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Abstract

We study the quantum symmetric spaces for quantum general linear groups modulo

symplectic groups. We first determine the structure of the quotient quantum group and

completely determine the quantum invariants. We then derive the characteristic property

for quantum Phaffian as well as its role in the quantum invariant sub-ring. The spherical

functions, viewed as Macdonald polynomials, are also studied as the quantum analog of

zonal spherical polynomials.

1. Introduction

The regular representation of GL(n,C) can be realized on the ring

A(X) = C[x11, x12, . . . , xnn] (1)

where regular functions are polynomials of the matrix elements of the n×n

matrices. It is well known that A(X) is a completely reducible GL(n,C)-

module and the associated irreducible polynomial sub-representations are

parametrized by the set of partitions

Pn = {λ = (λ1, . . . , λn) ∈ Zn ; λ1 ≥ · · · ≥ λn ≥ 0} . (2)
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For a given λ ∈ Pn, there is a unique (up to isomorphism) irreducible repre-

sentation V (λ) with highest weight λ. Similarly, one considers the modules

A(Sym(n)) of the polynomials in the coordinates of the n × n symmetric

matrix, and the module A(Skew(2n)) of the polynomials in the coordinates

of the 2n × 2n skew symmetric matrix. These representations decompose

into the multiplicity free sums [4, 3]:

A(Sym(n)) ≃
⊕

λ∈Pn

V (2λ) (3)

A(Skew(2n)) ≃
⊕

λ∈P2n

V (λ1, λ1, λ2, λ2, . . . , λn, λn), (4)

which are invariant under the action of O(n,C) and Sp(2n,C) respectively.

As L. Hua first noticed and A. James later formulated that the On and

Sp2n invariants are one dimensional and the zonal spherical functions enjoy

similar properties of Schur symmetric functions [4, 6, 13].

In the case of quantum analog of the symmetric pair of general linear

groups and symplectic groups, Noumi and Letzter [15, 12] showed that the

quantum spherical functions are indeed certain Macdonald symmetric func-

tions by working on the quantum algebra of the enveloping algebras. We

will study directly the quantum invariant ring as a subring of the quantum

general linear group. As in [8], we compute the Hopf ideal of quantum invari-

ants for the symplectic case using certain quadratic polynomials of matrix

coefficients of quantum general linear groups.

A new feature in current work on quantum invariants is that we will

study the important role played by Pfaffian as in the classical symplectic

case. In the quantum case, the quantum Phaffian played an important role

in the invariant theory as well [18]. We first give a closed form definition for

the quantum Phaffian and study its representation-theoretic meaning in the

quantum setting. Through this we are able to give an appropriate quantum

analog of its relations with quantum determinant. As expected, quantum

Phaffians enjoy similar properties as quantum determinant in the orthogonal

case.

This paper is organized as follows. In Section 2 we first recall some

basic facts of certain quantum algebras, in particular, we discuss a quantum

deformation of A(X) and the associated quantum version of GL(n,C) as

presented in Noumi, Yamada, and Mimachi [16] and we recall the quantized
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universal enveloping algebra Uq(gl(n,C)). In Section 3 we describe a quan-

tum symplectic group, Spq(2n,C). Since there does not seem to be a natural

embedding of Spq(2n,C) in GLq(2n,C) we define Spq(2n,C) invariants (left

and right) in an infinitesimal manner, similar to an earlier construction by

Jing and Yamada [8] of polynomial invariants for a quantum orthogonal

group. These quantum symplectic invariants give us a quantum version of

the regular functions of the antisymmetric matrices. In addition to defining

the generators of these functions, we describe their relations and we discuss

a construction of a quantum analog to the Pfaffian function.

We then describe a complete reduction of the Spq(2n,C) invariant spaces

(left and right) into irreducible modules and we follow with a construction

and characterization of the associated bi-invariant space and its basis of zonal

polynomials. In the last section, a connection between the zonal polynomials

and certain Macdonald polynomials is discussed.

2. Quantum Groups

Quantum groups are defined as certain one-parameter deformations of

the algebra of algebraic functions on simple Lie groups [17]. In other words,

we will describe Aq(X) to be like the classical algebra A(X), except with

noncommuting relations imposed upon its generators. Throughout the paper

we will let q be a complex number and for q 6= 1 we require that q not be a

root of unity.

2.1. Aq(X), A(G) and GLq(n,C)

We first define the algebra of functions Aq(X) on X =Matq(n,C) as a

noncommutative C-algebra

Aq(X) = Cq [x11, x12, . . . , xnn] . (5)

generated by x11, x12, . . . , xn,n and with relations

xikxjk = qxjkxik, xkixkj = qxkjxki,

xilxjk = xjkxil,

xikxjl−xjlxik =
(

q − q−1
)

xilxjk,
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where i < j and k < l. The relations can be visualized by the diagram (see

Figure 1) with a “square” of generators.

xjk

xik

xjl

xil

✲

✲

❄ ❄

Figure 1: Aq(X) Relations, x→ y implies xy = qyx.

Aq(X) is a bialgebra using the same coproduct and counit maps as

defined on A(X), see [14].

Let I and J be two subsets of {1, 2, . . . , n} with #I = #J = r with

ordered elements, i.e. i1 < i2 < . . . < ir ∈ I and j1 < j2 < . . . jr ∈ J . The

quantum r-minor determinants are defined as

ξIJ = ξi1,...,irj1,...,jr
=
∑

σ∈Sr

(−q)l(σ)xi1jσ(1)
xi2jσ(2)

. . . xirjσ(r)
(6)

where l(σ) denotes the number of pairs (i, j) with i < j and σ(i) > σ(j).

There is a unique quantum n-minor determinant, and it is denoted by detq
[8]. We define the algebra of regular functions A(G) on the quantum group

GLq(n,C) by adjoining det−1
q to Aq(X)

A(G) =
[

x11, x12, x13, . . . , xnn, det
−1
q

]

(7)

Then, GLq(n,C) is defined as the spectrum of the Hopf algebra algebra

A(G), i.e.

GLq(n,C) = Spec(A(G)) (8)

one usually refers to GL(n,C) simply as A(G).

In addition to the relations of Aq(X), A(G) also has the following rela-

tions [16]

xij · det
−1
q = det−1

q · xij (9)

det−1
q · detq = detq · det

−1
q = 1. (10)
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This allows us to define the algebra morphism S : A(G) → A(G) by

S(xij) = (−q)i−jξĵ
î
· det−1

q 1 ≤ i, j ≤ n, (11)

where k̂ = {1, . . . , k−1, k+1, . . . , n}. S is the antipode for A(G) and makes

A(G) a Hopf algebra.

2.2. Additional Quantum Groups

In addition to the above mentioned quantum groups, we need some

additional subgroups of G = GLq(n,C).

The diagonal subgroup Hn of GLq(n,C) is defined by its regular func-

tions

A(Hn) = C
[

t1, t
−1
1 , . . . , tn, t

−1
n

]

. (12)

Associated with this commutative Hopf algebra, we have the restriction map

πH : A(G) → A(Hn) defined by

πH(xij) = δi,jti (13)

The Borel subgroups B+ and B− of GLq(n,C) consist of the upper and

lower triangular matrices and are defined in terms of their associated Hopf

algebras

A(B+) = C [bij ] , i ≤ j, (14)

A(B−) = C [bij ] , i ≥ j. (15)

These algebras have relations induced from A(G) and we note that the di-

agonal elements b11, . . . , bnn commute with each other, [16]. With each of

these Hopf algebras we define the restrictions maps πB+ : A(G) → A(B+)

and πB−
: A(G) → A(B−) respectively by

πB+(xij) =

{

bij , (1 ≤ i ≤ j ≤ n)

0, (i > j)
, (16)

πB−
(xij) =

{

bij , (1 ≤ j ≤ i ≤ n)

0, (j > i)
. (17)
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2.3. Enveloping Algebra Uq(g)

We recall the quantum universal enveloping algebra Uq(g) of g = gl(n,C)

or rather sl(n,C)[9]. Let Ln be the free Z-module of rank n with the canoni-

cal basis {ǫ1, . . . , ǫn}, i.e. Ln =
n
⊕

k=1

Zǫk, endowed with the symmetric bilinear

form 〈ǫi, ǫj〉 = δij . We will define αk = ǫk− ǫk+1. Additionally, we will iden-

tify a partition λ = (λ1, . . . , λn) ∈ Pn with λ1ǫ1 + · · · + λnǫn ∈ Ln. We will

refer to such an element of Ln as a dominant integral weight. The funda-

mental weights are defined by Λk = ǫ1 + · · · + ǫk (see [8]). Now we define

Uq(g) as the C-algebra with generators ek, fk (1 ≤ k < n) and qλ
(

λ ∈ 1
2Ln

)

with the following relations [16]:

q0 = 1, qλqµ = qλ+µ, (18)

qλekq
−λ = q〈λ,αk〉ek (1 ≤ k < n) , (19)

qλfkq
−λ = q−〈λ,αk〉fk (1 ≤ k < n) , (20)

eifj − fjei = δij
qαi − q−αi

q − q−1
(1 ≤ i, j < n) , (21)

e2i ej−
(

q + q−1
)

eiejei + eje
2
i = 0 (|i− j| = 1), (22)

f2i fj−
(

q + q−1
)

fifjfi + fjf
2
i = 0 (|i− j| = 1), (23)

eiej = ejei, fifj = fjfi (|i− j| > 1). (24)

We define a coproduct, ∆U , and a counit, εU , on the generators by

∆U(q
λ) = qλ ⊗ qλ, ε(qλ) = 1, (25)

∆U (ek) = ek ⊗ q−αk/2 + qαk/2 ⊗ ek, ε(ek) = 0, (26)

∆U (ek) = fk ⊗ q−αk/2 + qαk/2 ⊗ fk, ε(fk) = 0, (27)

making Uq(g) a bialgebra. Additionally, with the antipode SU defined by

SU (q
λ) = q−λ, (28)

SU (ek) = −q−1ek, (29)

SU (fk) = −qfk. (30)

Uq(g) becomes a Hopf algebra.
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2.5. A(G), Uq(g) Duality

There exists a well-known dual pairing of Hopf algebras Uq(g) and A(G)

a(ϕ) ∈ C, a ∈ Uq(g), ϕ ∈ A(G) (31)

satisfying the following relations:

qλ(xij) = δi,jq
〈λ,εi〉, λ ∈

1

2
Ln, 1 ≤ i, j ≤ n (32)

ek(xij) = δi,kδj,k+1, 1 ≤ i, j ≤ n (33)

fk(xij) = δi,k+1δj,k, 1 ≤ i, j ≤ n (34)

qλ(detmq ) = qm〈λ,ε1,...,εn〉 m ∈ Z (35)

ek(det
m
q ) = fk(det

m
q ) = 0 m ∈ Z (36)

We extend these to the rest of Uq(g) and A(G) by

a(ϕψ) = ∆U (a)(ϕ ⊗ ψ) (37)

a(1) = εU (a) (38)

(ab)(ϕ) = (a⊗ b)∆(ϕ) (39)

1(ϕ) = ε(ϕ) (a, b ∈ Uq(g), ϕ, ψ ∈ A(G)) (40)

Additionally, we have

SU (a).ψ = a.S(ψ) a ∈ Uq(g), ψ ∈ A(G) (41)

These relations realize a duality between the two Hopf algebras and allows

us to regard the elements of Uq(g) as linear functionals on A(G) (see [16]).

This duality allows any right A(G)-comodule V (resp. left A(G)-comodule

W ) with structure map RG : V → V ⊗Aq(G) (resp. LG :W → A(G) ⊗W )

to become a left (resp. right) Uq(g)-module with the following defined action

a.v = (id⊗ a)RG(v), a ∈ Uq(g), v ∈ V, (42)

w.a = (a⊗ id)LG(v), a ∈ Uq(g), w ∈W. (43)

More specifically, we already know Aq(X) is a completely reducible two-sided

A(G)-comodule using the comultiplication, ∆, as the comodule structure

map. As such, it becomes a completely reducible left and right Uq(g)-module
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[16, 8]. We can describe the left module action of the generators of Uq(g) on

the generators of Aq(X) by

qλ.xij = xijq
〈λ,εj〉, (44)

ek.xij = xi,j−1δj,k+1, (45)

fk.xij = xi,j+1δj,k. (46)

and the right module action as

xij · q
λ = xijq

〈λ,εi〉, (47)

xij · ek = xi+1,jδk,i, (48)

xij · fk = xi−1,jδk+1,i. (49)

2.6. Relative Invariants

For an element λ =
n
∑

k=1

λkǫk ∈ Ln, let zλ =
n
∏

k=1

zλk
kk ∈ A(B±) and

tλ =
n
∏

k=1

tλk
k ∈ A(H), we define the spaces of relative invariants with respect

to the subgroups B± by (see [16, 8])

A(G/B+; z
λ) =

{

ϕ ∈ A(G); (id ⊗ πB+)∆(ϕ) = ϕ⊗ zλ
}

, (50)

A(B−\G; z
λ) =

{

ϕ ∈ A(G); (πB−
⊗ id)∆(ϕ) = zλ ⊗ ϕ

}

, (51)

where the restrictions maps π± : A(G) → Aq(B±) are defined by πB+(xij) =

zi,j (1 ≤ i ≤ j ≤ n), πB+(xij) = 0 (i > j), and πB−
(xij) = zi,j (1 ≤ j ≤ i ≤

n), πB−
(xij) = 0 (i < j).

A(G/B+; z
λ) (resp. A(B−\G; z

λ)) is a left (resp. right) A(G)-subcomo-

dule of A(G) with structure mapping ∆. It is proved in [16] that, for a dom-

inant integral weight λ ∈ Pn, the space A(G/B+; z
λ) (resp. A(B−\G; z

λ))

gives a realization of the irreducible left (resp. right) A(G)-subcomodule

V L
q (λ) (resp. V R

q (λ)) of Aq(X), with highest weight λ.
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3. Spaces of q-Symplectic Invariants

3.1. Uq(sp(2n,C))

Here we describe a subalgebra of Uq(g) that is a quantum deformation

of U(sp(2n,C)). Relative to the standard n dimensional representation of

Uq(g), we identify the generators ek of Uq(g) with Ek,k+1 and fk with Ek+1,k.

If we let λ = λ1ǫ1 + · · ·+ λ2nǫ2n ∈ 1
2L2n, then q

λ is represented by

qλ1E11 + qλ2E22 + · · ·+ qλ2nE2n,2n (52)

We may then inductively generate the other elements, Ei,j, where |i−j| > 1,

by

Ei,j = Ei,kEk,j − Ek,jEi,k (53)

where i < k < j or j < k < i and Ei,j and Ej,i are independent of our choice

of k, see [8].

We define the subalgebra Uq(sp(2n,C)) of Uq(g) as the subalgebra gen-

erated by the following elements:

spe(i, j) = E2i−1,2j + q2(i−j)E2j−1,2i 1 ≤ i 6= j ≤ n (54)

spe(i, i) = E2i−1,2i 1 ≤ i ≤ n (55)

spf(i, j) = E2i,2j−1 + q2(i−j)E2j,2i−1 1 ≤ i 6= j ≤ n (56)

spf (i, i) = E2i,2i−1 1 ≤ i ≤ n (57)

sph(i, j) = E2i−1,2j−1 − q2(i−j)E2j,2i 1 ≤ i, j ≤ n (58)

with i, j ≤ n. It can be directly shown that the elements of the form

spe(j, j), spf (j, j), where 1 ≤ j ≤ n, (59)

spe(i, i+ 1), spf(i, i + 1), 1 ≤ i ≤ n− 1 (60)

generate Uq(sp(2n,C)).

3.2. q-Symplectic Invariants

For a given left (resp. right) Uq(g)-module V (resp. W ) we define the
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q-symplectic invariants by

V K = {v ∈ V ; spe(i, j).v = 0, spf (i, j).v = 0 1 ≤ i, j ≤ n} (61)

KW = {w ∈W ;w.spe(i, j) = 0, w.spf (i, j) = 0 1 ≤ i, j ≤ n} (62)

Using the fact that Aq(X) is a two-sided Uq(g)-module (see 42, 43) we define

the left and right quantum symplectic invariants in Aq(X) as

Aq(X)K = {ϕ ∈ Aq(X); spe(i, j).ϕ = 0, spf (i, j).ϕ = 0 1 ≤ i, j ≤ n}

(63)

KAq(X) = {ϕ ∈ Aq(X);ϕ.spe(i, j) = 0, ϕ.spf (i, j) = 0 1 ≤ i, j ≤ n}

(64)

The spaces Aq(X)K and KAq(X) are subalgebras of Aq(X). Addition-

ally, we see that Aq(X)K is a left A(G)-subcomodule of Aq(X) (similarly
KAq(X) is a right A(G)-subcomodule of Aq(X)). Equivalently, Aq(X)K is

a right Uq(g)-submodule of Aq(X) and KAq(X) is a left Uq(g)-submodule of

Aq(X).

Definition 3.1. For n ∈ Z+ even, the following quadratic elements of Aq(X)

may be defined

zLi,j =
n
∑

k=1

q(i+j+1−4k)/2 (xi,2k−1xj,2k − qxi,2kxj,2k−1)

=

n/2
∑

k=1

q(i+j+1−4k)/2ξi,j2k−1,2k, (65)

zRi,j =

n
∑

k=1

q−(i+j+1−4k)/2 (x2k−1,ix2k,j − qx2k,ix2k−1,j)

=

n/2
∑

k=1

q−(i+j+1−4k)/2ξ2k−1,2k
i,j . (66)

Using the fact

ek.ξ
i,j
r,s = δk,r−1ξ

i,j
r−1,s + δk,s−1ξ

i,j
r,s−1 (67)

fk.ξ
i,j
r,s = δk,rξ

i,j
r+1,s + δk,sξ

i,j
r,s+1 (68)
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it can be shown that zLi,j (resp. z
R
i,j) are annihilated by spe(k, k), spe(k, k+1),

spf(k, k) and spf (k, k+1), which is sufficient to show they are annihilated by

all spe(k, l) and spf (k, l) and therefore zLi,j ∈ Aq(X)K (resp. zRi,j ∈
KAq(X))

We denote the subalgebra of Aq(X)K (resp. KAq(X)) by AL
q (A) (resp.

AR
q (A)) generated by zLi,j (resp. zRi,j). A

L
q (A) is a left A(G)-subcomodule of

Aq(X)K and AR
q (A) is a right A(G)-subcomodule of Aq(X)K .

Theorem 3.2. The algebras AL
q (A) and AR

q (A) are isomorphic to the alge-

bra Aq(A) generated by zi,j (1 ≤ i, 1 ≤ j) with the following relations:

zi,j = −q−1zj,i, (69)

zi,lzj,k = zj,kzi,l, (70)

zi,jzi,k = qzi,kzi,j, (71)

zi,kzj,l−zj,lzi,k =
(

q − q−1
)

zi,lzj,k, (72)

zi,jzk,l−zk,lzi,j =
(

q − q−1
)

zi,kzj,l − q
(

q − q−1
)

zi,lzj,k, (73)

where i < j < k < l.

Using Eq. (72) we may rewrite Eq. (73) as

zi,jzk,l − zk,lzi,j = qzj,lzi,k − q−1zi,kzj,l (74)

���

The definitions of these generators also imply

zi,i = 0 (75)

3.3. Quantum Antisymmetric Matrices

If we denote by A, the vector space of n × n antisymmetric matrices

with basis

BA = {Ei,j −Ej,i |1 < i < j ≤ n} (76)

then dim(A) = n(n−1)/2. We observe that HomAlg(Aq(A),C) is the set of

n× n matrices with restrictions imposed by the relations Eq. (69) and Eq.
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(75). If we denote HomAlg(Aq(A),C) by Aq, and treat it as a vector space

(in other words we are ignoring multiplication) we see its basis is

BAq = {Ei,j − qEj,i |1 < i < j ≤ n} (77)

where dim(Aq) = n(n−1)/2 and we have Aq ≃ A as vector spaces. We may

think of Aq as the quantum analog of the antisymmetric matrices.

3.4. Quantum Pfaffian

If A = (ai,j) ∈Mat(2n,C) is an antisymmetric matrix, it can be written

as

A =













0 a1,2 · · · a1,2n
−a1,2 0 · · · a2,2n

...
...

. . .
...

−a1,2n −a2,2n · · · 0













(78)

and there exists a polynomial f in Z[xij] such that f2(A) = det(A), [5]. This

polynomial is called the Pfaffian, denoted Pf , and we write

Pf2(A) = det(A) (79)

Moreover, if B = (bi,j) ∈Mat(2n,C) and we define A by

ai,j = det

[

bi,1 bi,2
bj,1 bj,2

]

+ det

[

bi,3 bi,4
bj,3 bj,4

]

+ · · · + det

[

bi,2n−1 bi,2n
bj,2n−1 bj,2n

]

(80)

then A is antisymmetric and we have Pf(A) = det(B), [5].

To construct an explicit formula for Pf we can define an index set Π,

consisting of all ordered, 2-partitions of 2n. In other words,

Π = {(i1, j1)(i2, j2) . . . (in, jn) ; ik < jk and ik < ik+1} (81)

For example, if 2n = 4 we have

Π = {(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} (82)
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We can associate the elements of Π with elements of the symmetric group

S2n in the following manner

π ∼

[

1 2 3 4 · · · 2n

i1 j1 i2 j2 · · · jn

]

∈ S2n (83)

for π = {(i1, j1)(i2, j2) . . . (in, jn)}. This allows us to define sgn(π) and l(π).

If A = (ai,j) is an antisymmetric matrix we can then write

Pf(A) =
∑

π∈Π

sgn(π)aπ =
∑

π∈Π

sgn(π)ai1j1ai2j2 · · · ain,jn (84)

Example 3.3. As an example, when 2n = 4

Pf(A) = a1,2a3,4 − a1,3a2,4 + a1,4a2,3 (85)

Before we construct a quantum analog of the Pfaffian, we note that

the quantum antisymmetric generators zLi,j (resp. zRi,j), defined by Eq. (65)

(resp. Eq. (66)), are in fact quantum analogs of Eq. (80). Additionally, we

have already noted that Z = (zLi,j) is a quantum antisymmetric matrix with

the relation zLi,j = −1
qz

L
j,i for i < j. We now use the same index set Π, to

define the quantum Pfaffian as

Pf q(Z) =
∑

π∈Π

(−q)l(π)zLπ =
∑

π∈Π

(−q)l(π)zLi1j1z
L
i2j2 · · · z

L
in,jn . (86)

Remark 3.4. An inductive definition of quantum Phaffian was given in [18].

One can show that our definition matches with Strickland’s.

Example 3.5. As an example, when 2n = 4

Pf q(Z) = zL1,2z
L
3,4 − qzL1,3z

L
2,4 + q2zL1,4z

L
2,3 (87)

Theorem 3.6. For every positive even 2n, Pf q(Z) = detq(X).

Proof. To show this equality, we will prove that Pf q is simultaneously a

highest and lowest weight vector for the right action of Uq(g). This will show

Pf q to be a scalar multiple of (detq)
c for some c ∈ Z+.

To begin, we let k be a positive integer such that 1 ≤ k < 2n. Since the

right action of generators of Uq(g) on products of elements of Aq(X) can be
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described by [8],

φψ.ek = (φ⊗ ψ).(ek ⊗ q−ak/2 + qak/2 ⊗ ek) (88)

φψ.fk = (φ⊗ ψ).(fk ⊗ q−ak/2 + qak/2 ⊗ fk) (89)

we may expand this notation to describe the following right action of ek on

the components of Pf q as

zLa1b1z
L
a2b2 · · · z

L
an/2bn/2

· ek

= zLa1b1 · ek ⊗ zLa2b2 · q
−αk/2 ⊗ · · · ⊗ zLanbn · q−αk/2

+zLa1b1 · q
αk/2 ⊗ zLa2b2 · ek ⊗ · · · ⊗ zLanbn · q−αk/2

...

+zLa1b1 · q
αk/2 ⊗ zLa2b2 · q

αk/2 ⊗ · · · ⊗ zLanbn · ek (90)

and

zLa1b1z
L
a2b2 · · · z

L
an/2bn/2

· fk

= zLa1b1 · fk ⊗ zLa2b2 · q
−αk/2 ⊗ · · · ⊗ zLanbn · q−αk/2

+zLa1b1 · q
αk/2 ⊗ zLa2b2 · fk ⊗ · · · ⊗ zLanbn · q−αk/2

...

+zLa1b1 · q
αk/2 ⊗ zLa2b2 · q

αk/2 ⊗ · · · ⊗ zLanbn · fk (91)

Additionally, each of these AL
q (A) generators is a sum of quantum 2-

minor determinants (see Eq. (65)) in which the indices i and j of zLij define

the rows for each of these quantum 2-minor determinants . As such, the right

action of ek and fk on these generators can be described by the following,

zLi,j · ek = q−1/2
(

δi,kz
L
k+1,j + δj,kz

L
j,k+1

)

, (92)

zLi,j · fk = q1/2
(

δi,k+1z
L
k,j + δj,k+1z

L
j,k

)

(93)

and the right action of qα/2 and q−α/2 are described by

zLi,j · q
αk/2 = q1/2(δi,k−δi,k+1+δj,k−δj,k+1)zLi,j, (94)

zLi,j · q
−αk/2 = q1/2(−δi,k+δi,k+1−δj,k+δj,k+1)zLi,j. (95)



2012] ZONAL POLYNOMIALS AND QUANTUM ANTISYMMETRIC MATRICES 15

For example

zL3,4 · q
α4/2 = q1/2zL3,4 (96)

Before we give a detailed description of the action of ek on Pf q, we show

how the components of Π may be paired, relative to the value of k. Since the

components of Pf q are indexed by all ordered 2-partitions, this will allow us

to group the components of Pf q in a way that the right action of ek (and

fk) will annihilate the pairs.

We first fix k ∈ Z such that 1 ≤ k < 2n. Now if we choose any of

the ordered 2-partitions, say π = (a1, b1)(a2, b2) · · · (an, bn), it must have an

index r, containing k and an index s containing k+1. In other words, there

exist r and s such that

k ∈ (ar, br) and k + 1 ∈ (as, bs) (97)

This fixes r and s. Also contained in the (ar, br) and (as, bs) pairs are two

other integers, u and v such that u < v. If it happens that r = s, in other

words, there exists (ar, br) such that (ar, br) = (k, k + 1) then we will not

pair it with another 2-partition. We will show later how the right action of

ek and fk already annihilate it.

Example 3.7. Suppose 2n = 8 and we fix k = 5. One of the ordered 2-

partitions of Π is (1, 3)(2, 6)(4, 8)(5, 7). In this case we see that r = 4 and

s = 2. We then designate u = 2 and v = 7.

Now, with r and s still fixed, and for the designated u and v, there are

precisely three possibilities describing how k, k+1, u and v can be ordered.

These are:

k < k + 1 < u < v (98)

u < k < k + 1 < v (99)

u < v < k < k + 1 (100)

For each of these possibilities we have the following,

• k < k + 1 < u < v
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In this case, if r 6= s, there is another 2-partition, π̂ identical to π

except in the rth and sth pairs, u and v are switched.

π = (a1, b1) · · · (k, u)(k + 1, v) · · · (an, bn) (101)

π̂ = (a1, b1) · · · (k, v)(k + 1, u) · · · (an, bn) (102)

If r = s then we have

π = (a1, b1) · · · (k, k + 1) · · · (u, v) · · · (an, bn) (103)

• u < k < k + 1 < v

In this case, if r 6= s, there is a second partion π̂ identical to π except

in the rth and sth pairs, k and k + 1 are switched.

π = (a1, b1) · · · (u, k) · · · (k + 1, v) · · · (an, bn) (104)

π̂ = (a1, b1) · · · (u, k + 1) · · · (k, v) · · · (an, bn) (105)

If r = s then we have

π = (a1, b1) · · · (u, v) · · · (k, k + 1) · · · (an, bn) (106)

• u < v < k < k + 1

In this case, if r 6= s, there is a second partion π̂ identical to π except

in the rth and sth pairs, k and k + 1 are switched.

π = (a1, b1) · · · (u, k) · · · (v, k + 1) · · · (an, bn) (107)

π̂ = (a1, b1) · · · (u, k + 1) · · · (v, k) · · · (an, bn) (108)

If r = s then we have

π = (a1, b1) · · · (u, v) · · · (k, k + 1) · · · (an, bn) (109)

Example 3.8. Continuing with the previous example (Example 3.7), with

2n = 8, k = 5 and 2-partition (1, 3)(2, 6)(4, 8)(5, 7), the other 2-partition

with which this would be paired is (1, 3)(2, 5)(4, 8)(6, 7).
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Using this construction, we see that after fixing k, we may exhaustively list

all of the ordered 2-partitions of Π, identifying each 2-partition as containing

a pair (k, k + 1) or as being one of the pairs just described.

This allows us to write Pf q as a sum of components of the form

(−q)∗zLa1,b1 · · · z
L
k,k+1 · · · z

L
an,bn (110)

or which appear in pairs such as

(−q)∗zLa1,b1 · · · z
L
k,uz

L
k+1,v · · · z

L
an,bn

(−q)∗+1zLa1,b1 · · · z
L
k,vz

L
k+1,u · · · z

L
an,bn (111)

or

(−q)∗zLa1,b1 · · · z
L
u,k · · · z

L
k+1,v · · · z

L
an,bn

(−q)∗+1zLa1,b1 · · · z
L
u,k+1 · · · z

L
k,v · · · z

L
an,bn (112)

or

(−q)∗zLa1,b1 · · · z
L
u,k · · · z

L
v,k+1 · · · z

L
an,bn

(−q)∗+1zLa1,b1 · · · z
L
u,k+1 · · · z

L
v,k · · · z

L
an,bn , (113)

where (−q)∗ represents an appropriate power of (−q) determined by (a1b1)

(a2b2) · · · (anbn). The right action of ek can now be calculated. In the first

case, we have the index that contains (k, k + 1) and we have

q∗zLa1,b1 · · · z
L
k,k+1 · · · z

L
an,bn .ek

= (zLa1,b1 · ek) · · · (z
L
k,k+1 · q

−αk/2) · · · (zLan,bn · q−αk/2)

+ (zLa1,b1 · q
αk/2) · · · (zLk,k+1 · ek) · · · (z

L
an,bn · q−αk/2)

+ (zLa1,b1 · q
αk/2) · · · (zLk,k+1 · q

αk/2) · · · (zLan,bn · ek)

= (0) · · · (zLk,k+1 · q
−αk/2) · · · (zLan,bn · q−αk/2)

+ (zLa1,b1 · q
αk/2) · · · (0) · · · (zLan,bn · q−αk/2)

+ (zLa1,b1 · q
αk/2) · · · (zLk,k+1 · q

αk/2) · · · (0)

= 0 (114)

In the next case, with the indexes of the paired 2-partitions containing

(k, u)(k + 1, v) and (k, v)(k + 1, u), the right action of ek can be seen to be

zero as well, by using Eq. (92), Eq. (94), and Eq. (95). In fact all remaining
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cases are treated similarly, and we get that

Pf q.ek = 0 (115)

A similar argument shows

Pf q.fk = 0 (116)

Since Pf q is an element of Aq(X) annihilated by the right action of all ek
and fk, 1 ≤ k < n, Pf q must be generated by detq. By comparing degree

and coefficients, we see Pf q(Z) = detq(X). ���

We extend the notation slightly and define

Pf q(Z)
I =

∑

π∈ΠI

(−q)l(π)zLπ (117)

where I = {1, 2, . . . , r}, r < 2n, r is even and ΠI is the set of ordered

2-partitions of I. The proof above also shows that Pf q(Z)
I is annihilated

on the right by all fk (k < 2n) and by all ek except for r < k < 2n. As

such Pf q(Z)
I is still a highest weight vector under the right action of Uq(g)

and, because it is an element constructed from left symplectic invariant

generators, it provides a realization of an element in Aq(X)K∩A(B−\G; z
Λr ).

3.5. Decomposition of KAq(X)) and Aq(X)K

We show the decomposition of KAq(X)) as a right A(G)-comodule

(resp. left Uq(g)-module) and the decomposition of Aq(X))K as a left A(G)-

comodule (resp. right Uq(g)-module. To perform this decomposition, several

preliminary propositions are presented, along with the introduction of some

notational conventions. First some notation:

We define the map φ from the power set of {1, 2, 3, . . . , n} into the power

set of {1, 2, 3, . . . , 2n} by

φ(A) =
⋃

α∈A

{2α− 1, 2α} (118)

for example φ({1, 3, 4, 5}) = {1, 2, 5, 6, 7, 8, 9, 10}. We will use φ to construct

indices for the rows and columns of quantum minor determinants used in q-

symplectic invariants and then to describe a specific set of dominant weights
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as

PA
2n = {λ ∈ P2n ; λ = (µ1, µ1, µ2, µ2, . . . , µn, µn), µ ∈ Pn} (119)

For example (4, 4, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1) ∈ PA
12.

One of the key ideas used in the decomposition of KAq(X) and Aq(X)K

is presented in the following proposition (cf. [8]).

Proposition 3.9. Let µ ∈ Pn be a dominant integral weight and V R
q (µ) be

the irreducible left Uq(g) submodule with highest weight µ. Then the space of

the q-symplectic invariants in V R
q has the dimension equal to the multiplicity

of V in KAq(X)).

Proof. To decompose the algebra KAq(X)) as a right A(G)-comodule (or

left Uq(g) module), it suffices to find the singular weight vectors, i.e. the

weight vectors φ ∈ KAq(X) such that ek.φ = 0 for k = 1, . . . , n − 1. Since

such a singular vector ϕ is contained in the space KAq(X) ∩ A(X/B+; zλ)

for some dominant integral weigh λ ∈ Ln, and generates an irreducible right

A(G)-comodule with highest weight λ. Thus if there are mλ singular weight

vectors of weight λ in KAq(X), then the irreducible right A(G)-comodule

isomorphic to V R
q (λ) occurs mλ times in the decomposition of KAq(X). On

the other hand, a singular vector ϕ in KAq(X) ∩ A(X/B+; zλ) is regarded

as a left q-symplectic invariant in V L
q (i.e. annihilated on left). Since V L

q (λ)

and V R
q (λ) are dual to each other, the dimension of the space of q-symplectic

invariants coincides. ���

Next, we show by construction, the existence of a left invariant in the

left Uq(g)-module A(B−\G; z
λ). We build this left invariant from elements

of the following form

aRr =
∑

J

q−2|J |ξ1,...,2rφ(J) (120)

where the sum is over all J such that #J = r and J ⊆ {1, 2, . . . , n}. |J | rep-

resents the sum of the elements of J . As such aRr ∈ Aq(X)K ∩A(B−\G; z
λr ).

Lemma 3.10. (Existence) For λ =
n
∑

r=1
m2rΛ2r, i.e, λ ∈ PA

2n, A(B−\G; z
λ)

contains a left q-symplectic invariant.
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Proof. Suppose λ =
n
∑

r=1
m2rΛ2r, then we define

aRλ =

n
∏

r=1

(

aRr
)m2r

(121)

where aRr is defined by Eq. (120). We see by its construction, aRλ ∈ Aq(X)K∩

A(B−\G; z
λ). As such, each right A(G)-comodule V R

q (λ) has a q-symplectic

invariant. ���

Lemma 3.11. (Nonexistence) There does not exist a left q-symplectic in-

variant in the irreducible right Uq(g)-submodule V L
q (λ) if λ /∈ PA

2n.

Proof. Aq(X)K is a right Uq(g)-submodule of Aq(X). As such, it has its own

decomposition into irreducible right Uq(g)-submodules indexed by λ ∈ Pn ,

where λ is a dominant integral weight

Aq(X)K =
⊕

λ

V L
q (λ) (122)

Each V L
q (λ) is a highest weight module [16]. Each of these highest weight

modules has a realization of A(G/B+; zλ) with highest weight vector of the

form

vλ =
(

ξ1,...,s1,...,s

)ms
(

ξ1,...,s−1
1,...,s−1

)ms−1

· · ·
(

ξ11
)m1 (123)

However, because, the elements of Aq(X)K are annihilated on the left by all

ek and fk where k is odd, then for the highest weight vector vλ, it must be

true that λ =
n
∑

r=1
mrΛr where mr = 0 when r is odd. Thus,

Aq(X)K =
⊕

λ∈PA
2n

V L
q (λ) (124)

���

Lemma 3.12. (Uniqueness) The multiplicity of V R
q (λ) an irreducible right

Uq(g)-module, in the decomposition of Aq(X)K is exactly one.

Proof. As mentioned earlier, by Proposition 3.9, the multiplicity of V R
q (λ) in

the decomposition of Aq(X)K is equal to the number of left q-symplectic in-

variants in A(B−\G; z
λ). Let vK be a non zero left invariant in A(B−\G; z

λ),
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as such, it can be written as a linear combination of weight vectors from the

standard basis of A(B−\G; z
λ) [16].

However, since A(B−\G; z
λ) is a highest weight vector space, there must

be at least one basis (weight) vector, η, in the composition of vK for which

there are no higher weight vectors in vK . In other words

vK = η ⊕ v1 ⊕ · · · vj (125)

where the weights of v1, . . . , vj are less than or equal to that of η. As such,

η must be annihilated by all ek, where k < 2n and k is odd. Additionally,

the elements of the form

spf (i, i + 1) = e2i + q−2 (f2i−1f2if2i+1 − f2if2i−1f2i+1

−f2i+1f2i−1f2i + f2i+1f2if2i−1) (126)

where 1 ≤ i < n, also annihilate vK , and this in turn requires that η also

be annihilated by all ek, where k < 2n and k is even. Therefore η must

be a highest weight vector of A(B−\G; z
λ), but this vector is unique up to

constant multiple, because A(B−\G; z
λ) is a highest weight module. So

η = cvλ, c ∈ C (127)

where vλ is defined by Eq. (123). This tells us that any non-zero left q-

symplectic invariant in A(B−\G; z
λ) must be written as

cvλ ⊕ w1 ⊕ · · ·wj , c ∈ C, c 6= 0 (128)

where w1, . . . , wj are lower weight vectors of A(B−\G; z
λ).

Now assume there is more than one left quantum q-symplectic invariant

in A(B−\G; z
λ), say vK and wK . Each of these may be written as a sum

of standard basis elements, each including a non-zero term for the highest

weight vector vλ. In other words, they may be written as

vK = c0vλ + c1v1 + c2v2 + · · ·+ civi, c0 6= 0 (129)

wK = k0vλ + d1v1 + d2v2 + · · · + djvj , k0 6= 0 (130)

Since the linear combination of any left q-symplectic invariant is also a

left q-symplectic invariant then it must be true that k0v
K − c0w

K is also
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a left q-symplectic invariant in A(B−\G; z
λ). If k0v

K − c0w
K 6= 0 then we

have a contradiction to the requirement that any left q-symplectic invariant

in A(B−\G; z
λ) has a nonzero vλ component. On the other hand, if

k0v
K − c0w

K = 0 then wK is a constant multiple of vK . Therefore, any

left q-symplectic invariant in A(B−\G; z
λ) is unique up to a constant

multiple. ���

The following proposition summarizes Lemmas 3.10, 3.11, and 3.12.

Proposition 3.13. The space of q-symplectic invariants in the right A(G)-

comodule V R
q (µ) is one dimensional if and only if µ =

n
∑

r=1
m2rΛ2r, in other

words, µ ∈ PA
2n. Otherwise there are no q-symplectic invariants in V R

q

By Proposition 3.9 we may then summarize our results with the following

theorem

Theorem 3.14. The irreducible decomposition of Aq(X)K as a right Uq(g)-

module is given by

Aq(X)K =
⊕

λ∈PA
2n

V L
q (λ) (131)

similarly KAq(X), as a left Uq(g)-module has the irreducible decomposition

KAq(X) =
⊕

λ∈PA
2n

V R
q (λ) (132)

Where PA
2n is defined by Eq. (119).

Proposition 3.15. The space AL
q (A)=Aq(X)K , (resp. KAq(X)=AR

q (A)).

As such, AL
q (A) (resp. AR

q (A)) also have the decompositions as a right (resp.

left) Uq(g)-modules,

AL
q (A) =

⊕

λ∈PA
2n

V L
q (λ) (133)

AR
q (A) =

⊕

λ∈PA
2n

V R
q (λ) (134)
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Proof. From its definition, we already have AL
q (A) ⊆ Aq(X)K . The ele-

ments, Pfq
I described by Eq. (117) provide a formula for explicitly con-

structing a left Uq(sp(2n,C)) invariant in A(B−\G; z
λ) for any λ. As such,

Aq(X)K ⊆ AL
q (A), and we have AL

q (A) = Aq(X)K . ���

4. Bi-invariants

In this section we define a subalgebra of Aq(X) by the intersection of

AR
q (A) and AL

q (A). Defined in this way, this space is annihilated on the left

and right by Uq(sp(2n,C)). We then proceed to show that this algebra is

really C[s1, . . . , sn]
Sn , the symmetric algebra of n variables. To start, we

define AZP , as

AZP = AR
q (A) ∩AL

q (A) =
∞
⊕

m=0

AZP,2m, (135)

Recall, the polynomials of AR
q (A) and AL

q (A) have even degree so it has the

natural grading into the subspaces AZP,2m.

Now we define

Er =
∑

I,J

q2(|I|−|J |)ξ
φ(I)
φ(J), 1 ≤ r ≤ n (136)

where the summation runs over all subsets I and J of {1, . . . , n} and #I =

#J = r. Here, |I| and |J | are the sums of the elements of I and J respec-

tively.

Lemma 4.16. Er ∈ AZP,2r

Proof. If we examine the component of Er that is obtained by holding I

fixed at I = {1, 2, . . . , r}, we see that this component is precisely aRr , defined

in Eq. (120). As such, this component is invariant under the left action of

Uq(sp(2n,C)). The remaining components of Er (the components obtained

by fixing I at other values) can be obtained by the right action of Uq(g) on

aRr . Since Aq(X)K is a right submodule of Aq(X) these other components

of Er must also be left invariant. Thus, Er ∈ Aq(X)K . Similarly, we see

that the component of Er associated with the fixed J = {1, 2, . . . , n} is in
KAq(X) and likewise the other components of Er can be obtained by the
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left action of Uq(g). Thus, Er ∈ KAq(X). Since Er has degree 2r (by its

construction) and Er ∈ AR
q (A) ∩AL

q (A), it follows that Er ∈ AZP,2r. ���

Theorem 4.17. The algebra AZP is generated by Er(1 ≤ r ≤ n) and the

algebra AZP is isomorphic to the algebra of symmetric polynomials of n

variables;

π : AZP →̃ C[s1, . . . , sn]
Sn (137)

Proof. Because of the decomposition given in Proposition 3.15, the dimen-

sion of the bi-invariant space associated with each λ ∈ PA
2n must be exactly

one. Since the degree of the polynomial in each of these bi-invariant spaces

is
n
∑

k=1

λk, the dimension of AZP,2m can then be calculated as the number of

partitions in PA
2n of 2m. As these partitions are in PA

2n we may also consider

this as the number of partitions of m whose number of parts is less than or

equal to n. Adopting the notation of Jing and Yamada [8] we denote this

by pn(m).

Consider the restriction of the projection map π to AZP

π′H : AZP → A+(H), (138)

where A+(H) = C[t1, . . . , tn]. Then Ker(π
′
H) =

∞
⊕

r=0
Ker(π′H,2r), where

π′H,2r : AZP,2r → A2r(H). (139)

Similar to the proof by [8], the monomials Er1Er2 . . . Erk (r1 ≤ r2 ≤ . . . ≤ rk)

have the degree 2(r1 + r2 + . . . + rk) and are linearly independent over C.

As such the space of degree 2m spanned by these monomials has dimension

pn(m). This shows that the space AZP is generated by Er (1 ≤ r ≤ n).

Additionally, the map π′H,2r acts on the generators of AZP in the fol-

lowing manner

π′(Er) = π′

(

∑

I

ξ
φ(I)
φ(I)

)

=
∑

I

(t2i1−1t2i1) (t2i2−1t2i2) · · · (t2ir−1t2ir) 6= 0
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where the sum runs over all subsets I of {1, 2, . . . , n} and #I = r, thus

Ker(π′H,2r) = (0). Another way of viewing this is that each of these Er has

monomials which are products of diagonal elements. As such, π(Er) 6= 0 for

1 ≤ r ≤ n. Thus we have the isomorphism

AZP
∼= C[(t1t2), (t3t4), . . . , (tn−1tn)]

Sn

∼= C[s1, s2, . . . , sn]
Sn

where we let si = t2i−1t2i. ���

5. Spherical Functions and Symmetric Polynomials

Through the isomorphism in Theorem (4.1) our q-zonal polynomials are

basis elements in the ring of symmetric polynomials, and they are clearly

q-deformations of the zonal polynomials defined on GL(2n,C)/Sp(2n,C).

We describe the relation with Macdonald polynomials [13].

Macdonald polynomials are special orthogonal basis of the commutative

algebra

Q(q, t)[x1, . . . , xn]
Sn , where q and t are two parameters. To describe them

we consider the following shift operator Tu,xi by

(Tu,xif)(x1, . . . , xn) = f(x1, . . . , uxi, . . . , xn)

for each f ∈ Q(q, t)[x1, . . . , xn]. Let X be another indeterminate and define

D(X, q, t) = ∆−1
∑

w∈Sn

ǫ(w)zwδ
n
∏

i=1

(X + t(wδ)iTq,xi)

=
n
∑

r=0

DrX
n−r,

where δ = (n − 1, n − 2, . . . , 1, 0) and

∆ =
∏

1≤i<j≤n

(xi − xj)

is the Vandermonde determinant in x1, . . . , xn. It follows immediately that
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D0 = 1 and

D1 =

n
∑

i=1

(
∏

j 6=i

txi − xj
xi − xj

)Tq,xi .

Macdonald showed that for each partition λ = (λ1, . . . , λn) there is a

unique symmetric polynomial Pλ(x; q, t) satisfying the two conditions (4.5 -

4.6):

Pλ = mλ +
∑

µ<λ

uλµmµ (140)

where uλµ ∈ Q(q, t) and mµ = xµ1
1 . . . xµn

n + . . . is the monomial symmetric

polynomial;

D1Pλ = (
n
∑

i=1

qλitn−i)Pλ. (141)

Moreover Macdonald proves that Pλ is also an eigenfunction for all the

difference operators Dr, and

D(X; q, t)Pλ =
n
∏

i=1

(X + tn−iqλi)Pλ. (142)

The polynomial Pλ(x; q, t) is called the Macdonald polynomial associ-

ated with the partition λ. In particular, Pλ(x; q, q) is the famous Schur

polynomial; lim
t→1

Pλ(x; t
2, t) is the zonal polynomial.

Proposition 5.18. Under the isomorphism π : Azp −→ C[z1, . . . , zn]
Sn ,

the q-zonal polynomial in Vq(λ) is a constant multiple of the Macdonald

polynomial Pλ(z; q
2, q−4).

The general case of quantum spherical functions was studied by Noumi

[15] using quantum groups and Letzter [12] using quantum enveloping alge-

bras. In the following we will outline a different approach to understand the

relationship between symmetric functions and quantum invariants. First of

all let’s study the q-difference operators on Vq(2λ).

Recall the center of the quantized universal enveloping algebra Uq(sln−1)
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is generated by the following n− 1 elements [17].

ck =
∑

σ,σ′∈Sn

(−q)l(σ)+l(σ′)l
(+)
σ1,σ′

1
· · · l

(+)
σkσ

′
k
l
(−)
σk+1σ

′
k+1

· · · l
(−)
σnσ′

n
, k = 1, · · · , n− 1

where L(±) = (l
(±)
ij ) is the upper (lower) triangular defining matrix for the

quantum algebra Uq(sln−1) in the FRT formulation [17] and l(σ) = #{i <

j|σi > σj}. We only remark that the elements l
(±)
ij are analogs of Weyl-

generators for Uq(sln−1). In particular

l
(±)
ii = q±ǫi ,

The algebra Uq(sln−1) acts on GLq(n,C) as q-difference operators, thus

the center of Uq(sln−1) acts on modules Vq(2λ) as scalar operators. In par-

ticular our q-zonal polynomials are simultaneous eigenfunctions of these q-

difference operators.

Theorem 5.19. For 1 ≤ k ≤ n − 1, the central element ck acts on the

irreducible Uq(sln)-module V (λ) as a scalar multiplication by

q2|λ|+(
n
2)+k(n−1)[k]![n − k]!(

∑

1≤i1<···<ik≤n

q−2λi1
−···−2λik

+2(i1−n)+···+2(ik−n)),

where |λ| = λ1 + · · ·+ λn.

Proof. Pick a lowest weight vector v0 in V (λ) with the weight −λ = −λ1ǫ1−

· · · − λnǫn. Note that the generators l
(+)
ij , l

(−)
ji (i < j) belong to the so-called

strict upper and lower Borel subalgebra generated by ei and fi (i = 1, · · · n−

1) respectively. The element l
(−)
σk+1σ

′
k+1

· · · l
(−)
σnσ′

n
kills v0 unless σk+1 = σ′k+1,

. . . , σn = σ′n. But σ1 ≤ σ′1, . . . , σk ≤ σ′k, so one must have σ = σ′ in the

action of cn−k on v0. We thus have

ckv0 =
∑

σ∈Sn

q2l(σ)q−λσ1−···−λσk
+λσk+1

+···+λσnv0

= q|λ|
∑

σ∈Sn

q2l(σ)−2λσ1−···−2λσkv0.

Consider the Young subgroup Sk × Sn−k of Sn. We can choose its

left coset representatives to be the elements τ such that τ1 < · · · < τk,
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τk+1 < · · · < τn. Recall that an inversion of the permutation τ is a pair (ij)

such that i < j and τi > τj. By construction the inversions of τ may only

take place among (ij) where i ≤ k and j ≥ k+1. For each i(≤ k), there are

τi − 1 natural numbers less than τi, and i− 1 of them already appear before

τi in the permutation. So there are τi − i inversions of τ in the form (ij),

which implies that l(τ) =
∑k

i=1(τi − i).

Let τσ be the general element inSn where σ = σ1σ2 ∈ Sk×Sn−k. In the

sequence (τσ(1), . . . , τσ(k), τσ(k+1), . . . , τσ(n)) we divide the inversions of

τσ into three parts: the inversions among the first k numbers, those among

the last n− k numbers, and the inversions between the first k numbers and

the last n− k numbers. The second part (τσ(k + 1), . . . , τσ(n)) = (τσ2(k+

1), . . . , τσ2(n)) has l(σ2) inversions as τ preserves the order of k + 1, . . . , n,

similarly the first part (τσ(1), . . . , τσ(k)) = (τσ1(1), . . . , τσ1(k)) has l(σ1)

inversions among them. Observe that we are free to switch the numbers

in each part when considering the inversions between the first part and the

second part, thus the number of inversions of this type are exactly l(τ).

Therefore we have

l(τσ1σ2) = l(τ) + l(σ1) + l(σ2)

= l(σ1) + l(σ2) +
k
∑

i=1

(τi − i),

where σ1 ∈ Sk, σ2 ∈ Sn−k, τ ∈ Sn/(Sk ×Sn−k).

Now let’s return back to the action ckvo. Using the invariance of λσ(1)+

· · ·+ λσ(k) under Sk ×Sn−k, we have that

ckv0 = q2|λ|
∑

τ,σ1,σ2

q2l(τσ1σ2)−2λτσ1σ2(1)
−···−2λτσ1σ2(k)v0

= q2|λ|
∑

τ,σ1,σ2

q2l(τσ1σ2)−2λτ(1)−···−2λτ(k)v0

= q2|λ|
∑

σ1∈Sk

q2l(σ1)
∑

σ2∈Sn−k

q2l(σ2)
∑

τ

q2l(τ)−2λτ(1)−···−2λτ(k)v0

= q2|λ|+(
k
2)+(

n−k
2 )[k]![n − k]!

· (
∑

τ(1)<···<τ(k)

q−2λτ(1)−···−2λτ(k)+2(τ(1)−1)+···+2(τ(k)−k))v0

= q2|λ|+(
n
2)+k(n−1)[k]![n − k]!
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· (
∑

1≤τ(1)<···<τ(k)≤n

q−2λτ(1)−···−2λτ(k)+2(τ(1)−n)+···+2(τ(k)−n))v0

where we have used the well-known identity
∑

σ∈Sn

q2l(σ) = q(
n
2)[n]! (cf.[2]). ���

Now we restrict ourselves to the case of irreducible highest Uq(sl2n)-

module V (λ̃) such that λ̃ = λ̃1ǫ1 + · · · + λ̃2nǫ2n and λ2i−1 = λ2i = λi for

i = 1, . . . , n. It is also a lowest weight module with the lowest weight −λ̃.

Theorem 5.20. The bi-invariant function inside V (λ̃), restricted to the ring

of symmetric functions, is the Macdonald symmetric function Pλ(q
2, q4).

Proof. It follows from the theorem in the case of Uq(sl2n)-module V (λ̃) that

c1v0 = q2|λ̃|+(
2n
2 )+2(2n−1)[2]![2n − 2]!

∑

1≤i≤2n

q−2λ̃i+2(i−2n)v0

= q4|λ|+(
2n
2 )+2(2n−1)−1[2]2[2n− 2]!

∑

1≤i≤n

q−2λi+4(i−n)v0.

In other words, the quantum Casimir operator c1 agrees with Macdonald

operator D1(q
2, q4) or D1(q

−2, q−4) on the space. We note that the leading

term of the spherical functions, when restricted to the zonal part, is exactly

the leading term of the Macdonald spherical function Pλ(q
2, q4) (which also

agrees with Schur function sλ). Hence the eigenfunction restricted to the

ring of symmetric functions is the Macdonald symmetric function Pλ(q
2, q4).

Similarly the action of the higher difference operators are given by

c2kv0 = q2|λ̃|+(
2n
2 )+2k(2n−1)[2k]![2n − 2k]!

·
(

∑

1≤τ(1)<···<τ(2k)≤n

q−2λ̃τ(1)−···−2λ̃τ(2k)+2(τ(1)−2n)+···+2(τ(2k)−2n)
)

v0. ���

The last identity plus the same idea also gives that

Corollary 5.21. The restriction of ck to the ring C[z1, . . . , zn]
Sn is exactly

the difference operator Dk(q
2, q4), k = 1, . . . , n up to a constant.
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