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Abstract

In this note, we discuss bi-Hamiltonian structures of Poisson W-algebras of minimal
nilpotent elements and show that there always exist two kinds of bi-Hamiltonian pairs,
which we call “KdV type” and “HD type” since they are generalizations of the KdV and

the Harry-Dym hierarches associated to the Virasoro Poisson vertex algebra.

1. Poisson Vertex Algebra and the Lenard Scheme

A Poisson vertex algebra (PVA) is a super-commutative associative al-
gebra V' which is a C[9]-module, where 9 is a derivation on V, equipped
with a bilinear map

{2} VeV —VeC}]

satisfying the following conditions

) {oPQ} = -MPQ}

) {PIQ} = (0 + N{PQ}

(i) {@\P}=—(-1)/FICI_{P_5 ,Q}
) {P{QuR}} — (-)IPIHQ{P\R}} = {{P\Q}r1,R}
) {P\QR} = {P\Q}R + (-1)I"IRIQ{P\R}
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for any P,Q, R € V, where | P| denotes the parity of P, namely |P| = 0 (resp.
1) if P is an even (resp. odd) element. A bilinear map {  } satisfying the
above conditions (i) ~ (v) is called a Poisson A-bracket on V. Following [1]
and [2], we use notations . { , } and { , }_ to indicate that x should be

put to the left and to the right respectively in each terms of expression of
{2}

For each u,v € V, {uyv} is a polynomial of \ with coefficients in V', so

it is written in the form {uyv} =} ooy P N (P; € V). Then we put

{ugv}— == {urv}_r=p = > PP

0<j<N
which is a differential operator on V.
Let wuy, ug, --- be a set of generators of V, and put H;; := {ujou;}—.
The matrix H := (Hm)ij:l 5. 1s called the Hamiltonian. Also define the

covariant differentiation

Loy o (L

p=0 8“1('1))

S

oul

[
and denote the column vector % by %, where ul(-p )= OPu;.

Next, we consider the situation where two A-brackets {  }x and { ) }x
are given. A pair of two Poisson A-brackets ({ A }x,{ » }m) is called a
bi-Hamiltonian pair if o{  }x + 8{ A }m is a Poisson A\-bracket for any
a, € C. Let H and K be the Hamiltonians corresponding to {  }g and
{ A } K respectively. A bi-Hamiltonian pair is called integrable if there exist
sequences {fn}nezzo and {hn}nezzo, called the Lenard scheme, consisting
of linearly independent elements in V satisfying the conditions K&y = 0,
Hé, = K&y and &, = 22 for all n € Z.

Then, regarding uy, ug, - - - as functions of (¢,x), we consider the follow-
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ing equations for u;(t,z)’s, called the n-th evolution equation (n € Z>):

Ouy
Otn,
Ousg

Oty, | = H&n(: K£n+1)'

We note that [ h,dz (n € Z>() are integral of motion for these equations.

Here we look at the simplest examples.

Example 1. (cf. [1]) The Virasoro PVA is the commutative associative

algebra V = Clu,u/,u”,---] with the Virasoro Poisson \-bracket
fusu} = 0+ 2)(au+ B) + e (e € O),

which is a linear combination of three A-brackets {uju}; := (9 + 2A\)u,
{upuly := X and {uyuls := A3. So this PVA produces two kinds of bi-
Hamiltonian pairs such that degK < degH:

{rlrk={xh and {rlx ={x}
{axte={ h+t{}s { e ={xh+{)}s

In each case, the Lenard scheme looks as follows:

Case 1: {usul = {uru}z =\
) {wsuly = {wauk + cfunuls = (84 20)u+ Ne

Their Hamiltonians are K = 9 and H = v’ + 2ud + ¢d>.
Letting &g := 1, we have

o =1
&= wu

3
£ = cu' + S u?

2

5 5
& = Au® 4 5eun” + 3 cu'? + B ud
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and
ho = u
hi1 = %u2
hy = —%u'2+%u3
hs = éu”z gcuu —|—Zu4

Then the 2nd evolution equation is

0
Z?Tu = K& = cu” + 3uu’ : KAV equation.
1

Case 2: {upulg = {upuh (04 2\)u
) {wutr = a{usuls + c{upuls = da+ Xe

Then their Hamiltonians are K = «’ + 2ud and H = ad + ¢03.
Letting & :=u"'/2 so that K& = 0, we have

g = ul/?
_ Q32 C sz o 0T/ ?
L= gu 1" 16
2
£ = ﬁazu—5/2+ { 160u~7/24" +-280u /2 /2}+C_{_ 64u~"/20,®
512 512 512

1448079200 + 3360920 2 — 18480~ 11/2/ 20" 4 11550~ 13/2y /4}

and
ho = 2u1/2
hy = _%u—yz + §U—5/2U/2
1
hy = 256 \/—ﬁﬂ { —16a%u* + 40acu®u’ 2 — 162u%u" % + 35c2u'4}
U
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Then the 1st evolution equation is the Harry-Dym equation:

oL = Hey = alu ) + ()"

Example 2. Consider the N = 1 Poisson superconformal algebra (SCA),
which is generated by an even element L and an odd element G with \-
brackets

L G
L0+ 2)\)L+ Xc|(0+ 2 NG
G| Go+3NG | L+2)%c

Applying the deformation L — L 4 a (a € C) to the above A-bracket, we
get

L G
L|[(9+2XN)L 4 2aX + Xc| (0+ 3 NG
G Fo+3NG L+a+2X\c

Since a and c¢ are arbitrary complex numbers, this A-bracket is a linear
combination of three A-brackets:

{ x }1 := terms of a°¢°
{ x}2 = terms of a
{ A }3 = terms of c.

Then, just as in Example[ this PVA produces two kinds of bi-Hamiltonian
pairs such that degK < degH:

{rxlxk ={h and {2tk = {1}
{xte ={rxht{}s {xtg ={xh+{x}s

) {rxlxk = { r}2=termsof a
Case 1 : {{)\}H o hitef s

In this case, their Hamiltonians are

<2a 0)
K =
0 1
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. L'+2L0+cd® LG +3Go
a G'+3Go L+2cd?

and the Lenard scheme is as follows:

o= (3)

1

iy
& = <2G’>
¢ — ( 32+l +3GE )
SLG +32LG+2cG”

and

ho = L

1 1
h = - L*+ -GG’
1 1 +2GG

1 c 3
hy = =L —-L'?+ > LGG" — ¢cG'G"
2 = 3 L GG —cG'G

L

Then the 2nd evolution equation i( G

o6 > = K& is the super KdV

equation:
oL 3 [ [ / [ n 3 1
oty 2 + % + 2 GG

% = SLG +3L/G+2G",
= = 0.0
Case 2 : {2}t ={xh = termsof a’c
{x}tu = { r}s = termsof c

In this case, their Hamiltonians K and H are as follows:

o [ +2Lo 3G'+5Go
G'+3Go L
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2 0
H = 9
0 20

,-1/2 + %L—5/2GG/
0= g +3L752LG

Taking

so that K&y = 0, we have

ho = 2u'/? — %u—?’/?GG’

1 1 1
hl — gL—5/2L/2 + %L—9/2L/ 2GG/ - %L—5/2GG/// + Z L—5/2G/G//

L
Then the 1st evolution equation 8%)( G > = H¢, is the super Harry-Dym
equation:
n
oL _ -1/2 | 3 7-5/2
oL (L 243 /GG’)
"
oG _ —3/2 3 7-5/2
fe = 2(— LG + 4 LG

2. Poisson W-Algebras via Quantum Reduction

Let g be a finite-dimensional simple Lie superalgebra with Cartan sub-
algebra h and non-degenerate invariant super-symmetric even bilinear form
(]) and f be a nilpotent element in the even part of g. Then the Poisson
W-algebra W (g, f, k), where k is an arbitrary complex number called the

level, is constructed by quantum reduction as follows.

Let A (resp. A.) be the set of all non-zero (resp. positive) roots of
g with respect to h, and put ny := Zae:l:A+ go. Let S(g,k) denote the
super-commutative associative algebra generated by all elements in g and
their derivatives, which is a PVA with the A-bracket:

(X,Y} = [X, Y]+ A(X]Y) (XY €q).

Choose elements z € h and e € ny ¢ such that [x,e] = e, [z, f] =
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—f,le, fl] =z and a(z) > 0 for all « € A, and put

g/ = {Y egllf,Y]=0}

5 i= {a € Ala(@) = ) Gelz)
g, = {Yegllz,Y] =3V} (j €32),
Sy o= 'L>Jon ={a e Ala(z) > 0}.

Introduce the ghost particles ¢q, ¢y, (o € S1) and ¢, ( € Sy/2) such
that ¢, and ¢ are bosons (resp. fermions) if and only if « is an odd (resp.
even) root, and ¢, is a boson (resp. fermion) if and only if v is an even (resp.
odd) root. Let ® be the super-commutative associative algebra generated by

these elements and their derivatives, which is a PVA with Poisson A-bracket

{eares) i=0ap {Pards}:= (fllea, eg]) and all others:= 0,

where e, ’s are root vectors which are arbitrarily chosen and fixed such that
(eale—a) =1 for a € A,

Put C(g, f, k) := S(g,k) ® ® and define the “charge” in it by

charge(u) := 0 (ue S(g))
charge(ps) = 1 (€ Sy)
charge(¢?f) = =1 (a € Sy)
charge(¢o) == 0 (a€Sy))

Letting Cj(g, f, k) denote the space spanned by all elements of charge j in
C(g, f, k), we have a direct sum decomposition C(g, f, k) = @jez Cj(g, [, k).

Consider an element d € C_1(g, f, k) defined by

* 1 * *
d = 3 (D)ears =5 D (DG soreieh

aeSt acS,

+ ) (flea)pa+ Y ath

acSy aeSl/z

where ¢! 5 are structure constants: lea,€8] = ﬁ/cg g€y~ This element d

satisfies

{drd} = 0. (2.1)
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Put
W(g7 /s k) = {’LL € 00(97 /s k) | {d)\u}|)\20 = 0} (22)

Then it is easy to see that W(g, f,k) is a Poisson vertex subalgebra of
C(g, f, k), called the Poisson W-algebra.

To describe the structure of this Poisson W-algebra W (g, f, k), we put

JX) = X 4 Z (—1)‘a|c§aeﬁ¢acpg (2.3)
a,BeS4+

for each X € g. Then, by the same arguments as in the proof of Theorem
4.1 in [§], we obtain

Theorem 2.1. (1) For each v € g{j =g/ Ng_;j (j € 3Z>0), there exists

an element

where “-- 7-part is written by J™ (u € Z—j<i§0 gi) and ¢q (o € Sy)2).
(2) W (g, f, k) is generated by J} (v € gl).

3. Minimal Poisson W-algebras

We consider the case where the highest root 6 in A is an even root,
and normalize the inner product by (6|6) = 2, and put f := e_y. Then the
slo-triple (z,e, f) is

1 1
= = _ —e_ Nl
T 20, e 269, f=e_g (3.1)

and the ad(z)-gradation of g is as follows:
9=0-1D9 12D 00D D g (3.2a)

where
g1=Ce, go=Czagl, g.=Cf (3.2b)

So the centralizer g/ of f is a direct sum

¢/ =Cfeg,pod (3.3)
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and the Poisson W-algebra W (g,e_g,k) is generated by the following ele-
ments:

-1
Li=— J g = a Yy (weg ), T (ueg]). (3.4)

Here and after we write G{*} in place of J1*} in particular for v € g_; /2

In order to write down the A-brackets of these generators explicitly, we
take bases of gg and gy, as follows:

o {Ui}ieé‘({’{vi}ieé‘({ : bases of gg such that (v;|v?) =6&;;
o {uities, )y {Ui}z‘esl/z : bases of g5 such that [u;, v/] = 6; jeq .

Then we have

Theorem 3.1. Formulas for JU} and J1 (u e gg) and Gt (u € 9-1/2)
are explicitly given as follows:

J{f} _ J(f + Z \u]\(bjj(f,uj _ Z J(U o kaJ(w)

jesl/2 ZESf
1 .
{u}p — g _ = il
J =J 2 Z ( 1) cu,uj¢l¢j
1,J€S1/2
Gt = g4 3y ¢ J ¥ 4 g > (u|u)dg;
i€S1 /2 i€S1 /2
— 1)l y
- CE S (e g, i )00
i7j7kesl/2

where ¢; == ¢y, and @ = by namely {pixd’} =6 ; .

By a long calculation using these explicit formulas, we obtain their A-
brackets as follows:

Theorem 3.2. The \-brackets in W(g,e_g, k) are given as follows:
(1) {LxL} = (0+2\)L —£)3

{L\J ) = (0 + )t

(LG} = (9 + 3 NG
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(2) {Jt g = (9 4+ N JU 4 Nk (ulv)
(7, Gy = Gllul)

3) {GUhG} = —hg, L + 2 X T
ieS]

+ Z gl w15} p{lws o)t} 4 2k (0 + 2)\)J{[[evu}7v}h} + N2 gy
iESl/g

where  gy,p = (eq|[u,v]) (u,v € g_1/2) and
1:90=Cx® gg — gg : orthogonal projection.

Remark 1. (1) Quadratic terms in {Gt*}\G{"}} do not appear in the fol-

lowing cases:

g Wi(g,e_g,k)
sl(2,C) Virasoro algebra
osp(1]2) N=1 SCA
sl(2]1) N=2 SCA
sl(2|2)/center N=4 SCA

(2) Quadratic terms in {G1*},G{*}} can be removed by adding suitable free

fermions in the following cases:

g W(g7 €—0, k)
0sp(3|2) N=3 SCA
D(2,1;)| big N=4 SCA

In the above cases, bi-Hamiltonian pairs can be constructed in a similar
way as in the case of N=1 SCA. In all other cases, we can do the following

“linearlization of parameters” to construct bi-Hamiltonian pairs.

For this sake, we introduce the super-commutative associative algebra
F generated by particles {U—a}a651 /2 and their derivatives such that o_, is
a boson (resp. fermion) if and only if « is an even (resp. odd) root, with
A-brackets

{0005} = (eolle—are—p]) = Ge_ne_p- (3.5)
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Let W(g, e_p, k) denote the Poisson vertex algebra generated by W (g, e_g, k)
and F'. Then, by a suitable choice of generators of this PVA W(g, e_g, k),

one can construct a bi-Hamiltonian pair, as is shown below.

First, to construct a bi-Hamiltonian pair of KdV type, we choose and
fix an element hg € b/ such that a(hg) # 0 for all a € Sy, and put

Job = g (ot (u€g}) (3.62)
Glee) = Gleod Ltaa0 o (0 € Syp) (3.6b)

where t is an arbitrary complex number and

. J (1)l afg)? — ), (3.7)

Then by Theorem B2, we have the following

Theorem 3.3. Take generators L, J1"} (u e gg), Gl (v e g_1/2) and
0_a’s for W(g, e_g, k). Then their Poisson \-brackets are as follows:

(1) {L\L} = (0+2\)L—E)3
(LW = (0 + N)JW + X (holu)
{L\Gle—}} = (0+3 )\)(é{e*“} — tano_q) (€ 812)
(2) {Jth\JWH = (0 + )T 4\ (Ro|[u, v]) + Mk (ulv)
(JluhGih = Glwl} ¢

C—vy
VES) /g Cusv AyT—y

(3) {é{u})\é{v}} = —kguoL + 9u2,v Ziegg J' jluit tgumj{ho}

+ Y L, w2y j{[ui,vm_zt( Jtllhoul, [el)®} j{[[e,ul,[ho,vnh})

iesl/g

+ 2k(0 + 2X) J U I gtk X(hol[[e, u), v]) + A2k a0

(4) {Lao—p} = {Tro 5} = 0
(Gl g} = ~taage e

{o—aro-8} = ge_ae s -
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Since this is a Poisson A-bracket for any ¢ € C, we get a bi-Hamiltonian

pair ({ x }x, { » }m) by putting
{ }g:=t"terms and { ) }x :=t'-terms.
Namely we have

Corollary 3.4. The following pair ({ A }x,{ x }m) is a bi-Hamiltonian
pair:

(1) {L\L}g = (0+2\)L — 523,
{LaJ W g = (0 + 2Tt}
{L\G Yy = (0+ 2 N)G1Y,
(T TN g = (0 + V)T 4 Ak(ulv),
(7l gy = Ggilwel}
(GG gy o= —kgy L + 22 3 gl gl

€S

+ Z gy gl o} og(g 4 ox) gilleu o) 4 N2k gy
i651/2

{Lyo gty = {JW o g}y = {G1\o_g}n =0,
{U—aAU—ﬁ}H = Ye_qe_p-
2) {L\L}x =0
{LyJ W g = A(holu)
{IAGl I} = —aa(0+ 3N o0 (@ € Syp)
{T09 T} e = A(hol[u, v])
{JhGt g = — Z«,esm Cijvwavg—v
(GG e = gy o T U0 — (ol lexl) 4 gllend, (o]}
NO_BIK = NO_BIK "= 10—aX0_GJK =
{Lxo—p} {70305} { Jk =0

{G{efa}Ao'_ﬁ}K = _aagefavefﬁ :
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Next, to construct bi-Hamiltonian pair of HD-type, we put
Gle—eb .= gle=o} 4 koo, (€ 812) (3.8)
and take the generators
L, J"ueg)), G"uecaip), oaleeSyp) (39

for W(g,e_g, k). Then, by Theorem and the formula (B0l), we see that
the Poisson \-brackets of these elements ([BX) consist only of terms of k°
and k' and are given by the following:

Theorem 3.5. (1) The Poisson A-brackets of the elements in B3) is given by

(ay={a e + k{1

where { }};(D and { }HHD are defined as follows:

(i) {LaL}y = (0+2\)L
(LT = (9 + A)J )
(LGN = (94 326
{J{“}AJ{U}}HKD o= (0 4 A)J{wel}
(TGN = Gl
0N )y st WD S w2} 7{fui, v}
{Lao gty ={T"ho gty ={G"ho g}y =0
{0-ar0_g} = Ge_nie_s

(i) {LAL}y = —1X3
(LyJY =0
(LAGle-ah} P = — (0 + 3 \)do_,,
{70 T = Mul)
(J Gl > e o Doy
{GU, G = —gu oL+ 2(0 + 22)J el
{Lao sty = (o g}y = {0 aro sty =0
{G{e*‘*},\U—ﬁ}HHD = =Ae_ge_g -

(2) The pair ({ }HKD,{ A }};ID) is a bZHamz’ltom’an pair.
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Conjecture 1. Bi-Hamiltonian pairs in Corollary B4l and Theorem BH are
integrable.

4. The Example of W (slg,e_g, k)

For g = si(3, C), take a basis

€y = E1,27 Cay = E2,37 Cai+as = E1,37
€_a; = Foj, €_ay = FE3p, €aj—ay = FE31,
oy = Ey1—FEso, ay = KEyo— E33,

and an sls-triple

1

1
€T = 5(0&1 + a2)> €= 560114-0427 fi=eg= €—ai—ag>

where E; ; is the 3 x 3-matrix which has 1 in the (4, j)-entry and 0 everywhere
else. Then

@ = C (-,

g-12 = Ce_o, ®Ce_q,,

g1 = Ce_a—ay = Cf.
So W(sls,e_g, k) is generated by

L = %J{f}
J = Jlea—ez}

Glfid .= gl (1=1,2)

with A-brackets

L J G} Gif2}
L [(0+20)L = Xk[ @+ NJ [0+ 320G (0 + 3nGie)

J A\ 6k —3Gint 3Gt

kL — 3J?

GUH| (2 + 3Gt | 3Gind 0 +E0@+20)J

—)\21{32

—kL+ 3J?
G| (2 4+ 330G | =361 | 1k 4207 0
+A2k?
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In order to construct bi-Hamiltonian pairs, we introduce bosonic ele-

ments o, 7 such that

{oath =1, {oro}t ={n7}=0

and consider the Poisson vertex algebra W(slg, e_g, k) generated by W (sls,e_g, k)

and o and 7.

Case 1: (bi-Hamiltonian pair of KdV-type):
We put
J =J—-ua
Gy = GUil 445 (a € C).
Gy = GU2} ar

Then the A-brackets of these elements are as follows:

L J Gy Go o |7
I (8+%A)L 0+ N)J 0+ 3N)Gy (0+3N)Gs o lo
—2k +Aa —2(0+ 3\)o —a(d+ 3N
J A+ da 6k —3G1 + ao 3Gy — 3ar 0 (0
kL —LJ2 — 247
9,3 3 3
243 \@ -
G1 _(g(gigAlg 3G — ao 0 +E@+20)J | 0|2
3(3T3 +ak — A2k?
—kL+L1j7242,7
(3+396s oo
Ga| (@253 —3G2+3ar| +5(0+2N)J 0 —al0
A +Aak + A2k
o 0 0 0 a 01
T 0 0 —4 0 —-11]0

Putting
{ »}x :=a terms and { ) }y := a'-terms,

we get a bi-Hamiltonian pair. By simply using J and ¢ for J and k, their
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Hamiltonians K and H are as follows:

0 0 —20'—300 —37' =370 0 0

0 0 —0 37 00

—z0' —500 o 0 2J4+c0 0 3

" —7' =370 =31 —2J+c0 0 10
0 0 0 -1 0 0

0 0 : 0 00

/
(Lj%;fa) Jo 3Gi+3Gi0 LGL+3G0 0 0
J +Jo 6co 3G1 —3Go 0 0
—cL+%J2
Gl +3G10 —3G, 0 +£(J'+2J9)| 0 0
H = +¢202
cL — 3J?
Gh+3G20 3Gy [+5(J'+2J9) 0 0 0
—6282
0 0 0 0 0 —1
0 0 0 0 10

To calculate the Lenard scheme for this bi-Hamiltonian pair, we take

1
0
0
0 so that K& =0.

~

T
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Then we have
J+ 301
L+ %(O’T’ —o'T)
37
&1 = o
GY+3LT+3J7" + %J’T + 12077 — 3er”
3(= G+ Lo—Jo' — 3J 0 —4do0't — co”)
and
ho = L+o7,

hi = L(J+3071) + g J(om' — o'1) 4+ 3G — G0’ 4 60% 77 — 3cor”.

The 1st evolution equation 377“(‘) = H¢y is

L
J
o | Gi
Oty | Gy

g

T

and the 2nd evolution equation g—t“l =H&

is as follows:

L
gT = 2(LJ)/ . gjl// + 3L 0T + 6L(O’T)/ i gJ(O'T” _ O'//T)
1
3 ! ! 1 1 ;7 ” 3 "
—1—5( 1T+ 3G ") — 5( 50" + 3G0") — 56(0—7)
STJ = GCL/ + 2JJ, + 3(JO'T), + gGlT/ + 3G20', i QC(O.T// B U,/T)
1
%—(;11 = —3LGL+ JGy + gJ/G1 + 3G o7 +9G 0’7
L _ S\ " 2 m
—I—(CL 3J 2J)J cJo'" —co
0Go

oty

3
= 3LGy + JG/2 + §J/G2 —|—3G/20'7' + 9G207'/
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3
+<30L - J?+ 5&]/) 7+ 3cJr" — 327"
do . / PR / "
o 3<G1 — Lo+ Jo +§JO'—|-40'O'T—|—CO' )
or 1
% /2—|-3<LT—|-JT/—|-§J/T—|—4O'TT/—CT//>. (4.1)
Case 2: (bi-Hamiltonian pair of HD-type):
We put
Gi:=GU +kdo,  Go:=GU2 1 kor
Then the A\-brackets for these elements are as follows:
L J G1 G2 g T
(0+2\)L O+ 3NG | (0+ 320G,
L : o+ \N)J 2 2 0] O
.y (@+2) k(843N0 | —k(O+3N)dT
J AJ 6Nk —3G1 +3k0o | 3Gy —3kor | 0| O
(24306 kL —LJ?
G 2.2 3G1—3k0 0 3 0 |—Ak
O I S +5(0+2))J
(§+30)Gs —kL+ 3.2
G 272 —3G9+3k0O 3 0 Ak 0
2~k 43007 2RO +E0 + 207
o 0 0 0 Ak 0] 1
T 0 0 —Ak 0 11 0
Putting { » }x := kU-terms and { ) }y := kl-terms, we get a bi-

Hamiltonian pair, whose Hamiltonians K and H are as follows:

L'+2L0 Jo
J +Jo 0
G| +3G10 —3G,
Gy + 2G20 3G
0 0
0 0

%Gll + %Gla %GIQ + %G28 0

3G
0
J2

1
3
0
0

0
—3Gy 0 0
12 0 0
0 00
0 0 -1

0 10
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503 0 Fo"—-300 F"—-379 0 0
0 60 —30’ 37 0 0
~0" — 30’0 30’ 0 —L+3J +J0 0 -0
H =
7" =370 =37 L+1J' +J0 0 o 0
0 0 0 0 0 0
0 0 —0 0 0 0
To compute the Lenard scheme, we take
0
J?w
9G2 w
= that K¢ =0
€o 9G, w so tha €o
0
0

where  w := (J? 4+ 27G1G2)~2/3. Then

ho = w /%2 = (J3+27G1G2)1/3
G, G}
— 2 _ I /
hy = 3LJw+ J (G2 G1>w 9(Giw)'T — 9(Gaw)'o.

u

The first evolution equation 8670 = H¢ is as follows:

L —3(G17" + Gao")w — Z{(Giw)'T’ + (Gow)'o’}
J 6(J2w) +27(G1 7" — Gao')w
5 | 6 3.%wo" + 9J(Giw)’ + 9( L+ %J’) Grw
dto Go - —3J%wr 4 9J(Gow)' + 9(L + %J’) Gow
o 9(Ghw)

T —Q(Ggw)/

(4.2)
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Our conjecture in this case is that these equations ([l and (EZ) will

be integrable.

10.
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