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Abstract

It is well known that if G is a finite group then the group of endotrivial modules

is finitely generated. In this paper we prove that for an arbitrary finite group scheme

G, and for any fixed integer n > 0, there are only finitely many isomorphism classes of

endotrivial modules of dimension n. This provides evidence to support the speculation

that the group of endotrivial modules for a finite group scheme is always finitely generated.

The result also has some applications to questions about lifting and twisting the structure

of endotrivial modules in the case that G is an infinitesimal group scheme associated to

an algebraic group.

1. Introduction

Let S be a finite group scheme over a field k. The endotrivial modules for

S form an important class of modules which, among other things, determine

self equivalences of the stable category of S-modules, modulo projective S-

modules. In the case that G is the scheme of a finite p-group, there is a

complete classification of endotrivial modules [8]. This classification has

been extended to the group algebras of many other families of finite groups

(cf. [3, 5, 6]).
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An endotrivial module is an S-module M with the property that

Homk (M,M) ∼= M ⊗M∗ ∼= k ⊕ P (as S-modules) where P is a projective

S-module. Two endotrivial modules M and N are equivalent if there exist

projective modules P and Q such that M ⊕ P ∼= N ⊕ Q. The equivalence

classes of endotrivial S-modules forms an abelian group T (S) under tensor

product. It was shown by Puig [13] that this group is finitely generated in

the case that S is a finite group. This fact also follows from the classification.

For arbitrary finite group schemes, it is an open question as to whether T (S)

is finitely generated.

One of the main ingredients in proving that T (S) is finitely generated is

a “Finiteness Theorem” which says that for any fixed non-negative integer

n ≥ 0, there are only finitely many endotrivial modules having dimension

equal to n. In the case that S is the group scheme of a finite group, there

is a theorem by the first author [2] which implies that any indecomposable

endotrivial module whose class in T (S) restricts to the identity on every

elementary abelian p-subgroup E, has bounded dimension. This together

with the Finiteness Theorem and Dade’s result [10] that T (E) is finitely

generated (and isomorphic to Z if E has rank at least 2), is sufficient to

prove finite generation of T (S). When S is a unipotent group scheme, the

Finiteness Theorem was proved by the authors in [4, Theorem 3.5]. In

Section 2, we extend these earlier results by showing that the Finiteness

Theorem holds for arbitrary finite group schemes. That is, for any finite

group scheme there are only finitely many endotrivial modules for a given

dimension.

The Finiteness Theorem has some very strong connections with the no-

tion of lifting endotrivial modules to an action of H where H is a group

scheme containing S as a normal subgroup scheme. In the case when H is

connected, the Finiteness Theorem implies that every endotrivial S-module

is H-stable (i.e., the twists of an endotrivial module Mh are all isomorphic

to M (as S-modules) for all h ∈ H). Different notions of lifting such as

“tensor stability” and “numerical stability” have been investigated recently

by Parshall and Scott [12]. In Section 3, we outline these various definitions,

and we introduce the new concept of lifting called “stably lifting” which

entails lifting S-modules to H-structures in the stable module category for

S. We connect our new notion of stable lifting with the ideas presented by

Parshall and Scott.
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Let G be semisimple algebraic group scheme, B a Borel subgroup with

unipotent radical U defined and split over Fp, and let k be an algebraically

closed field of characterstic p. Let Gr, Br, Ur denote their rth infinitesimal

Frobenius kernels. The existence of the Steinberg module shows that every

projective Gr-module (resp. Br, Ur) stably lifts to G (resp. B, U). Further-

more, if M stably lifts then one can use this result to show that all syzygies

Ωn(M) stably lift. In [4, Theorem 5.7, Theorem 6.1], T (B1) and T (U1) was

completely determined for all primes. By using this classification, we prove

that all B1 (resp. U1) endotrivial modules stably lift to B (resp. U). We

suspect this will also hold for Gr. Finally, we exhibit an endotrivial module

for B1, namely Ω2(k) when the root system is of type A2 and p = 2, which

does not admit a B-structure.

The second author would like to acknowledge Shun-Jen Cheng, Weiqiang

Wang and their conference organizing team for providing financial support

and for efforts in hosting a first rate workshop on representation theory in

Taipei during December 2010. We would also like to thank the referee for

useful suggestions that were incorporated into the final manuscript.

2. The Finiteness Theorem

We begin by introducing the basic definitions which will be used through-

out this paper. Let S be a finite group scheme. We will consider the category

Mod(S) of rational S-modules and the stable module category StMod(S).

Since S is a finite group scheme the notion of projectivity is equivalent to

injectivity. For M and N objects in Mod(S), we say that [M ] = [N ] in

StMod(S) if and only if M ⊕ P ∼= N ⊕Q for some projective S-modules, P

and Q.

Suppose that S is any finite group scheme defined over k. An S-module

is an endotrivial module provided that, as S-modules,

Homk(M,M) ∼= k ⊕ P

for some projective S-module P . Equivalently, an S-module M is an en-

dotrivial module if [M∗ ⊗M ] = [k] in StMod(S). Note for any S-module M

there exists a canonical isomorphism Homk(M,M) ∼=M∗⊗M . We can now

define the group T (S) of endotrivial S-modules as follows. The objects in

T (S) are the equivalence classes [M ] in StMod(S) of endotrivial S-modules.
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The group operation is given by [M ]+ [N ] = [M ⊗N ]. The identity element

is the class [k] and the inverse of [M ] is the class [M∗]. The group T (S) is

abelian because the associated coproduct used to construct the action of S

on the tensor product of modules is cocommutative.

In this section, we show that the number of endotrivial modules for a

finite group scheme H having any particular dimension is finite. The proof

follows along the same lines of that in [4] and also [13], and is based on an

idea of Dade [9].

Suppose that k is an algebraically closed field. In this section it will

be more convenient to work with finite-dimensional cocommutative Hopf

algebras. For a finite group scheme H, let A = k[H]∗, the group algebra of

H. There is an equivalence of categories betweenH-modules and A-modules.

Furthermore, the finite dimensional k-algebra A is a cocommutative Hopf

algebra. As a consequence, projective A-modules are also injective. Let

P1, . . . , Pr be a complete set of representatives of the isomorphism classes

of projective indecomposable A-modules. Each Pi has a simple top Si =

Pi/Rad(Pi) and a simple socle Ti = Soc(Pi). The collection {S1, . . . , Sr}

is a complete set of isomorphism classes of simple modules, as is the set

{T1, . . . , Tr}. We need not assume here that Ti ∼= Si, though this is often

the case.

For each i = 1, . . . , r, we assume that Pi is a left ideal in A. That is, we

assume that Pi = Aei for ei a primitive idempotent in A. For each i choose

a nonzero element ui ∈ Ti ⊆ Pi. Then ui has the property that Aui = Ti.

Note that since ui ∈ Pi, we have that ui = uiei and that uiPi 6= {0}.

Lemma 2.1. Let i be an integer between 1 and r. Suppose that M is an

A-module and that uiM 6= {0}. Then M has a direct summand isomor-

phic to Pi. Moreover, if ti = Dim(uiPi) is the rank of the operator of left

multiplication by ui on Pi then ti divides Dim(uiM), and

M ∼= P ai
i ⊕M ′

where M ′ has no direct summands isomorphic to Pi and ai = Dim(uiM)/ti.

Proof. Let m ∈ M be an element such that uim 6= 0. Then, uim = uieim.

Define ψ : Pi −→ M by ψ(aei) = aeim for any a in A. This is well defined

since Pi = Aei. Now, ψ(ui) 6= 0 and hence ψ(Ti) 6= {0}. Therefore, ψ
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is injective. Because, A is a self-injective ring, the image of ψ is a direct

summand of M and hence M ∼= Pi ⊕N for some submodule N of M . This

proves the first statement.

The second statement follows by an easy induction beginning with the

observation that (as vector spaces)

uiM ∼= uiPi ⊕ uiN. ���

For a positive integer n, let Vn denote the variety consisting of all repre-

sentations of the algebra A of dimension n. It is defined as follows. Suppose

that the collection a1, . . . , at is a chosen set of generators of the algebra A,

so that every element of A can be written as a polynomial in (noncommut-

ing) variables a1, . . . , at. We fix this set of generators for the remainder of

the discussion in this section. Then we have that A ∼= k〈a1, . . . , at〉/J for

some ideal J . A representation of dimension n of A is a homomorphism

θ : A −→ Mn(k), where Mn(k) is the ring of n × n matrices over k. The

representation is completely determined by the assignment to each ai of an

n× n matrix θ(ai) = (airs).

For the purposes of defining the variety Vn, we consider the polynomial

ring R = k[xirs] in tn
2 (commuting) variables with 1 ≤ i ≤ t, 1 ≤ r, s ≤ n,

and the assignment

ai ↔ (xirs) ∈Mn(R)

for i = 1, . . . , t. The ideal J determines an ideal I in the ring R. That is,

any relation f(a1, . . . , at) in J , when converted into an expression on the

matrices using the above assignment, defines a collection of relations, one

for each r and s in the elements of R. For example, if it were the case that

a1a2 = 0 in A, then the polynomial a1a2 would be an element of J , and for

each r and s, the polynomial
∑n

u=1 x
1
rux

2
us would be an element of I.

Lemma 2.2. Suppose that M is an A-module and P is an indecomposable

projective A-module. Let s be a nonnegative integer. Let W be the subset of

Vn consisting of all representations σ of A having the property that M ⊗Lσ

has no submodule isomorphic P s, where Lσ is the A-module affording σ.

Then W is a closed set in Vn.
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Proof. By the previous lemma, there is an element u ∈ A such that, if

t is the rank of the matrix of u acting on P , then P s is isomorphic to

a submodule of M ⊗ Lσ if and only if the rank of the matrix Mu of u

on M ⊗ Lσ is at least st. Now we observe that u is a polynomial in the

(noncommuting) generators of A and hence the entries of the matrix of u

on Lσ are polynomials in the entries of the matrices of the generators of A

on Lσ. If we fix a representation of M , then the entries of the matrix of

u on M are elements of the base field k. It follows that the entries of the

matrix Mu of u on M ⊗ Lσ are all polynomials in the variables of the ring

R = k[xirs]. Likewise, the determinant of any st× st submatrix of Mu is a

polynomial in the variables of R. As a consequence, the condition that every

such determinant is zero (which is the same as saying that the rank of Mu

is less than st) defines a closed set in Vn. ���

Lemma 2.3. Suppose that M is an endotrivial A-module of dimension n.

Let W be the set of all representations σ in Vn such that the module Lσ

afforded by σ is not isomorphic to M ⊗χ for any one dimensional A-module

χ. Then W is a closed set in Vn.

Proof. Suppose that N is a one dimensional A-module. Because M is

endotrivial, we have that N ⊗M is endotrivial. Thus

(N ⊗M)⊗ (N∗ ⊗M∗) ∼= k ⊕

r∑

i=1

Pni

i

where P1, . . . , Pr are the indecomposable projective A-modules and n1, . . . , nr
are nonnegative integers. For each i, let Wi be the set of all σ ∈ Vn with the

property that Lσ⊗N
∗⊗M∗ does not contain a submodule isomorphic to Pni

i .

The sets Wi are closed by Lemma 2.2. Hence, the set UN = W1 ∪ · · · ∪ Wr

is also closed. If σ is not in UN , then

Lσ ⊗N∗ ⊗M∗ ∼= U ⊕
r∑

i=1

Pni

i

for some A-module U . But the dimension of U must be one because dimLσ⊗

N∗ ⊗M∗ = dim(N ⊗M)⊗ (N∗ ⊗M∗) = n2. Therefore,

Lσ ⊗N∗ ⊗M∗ ⊗ U∗ ∼= k ⊕

r∑

i=1

U∗ ⊗ Pni

i
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and hence, Lσ
∼= U ⊗N ⊗M . Now we claim that W = ∩NUN where N runs

through the one dimensional A-modules. So W is closed. ���

At this point we are ready to prove our main theorem.

Theorem 2.4. For any natural number n, there is only a finite number of

isomorphism classes of endotrivial modules of dimension n.

Proof. Suppose that M is an indecomposable endotrivial module of dimen-

sion n. Let U be the subset of Vn consisting of representations σ with the

property that the underlying module Lσ is isomorphic to N ⊗M for some

A-module N of dimension one. Note that A has only finitely many iso-

morphism classes of dimension one, and hence there are only finitely many

isomorphism classes of modules represented in U .

By Lemma 2.3, U is an open set in Vn. Hence, U , the closure of U is

a union of components in Vn. Therefore, the theorem is proved with the

observation that Vn has only finitely many components. ���

3. Liftings and Stability

Let S be a finite group scheme which is a normal subgroup scheme in a

group scheme H. In this section we will describe different notions of when

an S-module has a structure that extends to H.

We say that an S-moduleM lifts to H if M has an H-module structure

whose restriction to S agrees with the (original) S-module structure. This

is the strongest form of “lifting”. The weakest form of lifting is the notion

of H-stable. Let M be a S-module. For h ∈ H, one can consider the twisted

moduleMh which is a S′ = h−1Sh-module (cf. [11, I. 2.15]). In particular if

h normalizes S then the twisted module Mh is an S-module. An S-module

M is called H-stable if and only if Mh ∼=M . If the S-module M lifts to an

H-module, then M is H-stable. The converse statement is not true as we

will see in Section 6 (cf. [12, 4.2.1]).

Following [12, 2.2.2, 2.2.3] we recall the notions of numerical and tensor

stablity defined by Parshall and Scott.

Definition 3.1. An S-module M is numerically H-stable if there exists an

H-module Z such that Z|S ∼=M⊕n.
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Definition 3.2. An S-module M is tensor H-stable if there exists a finite-

dimensional H/S-module Y such that M ⊗Y is an H-module whose restric-

tion to S coincides with M ⊗ (Y |S).

Tensor H-stability is equivalent to numerically H-stable (cf. [12, 2.2.3]).

It is clear that if M lifts to H then M is tensor H-stable and numerically

H-stable. Furthermore, tensor H-stable and numerically H-stable imply

H-stable.

Next we introduce a new concept of lifting which will be relevant for our

study of endotrivial modules.

Definition 3.3. An S-module M stably lifts to H if there exists an H-

module K such that K|S ∼=M ⊕ P where P is a projective S-module.

Observe that in the definition of stable lifting to H, the S-modules

K and M represent the same object in StMod(S), the stable category of

all S-modules. If M lifts to H then M stably lifts to H. Also, if M

is non-projective as an S-module and stably lifts to H then by using the

Krull-Schmidt theorem and the fact that twists of projective S-modules are

projective, it follows that M is H-stable.

4. Applications

Suppose that G is a semisimple, simply connected algebraic group, de-

fined and split over the finite field Fp with p elements for a prime p. Let k

be the algebraic closure of Fp. Let Φ be a root system associated to G with

respect to a maximal split torus T . Let Φ+ (resp. Φ−) be the set of positive

(resp. negative) roots and ∆ be a base consisting of simple roots. Let B be

a Borel subgroup containing T corresponding to the negative roots and let

U denote the unipotent radical of B. More generally, if J ⊂ ∆, let LJ be

the Levi subgroup generated by the root subgroups with roots in ∆, PJ the

associated (negative) parabolic subgroup and UJ its unipotent radical such

that PJ = LJ ⋉ UJ .

Let H be an affine algebraic group scheme over k and let Hr = ker F r.

Here F : H → H(1) is the Frobenius map and F r is the rth iteration of

the Frobenius map. We note that there is a categorical equivalence between

modules for the restricted p-Lie algebra Lie(H) of H and H1-modules. For
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each value of r, the group algebra kHr is the distribution algebra Dist(Hr)

(cf. [11]). In general, for the rest of this paper, we use Dist(Hr) to denote

the group algebra of Hr.

For any group scheme H, let mod(H) be the category of finite dimen-

sional rational H-modules. This construction can be applied when H = G,

B, PJ , LJ , U , UJ and T . Note that the use of T (maximal torus) and T (−)

(endotrivial group) will be clear from the context. Let X := X(T ) be the

integral weight lattice obtained from Φ. The set X has a partial ordering:

if λ, µ ∈ X, then λ ≥ µ if and only if λ− µ ∈
∑

α∈∆ Nα.

Let α∨ = 2α/〈α,α〉 be the coroot corresponding to α ∈ Φ. The set of

dominant integral weights is defined by

X+ := X(T )+ = {λ ∈ X(T ) : 0 ≤ 〈λ, α∨〉 for all α ∈ ∆}.

Furthermore, the set of pr-restricted weights is

Xr(T ) = {λ ∈ X : 0 ≤ 〈λ, α∨〉 < pr for all α ∈ ∆}.

Let X(Tr) be the set of characters of Tr, which can be identified with the

set of one dimensional simple modules for Tr.

For a reductive algebraic group G, the simple modules are labelled L(λ)

and the induced modules are H0(λ) = indGBλ, where λ ∈ X(T )+. The

Weyl module V (λ) is defined as V (λ) = H0(−w0λ)
∗. Let T (λ) be the

indecomposable tilting module with highest weight λ.

We can now apply the Finiteness Theorem to demonstrate, under mild

assumptions on H, that every endotrivial module is H-stable. In the fol-

lowing sections we show that the problem of lifting of endotrivial modules is

rather subtle.

Theorem 4.1. Let H be a connected affine algebraic group scheme and S

be a finite group scheme which is a normal subgroup scheme of H. If M is

an endotrivial S-module, then M is H-stable.

Proof. Consider the closed subgroup A = {h ∈ H : Mh ∼= M} in H. Ac-

cording to the Finiteness Theorem, this must have finite index in H because

there are only finitely many endotrivial S-modules of any fixed dimension.
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Therefore, A must contain the connected component of H. Because H is

connected, we have that A = H, which proves the theorem. ���

Corollary 4.2. Let H = G, B, PJ , LJ , U , UJ or T as above, and Hr be the

rth Frobenius kernel. If M is an endotrivial Hr-module, then M is H-stable.

Another application of the Finiteness Theorem involves proving that

the restriction of an endotrivial Gr-module to conjugate unipotent radicals

of Borel subgroups produces syzygies of the same degree.

Theorem 4.3. Let U and U ′ be the unipotent radicals of the Borel subgroups

B and B′. If M is an endotrivial Gr-module with

M |Ur

∼= Ωn1

Ur
(k)⊕ (proj)

and

M |U ′

r

∼= Ωn2

U ′

r

(k)⊕ (proj),

then n1 = n2.

Proof. The Borel subgroups B and B′ are conjugate by some w ∈ W , and

B′ = Bw = w(B)w−1. According to Corollary 4.2, we have M ∼= Mw as

Gr-modules. Under this isomorphism Ur is isomorphic to U ′
r and M |Ur

can

be identified with M |U ′

r
= Mw. The result now follows by applying these

isomorphisms. ���

5. Lifting Endotrivial Modules

Let M be an S-module and Ωn
S(M) (n = 0, 1, 2, . . . ) be the nth syzygy

of M obtained by taking a projective resolution of M . We will assume that

Ωn
S(M) has no projective S-summands. By taking an injective resolution of

M we can define Ωn
S(M) for n negative. Note that if M is endotrivial over

S then Ωn
S(M) is an endotrivial module for all n ∈ Z. The following result

provides conditions on when there are stable liftings for the syzygies of an

H-module M (when considered as an S-module).

Proposition 5.1. Let S be a finite group scheme which is a normal subgroup

scheme of H. Suppose there exists a projective S-module P which lifts to

an H-module. Furthermore, suppose that there exists a surjective H-map
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P → k. If M is a finite-dimensional H-module then Ωn
S(M) stably lifts to

H for each n ∈ Z .

Proof. Consider the surjective H-module homomorphism P → k. We will

prove that Ωn
S(M) stably lifts by induction on n ∈ N. For n ≤ 0 a similar

inductive argument can be used.

For n = 0, Ω0
S(M) =M which is an H-module, so we can set K0 =M .

Now assume that Kn|S ∼= Ωn
S(M) ⊕ Qn where Kn is an H-module and Qn

is a projective S-module. Now define Kn+1 as the kernel in the short exact

sequence obtained by tensoring the complex P → k by Kn:

0 → Kn+1 → P ⊗Kn → Kn → 0.

Then Kn+1 is an H-module with Kn+1|S ∼= Ωn+1
S (M) ⊕ Qn+1 for some

projective S-module Qn+1. ���

Let G be a reductive group with subgroups P , B and U as before. The

existence of the Steinberg representation Str can be used to prove that every

projective Gr (resp. Pr, Br, Ur) module stably lifts to G (resp. P , B, U).

It is only known for p ≥ 2(h − 1) that projective Gr-modules lift to G, but

there is strong evidence this holds for all p. We can now prove that for

reductive groups and their associated Lie type subgroups that the syzygies

of the trivial module lift stably. The proof also utilizes the existence of the

Steinberg representation.

Theorem 5.2. Let H = G (resp. P , B, U) and S = Gr (resp. Pr, Br, Ur).

For each n ∈ Z, Ωn
S(k) stably lifts to H.

Proof. It suffices to prove the theorem in the case that H = G and S = Gr.

The other cases will follow by restriction. Let Str = L((pr − 1)ρ) be the

Steinberg module, and set P := Str ⊗ L((pr − 1)ρ). Then there exists a

surjective G-module homomorphism P → k [11, II 10.15 Lemma]. The

result now follows by Proposition 5.1. ���

We note that it is not trivial to prove the fact that the left Ur-module

structure on Dist(Ur) lifts to H = U . The conjugation action of Ur on

Dist(Ur) lifts to U and there exists a U -module map Dist(Ur) → k under

the conjugation action. However, the module Dist(Ur) is not a projective
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module under this action (i.e., the conjugation action does not lift the left

action of Dist(Ur) on itself).

Corollary 5.3. Let H = B (resp. U), and S = B1 (resp. U1). Then every

endotrivial S-module lifts stably to an H-module.

Proof. We first consider the case that H = B and S = B1. According to

[4, Theorem 6.1, 6.2], T (B1) ∼= X(T1) × T (U1). The one dimensional B1

endotrivial modules corresponding to elements of X(T1) are all B-modules.

Therefore, it suffices to prove the statement when H = U and S = U1.

Assume that Φ is not A2 in the case that p = 2. Then any endotrivial

B1-module is isomorphic to Ωn
B1

(λ) for some λ ∈ X1(T ). Since λ lifts to a

B-module, by Theorem 5.2, Ωn
B1

(λ) stably lifts to B.

In the case when Φ is of type A2 the endotrivial group T (B1) is

generated by Ω1
B1

(λ) and the simple three dimensional G-module L(ω1) con-

sidered as B1-module by restriction (cf. [4, Theorem 5.5, 5.7]). Since L(ω1)

is a B-module all of its syzygies Ωn
B1

(L(ω1)) stably lift to B by Proposition

5.1. ���

When G is a reductive algebraic group scheme we can state a relationship

between a Gr-module lifting stably to G and tensor stability as a direct

application of [12, Theorem 1.1]. This seems to indicate that stably lifting

is a stronger form of lifting that tensor stability.

Proposition 5.4. Let G be reductive and let M be a Gr-module which lifts

stably to G. Suppose that N is a G-module such that N |Gr
=M ⊕ P where

P is a projective Gr-module (i.e., a stable lifting of M). If socGr
M is a

G-submodule of N then M is tensor Gr-stable.

In the next theorem we give a condition on the quotient H/S which

insures that we can lift syzygies.

Theorem 5.5. Let S be a finite group scheme which is a normal subgroup

scheme of H. Assume that

(i) If L is a simple H-module, then L|S is a simple S-module, and all

simple S-modules lift to L.

(ii) For any simple H-module L there exists an H-module Q(L) such that

Q(L)|S is the projective cover L|S.
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(iii) All finite-dimensional modules for H/S are completely reducible.

Let M be a finite-dimensional H-module. Assume that the projective cover

P (M) of M as an S-module lifts to an H-module and there exists a surjective

H-homomorphism P (M) → M . Then Ωn
S(M) lifts to an H-module for all

n ∈ Z.

Proof. We begin with an observation about the cohomology. For any H-

module N , there exists a Lyndon-Hochschild-Serre (LHS) spectral sequence:

Ei,j
2 = ExtiH/S(k,Ext

j
S(k,N)) ⇒ Exti+j

H (k,N).

Condition (iii) implies that this spectral sequence collapses and hence, the

restriction map ExtjH(k,N) → ExtjS(k,N)H/S is an isomorphism for all j ≥

0.

If suffices to assume that n ≥ 0 and prove the theorem by induction.

The case when n is negative can be handled by using a dual argument. For

n = 0, we have that Ω0
S(M) ∼=M and for n = 1, Ω1

S(M) ∼= ker(P (M) →M).

So these modules lift to H.

Suppose that Ωn
S(M) lifts to H. The S-submodule RadSΩ

n
S(M) is an

H-submodule of Ωn
S(M) so there exists a surjective H-module map

π : Ωn
S(M) → Ωn

S(M)/RadSΩ
n
S(M).

The quotient module Ωn
S(M)/RadSΩ

n
S(M) is completely reducible as an S-

module. Furthermore, it must be completely reducible as an H-module. For

if there exists a non-trivial extension of simple H-modules which lives as an

H-submodule in Ωn
S(M)/RadSΩ

n
S(M), then by condition (i), these simple

modules remain simple upon restriction to S and this extension must split

over S (by complete reducibility of the quotient module). Then by the first

observation above, the original extension over H must split.

By condition (ii), there exists an H-module Q whose restriction to S

is the projective cover of Ωn
S(M)/RadSΩ

n
S(M) with a surjective H-module

map γ : Q → Ωn
S(M)/RadSΩ

n
S(M). We have a short exact sequence of

H-modules:

0 → RadSΩ
n
S(M) → Ωn

S(M) → Ωn
S(M)/RadSΩ

n
S(M) → 0.
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Observe that Ext1H(Q,RadSΩ
n
S(M)) = Ext1S(Q,RadSΩ

n
S(M))H/S = 0. There-

fore, in the long exact sequence in cohomology the map

HomH(Q,Ωn
S(M)) → HomH(Q,Ωn

S(M)/RadSΩ
n
S(M))

is surjective and we can find an H-module map δ : Q → Ωn
S(M) such

that π ◦ δ = γ and Ωn+1
S (M) = ker δ. Consequently, Ωn+1

S (M) is an H-

module. ���

In the case that H = GrT (resp. PrT , BrT ) and S = Gr (resp. Pr, Br)

conditions (i)-(iii) of the preceding theorem can be verified (cf. [11, Chapter

9]).

Corollary 5.6. Let H = GrT (resp. PrT , BrT ) and S = Gr (resp. Pr,

Br). If M is an H-module then for each n ∈ Z, Ωn
S(M) is an H-module.

The conditions (i)-(iii) do not hold for when H = G and S = Gr.

Nonetheless, we can prove by a direct calculation that all endotrivial G1-

modules for G = SL2 lift to G.

Theorem 5.7. Let G = SL2. Then every endotrivial G1-module lifts to G.

Proof. The category of G1-modules has tame representation type and the

indecomposable modules have been determined (cf. [7, Section 3]). The

modules of complexity two, which include all endotrivial modules, lift to G.

One can also verify this by using the classification of endotrivial modules

given in [4]. The endotrivial group is Z⊕Z2 and all endotrivial modules are

of the form Ωn(M) where n ∈ Z and M = k or M = L(p− 2).

In either case M ∼=M∗ where M∗ is the k-dual of M . Hence, Ωn(M) ∼=

Ω−n(M)∗, and without loss of generality, we may assume that n ≥ 0. The

minimal projective resolution P• → k can be constructed explicitly. All the

terms are tilting modules:

Pn
∼=

{
T ((n2 + 1)2(p − 1)) if n is even,

T ((n+1
2 )2p) if n is odd.
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Moreover, the syzygies are Weyl modules

Ωn(k) ∼=

{
V (np) if n is even,

V ((n+1
2 )2(p − 2)) if n is odd.

Using a similar construction, the minimal projective resolution P̂• → L(p−2)

consists of tilting modules and the syzygies are also Weyl modules:

P̂n
∼=

{
T ((n+ 1)p) if n is even,

T ((n+ 2)p − 2) if n is odd,

Ωn(L(p− 2)) ∼=

{
V ((n+ 1)p − 2) if n is even,

V (np) if n is odd.
�

6. An example where Ω2
S(k) does not lift to H

In this section we show that syzygies of the trivial module do not, in

general, lift to H-modules even in cases where all the projective indecom-

posable S-modules lift to H. Suppose that G = SL3 and that p = 2. Let

S = B1, H = B. The restricted p-Lie algebra u of the unipotent radical of G,

has the same representation theory as the infinitesimal unipotent subgroup

U1 ⊆ B1. In this context we prove the following.

Proposition 6.1. The second syzygy Ω2(k) := Ω2
B1

(k) stably lifts to a B-

module, but does not lift to a B-module.

Proof. The first statement follows from Theorem 5.2. We suppose that

Ω2(k) has a B-structure and prove that this leads to a contradiction.

Let V := L(ω1) be the three dimensional natural representation for G

and label the simple roots ∆ = {α1, α2}. We will consider the restriction of

V to B and B1. Set

N1
∼= V ⊗ (−2α1 − α2 − ω1)

and

N2
∼= V ⊗ (−α1 − 2α2 − ω1).
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(−2α1 − 2α2)

(−3α1 − 2α2) (−2α1 − 3α2)

(−3α1 − α2) (−α1 − 3α2)

(−2α1 − α2) (−α1 − 2α2)

(−2α1) (−2α2)

❅❅❘

❅❅❘

❅❅❘

�
�

�✠

❅
❅
❅❘

��✠

��✠

��✠

Figure 1:

We can represent Ω2(k) diagrammatically as in Figure 1. A node (λ) is

a one dimensional B1-submodule with highest weight λ. The arrows indi-

cate the action of the simple root-subspace vectors in u := Lie U , and the

extensions between the simple one-dimensional B1-modules.

By analyzing the structure of Ω2(k) we can conclude that

Ω2(k)/RadB1
Ω2(k) ∼= u

(1)

and

RadB1
Ω2(k) ∼= N1 ⊕N2

as B-modules.

The module Ω2(k) is indecomposable over B1. Therefore, if Ω2(k) has

a B-structure then it is indecomposable over B and represents a non-trivial

extension class in

Ext1B(Ω
2(k)/RadB1

Ω2(k),RadB1
Ω2(k)).

This implies that Ext1B(u
(1), Nj) 6= 0 for j = 1 or 2.

Our task is to show by a cohomological calculation that Ext1B(u
(1), Nj) =

0 for j = 1 and 2. This provides a contradiction to the assumption that Ω2(k)

has a compatible B-structure. By symmetry we can simply look at the case

that j = 1. Apply the LHS spectral sequence

Ei,j
2 = ExtiB/B1

(k,ExtjB1
(u(1), N1)) ⇒ Exti+j

B (u(1), N1). (6.1)
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Note that HomB1
(k,N1) = 0, so the five term exact sequence (associated to

this spectral sequence) yields:

E1 = Ext1B(u
(1), N1) ∼= HomB/B1

(u(1),Ext1B1
(k,N1)). (6.2)

We can utilize the techniques in [14, Lemma 3.1.1, Theorem 3.2.1] to

compute the B/B1-socle of Ext1B1
(k,N1). Observe that as a B/B1-module:

Ext1B1
(k,N1) ∼= Ext1B1

(L(ω1)
∗,−2α1 − α2 − ω1)

∼= Ext1B1
(L(ω2),−2α1 − α2 − ω1).

Let −pν be a simple module in the socle where ν ∈ X. Recall that X is the

set of weights and X+ is the set of dominant weights. Then

HomB/B1
(−pν,Ext1B1

(L(λ), µ)) ∼= HomB/B1
(k,Ext1B1

(L(λ), µ) ⊗ pν)

∼= HomB/B1
(k,Ext1B1

(L(λ), µ + pν).

Set λ = ω2 and µ = 2α1 −α2 −ω1. Consider the LHS spectral sequence

Ei,j
2 = ExtiB/B1

(k,ExtjB1
(L(λ), µ + pν)) ⇒ Exti+j

B (L(λ), µ + pν).

So HomB1
(L(λ), µ+ pν) = 0, because λ− µ /∈ pX. The associated five term

exact sequence yields an isomorphism given as

E0,1
2 = HomB/B1

(k,Ext1B1
(L(λ), µ + pν)) ∼= Ext1B(L(λ), µ + pν).

There exists another spectral sequence

Ei,j
2 = ExtiG(L(λ), R

j indGB(µ + pν)) ⇒ Exti+j
B (L(λ), µ + pν).

We have two cases to consider. Suppose µ + pν ∈ X+. Then by Kempf’s

vanishing theorem, this spectral sequence collapses and we have that

Ext1B(L(λ), µ+pν)
∼= Ext1G(L(ω2),H

0(µ+pν)) = Ext1G(V (ω2),H
0(µ+pν)) = 0.

On the other hand, if µ+ pν /∈ X+, then the five term exact sequence yields

Ext1B(L(λ), µ + pν) ∼= HomG(L(ω2), R
1indGB(µ + pν)).
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By results of Andersen [1, Proposition 2.3], we have that µ + pν = sα · ω2

where α ∈ ∆, and sα is a simple reflection. A direct computation shows that

µ− sα1
· ω2 = −2(α1 + α2)

and

µ− sα2
· ω2 = −3α1.

The second condition can not be satisfied because −3α1 /∈ pX. Therefore,

the B/B1 socle of Ext1B1
(k,N1) is one-dimensional and is equal to −2(α1 +

α2).

In addition, Ext1B1
(k,N1) is a subquotient of HomB1

(P (k), N1) (where

P (k) is the projective cover of k as B1-module), and it has dimension at

most two. Furthermore, the T -weights of u(1) are distinct and the B/B1-

socle of u
(1) is −2(α1 + α2), so the image of any any non-zero map in

HomB/B1
(u(1),Ext1B1

(k,N1)) is three-dimensional. We can now conclude

that HomB/B1
(u(1),Ext1B1

(k,N1)) = 0, and by (6.2), E1 = 0. ���
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