ON STRONGLY PRIME SPECTRUM OF Γ-NEAR RINGS

C. SELVARAJ^{1,a} AND L. MADHUCHELVI^{1,b}

¹Department of Mathematics, Periyar University, Salem - 636 011, Tamilnadu, India. ^aE-mail: selvavlr@vahoo.com

 $^2 \mathrm{Department}$ of Mathematics, Sri Sarada College, Salem - 636016, Tamilnadu, India.

 $^b\mathrm{E\text{-}mail:}$ chelvissc@yahoo.co.in

Abstract

In this paper, we prove that if N is a subcommutative Γ -near ring with a right unity and a strong left unity, then

- (i) there is a one-to-one order preserving correspondence between pretopologies on Nand pretopologies on the left operator near-ring L of N and
- (ii) there is a one-to-one order preserving correspondence between topologies (Gabriel) on N and topologies (Gabriel) on L.

Finally, we show that if N is a distributive Γ -near ring with right unity and a strong left unity, there is a one-to-one order preserving correspondence between bases for strongly prime spectrum of N and bases for strongly prime spectrum of L.

1. Introduction

The concept of Γ -near ring, a generalization of both the concepts nearring and Γ -ring was introduced by Satyanarayana [6]. Later, several authors such as Booth [1, 2] and Selvaraj et al. [7] studied the ideal theory of Γ -near ring. We use SSpec(N) and SSpec(L) to denote the strongly prime spectrum of N and the strongly prime spectrum of the left operator near-ring L of N, respectively. In this paper, we introduce pretopology and Gabriel topology on N. It is shown that if N is a distributive Γ -near ring with a right unity and strong left unity, there is a one-to-one order preserving correspondence

Received March 16, 2010 and in revised form November 15, 2010.

AMS Subject Classification: 16Y30, 16Y99.

Key words and phrases: Pretopology, Gabriel topology, strongly prime spectrum.

between bases for strongly prime spectrum of N and bases for strongly prime spectrum of L.

2. Preliminaries

Throughout this paper N stands for a zero symmetric Γ -near ring. For basic terminology in near-rings we refer to Pilz [5] and in Γ -near rings we refer to Satyanarayana [6]. In this section we recall certain definitions needed for our purpose.

Definition 2.1. A Γ - near ring is a triple $(N, +, \Gamma)$, where

- (i) (N, +) is a (not necessarily abelian) group;
- (ii) Γ is a non-empty set of binary operations on N such that for each $\gamma \in \Gamma$, $(N, +, \gamma)$ is a right near -ring and;
- (iii) $(x\gamma y) \mu z = x\gamma (y\mu z)$ for all $x, y, z \in N$ and $\gamma, \mu \in \Gamma$.

 Γ -near rings generalize near-rings in the sense that every near-ring N is a Γ -near ring with $\Gamma = \{\cdot\}$, where \cdot is the multiplication defined on N.

Example 2.2. Let (G, +) be a group and X a non-empty set. Let $M = \{f | f : X \to G\}$. Then M is a group under pointwise addition. If G is non-abelian, then (M, +) is also non-abelian. To see this, let $a, b \in G$ such that $a + b \neq b + a$. Now define $f_a, f_b : X \to G$ by $f_a(x) = b, f_b(x) = a$ for every $x \in X$. Then $f_a, f_b \in M$ and $f_a + f_b \neq f_b + f_a$. Thus if G is non-abelian then N is also non-abelian.

Let Γ be the set of all mappings from G into X. If $f_1, f_2 \in M$ and $g \in \Gamma$ then obviously $f_1gf_2 \in M$. For all $f_1, f_2, f_3 \in M$ and $g_1, g_2 \in \Gamma$, it is clear that

- (i) $(f_1g_1f_2)g_2f_3 = f_1g_1(f_2g_2f_3)$ and
- (ii) $(f_1 + f_2)g_1f_3 = f_1g_1f_3 + f_2g_1f_3$.

But $f_1g_1(f_2 + f_3)$ need not be equal to $f_1g_1f_2 + f_1g_1f_3$. To verify this, fix $0 \neq z \in G$ and $u \in X$. Define $g_u : G \to X$ by $g_u(x) = u$ for all $x \in G$, and $f_z : X \to G$ by $f_z(x) = z$ for all $x \in X$. Now for any two elements $f_2, f_3 \in M$, consider $f_z g_u (f_2 + f_3)$ and $f_z g_u f_2 + f_z g_u f_3$. For all $x \in X$,

$$[f_z g_u (f_2 + f_3)](x) = f_z [g_u (f_2(x) + f_3(x))] = f_z(u) = z.$$

and

$$[f_z g_u f_2 + f_z g_u f_3](x) = f_z g_u f_2(x) + f_z g_u f_3(x) = f_z(u) + f_z(u) = z + z.$$

Since $z \neq 0$, we have $z \neq z + z$ and hence $f_z g_u (f_2 + f_3) \neq f_z g_u f_2 + f_z g_u f_3$. Therefore M is a Γ -near ring.

Definition 2.3. Let N be a Γ -near ring, then a normal subgroup I of (N, +) is said to be

- (i) left ideal if $a\alpha (b+i) a\alpha b \in I \quad \forall a, b \in N, i \in I \text{ and } \alpha \in \Gamma$,
- (ii) right ideal if $i\alpha a \in I \quad \forall i \in I, a \in N \text{ and } \alpha \in \Gamma$,
- (iii) ideal if it is both left and right ideal of N.

If I is an ideal of N, then it is denoted by $I \triangleleft N$.

Definition 2.4. Let N be a Γ -near ring. Let \mathcal{L} be the set of all mappings of N into itself which act on the left. Then \mathcal{L} is a right near-ring with operations pointwise addition and composition of mappings. Let $x \in N$ and $\alpha \in \Gamma$. We define the mapping $[x, \alpha] : N \to N$ by $[x, \alpha] y = x\alpha y \quad \forall y \in N$. The sub near-ring L of \mathcal{L} generated by the set $\{[x, \alpha] | x \in N, \alpha \in \Gamma\}$ is called the left operator near-ring of N.

A right operator near-ring R of N is defined analogously to the definition of L. Let \mathcal{R} be the left near-ring of all mappings of N in to itself which act on the right. If $\gamma \in \Gamma$, $y \in N$, we define $[\gamma, y] : N \to N$ by $x[\gamma, y] = x\gamma y$ for all $x \in N$. R is the sub near-ring of \mathcal{R} generated by the set $\{[\gamma, y] | \gamma \in \Gamma, y \in N\}$.

Definition 2.5. An element x of a Γ -near ring N is called distributive if $x\alpha (a + b) = x\alpha a + x\alpha b$ for all $a, b \in N$ and $\alpha \in \Gamma$. If all the elements of a Γ -near ring N are distributive, then N is said to be a distributive Γ -near ring.

Definition 2.6. A Γ -near ring N is said to be zero symmetric if $a\gamma 0 = 0$ $\forall a \in N, \gamma \in \Gamma$.

Definition 2.7. Let N be a Γ -near ring with left operator near-ring L. If $\sum_{i} [d_i, \delta_i] \in L$ has the property that $\sum_{i} d_i \delta_i x = x \ \forall x \in N$, then $\sum_{i} [d_i, \delta_i]$ is called a left unity for N. A strong left unity for N is an element $[d, \delta]$ of L such that $d\delta x = x \ \forall x \in N$.

N is said to have a right unity if there exist $d_1, d_2, \ldots, d_n \in N$ and $\delta_1, \delta_2, \cdots, \delta_n \in \Gamma$, for all $x \in N$, $\sum_i x \delta_i d_i = x$.

Definition 2.8. An ideal I of a Γ -near ring N is called a completely prime ideal of N if for $a, b \in N$ and $\alpha \in \Gamma$, $a\alpha b \in I$ implies $a \in I$ or $b \in I$.

Definition 2.9. A Γ -near ring N is said to be subcommutative if $a\gamma N = N\gamma a$ for all $a \in N$ and for all $\gamma \in \Gamma$.

3. Gabriel topology for Γ -near rings

Throughout this section by a Γ -near ring N we mean a zero-symmetric Γ -near ring with left unity.

In this section, we introduce a Gabriel topology for Γ -near ring and we prove that if N is a subcommutative Γ -near ring with a right unity and a strong left unity, and if L is the left operator near ring of N, then there is a one-to-one order preserving correspondence between topologies (Gabriel) on N and topologies (Gabriel) on L.

Definition 3.1. Let *I* be a left ideal in a Γ -near ring *N* and *P* a left ideal in *L*. Then for each $x \in N$ and $\alpha \in \Gamma$, we define.

$$(I:x)_{\alpha} = \{y \in N \mid y\alpha x \in I\}$$
$$I^{(x)} = \{\ell \in L \mid \ell x \in I\}$$
$$P^{(\alpha)} = \{y \in N \mid [y,\alpha] \in P\}$$

Lemma 3.2. Let I be a left ideal of a Γ -near ring N. Then

(a) $(I:x)_{\alpha}$ is a left ideal of N.

- (b) $I^{(x)}$ is a left ideal in L.
- (c) $P^{(\alpha)}$ is a left ideal in N.

Proof.

(a) For $\ell, m \in (I : x)_{\alpha}$, $(\ell - m)\alpha x = \ell\alpha x - m\alpha x \in I$ since I is a left ideal of N. Therefore $\ell - m \in (I : x)_{\alpha}$. For $m \in (I : x)_{\alpha}$, $n \in N$, $(n + m - n)\alpha x = n\alpha x + m\alpha x - n\alpha x \in I$ since I is a left ideal of N. Therefore, $n + m - n \in (I : x)_{\alpha}$. Thus $(I : x)_{\alpha}$ is a normal subgroup of (N, +). For all $a, b \in N$, $i \in (I : x)_{\alpha}$ and $\beta \in \Gamma$,

$$\begin{aligned} (a\beta(b+i) - a\beta b)\alpha x &= a\beta(b+i)\alpha x - a\beta b\alpha x \\ &= a\beta[(b+i)\alpha x] - a\beta b\alpha x \\ &= a\beta(b\alpha x + i\alpha x) - a\beta(b\alpha x) \in I. \end{aligned}$$

Thus $a\beta(b+i) - a\beta b \in (I:x)_{\alpha}$. This implies that $(I:x)_{\alpha}$ is a left ideal of N.

- (b) For $\ell, m \in I^{(x)}, (\ell m)x = \ell x mx \in I$. This implies that $\ell m \in I^{(x)}$. For $\ell \in L$ and $i \in I^{(x)}, (\ell + i - \ell)x = \ell x + ix - \ell x \in I$ since I is a left ideal of N. Therefore $I^{(x)}$ is a normal subgroup of (L, +). For $x \in N, (b + i)x = bx + ix \in bx + I$ since $ix \in I$. By [1, Lemma 4], $a(b + i)x + I \subseteq abx + I$, i.e., $a(b + i)x - abx \in I$. This implies that $(a(b + i) - ab)x \in I$. Thus $a(b + i) - ab \in I^{(x)}$. Therefore $I^{(x)}$ is a left ideal of L.
- (c) Let $x, y \in P^{(\alpha)}$. Then $[x y, \alpha] = [x, \alpha] [y, \alpha] \in P$. Therefore $x y \in P^{(\alpha)}$. For $n \in N$ and $x \in P^{(\alpha)}$, $[n + x n, \alpha] = [n, \alpha] + [x, \alpha] [n, \alpha] \in P$ since P is a left ideal in L. Therefore $n + x n \in P^{(\alpha)}$. Thus $P^{(\alpha)}$ is a normal subgroup of N.

For $a, b \in N$ and $x \in P^{(\alpha)}$,

$$\begin{split} [a\beta(b+x) - a\beta b, \alpha]y &= [a\beta(b+x), \alpha]y - [a\beta b, \alpha]y \\ &= a\beta(b+x)\alpha y - a\beta b\alpha y \\ &= a\beta(b\alpha y + x\alpha y) - a\beta(b\alpha y) \\ &= a\beta([b, \alpha]y + [x, \alpha]y) - a\beta[b, \alpha]y \\ &= [a, \beta]([b, \alpha] + [x, \alpha])y - [a, \beta][b, \alpha]y \\ &= ([a, \beta]([b, \alpha] + [x, \alpha]) - [a, \beta][b, \alpha])y. \end{split}$$

Since P is a left ideal, $[a, \beta]([b, \alpha] + [x, \alpha]) - [a, \beta][b, \alpha] \in P$. This implies that $a\beta(b+x) - a\beta b \in P^{(\alpha)}$. Therefore $P^{(\alpha)}$ is a left ideal in N.

Lemma 3.3. Let I, J be left ideals in N and Q a left ideal in L. Then for all $x, y \in N$ and $\alpha, \beta \in \Gamma$,

- (a) $(I:x)_{\alpha} = N$ for all $\alpha \in \Gamma$ if and only if $x \in I$.
- (b) $(I \cap J : x)_{\alpha} = (I : x)_{\alpha} \cap (J : x)_{\alpha}$.
- (c) $((I:x)_{\alpha}:y)_{\beta} = (I:y\alpha x)_{\beta}$

Proof.

- (a) Suppose that $(I:x)_{\alpha} = N$ for all $\alpha \in \Gamma$ and $x \in N$. Let $n \in N$. Then $n \in (I:x)_{\alpha}$. This implies that $n\alpha x \in I$. Then $n\alpha x = n\alpha(0+x) n\alpha 0 \in I$. This implies that $x \in I$ since I is a left ideal of N. Conversely, suppose that $x \in I$. $(I:x)_{\alpha} \subseteq N$ is obvious. Suppose $N \nsubseteq (I:x)_{\alpha}$. Then there exists some $n \in N$ such that $n \notin (I:x)_{\alpha}$. This implies that $n\alpha x \notin I$. But $n\alpha x = n\alpha(0+x) - n\alpha 0 \in I$ since I is a left ideal of N and $x \in I$, a contradiction. Therefore $N = (I:x)_{\alpha}$.
- (b) Let $n \in (I \cap J : x)_{\alpha}$. This implies that

$$n\alpha x \in I \cap J \iff n\alpha x \in I \quad and \quad n\alpha x \in J$$
$$\Leftrightarrow n \in (I:x)_{\alpha} \quad and \quad n \in (J:x)_{\alpha}$$
$$\Leftrightarrow n \in (I:x)_{\alpha} \cap (J:x)_{\alpha}.$$

(c) Let $n \in ((I:x)_{\alpha}:y)_{\beta}$. This implies that

$$n\beta y \in (I:x)_{\alpha} \Leftrightarrow n\beta y\alpha x \in I$$
$$\Leftrightarrow n \in (I:y\alpha x)_{\beta}.$$

Definition 3.4. Let I be a left ideal in N and Q a left ideal in L. Then we define

$$I^{+} = \{ \ell \in L | \ell N \subseteq I \}$$
$$Q^{+'} = \{ x \in N | [x, \Gamma] \subseteq Q \}.$$

It is clear that I^+ and $Q^{+'}$ are left ideals in L and N, respectively.

Lemma 3.5. Let N be a subcommutative Γ -near ring. Let I and Q be left ideals in N and L, respectively. Then, for all $x, y, \ell \in N$ and $\alpha \in \Gamma$,

(a) $(I^+ : [x, \alpha]) = ((I : x)_{\alpha})^+.$ (b) $(Q : [x, \alpha])^{+'} = (Q^{+'} : x)_{\alpha}.$ (c) $(I^{(x)} : [y : \alpha]) = ((I : x)_{\alpha})^{(y)}.$ (d) $(I \cap J)^{(x)} = I^{(x)} \cap J^{(x)}.$ (e) $I^{(\ell x)} = (I^{(x)} : \ell).$

Proof.

(a)

$$\begin{split} \ell \in ((I:x)_{\alpha})^{+} &\Leftrightarrow \ell N \subseteq (I:x)_{\alpha} \\ &\Leftrightarrow \ell N \alpha x \subseteq I \\ &\Leftrightarrow \ell x \alpha N \subseteq I \quad [\because N \text{ is subcommutative}] \\ &\Leftrightarrow \ell[x,\alpha] \in I^{+} \\ &\Leftrightarrow \ell \in (I^{+}:[x,\alpha]). \end{split}$$

(b)

$$y \in (Q^{+'}: x)_{\alpha} \Leftrightarrow y\alpha x \in Q^{+'}$$

$$\Leftrightarrow [y\alpha x, \Gamma] \subseteq Q$$

$$\Leftrightarrow [y, \alpha][x, \Gamma] \subseteq Q$$

$$\Leftrightarrow [y, \alpha][x, \alpha] \in Q$$

$$\Leftrightarrow [y, \alpha] \in (Q : [x, \alpha]) \text{ for any } \alpha \in \Gamma$$

$$\Leftrightarrow [y, \Gamma] \subseteq (Q : [x, \alpha])$$

$$\Leftrightarrow y \in (Q : [x, \alpha])^{+'}.$$

(c)

$$\begin{split} \ell \in (I^{(x)} : [y, \alpha]) & \Leftrightarrow \ \ell[y, \alpha] \in I^{(x)} \\ & \Leftrightarrow \ \ell[y, \alpha]x \in I \\ & \Leftrightarrow \ \ell y \alpha x \in I \\ & \Leftrightarrow \ \ell y \in (I : x)_{\alpha} \end{split}$$

[September

 $\Leftrightarrow \ \ell \in ((I:x)_{\alpha})^{(y)}.$

(d)

$$\ell \in (I \cap J)^{(x)} \Leftrightarrow \ell x \in I \cap J$$

$$\Leftrightarrow \ell x \in I \text{ and } \ell x \in J$$

$$\Leftrightarrow \ell \in I^{(x)} \text{ and } \ell \in J^{(x)}$$

$$\Leftrightarrow \ell \in I^{(x)} \cap J^{(x)}.$$

(e)

$$m \in I^{(\ell x)} \Leftrightarrow m\ell x \in I$$

$$\Leftrightarrow m\ell \in I^{(x)}$$

$$\Leftrightarrow m \in (I^{(x)} : \ell).$$

Lemma 3.6. Let I be a left ideal in N and P,Q left ideals in L. Then for all $x \in N$ and $\alpha, \beta \in \Gamma$,

- (a) $(P \cap Q)^{(\alpha)} = P^{(\alpha)} \cap Q^{(\alpha)}$.
- (b) $(P : [x, \alpha])^{(\beta)} = (P^{(\alpha)} : x)_{\beta}.$
- (c) $(P^{(\alpha)})^{(x)} = (P : [x, \alpha]).$
- (d) $(I^{(x)})^{(\alpha)} = (I:x)_{\alpha}.$

Proof.

(a)

$$\begin{aligned} x \in (P \cap Q)^{(\alpha)} &\Leftrightarrow [x, \alpha] \in P \cap Q \\ &\Leftrightarrow [x, \alpha] \in P \text{ and } [x, \alpha] \in Q \\ &\Leftrightarrow x \in P^{(\alpha)} \text{ and } x \in Q^{(\alpha)} \\ &\Leftrightarrow x \in P^{(\alpha)} \cap Q^{(\alpha)}. \end{aligned}$$

(b)

$$y \in (P : [x, \alpha])^{(\beta)} \Leftrightarrow [y, \beta] \in (P : [x, \alpha])$$
$$\Leftrightarrow [y, \beta][x, \alpha] \in P$$
$$\Leftrightarrow [y\beta x, \alpha] \in P$$

336

(c)

$$\ell \in (P^{(\alpha)})^{(x)} \Leftrightarrow \ell x \in P^{(\alpha)}$$
$$\Leftrightarrow [\ell x, \alpha] \in P$$
$$\Leftrightarrow \ell[x, \alpha] \in P$$
$$\Leftrightarrow l \in (P : [x, \alpha]).$$

(d)

$$y \in (I^{(x)})^{(\alpha)} \Leftrightarrow [y, \alpha] \in I^{(x)}$$
$$\Leftrightarrow [y, \alpha]x \in I$$
$$\Leftrightarrow y\alpha x \in I$$
$$\Leftrightarrow y \in (I : x)_{\alpha}.$$

Definition 3.7. A nonempty family $\mathcal{F}(N)$ of left ideals of N is said to be a pretopology on N if

- (T1) $I \in \mathcal{F}(N)$ implies $(I:x)_{\alpha} \in \mathcal{F}(N)$ for all $x \in N$ and $\alpha \in \Gamma$.
- (T2) $I \in \mathcal{F}(N), I \subseteq J$ implies $J \in \mathcal{F}(N)$ for all left ideals J of N.
- (T3) $I, J \in \mathcal{F}(N)$ implies $I \cap J \in \mathcal{F}(N)$.

A pretopology on N is said to be a (Gabriel) topology on N if

(T4) $(I:x)_{\alpha} \in \mathcal{F}(N)$ for all $\alpha \in \Gamma$ and $x \in J$ for some $J \in \mathcal{F}(N)$ implies $I \in \mathcal{F}(N)$.

Proposition 3.8. If $\mathcal{F}(N)$ is a topology on N and $I, J \in \mathcal{F}(N)$ then $I\Gamma J \in \mathcal{F}(N)$.

Proof. For all $x \in J$ and $\alpha \in \Gamma$, $I\alpha x \subseteq I\Gamma J$ implies $I \subseteq (I\Gamma J : x)_{\alpha}$. By (T2), $(I\Gamma J : x)_{\alpha} \in \mathcal{F}(N)$ for all $x \in J$ and $\alpha \in \Gamma$. By(T4), $I\Gamma J \in \mathcal{F}(N)$.

Lemma 3.9. Let $\mathcal{F}(N)$ be a pretopology on N. Then $\mathcal{F}(L) = \{ \text{ left ideals } P \text{ of } L | P^{(\alpha)} \in \mathcal{F}(N) \text{ for all } \alpha \in \Gamma \} \text{ is a pretopology on } L.$ **Proof.** Let $P \in \mathcal{F}(L)$. Then $P^{(\beta)} \in \mathcal{F}(N)$ for all $\beta \in \Gamma$ implies $(P^{(\beta)} : y)_{\alpha} = (P : [y,\beta])^{(\alpha)} \in \mathcal{F}(N)$ for all $\alpha \in \Gamma$ and $y \in N$ by Lemma 3.6(b), and so $(P : [y,\beta]) \in \mathcal{F}(L)$. If $P \in \mathcal{F}(L)$ and Q is any left ideal of L such that $P \subseteq Q$, then for all $\alpha \in \Gamma, P^{(\alpha)} \subseteq Q^{(\alpha)}$ implies $Q^{(\alpha)} \in \mathcal{F}(N)$ and so $Q \in \mathcal{F}(L)$. If $P, Q \in \mathcal{F}(L)$ then $P \cap Q \in \mathcal{F}(L)$ by Lemma 3.6(a).

Lemma 3.10. Let L be the left operator near-ring of N and $\mathcal{F}(L)$ a pretopology on L. Then $\mathcal{F}(N) = \{ \text{left ideals } I \text{ of } N | I^{(x)} \in \mathcal{F}(L) \text{ for all } x \in N \}$ is a pretopology on N.

Proof. Let $I \in \mathcal{F}(N)$. Then for all $x, y \in N$ and $\alpha \in \Gamma$, $I^{(x)} \in \mathcal{F}(L)$ implies $(I^{(x)} : [y, \alpha]) = ((I : x)_{\alpha})^{(y)} \in \mathcal{F}(L)$ by Lemma 3.5(c) and so $(I : x)_{\alpha} \in \mathcal{F}(N)$. If $I \in \mathcal{F}(N)$ and J is any left ideal of N such that $I \subseteq J$, then $I^{(x)} \subseteq J^{(x)}$ for all $x \in N$ implies $J^{(x)} \in \mathcal{F}(L)$ and so $J \in \mathcal{F}(N)$. If $I, J \in \mathcal{F}(N)$ then $I \cap J \in \mathcal{F}(N)$ by Lemma 3.5(d). Thus $\mathcal{F}(N)$ is a pretopology on N.

Lemma 3.11. Let N be a subcommutative Γ -near ring. If $\mathcal{F}(N)$ is a pretopology on N, then $\mathcal{F}(L) = \{I^+ | I \in \mathcal{F}(N)\}$ is a pretopology on L.

Proof. Let $I^+ \in \mathcal{F}(L)$. We have to prove that $(I^+ : [x, \alpha]) \in \mathcal{F}(L)$ for all $x \in N$ and $\alpha \in \Gamma$. But $(I^+ : [x, \alpha]) = ((I : x)_{\alpha})^+ \in \mathcal{F}(L)$ by Lemma 3.5(a), since $(I : x)_{\alpha} \in \mathcal{F}(N)$. Let I and J be left ideals of N and $I \subseteq J$. Since $\mathcal{F}(N)$ is a pretopology on $N, J \in \mathcal{F}(N)$. Since $I \subseteq J \Rightarrow I^+ \subseteq J^+$ and $J \in \mathcal{F}(N), J^+ \in \mathcal{F}(L)$. Since $I \cap J \in \mathcal{F}(N), (I \cap J)^+ \in \mathcal{F}(L)$. Also $(I \cap J)^+ = I^+ \cap J^+$. Thus $I^+ \cap J^+ \in \mathcal{F}(L)$. Therefore $\mathcal{F}(L)$ is a pretopology on L.

Lemma 3.12. Let $\mathcal{F}(L)$ be a pretopology on L. Then $\mathcal{F}(N) = \{P^{+'} | P \in \mathcal{F}(L)\}$ is a pretopology on N.

Proof. Let $I^{+'} \in \mathcal{F}(N)$. We have to prove that $(I^{+'}: x)_{\alpha} \in \mathcal{F}(N)$. By Lemma 3.5(b), $(I^{+'}: x)_{\alpha} = (I: [x, \alpha])^{+'}$. Since $I \in \mathcal{F}(L)$, $(I: [x, \alpha])^{+'} \in \mathcal{F}(N)$. Therefore $(I^{+'}: x)_{\alpha} \in \mathcal{F}(N)$. Let $I^{+'}$ and $J^{+'}$ be the left ideals in N and $I^{+'} \subseteq J^{+'}$. Then $I^{+'} \subseteq J^{+'} \Rightarrow I \subseteq J$. Since $I \in \mathcal{F}(L)$ and $I \subseteq J$ and $\mathcal{F}(L)$ is a pretopology on $L, J \in \mathcal{F}(L)$. This implies that $J^{+'} \in \mathcal{F}(N)$. Let $I^{+'}$ and $J^{+'} \in \mathcal{F}(N)$. This implies that $I \in \mathcal{F}(L)$ and $J \in \mathcal{F}(L)$. Since $\mathcal{F}(L)$ is a pretopology on $L, I \cap J \in \mathcal{F}(L)$. Thus $(I \cap J)^{+'} \in \mathcal{F}(N)$. It is clear that $(I \cap J)^{+'} = I^{+'} \cap J^{+'}$. Therefore $I^{+'} \cap J^{+'} \in \mathcal{F}(N)$. Hence $\mathcal{F}(N)$ is a pretopology on N.

Proposition 3.13. Let N be a subcommutative Γ -near ring with a right unity and a strong left unity. Then there is a one-to-one order preserving correspondence between pretopologies on N and pretopologies on L.

Proof. Starting with a pretopology $\mathcal{F}(N)$ on N, we get a pretopology $\mathcal{F}(L)$ on L given by $\mathcal{F}(L) = \{I^+ | I \in \mathcal{F}(N)\}$. This in turn induces a pretopology $\mathcal{F}_1(N)$ on N given by $\mathcal{F}_1(N) = \{(I^+)^{+'} | I^+ \in \mathcal{F}(L)\} = \mathcal{F}(N)$ since $(I^+)^{+'} = I$ by [1, Proposition 5].

On the other hand, if we start with a pretopology $\mathcal{F}(L)$ on L we get a pretopology $\mathcal{F}(N)$ on N given by $\mathcal{F}(N) = \{P^{+'} | P \in \mathcal{F}(L)\}$. This in turn induces a pretopology $\mathcal{F}_1(L)$ on L given by $\mathcal{F}_1(L) = \{(P^{+'})^+ | P^{+'} \in \mathcal{F}(N)\} = \mathcal{F}(L)$, since $(P^{+'})^+ = P$ by [1, Proposition 5]. Thus this correspondence is order preserving and the proof is complete. \Box

Definition 3.14. A left ideal I of N is said to be essential in N if $I \cap J \neq 0$ for all non zero left ideals J of N.

Lemma 3.15.

- (a) If P is an essential left ideal in L then $P^{(\alpha)}$ is an essential left ideal in N for all $\alpha \in \Gamma$.
- (b) If I is an essential left ideal in N then $I^{(x)}$ is an essential left ideal in L and $(I:x)_{\alpha}$ is an essential left ideal in N for all $x \in N$ and $\alpha \in \Gamma$

Proof.

- (a) Let J be a nonzero left ideal in N. Then $[J, \alpha]$ is a left ideal in L. If $[J, \alpha] = 0$, then $J \subseteq P^{(\alpha)}$. If $[J, \alpha] \neq 0$ then since P is essential, $[J, \alpha] \cap P \neq 0$. Therefore there exists $x \in J$ such that $0 \neq [x, \alpha] \in P$, i.e., $P^{(\alpha)} \cap J \neq 0$ and so $P^{(\alpha)}$ is essential.
- (b) Let P be any nonzero left ideal in L. If Px = 0 then $P \subseteq I^{(x)}$. If $Px \neq 0$ then $Px \cap I \neq 0$ implies that there exists $0 \neq r \in P$ such that $rx \in I$, i.e., $r \in P \cap I^{(x)}$. Thus $I^{(x)}$ is essential in L. Moreover, since $(I:x)_{\alpha} = (I^{(x)})^{(\alpha)}$ by(a), $(I:x)_{\alpha}$ is essential in N.

Lemma 3.16.

- (a) P is an essential left ideal in L if and only if $P^{(\alpha)}$ is essential in N for all $\alpha \in \Gamma$.
- (b) I is an essential left ideal in N if and only if I^(x) is an essential left ideal in L.

Proof.

- (a) One implication was proved in Lemma 3.15. Conversely, let P^(α) be essential in N for all α ∈ Γ. Let Q be a nonzero left ideal in L. Since P^(α) is an essential in N, P^(α)∩Q^(α) ≠ 0. But (P∩Q)^(α) = P^(α)∩Q^(α) ≠ 0 by Lemma 3.6(a). This implies that there exists y ∈ N such that [y, α] ∈ P ∩ Q. This implies that P ∩ Q ≠ 0. Therefore P is an essential left ideal in L.
- (b) One implication was proved in Lemma 3.15. Conversely, let $I^{(x)}$ be an essential left ideal in L. Let J be a nonzero left ideal in N. Since $I^{(x)}$ is essential, $I^{(x)} \cap J^{(x)} \neq 0$. But $I^{(x)} \cap J^{(x)} = (I \cap J)^{(x)} \neq 0$, by Lemma 3.5(d). This implies that there exists $l \in L$ such that $\ell x \in I \cap J$. Therefore $I \cap J \neq 0$. Thus I is essential in N.

Lemma 3.17.

- (a) I is an essential left ideal in N if and only if I⁺ is an essential left ideal in L.
- (b) Q is an essential left ideal in L if and only if $Q^{+'}$ is an essential left ideal in N.

Proof.

(a) Let I be an essential left ideal in N. Let P be a non zero left ideal in L. If PN = 0, then $P \subseteq I^+$. If $PN \neq 0$, then $PN \cap I \neq 0$ implies that there exists $0 \neq r \in P$ such that $rN \subseteq I$. That is $r \in P \cap I^+$. Thus I^+ is essential in L.

Conversely, let I^+ be an essential left ideal in L. Let J be a non zero left ideal in N. Then J^+ is a non zero left ideal in L. Since I^+ is essential, $I^+ \cap J^+ \neq 0$. Then there exists $l \in L$ such that $lx \in I \cap J$. This implies that $I \cap J \neq 0$. Thus I is an essential in N.

(b) Let Q be an essential left ideal in L. Since $Q = (Q^{+'})^+$ by [1, Proposition 5], $(Q^{+'})^+$ is an essential left ideal in L. Thus, by(a), $(Q^{+'})$ is an essential left ideal in N. The converse is similar.

Proposition 3.18. The family of all essential left ideals in N is a pretopology on N.

Proof. Let $I \in \mathcal{F}(N)$, the family of all essential left ideal in N. Then by Lemma 3.15(b), $(I:x)_{\alpha}$ is an essential left ideal in N. Since (T2) and (T3) are obvious, $\mathcal{F}(N)$ is a pretopology on N.

Theorem 3.19. Let N be a subcommutative Γ -near ring with a right unity and a strong left unity. Let the left operator near-ring L of N be commutative. Then there is a one-to-one order preserving correspondence between topologies on N and topologies on L.

Proof. Let $\mathcal{F}(N)$ be a topology. Suppose I is a left ideal in N such that $(I^+:\ell) \in \mathcal{F}(L)$ for all $\ell \in J^+$ for some $J \in \mathcal{F}(N)$. Then by Lemma 3.5(a), $((I:x)_{\alpha})^+ = (I^+:[x,\alpha]) \in \mathcal{F}(L)$ for all $x \in J$ and $\alpha \in \Gamma$. This shows that $(I:x)_{\alpha} \in \mathcal{F}(N)$ and so $I \in \mathcal{F}(N)$ by (T4) of Definition 3.7. Therefore $I^+ \in \mathcal{F}(L)$ and hence $\mathcal{F}(L)$ is a topology on L.

Conversely, let $\mathcal{F}(L)$ be a topology on L and $\mathcal{F}(N)$ the corresponding pretopology on N. We have to prove that $\mathcal{F}(N)$ satisfies (T4). Let Q be a left ideal in L such that $(Q^{+'}: x)_{\alpha} \in \mathcal{F}(N)$ for all $\alpha \in \Gamma$ and $x \in P^{+'}$ for some $P \in \mathcal{F}(L)$. Then for all $\ell \in P$, $y \in L$ and $\alpha \in \Gamma$,

$$(Q: \ell[y,\alpha])^{+'} = (Q: [\ell y,\alpha])^{+'}$$
$$= (Q^{+'}: \ell y)_{\alpha} \in \mathcal{F}(N) \quad \text{by Lemma 3.5(b)}$$

since $\ell y \in P^{+'}$.

Since *L* is commutative, $(Q : \ell[y, \alpha]) = (Q : [y, \alpha]\ell)$ and $[y, \alpha]\ell = [y, \alpha][0 + \ell] - [y, \alpha]0 \in P$ since *P* is left ideal. Therefore $(Q : \ell[y, \alpha]) = (Q : \ell_1) \in \mathcal{F}(L)$ for all $\ell_1 \in P$. Hence $Q \in \mathcal{F}(L)$ by (*T*4) of Definition 3.7. Therefore $Q^{+'} \in \mathcal{F}(N)$ by Lemma 3.17(b). Thus $\mathcal{F}(N)$ is a topology on *N*.

- (i) $I \in \mathcal{F}(N)$ implies $(I:x)_{\beta_i} \in \mathcal{F}(N)$ for all $x \in N$ and j = 1, 2, ..., n.
- (ii) If $(I:x)_{\beta_j} \in \mathcal{F}(N)$ for all $x \in J$ for some $J \in \mathcal{F}(N)$, j = 1, 2, ..., n, then $I \in \mathcal{F}(N)$.

Proof. If $\mathcal{F}(N)$ is a topology, then clearly (i) is satisfied. Let $\mathcal{F}(N)$ be a topology on N. If I is a left ideal in N such that $(I : x)_{\beta_j} \in \mathcal{F}(N)$ for all $x \in J, J \in \mathcal{F}(N), j = 1, 2, ..., n$, then for all $\ell \in J^+, (I^+ : [\ell y_j, \beta_j]) = ((I : \ell y_j)_{\beta_j})^+ \in \mathcal{F}(L)$ by Lemma 3.5(a) and since $\ell y_j \in J$. Since $\ell = \sum_{j=1}^n [\ell y_j, \beta_j], (I^+ : \ell) \in \mathcal{F}(L)$. This shows that $I^+ \in \mathcal{F}(L)$ since $\mathcal{F}(L)$ is a topology on L and so $I \in \mathcal{F}(N)$. This proves (ii).

Conversely, if $\mathcal{F}(N)$ satisfies (i) and (ii), then (T4) of Definition 3.7 is automatically satisfied. Also if $I \in \mathcal{F}(N)$ then for all $x, y \in N$ and $\beta \in \Gamma$,

$$((I:x)_{\beta}:y)_{\beta_j} = (I:y\beta x)_{\beta_j} \in \mathcal{F}(N) \text{ for } j = 1, 2, \dots, n$$

and so $(I:x)_{\beta} \in \mathcal{F}(N)$ by (ii).

4. Topology on the Set of All Strongly Prime Ideals in Γ -near Rings

We use SSpec(N) and SSpec(L) to denote the set of strongly prime ideals of N and the set of strongly prime ideals of the left operator nearring L, respectively. In this section, we prove that there is a one-to-one order preserving correspondence between bases on SSpec(N) and bases on SSpec(L).

Definition 4.1. Let N be a Γ -near ring. An ideal $P \neq N$ is said to be strongly prime if for any $x \notin P$, there exist finite subsets $F \subseteq N$ and $\Delta \subseteq \Gamma$ such that for any $y \in N$, $x \alpha f \beta y \in P$ for all $\alpha, \beta \in \Delta$ and $f \in N$ implies $y \in P$.

Definition 4.2. Let N be a Γ -near ring. A basis for a topology on SSpec(N) is a collection $\mathcal{B}(N)$ of subsets of SSpec(N) such that

- 1. For each $P \in SSpec(N)$, there exists an element $B \in \mathcal{B}(N)$ containing P.
- 2. If $P \in B_1 \cap B_2$, where $B_1, B_2 \in \mathcal{B}(N)$, then there is a basis element B_3 containing P such that $B_3 \subseteq B_1 \cap B_2$.

Proposition 4.3. If $P \in SSpec(N)$, then $P^+ \in SSpec(L)$, where $P^+ = \{\ell \in L | \ell N \subseteq P\}$.

Proof. Let $\ell \notin P^+$. Then $\ell x \notin P$ for some $x \in N$. Since $P \in SSpec(N)$, there exists finite subsets $F = \{f_j | j = 1, 2, ..., m\} \subseteq N$ and $\Delta = \{\alpha_i | i = 1, 2, ..., n\}$ such that for any $x \in N$

$$\ell x \alpha_i f_j \alpha_k y \in P \text{ for all } \alpha_i, \alpha_k \in \Delta, f_j \in F \text{ implies } y \in P.$$
(1)

Let $G = \{ [x\alpha_i f_j, \alpha_k] | 1 \leq i, k \leq n, 1 \leq j \leq m \}$ and $\ell' \in L$ such that $\ell G \ell' \subseteq P^+$, i.e., $\ell [x\alpha_i f_j, \alpha_k] \ell' \in P^+$ and so that $\ell [x\alpha_i f_j, \alpha_k] \ell' N \subseteq P$. Hence $\ell x\alpha_i f_j \alpha_k \ell' N \subseteq P$ for all $\alpha_i, \alpha_k \in \Delta, f_j \in F$. By(1), $\ell' N \subseteq P$. Therefore $\ell' \in P^+$. Thus $P^+ \in SSpec(L)$.

Note that the elements of the right operator near-ring R are expressible in the form $\sum_i [\alpha_i, x_i]$, where $x_i \in M, \alpha_i \in \Gamma$ see [1, p.472]. But the left operator near-ring L does not, in general, consist exclusively of elements of the form $\sum_i [x_i, \alpha_i]$, where $x_i \in M, \alpha_i \in \Gamma$. If a Γ -near ring N is distributive, then the elements of L are expressible in the form $\sum_i [x_i, \alpha_i]$.

Proposition 4.4. Let N be a distributive Γ -near ring. If $Q \in SSpec(L)$, then $Q^{+'} \in SSpec(N)$, where $Q^{+'} = \{x \in N | [x, \Gamma] \subseteq Q\}$.

Proof. Let $x \in Q^{+'}$. Then there exists $\alpha \in \Gamma$ such that $[x, \alpha] \notin Q$. Since $Q \in SSpec(L)$, there exists

$$G = \left\{ \sum_{i=1}^{m} [y_{ik}, \beta_{ik}] | k = 1, 2, \dots, n \right\} \subseteq L \text{ such that for any } \ell \in L,$$
$$[x, \alpha] G \ell \subseteq G \text{ implies } \ell \in Q.$$
(2)

Let $F = \{y_{i_k} | i = 1, 2, \dots, m; k = 1, 2, \dots, n\}$ and $\Delta = \{\beta_{i_k}, \alpha | i = 1, 2, \dots, m; k = 1, 2, \dots, n\}$. Let $z \in M$ such that $x \Delta F \Delta z \subseteq Q^{+'}$. Then $x \alpha y_{i_k} \beta_{i_k} z \in Q^{+'}$.

 $Q^{+'}$ for all i = 1, 2, ..., m; k = 1, 2, ..., n. Hence $[x \alpha y_{i_k} \beta_{i_k} z, \beta] \in Q$ for all $\beta \in \Gamma$, i.e., $[x, \alpha][y_{i_k}, \beta_{i_k}][z, \beta] \in Q$ for all $\beta \in \Gamma$. Thus $[x, \alpha] \sum_{i=1}^m [y_{i_k}, \beta_{i_k}][z, \beta] \in Q$ for all k = 1, 2, ..., n and for all $\beta \in \Gamma$. By (2), $[z, \beta] \in Q$ for all $\beta \in \Gamma$. Therefore $z \in Q^{+'}$ and consequently $Q^{+'} \in SSpec(N)$.

Definition 4.5. For any subset $A \subseteq N$. We define $\mathcal{B}_A = \{P \in SSpec(N) | A \notin P\}$. In case $A = \{x\}$, we write $\mathcal{B}_x = \{P \in SSpec(N) | x \notin P\}$. For any subset $U \subseteq L$, we define $\mathcal{B}_U = \{I \in SSpec(L) | U \notin I\}$.

Lemma 4.6. For any Γ -near ring N, $\mathcal{B}(N) = \{\mathcal{B}_x | x \in N\}$ forms a basis for a topology on SSpec(N).

Proof. For any $P \in SSpec(N)$, there exists $x \in N$ such that $x \notin P$, because $P \neq N$. From the definition of \mathcal{B}_x , $P \in \mathcal{B}_x$. If $P \in \mathcal{B}_y \cap \mathcal{B}_z$ for some $y, z \in N$, then $y \notin P$ and $z \notin P$. Since P is strongly prime, there exist finite subsets $F \subseteq N$ and $\Delta \subseteq \Gamma$ such that $y \alpha f \beta z \notin P$ for some $\alpha, \beta \in \Delta$ and $f \in F$. Hence $P \in \mathcal{B}_{y\alpha f\beta z}$. We claim that $\mathcal{B}_{y\alpha f\beta z} \subseteq \mathcal{B}_y \cap \mathcal{B}_z$. Let $Q \in \mathcal{B}_{y\alpha f\beta z}$. Then $y\alpha f\beta z \notin Q$, suppose $y \in Q$ or $z \in Q$, we have $y\alpha f\beta z \in Q$, a contradiction. Therefore $y \notin Q$ and $z \notin Q$ and consequently, $Q \in \mathcal{B}_y \cap \mathcal{B}_z$.

Lemma 4.7. Let N be a distributive Γ -near ring. Then $\mathcal{B}(L) = \{\mathcal{B}_{[x,\Gamma]} | x \in N\}$ forms a basis for a topology on SSpec(L).

Proof. Let $P \in SSpec(L)$. Then $P^{+'} \in SSpec(N)$ by Proposition 4.4. Since $\mathcal{B}(N)$ is a basis on SSpec(N), there exists $\mathcal{B}_x \in \mathcal{B}(N)$ such that $P^{+'} \in \mathcal{B}_x$. Hence $x \notin P^{+'}$, that is $[x, \Gamma] \nsubseteq P$ and so that $P \in \mathcal{B}_{[x,\Gamma]}$. Let $Q \in \mathcal{B}_{[y,\Gamma]} \cap \mathcal{B}_{[z,\Gamma]}$ for some $y, z \in N$. Then $[y, \Gamma] \nsubseteq Q$ and $[z, \Gamma] \nsubseteq Q$. It means that $y \notin Q^{+'}$ and $z \notin Q^{+'}$. Hence $Q^{+'} \in \mathcal{B}_y \cap \mathcal{B}_z$. Since $\mathcal{B}(N)$ is a basis, there is an element $\mathcal{B}_{z'} \in \mathcal{B}(N)$ such that $Q^{+'} \in \mathcal{B}_{z'} \subseteq \mathcal{B}_y \cap \mathcal{B}_z$. It can be easily verified that $Q \in \mathcal{B}_{[z',\Gamma]} \subseteq \mathcal{B}_{[y,\Gamma]} \cap \mathcal{B}_{[z,\Gamma]}$. Thus $\mathcal{B}(L)$ forms a basis for a topology on SSpec(L).

Note that a distributive Γ -near ring N with a right unity and a strong left unity is not a Γ -ring because in a Γ -near ring, Γ is a non-empty set of binary operations on N.

Theorem 4.8. Let N be a distributive Γ -near ring with a right unity and a strong left unity. Then there is a one-to-one order preserving correspondence between the following:

- (i) base for SSpec(N);
- (ii) base for SSpec(L).

Proof. Since $(P^{+'})^+ = P$ by [1, Proposition 5], the mapping $\mathcal{B}_x \mapsto \mathcal{B}_{[x,\Gamma]}$ defines a one-to-one correspondence order preserving between $\mathcal{B}(N)$ and $\mathcal{B}(L)$.

Acknowledgments

The authors would like to express their indebtedness and gratitude to the referee for the helpful suggestions and valuable comments.

References

- 1. G. L. Booth, A note on Gamma near-rings, Stud. Sci. Math. Hungarica, 23 (1988), 471-475.
- 2. G. L. Booth, Radicals of Γ- near-rings, Publ. Math. Debrecen, 39 (1990), 223-230.
- N. J. Groenewald, Strongly prime near-rings, Proc. Edinburgh. Math. Soc., 31 (1988), 337-343.
- N. J. Groenewald, Strongly prime near-rings 2, Comm. in Algebra, 17(1989), no.3, 735-749.
- 5. G. Pilz, Near-rings , North Holland Publicaion Company, Amsterdam, 1983.
- Satyanarayna Bhavanari, Contributions to near-rings, Doctoral Thesis, Nagarjuna University, 1984.
- C. Selvaraj, R. George and G. L. Booth, On strongly equiprime Γ-near rings, Bull. Institute of Math. Academia Sinica, 4(2009), no. 1, 35-46.