9.3. Consider the group isomorphism v : Ho—$s such that v™t,, — u"T),
for any n € Z,w € W. This is a ring isomorphism satisfying ¥(fh) = f2(h)
for all f € Ay, h € Ha (we have f2 € Ay). Using now 9.2 we see that:

(a) The map $Ho x Hy — Hb, (h, &) = hO & := w(w~H(h)E(Y ™ (h))®) defines
an $H2-module structure on the abelian group Hb.

Note that the $2-module structure on H) given in (a) is compatible with the
A-module structure on H. Indeed if f € A and f’ € A, is such that f'2 = f
then f acts in the $)2-module structure in (a) by & — f/¢f = f2¢€ = f¢&.
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9.4. Let s € S,w € I,. The equations in this subsection take place in Hs.
If sw = ws* > w we have

Ts ® ty = T(tstwtss) = T(tswtsr) = T((u — V)tgyw + uty) = uty + (U + 1)tgy.
If sw = ws* < w we have

Ts Oty = m(tstwtsr) = m(((u — 1)ty + utsy )ts+)
= 7((u—1)%ty + (u — Dutye + uty)
= (u2 —u— 1)ty + (u2 — U)tsy-

If sw # ws* > w we have
T Oty = 7T(tstwts*) = 7"'(tsws") = tows*-
If sw # ws* < w we have

Ts Oty = m(tstwtss) = m(((w — 1)ty + utsy)ts+)
= 7((u—1)%ty 4 (v — Dutye 4+ u(u — Dtgy + tutaps)
= (u2 — D)ty + Ut gy

(We have used that m(tys+) = m(tsy) which follows from 9.1(b).) From these
formulas we see that

a) the isomorphism of As-modules HH=Ms given by ty, — ay (w € I,) is
2
compatible with the $Ho-module structures.

9.5. For w € W we set t,, = ZyeW;ygw py7wv_l(w)_l(y)ty where p, ., € A
satisfies pyw = 1. For y € W,y £ w we set py,, = 0.

For z,y € W, s € S such that sy > y we have

(1) pa,sy = Psay if s <z,

(i) pg,sy = Pszy + (v — U_l)pny if sx > x.
For z,y € W, s € S such that ys > y we have

(ill) poys = pasy if s < z,

(IV) Px,ys = Pxs,y + ('l) — 'U_l)px7y if zs > x.
Note that (iii),(iv) follow from (i),(ii) using

(V) Pz = Poe—1 =1 for any z,w € W.
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9.6. If f,f € A we write f = f’ if f, f/ have the same image under the
obvious ring homomorphism A — A,. We have the following result.

Proposition 9.7. For any y,w € I, we have 1y, = pyw-

Since the formulas 4.2(a), (b) together with r; 1 = d;1 define uniquely
rzy for any z,y € I, and since p, 1 = 9,1 for any z, it is enough to show
that the equations 4.2(a),(b) remain valid if each r is replaced by p and each
= is replaced by =.

Assume first that sy = ys* > y and = € I,.

If so¢ = zs* > x we have

(U + U_l)px,sy - (Psx,y(v_l — ’U) — (U — ’LL_I)[):E7 )
= (v+ v_l)(P:msy — pszy — (v — ”_1)/750731) =0.

(The = follows from 9.5(ii).)

If sz = zs* < x we have

(v+ ”_I)P:asy — (=2pzy + pszy(v + ”_1)) =(v+ U_l)(P:msy — psay) = 0.

(The = follows from 9.5(i).)

If sz # xs* > x we have

(v+ U_I)Pmysy — (psasy + (u—1- u_l)px,y)
= (v+ U_l)psm,y + (u — u_l)pw,y — Pszs*y — (u—1- U_l)pw,y

= ('U - v_l)ps:z;y — Pzy + Psxs*y = Pszys* — Pry = 0.
(The first, second and third = follow from 9.5(ii),(iv),(iii).)

If sz # zs* < x we have

(v+ U_I)Pr,sy - (_Pr,y + psmS*,y) = (v+ U_I)Psw,y - (_Pr,y + psmS*,y)

(’U - v_l)psx,y + Py — Psxs*y

- psx,sy - psxs*,y = psx,sy - psx,ys* =0.

(The first, second and third = follow from 9.5(i),(ii),(iii).)

Next we assume that sy # ys* >y and = € L.
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If sz = xs* > = we have

px,sys* - (psx,y(v_l - ’U) + (u + 1- u_l)px,y)

= Psz,ys* + ('U - U_l)pw,ys* - psz,y(v_l - U) - (u +1- u_l)pw,y

= Pzyt (2) - v_l)p:ays* - stny(’v_l —v)—(u+1- u_l)px7y
= Pzyt (v - v_l)pxs*y + (v - v_l)zp:zay - P:cs*,y(v_l - ’U)

~(u+1—ut)p,, =0.

(The first, second and third = follow from 9.5(ii),(iv),(iv).)

If s = xs* < x we have

Px,sys* — (psmy(v + U_l) - pw,y) = Psz,sy — (psx,y(v + U_l) - pw,y)
= Psx,sy — (psx,y(v - v_l) + px,y) =0,

(The first and second = follow from 9.5(i),(ii.)

If sx # xs* > x we have

Prsyst — (Psasey + (u—u")pyy)
= Prs sy + 0=V ) sy = psasty — (W—u")pay
= Pszs*y T+ (v— U_I)st*,y + (v — U_I)Psw,y + (v — U_1)2pz,y
—Pszsty — (U — u_l)px7y = (v— v_l)(pm*y — Psay)

= (v— v_l)(p(zs*)**l,y**l — Pszy) = (v — v_l)(pS%y — Pszy) = 0.

(The first, second, and third = follow from 9.5(iv),(ii),(v).)

If sz # xs* < x we have

Pz,sys* — Psxs*;y = Pxs*ys* — Pszs*y — 0.

(The first and second = follow from 9.5(iii),(i).)
Thus the equations 4.2(a),(b) with each r replaced by p and each =

replaced by = are verified. The proposition is proved.

9.8. We define a group homomorphism B : H, — H) by & — w(£). From
9.7 we see that
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(a) under the isomorphism 9.4(a) the map B : Hy — HY corresponds to the
map ~: My — M.

We now give an alternative proof of (a). Using 0.2(b) and 9.4(a) we see that
it is enough to show that for any w € I, we have ﬂ(t;ll) = T;,ll ® typ-1 in
H’,. Since v in 9.3 is a ring isomorphism, we have zp(t;il) = T;_ll hence

T Oty = (@ NI )t (0T H))*)
= w(t Lty (8,1 )*) = 7wt t,aty,))

= w(t ittt = m(ty-1),
as required.

9.9. For y,w € W let P, € Z[u] be the polynomials defined in [2, 1.1].
(When y £ w we set P,,, = 0.) We set py., = v_l(w)H(y)Py,w € A. Note
that pyw = 1 and py, = 0 if y £ w. We have py ,, € A< if y < w and

(1) Prw = ZyEW;Z‘SySw Tx,yPy,w if z < w,
(11) pw*—l’w*fl - p;mw’ lf X S w.
We have the following result which, in the special case where W is a Weyl

group or an affine Weyl group, can be deduced from the last sentence in the
first paragraph of [6].

Theorem 9.10. For any x,w € I, such that x < w we have Pf,w = P.w

(with = as in 9.6).

It is enough to show that 7, ., = pz . We can assume that z < w and
that the result is known when z is replaced by 2’ € I, with z < 2/ < w.
Using 9.9(i) and the definition of m, , we have

p(E,’Ll) - ﬂ-xﬂu = : : Tx7ypy7w - : : pz,yﬂ-y,w-
yeW;z<y<w yELr<y<w

Using 9.7 and the induction hypothesis we see that the last sum is = to

Prw — Tzw T E Tz yPyw — E Tz,yPy,w
yeWz<y<w yelL;z<y<w
= Prw — Tzw + g Tx,yPy,w-

yeWsy#£y*~Lz<y<w
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In the last sum the terms corresponding to y and y*~" cancel out (after

reduction mod 2) since

Ty —1Pyx—1w = Tox=1 yDyw*—1 = TazyPy,w-

(We use 9.5(v), 9.9(ii).) We see that

Pzw — Tzxw = Prw — Tzw-

After reduction mod 2 the right hand side is in v=1(Z/2)[v~!] and the left
hand side is in v(Z/2)[v]; hence both sides are zero in (Z/2)[v,v~!]. This
completes the proof. O

9.11. For z,w € L such that x < w we set P, = (1/2)(Prw + Py,,),
Py, = (1/2)(Prw — P7,,). From 9.10 we see that P, € Z[u], P, ,, € Z[u].

Conjecture 9.12. We have P, € N[u], P, ,, € N[u].

This is a refinement of the conjecture in [2] that P, ,, € Nu] for any
x < win W. In the case where W is a Weyl group or an affine Weyl group,
the (refined) conjecture holds by results of [6].

Note added July 25, 2012. Conjecture 8.4 is now proved, see G.Lusztig
and Z.Yun, A (—g)-analogue of weight multiplicities, arxiv:1203.0521.
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