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Abstract

The representation dimension of an artin algebra as introduced by M. Auslander in

his Queen Mary Notes is the minimal possible global dimension of the endomorphism ring

of a generator-cogenerator. The following report is based on two texts written in 2008

in connection with a workshop at Bielefeld. The first part presents a full proof that any

torsionless-finite artin algebra has representation dimension at most 3, and provides a

long list of classes of algebras which are torsionless-finite. In the second part we show that

the representation dimension is adjusted very well to forming tensor products of algebras.

In this way one obtains a wealth of examples of artin algebras with large representation

dimension. In particular, we show: The tensor product of n representation-infinite path

algebras of bipartite quivers has representation dimension precisely n+ 2.

Let Λ be an artin algebra. The representation dimension repdimΛ of

Λ was introduced 1971 by M. Auslander in his Queen Mary Notes [2], it

is the minimal possible global dimension of the endomorphism ring of a

generator-cogenerator (a generator-cogenerator is a Λ-module M such that

any indecomposable projective or injective Λ-module is a direct summand of

M); a generator-cogenerator M such that the global dimension of the endo-

morphism ring of M is minimal will be said to be an Auslander generator.
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All the classes of algebras where Auslander was able to determine the pre-

cise representation dimension turned out to have representation dimension

at most 3. Thus, he asked, on the one hand, whether the representation

dimension can be greater than 3, but also, on the other hand, whether it

always has to be finite. These questions have been answered only recently:

The finiteness of the representation dimension was shown by Iyama [17] in

2003 (for a short proof using the notion of strongly quasi-hereditary algebras

see [28]). For some artin algebras Λ, one knows that repdimΛ ≤ LL(Λ)+ 1,

where LL(Λ) is the Loewy length of Λ. On the other hand, Rouquier [31] has

shown that the representation dimension of the exterior algebra of a vector

space of dimension n ≥ 1 is n+ 1.

The name representation dimension was coined by Auslander on the ba-

sis of his observation that Λ is representation-finite if and only if repdimΛ ≤

2. Not only Auslander, but later also many other mathematicians were able

to prove that the representation dimension of many well-known classes of

artin algebras is bounded by 3. For artin algebras with representation di-

mension at most 3, Igusa and Todorov [16] have shown that the finitistic

dimension of these algebras is finite.

Our report is based on two texts written in 2008 in connection with a

Bielefeld workshop on the representation dimension [8].

Part I is a modified version of [27] which was written as an introduction

for the workshop, it aimed at a general scheme for some of the known proofs

for the upper bound 3, by providing the assertion 4.2 that any torsionless-

finite artin algebra has representation dimension at most 3. We recall that a

Λ-module is said to be torsionless or divisible provided it is a submodule of

a projective module, or a factor module of an injective module, respectively.

The artin algebra Λ is said to be torsionless-finite provided there are only

finitely many isomorphism classes of indecomposable torsionless Λ-modules.

Two ingredients are needed for the proof of 4.2, one is the characteriza-

tion 4.3 of Auslander generators which was used already by Auslander (at

least implicitly) in the Queen Mary notes, the second is the bijection 3.2

between the isomorphism classes of the indecomposable torsionless and the

indecomposable divisible modules which can be found in the appendix of

Auslander-Bridger [3].
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In Part II we want to outline that the representation dimension is ad-

justed very well to forming tensor products of algebras. It should be stressed

that already in 2000, Changchang Xi [32] was drawing the attention to this

relationship by showing that

repdimΛ⊗k Λ
′ ≤ repdimΛ + repdimΛ′

for finite-dimensional k-algebras Λ,Λ′, provided k is a perfect field. In 2009,

Oppermann [21] gave a lattice criterion for obtaining a lower bound for the

representation dimension (see 6.3) and we show (see 7.1) that this lattice

construction is compatible with tensor products; this fact was also noted

by Oppermann [24]. In this way one obtains a wealth of examples with

large representation dimension. These sections 6 and 7 are after-thoughts to

the workshop-lecture of Oppermann and a corresponding text was privately

distributed after the workshop. The last two sections show that sometimes

one is able to determine the precise value of the representation dimension.

Namely, we will show in 9.4: Let Λ1, . . .Λn be representation-infinite path

algebras of bipartite quivers. Then the algebra Λ = Λ1 ⊗k · · · ⊗k Λn has rep-

resentation dimension precisely n+ 2. For quivers without multiple arrows,

this result was presented at the Abel conference in Balestrand, June 2011,

the example of the tensor product of two copies of the Kronecker algebra

was exhibited already by Oppermann at the Bielefeld workshop.

We consider an artin algebra Λ with duality functor D. Usually, we will

consider left Λ-modules of finite length and call them just modules.

Given a class M of modules, we denote by addM the modules which

are (isomorphic to) direct summands of direct sums of modules inM. If M

is a module, we write addM = add{M}. We say that M is finite provided

there are only finitely many isomorphism classes of indecomposable modules

in addM, thus provided there exists a module M with addM = addM.

Part I. Torsionless-finite artin algebras.

1. The torsionless modules for Λ and Λop

Let L = L(Λ) be the class of torsionless Λ-modules and P = P(Λ) the

class of projective Λ-modules. Then P(Λ) ⊆ L(Λ), and we may consider the
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factor category L(Λ)/P(Λ) obtained from L(Λ) by factoring out the ideal of

all maps which factor through a projective module.

(1.1) Theorem. There is a duality

η L(Λ)/P(Λ) −→ L(Λop)/P(Λop)

with the following property: If U is a torsionless module, and f P1(U) →

P0(U) is a projective presentation of U , then for η(U) we can take the image

of Hom(f,Λ).

In the proof, we will use the following definition: We call an exact

sequence P1 → P0 → P−1 with projective modules Pi strongly exact provided

it remains exact when we apply Hom(−,Λ). Let E be the category of strongly

exact sequences P1 → P0 → P−1 with projective modules Pi (as a full

subcategory of the category of complexes).

(1.2) Lemma. The exact sequence P1
f
→P0

g
→ P−1, with all Pi projective

and epi-mono factorization g = ue is strongly exact if and only if u is a left

Λ-approximation.

Proof. Under the functor Hom(−,Λ), we obtain

Hom(P−1,Λ)
g∗

→ Hom(P0,Λ)
f∗

→ Hom(P1,Λ)

with zero composition. Assume that u is a left Λ-approximation. Given

α ∈ Hom(P0,Λ) with f∗(α) = 0, we rewrite f∗(α) = αf. Now e is a cokernel

of f , thus there is α′ with α = α′e. Since u is a left Λ-approximation, there

is α′′ with α′ = α′′u. It follows that α = α′e = α′′ue = α′′g = g∗(α′′).

Conversely, assume that the sequence (∗) is exact, let U be the image

of g, thus e P0 → U, u U → P−1. Consider a map β U → Λ. Then f∗(βe) =

βef = 0, thus there is β′ ∈ Hom(P−1,Λ) with g∗(β′) = βe. But g∗(β) =

β′g = β′ue and βe = β′ue implies β = β′u, since e is an epimorphism. ���

Proof of Theorem 1.1. Let U be the full subcategory of E of all sequences

which are direct sums of sequences of the form

P → 0 → 0, P
1
→ P → 0, 0 → P

1
→ P, 0 → 0 → P.
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In order to define the functor q E → L, let q(P1
f
→ P0

g
→ P−1) be the image

of g. Clearly, q sends U onto P, thus it induces a functor

q E/U −→ L/P.

Claim: This functor q is an equivalence.

First of all, the functor q is dense: starting with U ∈ L, let

P1
f
→ P0

e
→ U → 0

be a projective presentation of U , let u U → P−1 be a left Λ-approximation

of U , and g = ue.

Second, the functor q is full. This follows from the lifting properties of

projective presentations and left Λ-approximations.

It remains to show that q is faithful. We will give the proof in detail

(and it may look quite technical), however we should remark that all the

arguments are standard; they are the usual ones dealing with homotopy cat-

egories of complexes. Looking at strongly exact sequences P1
f
→ P0

g
→ P−1,

one should observe that the image U of g has to be considered as the essential

information: starting from U , one may attach to it a projective presentation

(this means going from U to the left in order to obtain P1
f
→ P0) as well as

a left Λ-approximation of U (this means going from U to the right in order

to obtain P−1).

In order to show that q is faithful, let us consider the following commu-

tative diagram

with strongly exact rows. We consider epi-mono factorizations g = ue, g′ =

u′e′ with e P0 → U, u U → P−1, e
′ P ′

0 → U ′, u′ U ′ → P ′
−1, thus q(P•) =

U, q(P ′
•) = U ′. Assume that q(h•) = ba, where a U → X, b X → U ′ with X

projective. We have to show that h• belongs to U .
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The factorizations g = ue, g′ = u′e′, q(h•) = ba provide the following

equalities:

bae = e′h0, h−1u = u′ba.

Since u U → P−1 is a left Λ-approximation and X is projective, there is

a′P−1 → X with a′u = a. Since e′ P ′
0 → U ′ is surjective and X is projective,

there is b′ X → P ′
0 with e′b′ = b.

Finally, we need c P0 → P ′
1 with f ′c = h0 − b′ae. Write f ′ = v′w′ with

w′ epi and v′ mono; in particular, v′ is the kernel of g′. Note that g′b′ae =

u′e′b′ae = u′bae = u′e′h0 = g′h0, thus g′(h0 − b′ae) = g′h0 − g′b′ae = 0,

thus h0 − b′ae factors through the kernel v′ of g′, say h0 − b′ae = v′c′. Since

P0 is projective and w′ is surjective, we find c P0 → P ′
1 with w′c = c′, thus

f ′c = v′w′c = v′c′ = h0 − b′ae.

Altogether, we obtain the following commutative diagram

which is the required factorization of h• (here, the commutativity of the four

squares has to be checked; in addition, one has to verify that the vertical

compositions yield the maps hi; all these calculations are straight forward).

Now consider the functor Hom(−,Λ), it yields a duality

Hom(−,Λ) E(Λ) −→ E(Λop)

which sends U(Λ) onto U(Λop). Thus, we obtain a duality

E(Λ)/U(Λ) −→ E(Λop)/U(Λop).
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Combining the functors considered, we obtain the following sequence

L(Λ)/P(Λ)
q
← E(Λ)/U(Λ)

Hom(−,Λ)
−→ E(Λop)/U(Λop)

q
→ L(Λop)/P(Λop),

this is duality, and we denote it by η.

It remains to show that η is given by the mentioned recipe. Thus, let U

be a torsionless module. Take a projective presentation

P1
f
→ P0

e
→ U → 0

of U , and let mU → P−1 be a left P-approximation of U and g = ue. Then

P• = (P1
f
→ P0

g
→ P−1)

belongs to E and q(P•) = U. The functor Hom(−,Λ) sends P• to

Hom(P•,Λ) = (Hom(P−1,Λ)
Hom(g,Λ)
−→ Hom(P0,Λ)

Hom(f,Λ)
−→ Hom(P1,Λ))

in E(Λop). Finally, the equivalence

E(Λop)/U(Λop)
q
→ L(Λop)/P(Λop)

sends Hom(P•,Λ) to the image of Hom(f,Λ). ���

2. Consequences

(2.1) Corollary. There is a canonical bijection between the isomorphism

classes of the indecomposable torsionless Λ-modules and the isomorphism

classes of the indecomposable torsionless Λop-modules.

Proof. The functor Hom(−,Λ) provides a bijection between the isomor-

phism classes of the indecomposable projective Λ-modules and the isomor-

phism classes of the indecomposable projective Λop-modules. For the non-

projective indecomposable torsionless modules, we use the duality η given

by Theorem 1. ���

Remark. As we have seen, there are canonical bijections between the

indecomposable projective Λ-modules and the indecomposable projective
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Λop-modules, as well between the indecomposable non-projective torsionless

Λ-modules and the indecomposable non-projective torsionless Λop-modules,

both bijections being given by categorical dualities, but these bijections do

not combine to a bijection with nice categorical properties. We will exhibit

suitable examples below.

(2.2) Corollary. If Λ is torsionless-finite, also Λop is torsionless-finite.

Whereas corollaries 2.1 and 2.2 are of interest only for non-commutative

artin algebras, the theorem itself is also of interest for Λ commutative.

(2.3) Corollary. For Λ a commutative artin algebra, the category L/P has

a self-duality.

For example, consider the factor algebra Λ = k[T ]/〈T n〉 of the polyno-

mial ring k[T ] in one variable, where k is a field. Since Λ is self-injective,

all the modules are torsionless. Note that in this case, η coincides with the

syzygy functor Ω.

3. The torsionless and the divisible Λ-modules

Let K = K(Λ) be the class of divisible Λ-modules. Of course, the duality

functor D provides a bijection between the isomorphism classes of divisible

modules and the isomorphism classes of torsionless right modules.

We denote by Q = Q(Λ) the class of injective modules. Clearly, D

provides a duality

D L(Λop)/P(Λop) −→ K(Λ)/Q(Λ).

Thus, we can reformulate theorem 1 as follows: The categories L(Λ)/P(Λ)

and K(Λ)/Q(Λ) are equivalent under the functor Dη. It seems to be worth-

while to replace the functor Dη by the functor Στ . Here, τ is the Auslander-

Reiten translation and Σ is the suspension functor (defined by Σ(V ) =

I(V )/V, where I(V ) is an injective envelope of V ). Namely, in order to

calculate τ(U), we start with a minimal projective presentation f P1 → P0

and take as τ(U) the kernel of

DHom(f,Λ)DHom(P1,Λ) −→ DHom(P0,Λ).
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Now the kernel inclusion τ(U) ⊂ DHom(P1,Λ) is an injective envelope of

τ(U); thus Στ(U) is the image of DHom(f,Λ), but this image is Dη(U).

Thus we see that Theorem 1.1 can be formulated also as follows:

(3.1) Theorem. The categories L(Λ)/P(Λ) and K(Λ)/Q(Λ) are equivalent

under the functor γ = Στ .

(3.2) Corollary. If Λ is torsionless-finite, the number of isomorphism

classes of indecomposable divisible modules is equal to the number of iso-

morphism classes of indecomposable torsionless modules.

(3.3) Examples. We insert here four examples so that one may get a feel-

ing about the bijection between the isomorphism classes of indecomposable

torsionless modules and those of the indecomposable divisible modules.

(1) The path algebra of a linearly oriented quiver of type A3 modulo the

square of its radical.

We present twice the Auslander-Reiten quiver. Left, we mark by + the

indecomposable torsionless modules and encircle the unique non-projective

torsionless module. On the right, we mark by ∗ the indecomposable divisible

modules and encircle the unique non-injective divisible module:

(2) Next, we look at the algebra Λ given by the following quiver with a com-

mutative square; to the right, we present its Auslander-Reiten quiver Γ(Λ)

and mark the torsionless and divisible modules as in the previous example.

Note that the subcategories L and K are linearizations of posets.
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(3) The local algebra Λ with generators x, y and relations x2=y2 and yx=0.

In order to present Λ-modules, we use here the following convention: the bul-

lets represent base vectors, the lines marked by x or y show that the multi-

plication by x or y, respectively, sends the upper base vector to the lower

one (all other multiplications by x or y are supposed to be zero). The upper

line shows all the indecomposable modules in L, the lower one those in K.

Let us stress the following: All the indecomposable modules in L \ P as

well as those in K \ Q are Λ′-modules, where Λ′ = k[x, y]/〈x, y〉2. Note that

the category of Λ′-modules is stably equivalent to the category of Kronecker

modules, thus all its regular components are homogeneous tubes. In L we

find two indecomposable modules which belong to one tube, in K we find

two indecomposable modules which belong to another tube. The algebra

Λ′ has an automorphism which exchanges these two tubes; this is an outer

automorphism, and it cannot be lifted to an automorphism of Λ itself.

(4) In the last example to be presented here, L (and therefore also K) will

be infinite. We consider the quiver

with the relations αβ = βα and αβ′ = β′α, thus we deal with the ten-

sor product Λ of the Kronecker algebra and the path algebra of the quiver

of type A2 (note that tensor products of algebras will be discussed in the

second part of this paper in more detail). For any vertex i, we denote by

S(i), P (i), Q(i) the simple, or indecomposable projective or indecomposable

injective Λ-module corresponding to i, respectively.
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The categories L and K can be described very well using the category of

Kronecker modules. By definition, the Kronecker quiver K has two vertices,

a source and a sink, and two arrows going from the source to the sink. Thus a

Kronecker module is a quadruple (U, V,w,w′) consisting of two vector spaces

U, V and two linear maps w,w′ U → V . We define functors η, η′ mod kK →

modΛ, sending M = (U, V,w,w′) to the representations

these functors η, η′ are full embeddings.

Let us denote by I the indecomposable injective Kronecker module of

length 3, by T the indecomposable projective Kronecker module of length 3,

then clearly

η(I) = radP (1) and η′(T ) = Q(4)/ soc,

and the dimension vector of η(I) is 1022, that of η′(T ) is 2201. If M is an

indecomposable Kronecker module, then either M is simple injective and

η(M) = S(3), or else M is cogenerated by I, and η(M) is cogenerated by

radP (1), thus η(M) is a torsionless Λ-module. Similarly, either M is simple

projective and η′(M) = S(2), or else M is generated by T and η′(M) is

generated by Q(4)/ soc, so that η′(M) is divisible.

On the other hand, nearly all indecomposable torsionless Λ-modules are

in the image of the functor η, the only exceptions are the indecomposable

projective modules P (1), P (3), P (4). Similarly, nearly all indecomposable

divisible Λ-modules are in the image of the functor η′, the only exceptions

are the indecomposable injective modules Q(1), Q(2), Q(4).

Altogether, one sees that the category L has the following Auslander-

Reiten quiver
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where the dotted part are the torsionless modules which are in the image of

the functor η. The category L/P is equivalent under η to the category of

Kronecker modules without simple direct summands.

Dually, the category K has the following Auslander-Reiten quiver:

here, the dotted part are the divisible modules which are in the image of

the functor η′ and we see that now the functor η′ furnishes an equivalence

between the category K/Q and the category of Kronecker modules without

simple direct summands.

Let us add an interesting property of the functor γ.

(3.4) Proposition. Let M be indecomposable, torsionless, but not projec-

tive. Then topM and soc γM are isomorphic.

Proof. In order to calculate γM = ΣτM , we start with a minimal projective

presentation f P1 → P0, apply the functor ν = DHom(−,Λ) to f and take

as γM the image of ν(f). Here, the embedding of γM into νP0 is an injective

envelope. Since P0 is a projective cover of M , we have topP0 ≃ topM ; since

νP0 is an injective envelope of γM , we have soc γM ≃ soc νP0. And of

course, we have topP0 ≃ soc νP0. ���

This property of γ is nicely seen in the last example! Of course, the
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canonical bijection between the indecomposable projective and the inde-

composable injective modules has also this property.

4. The Representation Dimension of a Torsionless-Finite Artin

Algebra

(4.1) Theorem. Let Λ be a torsionless-finite artin algebra. Let M be the

direct sum of all indecomposable Λ-modules which are torsionless or divisible,

one from each isomorphism class. Then the global dimension of End(M) is

at most 3.

Note that such a module M is a generator-cogenerator, thus we see: If

Λ is in torsionless-finite and representation-infinite, then the direct sum of

all Λ-modules which are torsionless or divisible is an Auslander generator.

In particular:

(4.2) Corollary. If Λ is a torsionless-finite artin algebra, then repdimΛ≤3.

For the proof of Theorem 4.1, we need the following lemma which goes

back to Auslander’s Queen Mary notes [2] where it was used implicitly. The

formulation is due to [13] and [12]. Given modules M,X, denote by ΩM(X)

the kernel of a minimal right addM -approximation gMX M ′ → X. By

definition, the M -dimension M -dimX of X is the minimal value i such that

Ωi
M(X) belongs to addM .

(4.3) Auslander-Lemma. Let M be a Λ-module. If M -dimX ≤ d for all

Λ-modules X, then the global dimension of End(M) is less or equal d + 2.

If M is a generator-cogenerator, then also the converse holds: if the global

dimension of End(M) is less or equal d + 2 with d ≥ 0, then M -dimX ≤ d

for all Λ-modules X.

Let us outline the proof of the first implication. Thus, let us assume M -

dimX ≤ d for all Λ-modules X. We want to show that the global dimension

of Γ = End(M)op is less or equal d+ 2.

Given any Γ-module Y , we want to construct a projective Γ-resolution of

length at most d+2. The projective Γ-modules are of the form Hom(M,M ′)
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with M ′ ∈ addM. Consider a projective presentation of Y , thus an exact

sequence

Hom(M,M ′′)
φ
→ Hom(M,M ′)→ Y → 0,

withM ′,M ′′ ∈ addM . Note that φ = Hom(M,f) for some map fM ′′ →M ′.

Let X be the kernel of f , thus Hom(M,X) is the kernel of Hom(M,f) = φ.

Inductively, we construct minimal right addM -approximations

Mi
gi→ Ωi

M (X),

starting with Ω0
M (X) = X, so that the kernel of gi is just Ωi+1

M , say with

inclusion map ui+1 Ω
i+1
M →Mi. Thus, we get a sequence of maps

0→ Ωd
M(X)

ud→ Md−1
ud−1gd−1

−→ Md−2 → · · · → M1
u1g1
−→ M0

f0
→ X → 0

Applying the functor Hom(M,−) to this sequence, we get an exact sequence

0 → Hom(M,Ωd
M (X))→ Hom(M,Md−1)→ · · ·

→ Hom(M,M0)→ Hom(M,X)→ 0

(here we use that we deal with right M -approximations and that Hom(M,−)

is left exact). Since we assume that Ωd
M (X) is in addM , we see that we have

constructed a projective resolution of Hom(M,X) of length d. Combining

this with the exact sequence

0→ Hom(M,X)→ Hom(M,M ′′)
φ
→ Hom(M,M ′)→ Y → 0,

we obtain a projective resolution of the Γ-module Y of length d + 2. This

completes the proof that Γ, and therefore End(M) has global dimension at

most d+ 2. ���

(4.4) Proof of Theorem 4.1. As before, let L be the class of torsionless

Λ-modules, and K be the class of divisible Λ-modules. Since Λ is torsionless-

finite there are Λ-modules K,L with addK = K, and addL = L. Let

M = K ⊕ L. We use the Auslander Lemma.

Let X be a Λ-module. Let U be the trace of K in X (this is the sum of

the images of maps K → X). Since K is closed under direct sums and factor

modules, U belongs to K (it is the largest submodule of X which belongs to
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K). Let pV → X be a right L-approximation of X (it exists, since we assume

that L is finite). Since L contains all the projective modules, it follows that

p is surjective. Now we form the pullback

where uU → X is the inclusion map. Since u is injective, also u′ is injective,

thus W is a submodule of V ∈ L. Since L is closed under submodules, we

see that W belongs to L. On the other hand, the pullback gives rise to the

exact sequence

0 → W





p′

−u′





−→ U ⊕ V

[

u p
]

−→ X → 0

(the right exactness is due to the fact that p is surjective). By construction,

the map
[

u p
]

is a rightM -approximation, thus ΩM (X) is a direct summand

of W and therefore in L ⊆ addM. This completes the proof. ���

5. Classes of Torsionless-Finite Artin Algebras

In the following, let Λ be an artin algebra with radical J .

Before we deal with specific classes of torsionless-finite artin algebras,

let us mention two characterizations of torsionless-finite artin algebras:

(5.1) Proposition. An artin algebra Λ is torsionless-finite if and only

if there exists a faithful module M such that the subcategory of modules

cogenerated by M is finite.

Proof. If Λ is torsionless-finite, we can take M = ΛΛ. Conversely, assume

that M is faithful and that the subcategory of modules cogenerated by M is

finite. Since M is faithful, the regular representation ΛΛ itself is cogenerated

by M , thus all the torsionless-finite Λ-modules are cogenerated by M . This

shows that Λ is torsionless-finite. ���
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Actually, also non-faithful modules can similarly be used in order to

characterize torsionless-finiteness, for example we can take J (considered as

a left Λ-module; note that for a non-zero artin algebra Λ, its radical J is

never faithful, since it is annihilated by the right socle of Λ):

(5.2) Proposition. An artin algebra Λ is torsionless-finite if and only if

the subcategory of modules cogenerated by J is finite.

Proof. On the one hand, modules cogenerated by J are torsionless. Con-

versely, assume that there are only finitely many isomorphism classes of in-

decomposable Λ-modules which are cogenerated by J . Then Λ is torsionless-

finite, according to following lemma. ���

(5.3) Lemma. Let N be an indecomposable torsionless Λ-module. Then

either N is projective or else N is cogenerated by J.

Proof. Let N be indecomposable and torsionless, but not cogenerated by J .

We claim that N is projective. Since N is torsionless, there is an inclusion

map u N → P =
⊕

Pi with indecomposable projective modules Pi. Let

πi P → Pi be the canonical projection onto the direct summand Pi of P and

ǫi Pi → Si the canonical projection of Pi onto its top. If ǫπiu = 0 for all

i, then N is contained in the radical of P , thus cogenerated by J , a con-

tradiction. Thus there is some index i with ǫπiu 6= 0, but this implies that

πiu is surjective. Since this is a surjective map onto a projective module,

we see that πiu is a split epimorphism. But we assume that N is indecom-

posable, thus πiu is an isomorphism. This shows that N ≃ Pi is projective.

Altogether, we see that there are only finitely many isomorphism classes of

indecomposable torsionless Λ-modules, namely those cogenerated by J , as

well as some additional ones which are projective. ���

Here are now some classes of torsionless-finite artin algebras:

(5.4) Artin algebras Λ with Λ/ soc(ΛΛ) representation-finite. Let

N be an indecomposable torsionless Λ-module which is not projective. By

Lemma 5.3, there is an embedding u N → J t for some t. Let I = soc(ΛΛ).

Then u(IN) = Iu(N) ⊆ I(J t) = 0, thus IN = 0. This shows that N is a

Λ/I-module. ThusN belongs to one of the finitely many isomorphism classes

of indecomposable Λ/I-modules. This shows that Λ is torsionless-finite.
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If Jn = 0 and Λ/Jn−1 is representation-finite, then Λ is torsionless-

finite. Namely, Jn−1 ⊆ soc(ΛΛ), thus, if Λ/Jn−1 is representation-finite,

also its factor algebra Λ/ soc(ΛΛ) is torsionless-finite. This shows: If J
n = 0

and Λ/Jn−1 is representation-finite, then the representation dimension of Λ

is at most 3. (Auslander [2], Proposition, p.143)

(5.5) Artin algebras with radical square zero. Following Auslander

(again [2], Proposition, p.143) This is the special case J2 = 0 of 5.4. Of

course, here the proof of the torsionless-finiteness is very easy: An inde-

composable torsionless module is either projective or simple. Similarly, an

indecomposable divisible module is either injective or simple, and any simple

module is either torsionless or divisible. Thus the module M exhibited in

Theorem 4.1 is the direct sum of all indecomposable projective, all indecom-

posable injective, and all simple modules.

(5.6) Minimal representation-infinite algebras. Another special case

of 5.4 is of interest: We say that Λ is minimal representation-infinite provided

Λ is representation-infinite, but any proper factor algebra is representation-

finite. If Λ is minimal representation-infinite, and n is minimal with Jn = 0,

then Λ/Jn−1 is a proper factor algebra, thus representation-finite.

(5.7) Hereditary artin algebras. If Λ is hereditary, then the only tor-

sionless modules are the projective modules and the only divisible modules

are the injective ones, thus the module M of Theorem 4.1 is the direct sum

of all indecomposable modules which are projective or injective. In this way,

we recover Auslander’s result ([2], Proposition, p. 147).

(5.8) Artin algebras stably equivalent to hereditary algebras. Let Λ

be stably equivalent to a hereditary artin algebra. Then an indecomposable

torsionless module is either projective or simple ([4], Theorem 2.1), thus

there are only finitely many isomorphism classes of torsionless Λ-modules.

Dually, an indecomposable divisible module is either injective or simple.

Thus, again we see the structure of the module M of Theorem 4.1 and we

recover Proposition 4.7 of Auslander-Reiten [5].

(5.9) Right glued algebras (and similarly left glued algebras): An artin

algebra Λ is said to be right glued, provided the functor Hom(DΛ,−) is
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of finite length, or equivalently, provided almost all indecomposable mod-

ules have projective dimension equal to 1. The condition that Hom(DΛ,−)

is of finite length implies that there are only finitely many isomorphism

classes of divisible Λ-modules. Also, the finiteness of the isomorphism classes

of indecomposable modules of projective dimension greater than 1 implies

torsionless-finiteness. We see that right glued algebras have representation

dimension at most 3 (a result of Coelho-Platzeck [12]).

(5.10) Special biserial algebras without indecomposable projective-

injective modules. In order to show that these artin algebras are torsion-

less-finite, we need the following Lemma.

Lemma. Let Λ be special biserial and M a Λ-module. The following asser-

tions are equivalent.

(i) M is a direct sum of local string modules.

(ii) αM ∩ βM = 0 for arrows α 6= β.

Proof. (i) =⇒ (ii). We can assume that M is indecomposable, but then

it is obvious that condition (ii) is satisfied.

(ii) =⇒ (i): We can assume that M is indecomposable. For a band

module, condition (ii) is clearly not satisfied. And for a string module M ,

condition (ii) is only satisfied in case M is local. ���

Proof that special biserial algebras without indecomposable projective-

injective modules are torsionless-finite: Assume that Λ is special biserial and

that there is no indecomposable projective-injective module. Then all the

indecomposable projective modules are string modules (and of course local).

Thus any projective module satisfies the condition (i) and therefore also the

condition (ii). But if a module M satisfies the condition (ii), also every

submodule of M has this property. This shows that all torsionless modules

satisfy the condition (ii). It follows that indecomposable torsionless modules

are local string modules, and the number of such modules is finite. ���

It follows from 5.10 that all special biserial algebras have representation

dimension at most 3, as shown in [13]. For the proof one uses the following

general observation (due to [13] in case the representation dimension is 3):
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(5.11) Proposition. Let Λ be an artin algebra. Let P be an indecomposable

projective-injective Λ-module. There is a minimal two-sided ideal I such that

IP 6= 0. Let Λ′ = Λ/I. Then either Λ′ is semisimple or else repdimΛ ≤

repdimΛ′.

Proof. Note that all the indecomposable Λ-modules not isomorphic to P

are annihilated by I, thus they are Λ′-modules.

First assume that Λ is representation finite, thus repdimΛ ≤ 2. Now

Λ′ is also representation finite, and by assumption not semisimple, thus

repdimΛ′ = 2. This yields the claim. (Actually, Λ cannot be semisim-

ple, since otherwise also Λ′ is semisimple, thus repdimΛ = 2 and therefore

repdimΛ = repdimΛ′.)

Now assume that Λ is not representation finite, with representation di-

mension d. Let M ′ be an Auslander generator for Λ′, thus, the second asser-

tion of the Auslander-Lemma asserts that M ′-dimX ≤ d for all Λ′-modules

X. Let M = M ′ ⊕ P . This is clearly a generator-cogenerator. We want to

show the any indecomposable Λ-module has M -dimension at most d (then

End(M) has global dimension at most d and therefore the representation

dimension of Λ is at most d).

Let X be an indecomposable Λ-module. Now X may be isomorphic to

P , then X is in addM , thus its M -dimension is 0.

So let us assume that X is not isomorphic to P , thus a Λ′-module. Let

g M ′′ → X be a minimal right M ′-approximation of X. We claim that g is

even a minimal right M -approximation. Now M ′′ is in addM , thus we only

have to show that any map f Mi → X factors through g, where Mi is an

indecomposable direct summand of M . This is clear in case Mi is a direct

summand of M ′, thus we only have to look at the case Mi = P . But since

X is annihilated by I, the map f P → X vanishes on IP , thus f factors

through the projection map p P → P/IP , say f = f ′p with f ′ P/IP → X.

Since P/IP is an indecomposable projective Λ′-module, it belongs to addM ′,

thus f ′ factors through g, say f ′ = gf ′′ for some f ′′ P/IP → M ′′. Thus

f = f ′p = gf ′′p factors through g. This concludes the proof that g is a

minimal right M -approximation.

Now ΩM (X) is the kernel of g, thus ΩM(X) = ΩM ′(X), in particular,

this is again a Λ′-module. Thus, inductively we see that Ωi
M (X) = Ωi

M ′(X)
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for all i. But we know that Ωd
M(X) = Ωd

M ′(X) is in addM ′, and addM ′ ⊆

addM . This shows that X has M -dimension at most d. ���

There are many other classes of artin algebras studied in the literature

which can be shown to be torsionless-finite, thus have representation dimen-

sion at most 3 (note that also Theorem 5.1 of [32] deals with artin algebras

which are divisible-finite, thus torsionless-finite).

(5.12) Further algebras with representation dimension 3. We have

seen that many artin algebras of interest are torsionless-finite and thus their

representation dimension is at most 3. But we should note that not all artin

algebras with representation dimension at most 3 are torsionless-finite.

Namely, it is easy to construct special biserial algebras which are not

torsionless-finite. And there are also many tilted algebras as well as canonical

algebras which are not torsionless-finite, whereas all tilted and all canoni-

cal algebras have representation-dimension at most 3, see Assem-Platzeck-

Trepode [1] and Oppermann [23]. Actually, as Happel-Unger [15] have

shown, all piecewise hereditary algebras have representation dimension at

most 3 (an algebra Λ is said to be piecewise hereditary provided the derived

category Db(modΛ) is equivalent as a triangulated category to the bounded

derived category of some hereditary abelian category), but of course not all

are torsionless-finite.
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Part II. The Oppermann Dimension

and Tensor Products of Algebras

We consider now k-algebras Λ, where k is a field.

6. Oppermann Dimension

(6.1) Let R = k[T1, . . . , Td] be the polynomial ring in d variables with co-

efficients in k and MaxR its maximal spectrum, this is the set of max-

imal ideals of R endowed with the Zariski topology. For example, given

α = (α1, . . . , αd) ∈ kd, there is the maximal ideal mα = 〈Ti−αi | 1 ≤ i ≤ d〉.

In case k is algebraically closed, we may identify in this way kd with MaxR,

otherwise kd yields only part of MaxR. In general, we will denote an element

of MaxR by α (or also by mα, if we want to stress that we consider α as

a maximal ideal), and Rα will denote the corresponding localization of R,

whereas Sα = R/mα is the corresponding simple R-module (note that all

simple R-modules are obtained in this way). For any ring A, let finA be the

category of finite length A-modules.

By definition, a Λ⊗k R-lattice L is a finitely generated Λ⊗k R-module

which is projective (thus free) as an R-module, we also will say that L is a

d-dimensional lattice for Λ. Given a Λ ⊗k R-lattice L, we may look at the

functor

L⊗R − finR −→ modΛ.

Since LR is projective, this is an exact functor. This means that given an

exact sequence of R-modules, applying L⊗R− we obtain an exact sequence

of Λ-modules. Thus, if M,N are R-modules, and d is a natural number,

then looking at an element of ExtdR(M,N), we may interpret this element

as the equivalence class [ǫ] of a long exact sequence ǫ starting with N and

ending in M , and we may apply L⊗R − to ǫ. We obtain in this way a long

exact sequence L⊗R ǫ starting with L⊗RN and ending with L⊗RM and its

equivalence class [L⊗R ǫ] in ExtdΛ(L⊗R M,L⊗R N). Since this equivalence

class [L ⊗R ǫ] only depends on [ǫ], we obtain the following function, also

denoted by L⊗R −:

L⊗R− ExtdR(M,N) −→ ExtdΛ(L⊗RM,L⊗RN), with (L⊗R−)[ǫ]=[L⊗R ǫ].

We say that L is a d-dimensional Oppermann lattice for Λ provided the
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set of α ∈ MaxR such that

(L⊗R −)
(

ExtdR(finRα,finRα)
)

6= 0,

is dense in MaxR; this means that for these α ∈ MaxR, there are modules

M,N ∈ finRα with

(L⊗R −)
(

ExtdR(M,N)
)

6= 0.

Actually, instead of looking at all the modules in finRα, it is sufficient to

deal with the simple module Sα. One knows that the R-module ExtdR(Sα, Sα)

is annihilated by mα and is one-dimensional as an R/mα-space; it is gener-

ated as an R/mα-space by the equivalence class of a long exact sequence of

the form

ǫα 0→ Sα →M1 → · · · →Md → Sα → 0

with Rα-modules Mi which are indecomposable and of length 2. If we tensor

this exact sequence with L, we obtain an exact sequence

L⊗R ǫα 0→ L⊗R Sα → L⊗R M1 → · · · → L⊗R Md → L⊗R Sα → 0

which yields an equivalence class [L⊗R ǫα] in ExtdΛ(L⊗R Sα, L⊗R Sα). It is

easy to see that the following conditions are equivalent:

(i) (L⊗R −)
(

ExtdR(finRα,finRα)
)

6= 0,

(ii) [L⊗R ǫα] 6= 0 as an element of ExtdΛ(L⊗R Sα, L⊗R Sα).

Thus we see: The d-dimensional lattice L is an Oppermann lattice for Λ

provided the set of α ∈ MaxR such that [L⊗R ǫα] is a non-zero element of

ExtdR(Sα, Sα) is dense in MaxR.

By definition, the Oppermann dimension OdimΛ of Λ is the supremum

of d such that there exists a d-dimensional Oppermann lattice L for Λ.

(6.2) Examples.

(a) Let Λ be the path algebra of a representation-infinite quiver. Then

OdimΛ = 1.

(b) Let Λ be a representation-infinite k-algebra, where k is an algebraically

closed field. Then OdimΛ ≥ 1.



2012] ON THE REPRESENTATION DIMENSION OF ARTIN ALGEBRAS 55

Proof.

(a) The usual construction of one-parameter families of indecomposable Λ-

modules for a representation-infinite quiver shows that OdimΛ ≥ 1. On

the other hand, the path algebra of a quiver is hereditary, thus Ext2Λ = 0.

This shows that the Oppermann dimension can be at most 1.

(b) This follows from the proof of the second Brauer-Thrall conjecture by

Bautista [7] and [9], see also [10] and [29], [30]. ���

The following result of Oppermann ([21], Corollary 3.8) shows that

OdimΛ is always finite and that one obtains in this way an interesting lower

bound for the representation dimension:

(6.3) Theorem (Oppermann). Let Λ be a finite-dimensional k-algebra

which is not semisimple. Then

OdimΛ + 2 ≤ repdimΛ.

One may ask whether one always has the equality OdimΛ+2=repdimΛ,

this can be considered as a formidable extension of the assertion of the second

Brauer-Thrall conjecture.

7. Tensor Products of Artin Algebras

Quite a long time ago, Changchang Xi [32] has shown the following

inequality: Given finite-dimensional k-algebras Λ,Λ′,

repdimΛ⊗k Λ
′ ≤ repdimΛ + repdimΛ′,

provided k is a perfect field. This provides an upper bound for the repre-

sentation dimension of Λ⊗k Λ
′. But there is also a lower bound, which uses

the Oppermann dimension. Let us draw attention to the following fact:

(7.1) Theorem. Let Λ,Λ′ be finite-dimensional k-algebras. Let L be an

Oppermann lattice for Λ and L′ an Oppermann lattice for Λ′. Then L⊗k L
′

is an Oppermann lattice for Λ⊗k Λ
′.

Proof. Theorem 7.1 is an immediate consequence of Theorem 3.1 in Chapter

XI of Cartan-Eilenberg [11].
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Namely, let L be a d-dimensional Oppermann lattice for Λ and L′ a

d′-dimensional Oppermann lattice for Λ′. Thus, L is an R-lattice with R =

k[T1, . . . , Td] and say L′ is an R′-lattice, where R′ = k[T ′
1, . . . , T

′

d′ ] (with new

variables T ′

i ). For α ∈ MaxR we choose an exact sequence ǫα such that its

equivalence class [ǫα] generates ExtdR(Sα, Sα); similarly, for α′ ∈ MaxR′ we

choose an exact sequence ǫα′ such that its equivalence class [ǫα′ ] generates

Extd
′

R′(Sα′ , Sα′);

Since L is an Oppermann lattice for Λ, the set of elements α ∈ MaxR

such that [L ⊗R ǫα] 6= 0 is dense in MaxR. Similarly, since L′ is an Opper-

mann lattice for Λ′, the set of elements α′ ∈ MaxR′ such that [L′⊗R′ ǫα′ ] 6= 0

is dense in MaxR′.

Now L⊗k L
′ is a Λ⊗k Λ

′ ⊗k R⊗k R
′-lattice and we may look at

(L⊗k L
′)⊗R⊗R′ (ǫα ∨ ǫα′).

We claim that its equivalence class is non-zero in the extension group

Extd+d′

Λ⊗Λ′(L⊗L′⊗S(α,α′), L⊗L′⊗S(α,α′)). This is a special case of Theorem

XI.3.1 of Cartan-Eilenberg which asserts the following: Let Λ,Λ′ be left

noetherian k-algebras, where k is a semisimple commutative ring. Let M be

a finitely generated Λ-module and M ′ a finitely generated Λ′-module. Then

the canonical map

∨ ExtdΛ(M,N)⊗k Ext
d′

Λ′(M ′, N ′) −→ Extd+d′

Λ⊗kΛ′(M ⊗k M
′, N ⊗k N

′)

is an isomorphism for any Λ-module N , Λ′-module N ′ and all d, d′ ∈ N.

It remains to note that for dense subsets X of MaxR and X ′ of MaxR′,

the product X ×X ′ is of course dense in MaxR⊗k R
′. ���

(7.2) Corollary. Let Λ,Λ′ be finite-dimensional k-algebras. Then

OdimΛ⊗k Λ
′ ≥ OdimΛ +OdimΛ′.

Note that it is easy to provide examples where we have strict inequal-

ity: just take representation-finite algebras Λ,Λ′ such that the Oppermann

dimension of Λ⊗k Λ
′ is at least 1, for example consider Λ = Λ′ = k[T ]/〈T 2〉,

or take Λ,Λ′ path algebra of quivers of type An with n ≥ 3. Note that
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the representation type of the tensor product of any two nonsimple con-

nected k-algebras with k an algebraically closed field, has been determined

by Leszczyński and A.Skowroński [20].

The combination of the inequalities 6.3 and 7.2 yields:

(7.3) Corollary. Let Λ1, . . . ,Λn be finite-dimensional k-algebras. Then

repdimΛ1 ⊗k · · · ⊗k Λn ≥ 2 +
∑n

i=1
OdimΛi.

In particular, we see: Let Λ be the tensor product of n k-algebras with

Oppermann dimension greater or equal to 1. Then rep dimΛ ≥ n+2. Using

6.2, we see:

(7.4) Corollary.

(a) If Λ is the tensor product of n path algebras of representation-infinite

quivers, then repdimΛ ≥ n+ 2.

(b) If k is an algebraically closed field and Λ is the tensor product of n

representation-infinite k-algebras, then repdimΛ ≥ n+ 2.

As Happel has pointed out, the following remarkable consequence should

be stressed: If Λ1,Λ2 are representation-infinite path algebras, then Λ1 ⊗

Λ2 is never a tilted algebra. After all, tilted algebras have representation

dimension at most 3, whereas we have shown that repdimΛ1 ⊗k Λ2 ≥ 4.

8. Nicely Tiered Algebras

LetQ be a finite connected quiver. We say that Q is tiered with n+1 tiers

provided there is a surjective function l Q0 → [0, n] = {z ∈ Z | 0 ≤ z ≤ n}

such that for any arrow x → y one has l(x) = l(y) + 1. Such a function l,

if it exists, is uniquely determined and is called the tier function for Q and

l(x) is said to be the tier (or the tier number) of the vertex x. We say that

Q is nicely tiered with n + 1 tiers provided Q is tiered with n + 1 tiers, say

with tier function l such that l(x) = 0 for all sinks x, and l(x) = n for all

sources x. Clearly, Q is nicely tiered if and only if Q has no oriented cyclic

paths and any maximal path has length n. The tier function l of a nicely
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tiered quiver Q can be characterized as follows: the tier number l(x) of a

vertex x is the length of any maximal path starting in x.

Let Q be a nicely tiered quiver and M a representation of Q. We denote

by M |[a, b] the restriction of M to the subquiver of all vertices x with a ≤

l(x) ≤ b. We say that a module lives in the interval [a, b] provided M =

M |[a, b]. We say that a module M is generated in tier a provided its top

lives in [a, a]. Dually, M is said to be cogenerated in tier a provided its socle

lives in [a, a]. Given a module M , and t ∈ N0, let tM be its t-th socle (thus,

there is the sequence of submodules

0 = 0M ⊆ 1M ⊆ · · · ⊆ tM ⊆M

such that tM/t−1M = soc(M/t−1M) for all t ≥ 1).

We say that an algebra is nicely tiered provided it is given by a nicely

tiered quiver and a set of commutativity relations. Let Λ be nicely tiered.

Then it follows: local submodules of projective modules are projective, colo-

cal factor modules of injective modules are injective. In particular: the socle

of any projective module has support at some of the sinks, the top of any

injective module has support at some of the sources. The Loewy length of a

nicely tiered algebra with n+1 tiers is precisely n+1. Of special interest is

the following: For a nicely tiered algebra, any indecomposable module which

is projective or injective is solid (an indecomposable module over an artin

algebra is said to be solid provided its socle series coincides with its radical

series).

(8.1) Proposition. Let Λ be nicely tiered algebra with n+1 tiers. Assume

that the following conditions are satisfied for all indecomposable projective

modules P,P ′ of Loewy length at least 3:

(P1) The module 2P is a brick (this means that any non-zero endomorphism

is an automorphism).

(P2) If Hom(2P, 2P
′) 6= 0, then P can be embedded into P ′.

Let M be the direct sum of the modules tP with P indecomposable projective

and t ≥ 2 as well as the modules tQ with Q indecomposable injective, and

t ≥ 1. Then End(M) has global dimension at most n+ 2.
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Remark. Note that the moduleM considered in 8.1 is both a generator and

a cogenerator, thus the number n+2 is an upper bound for the representation

dimension of Λ. Here we encounter again a class of algebras Λ where one

now knows that repdimΛ ≤ LL(Λ) + 1.

The proof of Proposition 8.1 follows the strategy of Iyama’s proof [17] of

the finiteness of the representation dimension, as well as subsequent consid-

erations by Oppermann [21], Corollary A1 (but see already [2] as well as

several joint papers with Dlab). It relies on the following lemma shown

in [28]:

(8.2) Lemma. Let

∅ =M−1 ⊆M0 ⊆ · · · ⊆ Mn+1 =M

be finite sets of indecomposable Λ-modules. Let M be a Λ-module with

addM = addM and Γ = End(M)op.

Assume that for any N ∈ Mi there is a monomorphism uαN → N with

αN ∈ addMi−1 such that any radical map φN ′ → N with N ′ ∈ Mi factors

through u.

Then the global dimension of Γ is at most n+ 2.

Let us outline the proof of 8.2. We consider the indecomposable pro-

jective Γ-modules Hom(M,N), where N is indecomposable inM. Assume

that N belongs to Mi and not to Mi−1, for some i. Since N is not in

Mi−1, we see that u is a proper monomorphism. Let ∆(N) be the cokernel

of Hom(M,u), thus we deal with the exact sequence

0→ Hom(M,αN)@ > Hom(M,u) >> Hom(M,N)→ ∆(N)→ 0.

We see that ∆(N) is the factor space of Hom(M,N) modulo those maps

M → N which factor through u, thus through addMi−1.

The assumption that any radical map φ N ′ → N with N ′ ∈ Mi factors

through u means the following: if we consider ∆(N) as a Γ-module, then

it has one composition factor of the form S(N) = topHom(M,N), all the

other composition factors are of the form S(N ′) = topHom(M,N ′) with N ′

an indecomposable module inM which does not belong toMi.
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Since αN belongs to addMi−1, the projective Γ-module Hom(M,αN)

is a direct sum of modules Hom(M,N ′) with N ′ inMi−1.

This shows that Γ is left strongly quasi-hereditary with n + 2 layers,

thus has global dimension at most n+ 2, according to [28]. ���

(8.3) Proof of 8.1. Let Λ be a nicely tiered algebra with n+ 1 tiers such

that the conditions (P1) and (P2) are satisfied.

The conditions (P1) and (P2) imply that corresponding properties are

satisfied for tP with t > 2.

(P1t) The module tP is a brick.

(P2t) If Hom(tP, tP
′) 6= 0, then P can be embedded into P ′.

Proof. Let f tP → tP
′ be a non-zero homomorphism. Then also f |2P is

non-zero, since otherwise f would vanish at the tier 0, but the socle of P

lives at the tier 0. Thus, any non-zero endomorphism of tP yields a non-zero

endomorphism of 2P , by (P1) this is an isomorphism; but if f |2P has zero

kernel, the same is true for f 2P → 2P ; thus f is a mono endomorphism,

therefore an automorphism. This shows (P1t). Similarly, if f tP → tP
′ is

non-zero, then also f |2P is non-zero, therefore P can be embedded into P ′

by (P2). ���

We define sets of indecomposable modules Pi,Qi as follows:

Let Pi be the set of modules tP , where P is indecomposable projective,

t ≥ 2 and LL(P )− t = i. The modules in Pi are indecomposable, according

to condition (P1), see 8.1. The non-empty sets Pi are P0,P1, . . . ,Pn−1;

the modules in P0 are the indecomposable projective modules which are not

simple, those in Pn−1 are the modules of the form 2P with P generated at

tier n.

Let us collect some properties of the modules N in Pi. Such a module

is generated at tier g with 1 ≤ g ≤ n − i. (Namely, if P is indecomposable

projective, then tP is of Loewy length t, thus generated at g = t− 1. Since

t ≥ 2, we have g ≥ 1. Since P is of length l ≤ n + 1, we have t = l − i ≤

n+ 1− i, thus g = t− 1 ≤ n− i.) The module N lives in [0, n − i] (since it

is generated at tier g ≤ n− i), its socle lives at the vertices with tier 0, and

the Loewy length of such a module N satisfies 2 ≤ LL(N) ≤ n− i+ 1.
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Let Qi be the set of non-zero modules iQ with Q indecomposable injec-

tive and i ≤ LL(Q). If Q is cogenerated at tier j, where 0 ≤ j ≤ n, then

LL(Q) = n − j + 1, thus 1 ≤ i ≤ n − j + 1 implies that 0 ≤ j ≤ n − i + 1.

The non-empty sets Qi are Q1, . . . ,Qn+1. The modules in Q1 are just all the

simple modules.

Since i ≥ 1, the module iQ is a non-zero submodule of Q, thus has

simple socle and therefore is indecomposable. And again, we mention some

additional properties for a module N in Qi. It is generated at tier g with

i− 1 ≤ g ≤ n, it lives in [i− 1, n] and its Loewy length is precisely i.

Claim. If N is in Pi, then either radN belongs to Pi+1, or else radN is

semisimple and thus belongs to addQ1. If N in Qi with i ≥ 2, then radN

belongs to Qi−1.

Proof. Let P be indecomposable projective of length l. If t = l−i ≥ 3, then

N = tP belongs to Pi and radN = t−1P belongs to Pi+1. If t = l − i = 2,

then N = tP has Loewy length 2, thus radN = 1P is semisimple, and thus

belongs to addQ1.

On the other hand, for N = iQ, we have radN = i−1Q, and n− i+1 <

n− (i− 1)− 1. ���

Now, let Mi be the union of all the sets Pj with j ≥ n + 2 − i as well

as the sets Qj with j ≤ i. Thus,

Mn+2 = P0 ∪ Mn+1

Mn+1 = P1 ∪ Qn+1 ∪ Mn

Mn = P2 ∪ Qn ∪ Mn−1

...

Mi = Pn+2−i ∪ Qi ∪ Mi−1

...

M3 = Pn−1 ∪ Q3 ∪ M2

M2 = Q2 ∪ M1

M1 = Q1

M0 = ∅
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As we have shown: IfN belongs toMi for some i, then radN is in addMi−1.

Thus, let αN = radN and uαN → N the inclusion map. We want to verify

that we can apply Lemma 8.2.

Thus, we have to show that for N ∈ Mi any non-zero radical map

f N ′ → N with N ′ ∈ Mi maps into radN . We can assume that N /∈ Mi−1,

thus N belongs either to Pn+2−i or to Qi.

First, let us assume that N ∈ Qi, thus N has Loewy length i. If N ′ ∈

Pn+2−j with j ≤ i, then, N ′ has Loewy length at most n− (n+2− j)+ 1 =

j− 1 ≤ i− 1. Similarly, if N ′ ∈ Qj , with j < i, then the Loewy length of N ′

is at most i− 1. In both cases, we see that the image of any map f N ′ → N

lies in radN . Thus, it remains to consider the case that N ′ ∈ Qi, so that N ′

has also Loewy length i. Now N ′ has a simple socle. If f vanishes on the

socle, then again the image of f has socle length at most i− 1 and thus lies

in radN . If f does not vanish on the socle, then f is a monomorphism. But

N ′ is relative injective in the subcategory of all modules of Loewy length at

most i, thus f is a split monomorphism, thus not a radical morphism.

Second, we assume that N ∈ Pn+2−i. First, consider the case that N ′ ∈

Qj with j ≤ i. Now the socle of N lives at tier 0, thus the image of f (and

therefore N ′ itself) must have a composition factor at tier 0. This shows

that N ′ = jQ with Q the injective envelope of a simple at tier 0 and that

f is injective. Assume that the image of f does not lie in radN , then the

Loewy length of N has to be equal to j. But jQ is relative injective in the

subcategory of all modules of Loewy length at most j, thus f N ′ → N is a

split mono, thus not a radical map.

Finally, there is the case that N ′ ∈ Pn+2−j with j ≤ i. Let N = tP and

N ′ = t′P
′ with P of Loewy length l and P ′ of Loewy length l′. If t′ < t, then

f t′P
′ → tP maps into the radical of tP. If t

′ > t, then Hom(t′P
′, tP ) = 0,

since t′P
′ is generated at the tier t′, and tP lives at the tiers [0, t]. Thus, we

can assume that t′ = t. Since j ≤ i, we see that LL(P ′) = n + 2 − j + t ≥

n + 2 − i + t = LL(P ). If Hom(tP
′, tP ) 6= 0, then P ′ can be embedded

into P , according to condition (P1), thus LL(P ′) ≤ LL(P ) and therefore

LL(P ′) = LL(P ). But if P ′ is isomorphic to a submodule of P and both

have the same Loewy length, then P ′ and P are isomorphic and therefore

also tP
′ and tP are isomorphic. But then we use (P1t) in order to see that



2012] ON THE REPRESENTATION DIMENSION OF ARTIN ALGEBRAS 63

any non-zero homomorphism tP
′ → tP is an isomorphism. This contradicts

the assumption that there is a non-zero radical map tP
′ → tP . ���

Remark. One should be aware that the classes Pj andQi are not necessarily

disjoint. A typical example is the fully commutative square

(say with arrows pointing downwards). This is a nicely tiered algebra with

3 tiers. There is an indecomposable module P which is projective-injective,

it belongs both to P0 and to Q3.

(8.4) Let us add some examples of nicely tiered algebras which do not

satisfy the conditions (P1), (P2), respectively. Again, we present the quivers

by just indicating the corresponding edges; all the arrows are supposed to

point downwards.

In the example left, 2P (c) is decomposable. In the middle example, we con-

sider the path algebra of the quiver with the commutativity relation. Then

both 2P (a) and 2P (a′) are indecomposable. We see that Hom(2P (a), 2P (a′))

6= 0, but P (a) cannot be embedded into P (a′). On the right, we see a further

example where the condition (P1), but not the condition (P2) is satisfied.

9. Tensor Products of Path Algebras of Bipartite Quivers

Recall that a finite quiver is said to be bipartite if and only if every

vertex is a sink or a source. Thus, a quiver Q is bipartite if and only if its

path algebra is a finite dimensional algebra with radical square zero.

(9.1) Theorem. Let Λ1, . . .Λn be path algebras of bipartite quivers. Then

the algebra Λ = Λ1⊗k · · · ⊗k Λn has representation dimension at most n+2.
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For the proof, we want to use Proposition 8.1. Of course, we can as-

sume that all the algebras Λi are connected and not simple, thus tiered with

precisely 2 tiers. In order to show that Λ is tiered with n + 1 tiers, we use

induction and the following general result:

(9.2) The tensor product of nicely tiered algebras with n1 + 1 and n2 + 1

tiers respectively is nicely tiered with n1 + n2 + 1 tiers.

Proof. Let Λ1 and Λ2 be nicely tiered algebras with n1 + 1 and n2 +1 tiers,

respectively. Let Q(1) be the quiver of Λ1 and Q(2) that of Λ2. Then the

quiver of Λ1 ⊗k Λ2 is Q = Q(1) ⊗ Q(2), this is the quiver with vertex set

Q
(1)
0 × Q

(2)
0 , and with arrow set (Q

(1)
1 × Q

(2)
0 ) ∪ (Q

(1)
0 × Q

(2)
1 ); here, given

an arrow α1 x1 → y1 in Q(1), and a vertex z2 of Q(2), there is the arrow

α1z2 x1z2 → y1z2, and similarly, given a vertex x1 of Q(1) and an arrow

β2 y2 → z2 in Q(2), there is the arrow x1β2 x1y2 → x1z2. (When writing

down an element of a product U × V , we just write uv instead of (u, v), for

u ∈ U and v ∈ V .)

For example, in case we consider the tensor product of two copies of the

Kronecker algebra, say with quivers Q(1) and Q(2), we obtain the following

quiver Q = Q(1) ⊗Q(2):

Here, the arrows of Q(1) as well as those of Q which belong to Q
(1)
1 × Q

(2)
0

are shown as solid arrows, those of Q(2) as well as those of Q which belong

to Q
(1)
0 ×Q

(2)
1 are shown as dashed ones.

Now suppose that Q(1), Q(2) are nicely tiered, with n1+1 and n2+1 tiers,

and tier functions l1, l2 respectively. Given vertices x1 ∈ Q
(1)
0 and x2 ∈ Q

(2)
0 ,

define l(x1x2) = l1(x1) + l2(x2). This defines a function Q
(1)
0 × Q

(2)
0 → Z

with values in the interval [0, n+n′]. For a sink x1x2 of Q(1)⊗Q(2), we have

l(x1x2) = 0, for a source (x1x2) of Q(1) ⊗ Q(2), we have l(x1x2) = n1 + n2
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and given an arrow of Q(1) ⊗Q(2), the value of l decreases by 1. This shows

that we obtain a tier function for a nicely tiered quiver.

Finally, we have to note that the relations of Λ1⊗kΛ2 are obtained from

the relations of Λ1 and Λ2 and adding commutativity relations; thus, if Λ1

and Λ2 are defined by using only commutativity relations, the same is true

for Λ1 ⊗k Λ2.

(9.3) Let Λ1, . . .Λn be path algebras of bipartite quivers. Then Λ = Λ1 ⊗k

· · · ⊗k Λn satisfies the conditions (P1) and (P2).

Proof. Let us introduce some notation concerning tensor products Λ =

Λ1 ⊗k · · · ⊗k Λn, where any Λi is the path algebra of a finite directed quiver

Q(i). The quiver Q of Λ is given as follows: The set of vertices is the set

Q
(1)
0 × · · · × Q

(n)
0 , an element of this set will be denoted by x = x1x2 · · · xn

with xi ∈ Q
(i)
0 for 1 ≤ i ≤ n. Given such a vertex x, we are interested in the

corresponding indecomposable projective module P (x).

Let W (xi, yi) be the set of paths in Q(i) starting in xi and ending in

yi, this may be considered as a basis of P (xi)yi and therefore we may take

as basis of P (x)y, where x, y are vertices of Q, the product set W (x, y) =

W (x1, y1)×· · ·×W (xn, yn); we call this the path basis of P (x). In particular,

we see: a vertex y belongs to the support of P (x) if and only if there are

paths starting at xi and ending in yi, for 1 ≤ i ≤ n.

Now assume that Q(i) a bipartite, thus any path in Q(i) is of length at

most 1, thus either a vertex or an arrow. We want to describe the represen-

tation 2P (x) for any vertex x = x1 . . . xn of Q. Note that the support quiver

of 2P (x) will again be bipartite. We can assume that t of the vertices xi are

sources, and the remaining ones sinks. Thus, up to a permutation we can

assume that x = x1 · · · xn with sources xi for 1 ≤ j ≤ t and sinks xj = zj

for t+1 ≤ j ≤ n. The support S of the socle of P (x) consists of the vertices

z = z1 · · · zn where zi is a sink in the quiver Q(i) such that there is a path

from xi to zi, for any 1 ≤ i ≤ t.

Given an n-tuple u1u2 · · · un where the ui are elements of some sets (say

of vertices or arrows of some quivers), and vj is a further element, then we

denote by u[vj = u1 . . . uj−ivjuj+1 · · · un the element obtained from u by

replacing its entry at the position j by vj .
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Using this notation, the vertices in the support of 2P (x) with tier number

1 are of the form y = z[xj and the arrows of the support are of the form

z[αj , always with z ∈ S, and with arrows αj xj → zj , and 1 ≤ j ≤ t.

If we are interested in the structure of P (x), we may assume that all the

vertices xj are sources, thus that t = n (namely, if for example xn is a sink,

then P (xn) is one-dimensional and thus P (x) = P (x1 · · · xn−1)⊗kP (xn) can

be identified with the (Λ1 ⊗k · · · ⊗k Λn−1)-module P (x1 · · · xn−1)).

Given a vertex x of Q, we may look at the coefficient quiver Θ(x) of

P (x) with respect to its path basis (for the definition, see [R2]). If we look

at our example of the tensor product of two copies of the Kronecker algebra,

and consider the unique source x = x1x2 of Q, then the coefficient quiver

Θ(x) of P (x) with respect to the path basis looks as shown on the right:

On the left, we present again the quiver of Q = Q(1) ⊗Q(2), but now using

the notation z[? for the vertices with tier number 1 as well as the arrows

ending in z.

Now we are going to look at 2P (x). Let z ∈ S and take an arrow

αj xj → zj , let y = z[xj , this is a vertex with tier number 1. The vector

spaces P (x)y, P (x)z and the linear map P (x)z[αj
are given as follows: Since

z belongs to S, there is an arrow xi → zi for any i and W (x, z) is a basis

of P (x)z (note that here W (xi, zi) is the set of arrows xi → zi for all i).

Similarly, for y = z[xj , the space P (x)y has as a basis the set of elements

of the form α[xj with α ∈W (x, z), and the linear map z[αj P (x)y → P (y)z
sends α[xj to α[αj .
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In the coefficient quiver 2Θ(x) of 2P (x), any sink α is the end point of

precisely n arrows, namely the arrows labeled z[αj z[xj → z, where αj ∈

W (xj, zj). It follows that the one-dimensional vector space kα generated by

α is the intersection of the images of the maps

kα =
n
⋂

j=1

Im
(

z[αj P (x)z[xj
−→ P (x)z

)

.

As a consequence, any endomorphism of 2P (x) will map the element α of

P (x)z onto a multiple of α.

We claim that the coefficient quiver 2Θ(x) of 2P (x) with respect to the

path basis is connected. Namely, given a sink α = α1 · · ·αn of 2Θ(x), and

any arrow α′

j xj → z′j in Q(j) different from αj , there is a path of length 2

in 2Θ(x) starting in α and ending in α[α′

j , namely

Thus, given two sinks of 2Θ(x), say α = α1 · · ·αn and α′ = α′
1 · · ·α

′
n, we

may replace successively αj by α′

j and obtain a path of length at most 2n

starting in α and ending in α′.

In order to deal with the conditions (P1) and (P2), we consider maps

f 2P (x) → M with M = P (x′) for some vertex x′. Actually, the essential

property ofM which we will need is that all the maps used inM are injective.

Thus, let M be the set of Λ-modules M such that all the maps used are

injective. Clearly, all the indecomposable projective Λ-modules, and even

all their submodules belong toM.

Consider f 2P (x) → M with M ∈ M. We show: Given any arrow

α[xj → α in the coefficient quiver, then f(α) = 0 if and only if f(α[xj) = 0.

Proof. Clearly, if f(α[xj) = 0, then also f(α) = 0, since α is a multiple of

α[xj . Thus, conversely, let us assume that f(α) = 0. There is the following

commutative diagram
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with α[xj being sent by the left vertical map to α. Since the right vertical

map is injective, the vanishing of fz(α) implies that also f(α[xj) = 0.

As a consequence of the connectivity of the coefficient quiver of 2P (x)

we conclude: If f(α) = 0 for some α, then f = 0. ���

Condition (P1). Let f be an endomorphism of 2P (x). Assume that

f is not a monomorphism. Since f maps any basis vector α of the socle

of 2P (x) onto a multiple of itself, we see that there has to be such a basis

element α with f(α) = 0. But then f = 0. Condition (P2). Assume there is

given a non-zero homomorphism f 2P (x)→M with M ∈ M. Assume that

f(P (x)z[xj
) = 0. Of course, then also f(P (x)z) = 0. Thus, it follows again

that f = 0.

Thus we see: if there is a non-zero homomorphism f 2P (x) → P (x′),

then all the elements z[xj with 1 ≤ j ≤ t are in the support of P (x′), and

therefore x′j = xj . It follows that P (x) is a submodule of P (x′). ���

Remark. An alternative way for proving Theorem 9.1 is as follows. First,

consider the special case where none of the quivers Q(i) has multiple arrows.

Under this assumption all the indecomposable projective Λ-modules are thin,

thus we do not have to worry about bases. The general case can then be

obtained from this special case using covering theory.

(9.4) Corollary. Let Λ1, . . .Λn be path algebras of representation-infinite

bipartite quivers. The algebra Λ = Λ1 ⊗k · · · ⊗k Λn has representation di-

mension precisely n+ 2.

Proof. This follows directly from the inequalities 7.5 and and 9.1. ���

The special case of the 2-fold tensor power of the Kronecker algebra

has been exhibited by Oppermann in [22], when he considered one-point

extensions of wild algebras. This example was the starting point for our

investigation.
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19. Z. Leszczyński, On the representation type of tensor product algebras, Fund. Math.,
144 (1994), 143-161.
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