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Abstract

Let R be a prime ring and L a noncommutative Lie ideal of R. Suppose that f is

a nonzero right generalized β-derivation of R associated with a β-derivation δ such that

[f(x), x]k = 0 for all x ∈ L, where k is a fixed positive integer. Then either there exists

s ∈ C scuh that f(x) = sx for all x ∈ R or R ⊆ M2(F ) for some field F . Moreover, if the

latter case holds, then either charR = 2 or charR 6= 2 and f(x) = bx − xc for all x ∈ R,

where b, c ∈ FR and b + c ∈ C.

Recently, M. C. Chou and C. K. Liu [5] proved that if δ is a nonzero

σ-derivation of R and L is a noncommutative Lie ideal of R such that

[δ(x), x]k = 0 for all x ∈ L, where k is a fixed positive integer, then charR = 2

and R ⊆ M2(F ) for some field F . This result generalizes some known re-

sults, see for instances, [15] and [20]. In this paper we extend [5] further to

the so-called right generalized skew derivations. Notice that our result also

generalizes the case of generalized derivations by N. Argac, L. Carini and V.

De Fillipis [1].

Throughout this paper, R is always a prime ring with center Z. For

x, y ∈ R, set [x, y]1 = [x, y] = xy − yx and [x, y]k = [[x, y]k−1, y] for k > 1.

Notice that an Engel condition is a polynomial [x, y]k =
∑k

i=0(−1)i
(

k
i

)

yixyk−i

in noncommutative indeterminantes x and y. For two subsets A and B of R,

[A,B] is defined to be the additive subgroup of R generated by all elements
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[a, b] with a ∈ A and b ∈ B. An additive subgroup L of R is said to be a

Lie ideal if [l, r] ∈ L for all l ∈ L and r ∈ R. A Lie ideal L is said to be

noncommutative if [L,L] 6= 0.

Let β be an automorphism of R. A β-derivation of R is an additive

mapping δ : R → R satisfying δ(xy) = δ(x)y + β(x)δ(y) for all x, y ∈ R.

β-derivations are also called skew derivations. When β = 1, the identity map

of R, β-derivations are merely ordinary derivations. If β 6= 1, then 1 − β is

a β-derivation. An additive mapping f : R → R is a right generalized β-

derivation if there exists a β-derivation δ : R→ R such that f(xy) = f(x)y+

β(x)δ(y) for all x, y ∈ R. The right generalized β-derivations generalize

both β-derivations and generalized derivations. If a, b ∈ R and β 6= 1 is

an automorphism of R, then f(x) = ax − β(x)b is a right generalized β-

derivation. Moreover, if δ is a β-derivation of R, then f(x) = ax+ δ(x) is a

right generalized β-derivation.

We let FR denote the right Martindale quotient ring of R and Q the

two sided Martindale quotient ring of R. Let C be the center of Q and

FR, which is called the extended centroid of R. Note that Q and FR are

also prime rings and C is a field (see [2]). It is known that automorphisms,

derivations and β-derivations of R can be uniquely extended to Q and FR.

In [4], we know that right generalized β-derivations of R can also be uniquely

extended to FR. Indeed, if f is a right generalized β-derivation of R, then

there exists s ∈ FR such that f(x) = sx+ δ(x) for all x ∈ R, where δ is a

β-derivation of R (Lemma 2 in [4]).

A β-derivation δ of R is called X-inner if δ(x) = bx − β(x)b for some

b ∈ Q. δ is called X-outer if it is not X-inner. An automorphism β is called

X-inner if β(x) = uxu−1 for some invertible u ∈ Q. β is called X-outer if it

is not X-inner.

We are now ready to state the main result:

Main Theorem. Let R be a prime ring and L a noncommutative Lie

ideal of R. Suppose that f is a nonzero right generalized β-derivation of

R associated with a β-derivation δ such that [f(x), x]k = 0 for all x ∈ L,

where k is a fixed positive integer. Then either there exists s ∈ C such that

f(x) = sx for all x ∈ R or R ⊆ M2(F ) for some field F . Moreover, if the

latter case holds, then either charR = 2 or charR 6= 2 and f(x) = bx − xc

for all x ∈ R, where b, c ∈ FR and b+ c ∈ C.
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As a corollary, we have

Corollary 1. Let R be a prime ring and L a noncommutative Lie ideal of R.

Suppose that β 6= 1R and f is a nonzero right generalized β-derivation of R

associated with a β-derivation δ such that [f(x), x]k = 0 for all x ∈ L, where

k is a fixed positive integer. Then there exists s ∈ C such that f(x) = sx for

all x ∈ R unless charR = 2 and R ⊆M2(F ) for some field F .

Corollary 2. Let R be a prime ring and L a noncommutative Lie ideal of

R. Suppose that f is a nonzero generalized derivation of R associated with

derivation d such that [f(x), x]k = 0 for all x ∈ L, where k is a fixed positive

integer. Then either there exists s ∈ C such that f(x) = sx for all x ∈ R or

R ⊆M2(F ) for some field F . Moreover, if the latter case holds, then either

charR = 2 or charR 6= 2 and f(x) = bx− xc for all x ∈ R, where b, c ∈ FR

and b+ c ∈ C.

We begin with a lemma which is a consequence of [1].

Lemma 1. Let R be a prime ring with center Z and b ∈ R. Let L be a

noncommutative Lie ideal of R. If [bx, x]k = 0 for all x ∈ L, where k is a

fixed positive integer, then b ∈ Z unless charR = 2 and R ⊆M2(F ) for some

field F .

Lemma 2. Let R be a dense subring of End(VD), containing nonzero linear

transformations of finite rank, where D is division ring and dimVD ≥ 3.

Let f(x) = bx − φ(x)c where b, c ∈ R and φ is an automorphism of R. If

[f([x, y]), [x, y]]k = 0 for all x, y ∈ R, where k is fixed positive integer, then

b− c ∈ Z and f(x) = (b− c)x for all x ∈ R.

Proof. We will adopt the proof of Lemma 2 in [5] with some necessary

modification. Since R is a primitive ring with nonzero socle, by a result in

[12, p.79], there exists a semi-linear automorphism T ∈ End(V ) such that

φ(x) = TxT−1 for all x ∈ R. Moreover, T (vs) = T (v)τ(s) for all v ∈ V and

s ∈ D, where τ is an automorphism of D.

If v and T−1cv are D-dependent for all v ∈ V , then as before, there

exists λ ∈ D such that T−1cv = vλ for all v ∈ V . This imply

f(x)v = (bxv − φ(x)c)v = (bx− TxT−1c)v

= bxv − Txvλ = bxv − T (T−1cxv)
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= bxv − cxv = ((b− c)x)v

for all x ∈ R and for all v ∈ V . Hence (f(x) − (b− c)x)V = 0 for all x ∈ R.

Since V is faithful, we have f(x) = (b− c)x for all x ∈ R and hence, by the

assumption, we have

[(b− c)[x, y], [x, y]]k = 0 (2)

for all x, y ∈ R. By (2) and Lemma 1, it follows that b− c ∈ Z and we are

down.

So we may assume that v
0

and T−1cv
0

are D-independent for some

v
0
∈ V . If dimVD ≥ 4, then we can choose u,w ∈ V such that v

0
, T−1cv

0
,

u and w are D-independent. By the density of R, there exists x, y ∈ R such

that

xv
0

= 0, xT−1cv
0

= 0, xu = T−1w, xw = u

and

yv
0

= 0, yT−1cv
0

= u, yu = −w, yw = 0.

Hence [x, y]v
0
=0, [x, y]T−1cv

0
=T−1w, [x, y]w=w and (b[x, y]−φ([x, y])c)v

0

= (b[x, y]−T [x, y]T−1c)v
0

= w. With all these, we obtain from the assump-

tion that

0 = [f([x, y]), [x, y]]kv0

= [b[x, y] − φ([x, y])c, [x, y]]kv0

=

k
∑

i=0

(−1)i
(

k

i

)

[x, y]i(b[x, y] − φ([x, y])c)[x, y]k−iv
0

= (−1)k[x, y]k(b[x, y] − φ([x, y])c)v
0

= (−1)kw,

a contradiction.

Therefore, we may assume dimVD = 3. In this case, we can choose

w ∈ V such that v
0
, T−1cv

0
and w are D-independent and {v

0
, T−1cv

0
, w}

forms a basis for V . If V . If T (v
0

+ T−1cv
0

+ w), T (T−1cv
0

+ w) ∈ v
0
D,

then T (v
0
) ∈ v

0
D and hence v

0
, T−1cv

0
+ w ∈ T−1cv

0
+ w ∈ T−1(v

0
D) =

(T−1v
0
)D contrary to the fact that v

0
and T−1cv

0
+ w are D-independent.

Therefore if u = v
0
λ + T−1cv

0
+ w, where λ ∈ {0, 1}, then T (u) /∈ v

0
D.
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Write T (u) = v
0
α+ T−1cv

0
β + wγ, where α, β, γ ∈ D with β 6= 0 or γ 6= 0.

By the density of R, there exists x, y ∈ R such that

xv
0

= 0, xT−1cv
0

= w, xw = 0

and

yv
0

= 0, yT−1cv
0

= 0, yw = −u.

In particular, xu = w, yu = −u, xT (u) = wβ and yT (u) = −uγ. Therefore,

[x, y]v
0

= 0, [x, y]T−1cv
0

= u, [x, y]w = −w and (b[x, y] − φ([x, y])c)v
0

=

(b[x, y]−T [x, y]T−1c)v
0

= T (u). Also [x, y]u = u−w, [x, y]T (u) = uβ−wγ,

[x, y]2i−1T (u) = uβ − wγ and [x, y]2iT (u) = (u− w)β + wγ for i ≥ 1. Since

β, γ are not all zero and u, w are D-independent, it is easy to see that

[x, y]iT (u) 6= 0 for i ≥ 1. With all these and the assumption, we have

0 = [f([x, y]), [x, y]]kv0

= [b[x, y] − φ([x, y])c, [x, y]]kv0

=

(

k
∑

i=0

(−1)i
(

k

i

)

[x, y]i(b[x, y] − φ([x, y])c)[x, y]k−i

)

v
0

= (−1)k[x, y]k(b[x, y] − φ([x, y])c)v
0

= (−1)k[x, y]kT (u),

a contradiction. So the proof of the lemma is complete. ���

Lemma 3. Let F be field with charF 6= 2, VF a vector space over F with

dimVF = 2, and R = End(VF ). Let f(x) = bx − φ(x)c for all x ∈ R,

where b, c ∈ R and φ is an automorphism of R. If [f([x, y]), [x, y]]k = 0 for

all x, y ∈ R, where k is a fixed positive integer, then either b − c ∈ Z and

f(x) = (b− c)x for all x ∈ R or φ = 1R and b+ c ∈ Z.

Proof. Again, by [12, p.79], there exists a semi-linear automorphism T ∈

End(V ) such that φ(x) = TxT−1 for all x ∈ R. Moreover, T (vs) = T (v)τ(s)

for all v ∈ V , s ∈ F , where τ is an automorphism of F . If v and T−1cv are

F -dependent for all v ∈ V , as the second paragraph in the proof of Lemma

2, then b− c ∈ Z and f(x) = (b− c)x for all x ∈ R. So we may assume that
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v
0

and T−1cv
0

are F -independent for some v
0
∈ V . Clearly, {v

0
, T−1cv

0
} is

a basis for VF . It is easy to see that there exists x, y ∈ R such that

xv
0

= T−1cv
0
, xT−1cv

0
= 0, yv

0
= 0, yT−1cv

0
= v

0
.

Therefore, [x, y]v
0

= −v
0
, [x, y]T−1cv

0
= T−1cv

0
and (b[x, y]−φ([x, y])c)v

0
=

(b[x, y] − T [x, y]T−1c)v
0

= (b+ c)v
0
. Consequently, we have

0 = [b[x, y] − φ([x, y])c, [x, y]]kv0

=

k
∑

i=0

(−1)i
(

k

i

)

[x, y]i(b[x, y] − φ([x, y])c)[x, y]k−iv
0

= (−1)k
k
∑

i=0

(

k

i

)

[x, y]i(b[x, y] − φ([x, y])c)v
0

= (−1)k+1
k
∑

i=0

(

k

i

)

[x, y]i(b+ c)v
0
.

Clearly, (b + c)v
0

= v
0
r + T−1cv

0
s for some r, s ∈ F . If s 6= 0, by the

last equation, we have (−1)k+12kT−1cv
0
s = 0, a contradiction. Therefore

(b+ c)v
0

= v
0
r.

We also can choose x, y ∈ R such that

xv
0

= −v
0
− T−1cv

0
, xT−1cv

0
= 0, yv

0
= 0, yT−1cv

0
= −v

0
.

Then [x, y]v
0

= −v
0

and [x, y]T−1cv
0

= v
0

+ T−1cv
0
. Moreover, [x, y]iv

0
=

(−1)iv
0
, v

0
= (−1)iv

0
, [x, y]2i−1T−1cv

0
= v

0
+ T−1cv

0
and [x, y]2iT−1cv

0
=

T−1cv
0

for i ≥ 1. If T (v
0
) = v

0
q + T−1cv

0
p, then (b[x, y] − φ([x, y])c)v

0
=

(b[x, y] − T [x, y]T−1c)v
0

= −(b + c)v
0
− T (v

0
) = −v

0
r − v

0
q − T−1cv

0
p =

−v
0
(r + q) − T−1cv

0
p and

0 = [b[x, y] − φ([x, y])c, [x, y]]kv0

=

k
∑

i=0

(−1)i
(

k

i

)

[x, y]i(b[x, y] − φ([x, y])c)[x, y]k−iv
0

= (−1)k
k
∑

i=0

(

k

i

)

[x, y]i(b[x, y] − φ([x, y])c)v
0
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= (−1)k+1
k
∑

i=0

(

k

i

)

[x, y]i(v
0
(r + q) + T−1cv

0
p)

= (−1)k+1

{

k
∑

i=0

(−1)i
(

k

i

)

v
0
(r + q) +

(

k
∑

i=0

(

k

i

)

[x, y]iT−1cv
0

)

p

}

= (−1)k+1(jv
0
p+ 2kT−1cv

0
p)

where j =
(

k
1

)

+
(

k
3

)

+ · · ·+
(

k
2⌊k+1

2
⌋−1

)

. If p 6= 0, then the last equation leads

a contradiction since charR 6= 2. Therefore, T (v
0
) = v

0
q, q 6= 0.

Assume further that cv
0

= v
0
α + T−1cv

0
β, cT−1cv

0
= v

0
m+ T−1cv

0
n,

bv
0

= v
0
λ+T−1cv

0
γ and bT−1cv

0
= v

0
l+T−1cv

0
h, where α, β,m, n, λ, γ, l, h

∈ F . Since (b + c)v
0

= v
0
r, then α + λ = r and β + γ = 0. Now for each

s ∈ F\{0}, we can choose x, y ∈ R such that

xv
0

= −T−1cv
0
s, xT−1cv

0
= 0, yv

0
= 0, yT−1cv

0
= −v

0
.

Then we have [x, y]v
0

= v
0
s, [x, y]T−1cv

0
= −T−1cv

0
s, and (b[x, y]−φ([x, y])c)v

0
=

(b[x, y] − T [x, y]T−1c)v
0

= bv
0
s + T (T−1cv

0
s) = bv

0
s + cv

0
τ(s) = (v

0
λ +

T−1cv
0
γ)s+(v

0
α+T−1cv

0
β)τ(s) = v

0
(sλ+ τ(s)α)+T−1cv

0
β(τ(s)−s). Let

η = sλ+ τ(s)α and µ = β(τ(s) − s). Then

0 = [b[x, y] − φ([x, y])c, [x, y]]kv0

=

k
∑

i=0

(−1)i
(

k

i

)

[x, y]i(b[x, y] − φ([x, y])c)[x, y]k−iv
0

=
k
∑

i=0

(−1)i
(

k

i

)

[x, y]i(b[x, y] − φ([x, y])c)v
0
sk−i

=

k
∑

i=0

(−1)i
(

k

i

)

[x, y]i(v
0
η + T−1cv

0
µ)sk−i

=

k
∑

i=0

(−1)i
(

k

i

)

v
0
skη +

k
∑

i=0

(−1)k
(

k

i

)

T−1cv
0
skµ

= (−1)k2kT−1cv
0
skµ.

This implies µ = 0 since charR 6= 2. Hence β = 0 or τ(s) = s for all

s ∈ F\{0}, that is, β = 0 or τ = 1F . If β = 0, T (T−1cv
0
) = cv

0
= v

0
α,
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which is absurd since we also have T (v
0
) = v

0
q. Hence τ = 1F and T is

F -linear.

Finally, we want to show that T is indeed a scalar linear transformation

and hence φ = 1R, the identity automorphism of R. Since all the objects

involved in the equation [b[x, y]−T ([x, y])T−1c, [x, y]]kv0
= 0 are all F -linear

transformations, in the rest of the proof, we will use matrices to represent

all the elements of R relative to the basis {v
0
, T−1cv

0
}. Indeed, we have

b =

[

λ l

γ h

]

, c =

[

α m

β n

]

, T =

[

q α

0 β

]

,

where α + λ = r, γ + β = 0, q 6= 0 and β 6= 0. For any s, t, u ∈ F we can

also choose x, y ∈ R such that [x, y] =

[

s t

u −s

]

. Hence

b[x, y] − T [x, y]T−1c

=





(λ+ α)s+ lu− qt
(

2αn
β

− l −m
)

s+
(

λ− qn
β

)

t+
(

α2n
qβ

− αm
q

)

u

hu (n− h)s + tγ +
(

nα−βm
q

)

u



 .

Without loss of the generality, we may assume that k is odd in the rest of

the proof. Hence

[b[x, y] − T ([x, y])T−1c, [x, y]]kv0

=
k
∑

i=0

(−1)i
(

k

i

)

[x, y]i(b[x, y] − φ([x, y])c)[x, y]k−iv
0

=

k
∑

i=odd

(−1)i
(

k

i

)

[x, y]i(b[x, y] − φ([x, y])c)[x, y]k−iv
0

+

k
∑

i=even

(−1)i
(

k

i

)

[x, y]i(b[x, y] − φ([x, y])c)[x, y]k−iv
0

=
k
∑

i=odd

(−1)i
(

k

i

)

[

(s2+tu)
k−1

2 0

0 (s2+tu)
k−1

2

][

(λ+α)s2+lus−qts+hut

(λ+α)su+lu2−qtu−hsu

]

+

k
∑

i=even

(−1)i
(

k

i

)

[

(s2 + tu)
k−1

2 0

0 (s2 + tu)
k−1

2

]
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



(λ+ α)s2 − qts−
(

m− 2αn
β

)

su+
(

λ− qn
β

)

tu+
(

α2n
qβ

− αm
q

)

u2

nsu+ γtu+
(

nα−mβ
q

)

u2





= 2k−1

[

(s2 + tu)
k−1

2 0

0 (s2 + tu)
k−1

2

]





−
(

m+ l − 2αn
β

)

su+
(

λ− h− qn
β

)

tu+
(

α2n
qβ

− αm
q

)

u2

(−λ− α+ n+ h)su+ (γ + q)tu+
(

−l + nα−mβ
q

)

u2



 =

[

0

0

]

.

So we have

(s2 + tu)

((

m+l−
2αn

β

)

su−

(

λ−h−
qn

β

)

tu−

(

α2n

qβ
−
αm

q

)

u2

)

= 0

(3)

and

(s2 + tu)

(

(−λ− α+ n+ h)su+ (γ + q)tu+

(

−l +
nα−mβ

q

)

u2

)

= 0.

(4)

Substituting s = t = u = 1 into (3), we obtain

m+ l −
2αn

β
−

(

λ− h−
qn

β

)

−

(

α2

qβ
−
αm

q

)

= 0. (5)

Substituting s = 0 and t = u = 1 into (3), we obtain

(

λ− h−
qn

β

)

−

(

α2

qβ
−
αm

q

)

= 0. (6)

Combining (5) and (6), we obtain

m+ l −
2αn

β
= 0. (7)

Again, substituting s = u = 1 and t = 0 into (3), we obtain

m+ l −
2αn

β
−

(

α2

qβ
−
αm

q

)

= 0. (8)

Combining (5) and (8), we obtain

λ− h−
qn

β
= 0. (9)
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Similarly, we can deduce from (4) to get

λ+ α = n+ h and γ + q = 0. (10)

But it is known that γ + β = 0, hence β = q. Now from (9) we have

λ = h + n. Comparing this to (10), we have α = 0. Hence T is a scalar

linear transformation. From (5) we also have m+ l = 0 and hence b+ c ∈ Z.

The proof is complete. ���

Lemma 4. Let R be a noncommutative prime ring and let f(x) = bx−β(x)c,

where β is an X-inner automorphism of R. If [f([x, y]), [x, y]]k = 0 for all

x, y ∈ R, where k is a fixed positive integer, then either b − c ∈ Z and

f(x) = (b − c)x for all x ∈ R or R ⊆ M2(F ) for some field F . Moreover,

if the latter case holds, then either charR = 2 or charR 6= 2, β = 1R, and

b+ c ∈ Z.

Proof. By the assumption, there exists an invertible element g ∈ Q such

that β(x) = gxg−1 for all x ∈ R. If g−1c ∈ C, then f(x) = bx − gxg−1c =

bx− cx = (b− c)x for all x ∈ R and we are down by Lemma 1. So we may

assume g−1c /∈ C. Let

ϕ(x, y)=[f([x, y]), [x, y]]k =

k
∑

i=0

(−1)i
(

k

i

)

[x, y]i(b[x, y]−g[x, y]g−1c)[x, y]k−i.

Then it is easy to see that ϕ(x, y) = 0 is a nontrivial GPI of R. By [6]

or [2, Theorem 6.4.4], ϕ(x, y) = 0 is also a nontrivial GPI of Q. Let F be

the algebraic closure of C if C is infinite and F = C otherwise. By [2],

ϕ(x, y) = 0 is also a nontrivial GPI of Q ⊗ CF . Moreover, since Q ⊗ CF

is centrally closed prime algebra [11, Theorem 3.5], by replacing R, C with

Q⊗ CF , F respectively, we may assume that R is centrally closed and the

field C is either algebraically closed or finite. By [12, p.75], R is isomorphic

to a dense subring of the ring of linear transformations on a vector space

over C, containing nonzero linear transformations of finite rank. Since R is

not commutative, we have dimVC ≥ 2. If dimVC ≥ 3, then by Lemma 2,

b − c ∈ Z and f(x) = (b − c)x for all x ∈ R. Hence we may assume that

dimVC = 2 and charR 6= 2. Then by Lemma 3, we have either b− c ∈ Z and

f(x) = (b− c)x for all x ∈ R or β = 1R and b+ c ∈ Z. If f(x) = (b− c)x for

all x ∈ R, then bx − β(x)c = bx − gxg−1c = (b − c)x for all x ∈ R. Hence
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gxg−1c = cx and g−1cx = xg−1c for all x ∈ R. That is, g−1c ∈ C, which is

a contradiction. Therefore, β = 1R, b+ c ∈ Z and the proof is complete. ���

Proof of Main Theorem. By [4, Lemma 2], we can write f(x) = sx+δ(x)

for all x ∈ R, where s ∈ FR and δ is a β-derivation of R. Since L is a

noncommutative Lie ideal, by [16, Remark 2], there is a nonzero ideal I of

R such that [I, I] ⊆ L. By the hypothesis, we have

h(x, y) = [f([x, y]), [x, y]]k = [s[x, y] + δ([x, y]), [x, y]]k = 0 for all x, y ∈ I.

(11)

We divide the proof into three cases.

Case 1. Suppose that δ = 0. Then f(x) = sx for all x ∈ R. By (11), we

have [s[x, y], [x, y]]k = 0 for all x, y ∈ I and by [6], we have [s[x, y], [x, y]]k = 0

for all x, y ∈ FR. Now we done by Lemma 1.

For the rest of proof we need the following fact which is a consequence

of [5].

Fact. If δ 6= 0, s ∈ Z and [s[x, y] + δ([x, y]), [x, y]]k = 0 for all x, y ∈ R,

then charR = 2 and R ⊆M2(F ) for some field F .

Case 2. Suppose that δ is X-outer. By [9], [s[x, y] + δ([x, y]), [x, y]]k = 0

for all x, y ∈ FR. Notice that s[x, y] + δ([x, y]) = s[x, y] + δ(xy) − δ(yx) =

s[x, y] + δ(x)y + β(x)δ(y) − δ(y)x− β(y)δ(x). So

[s[x, y] + δ(x)y+ β(x)δ(y)− δ(y)x− β(y)δ(x), [x, y]]k = 0 for all x, y ∈ FR .

(12)

Assume first that β is X-inner, that is, β(x) = gxg−1 for some invertible

element g ∈ Q. From (12), we have

[s[x, y]+δ(x)y+gxg−1δ(y)−δ(y)x−gyg−1δ(x), [x, y]]k = 0 for all x, y ∈ FR .

(13)

By [9], we get from (13) that

[s[x, y] + zy + gxg−1u− ux− gyg−1z, [x, y]]k = 0 for all x, y, z, u ∈ FR .

Setting z = u = 0, we have [s[x, y], [x, y]]k = 0 for all x, y ∈ FR. By Lemma

1 and the fact mentioned above, we have charR = 2 and R ⊆ M2(F ) for

some field F . So we are done.
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Assume next that β is X-outer. By (12) and [9, Theorem 1], we have

[s[x, y] + zy + wu− ux− tz, [x, y]]k = 0 for all x, y, z, u,w, t ∈ FR . (14)

Again, setting z = u = 0, (14) implies [s[x, y], [x, y]]k = 0 for all x, y ∈ FR.

We are done as before.

Case 3. Suppose that δ is a nonzero X-inner β-derivation defined by some

element b ∈ Q, that is, δ(x) = bx − β(x)b for all x ∈ R. In this case,

f(x) = (s+b)x−β(x)b for all x ∈ R and [f(x), x]k = [(s+b)x−β(x)b, x]k = 0

for all x ∈ L. Since [I, I] ⊆ L, by [8, Theorem 1], it is easy to see that

[(s + b)x− β(x)b, x]k = 0 for all x ∈ [FR,FR]. (15)

In particular, we have [(s+b)[x, y]−β([x, y])b, [x, y]]k = 0 for all x, y ∈ FR. If

β is X-inner then by Lemma 4 and the fact mentioned above, we have either

charR = 2, R ⊆M2(F ) or charR 6= 2, R ⊆M2(F ) and f(x) = (s+ b)x− xb

with s + 2b ∈ C. So we may assume that β is X-outer. Then by Chuang’s

theorem [8], FR is a GPI ring and by [7], it is a primitive ring having nonzero

socle and its associated division ring D is finite dimensional over C. Hence

FR is isomorphic to a densed subring of ring of linear transformations on a

vector space V over D, containing nonzero linear transformations of finite

rank. By Lemma 2, we have dimVD ≤ 2. If dimVD = 1 then FR = D. If

dimVD = 2, then FR ≃ M2(D). If C is finite, then dimDC < ∞ implies

that D is also finite. Therefore D ≃ C is a field by Wedderburn’s theorem

[13, p.183]. This implies either FR = C or FR ≃ M2(C). But since R

is noncommutative, we must have FR ≃ M2(C). By Lemma 3 and the

fact mentioned above, we must have char FR = 2. Thus charR = 2 and

R ⊆ M2(C). So for the rest of the proof, we may assume that C is infinite.

By Lemma 3, we can also assume that FR is not a subring of M2(F ) for any

field F .

Subcase 1. β is not Frobenius. Since [(s+ b)[x, y]−β([x, y])b, [x, y]]k = [(s+

b)[x, y] − [β(x), β(y)]b, [x, y]]k = 0 for all x, y ∈ FR, then by [8, Theorem 2],

we have [(s+b)[x, y]− [z, u]b, [x, y]]k = 0 for all x, y, z, u ∈ FR. Setting z = x

and u = y we have [(s + b)[x, y] − [x, y]b, [x, y]]k = 0 for all x, y ∈ FR. By

Lemma 2, s ∈ C and then the fact mentioned above implies that char FR = 2

and FR ⊆M2(F ), a contradiction.
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Subcase 2. β is Frobenius. We may assume charR = p > 0. Otherwise, if

charR = 0, then the Frobenius automorphism β fixes C and hence must be

X-inner by [13, p.140], a contradiction. So for all λ ∈ C, β(λ) = λpn

for

some nonzero integer n. Choose an integer m such that pm > k. Then from

[[f(x), x]k, x]pm−k = [f(x), x]pm = [f(x), xpm

], we can reduce (15) to

[(s + b)x− β(x)b, xpm

] = 0 for all x ∈ [FR,FR]. (16)

Assume first that n ≥ 1. Clearly, [FR,FR] is a C-space. For λ ∈ C and

x ∈ [FR,FR], replacing x in (16) by λx, we have

0 = [λ(s+b)x−λpn

β(x)b, λpm

xpm

] = λpm+1[(s+b)x, xpm

]−λpm+n

[β(x)b, xpm

].

As C is infinite, it follows from the Vandermonde determinant argument

that

[β(x)b, xpm

] = 0 for all x ∈ [FR,FR]. (17)

For λ ∈ C, replacing x in (17) by x+ λy, we have

0 = [β(x+ λy)b, (x+ λy)p
m

] =

[

β(x)b+ λpn

β(y)b,

pm

∑

i=0

ψi(x, y)λ
i

]

=

pm

∑

i=0

λi[β(x)b, ψi(x, y)] +

pm−1
∑

i=0

λpn+i[β(y)b, ψi(x, y)]

where ψi(x, y) denotes the sum of all monic monomials with x-degree pm − i

and y-degree i for 0 ≤ i ≤ pm. In particular, ψ1(x, y) = xpm−1y+xpm−2yx+

· · ·+yxpm−1 =
∑pm−1

i=0 xpm−1−iyxi. As C is infinite, if follows again from the

Vandermonde determinant argument that [β(x)b, ψ1(x, y)] = 0 for all x, y ∈

[FR,FR]. Setting y = [x, z], where z ∈ FR, then ψ1(x, [x, z]) = xpm

z−zxpm

and [β(x)b, ψ1(x, [x, z])] = 0 for all x ∈ [FR,FR] and z ∈ FR. From these

it follows that

β(x)bxpm

z − β(x)bzxpm

− xpm

zβ(x)b+ zxpm

β(x)b = 0 (18)

for all x ∈ [FR,FR] and z ∈ FR.

Assume that xpm

/∈ C for some x ∈ [FR,FR]. Then 1 and xpm

are

linear independent over C. Applying [18, Lemma 1.2] to (18), β(x)b can be
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expressed as a C-linear combination of 1 and xpm

. In particular, [β(x)b, x] =

0. Since C is infinite, for any y ∈ [FR,FR], there exists infinite many λ ∈ C

such that (x+λy)p
m

/∈ C; otherwise the Vandermonde determinant argument

shows that xpm

∈ C which is a contradiction. For such λ ∈ C we have

0 = [β(x+ λy)b, x+ λy] = [β(x)b+ λpm

β(y)b, x+ λy]

= λ[β(x)b, y] + λpm

[β(y)b, x] + λpm+1[β(y)b, y].

Applying the Vandermonde determinant argument again, [β(x)b, y] = 0 for

all y ∈ [FR,FR]. In particular, [β(x)b[z,w], [z,w]] = 0 for all z,w ∈ FR.

By Lemma 1 and the assumption made right before Subcase 1, we have

β(x)b ∈ C. Since for any y ∈ [FR,FR] there exists infinite many λ ∈ C such

that (x+ λy)p
m

/∈ C, we also have β(x+ λy)b ∈ C. Hence β(y)b ∈ C for all

y ∈ [FR,FR]. In particular, [x, y]a ∈ C for all x, y ∈ FR, where a = β−1(b).

Since FR ≃ M2(D) is a finite dimensional central simple algebra and the

assumption made right above Subcase 1, FR ⊆ Mt(F ), t ≥ 3 for some field

F . It is easy to see that [x, y]a ∈ C for all x, y ∈Mt(F ). On the other hand,

let x = e12 and y = e21, the matrix units in Mt(F ), then [x, y]a /∈ C unless

a = 0, which is a contradiction.

We now may assume that xpm

∈ C for all x ∈ [FR,FR]. In particular,

[x, y]p
m

∈ C for all x, y ∈ [FR,FR]. As before, FR ⊆Mt(F ), t ≥ 3 for some

field F and [x, y]p
m

∈ C for all x, y ∈ [FR,FR]. But setting x = e12 and

y = e21, then we have [x, y] = e11 − e22 and [x, y]p
m

= e11 + (−1)p
m

e22 /∈ C,

which is a contradiction.

Assume next that n ≤ −1. In this case, let n′ = −n, then n′ ≥ 1 and

β(λpn
′

) = λ for all λ ∈ C. Replacing x in (16) by λpn
′

x, we have

0 = [(b+ s)λpn
′

x− β(λpn
′

x)b, (λpn
′

x)p
m

]

= [λpn
′

(b+ s)x− λβ(x)b, λpn
′
+m

xpm

]

= λ2n′+m[(b+ s)x, xpm

] − λpn
′
+m+1[β(x)b, xpm

].

Again, by the Vandermonde determinant argument, [β(x)b, xpm

] = 0 for

all x ∈ [FR,FR]. Replacing x by x + λpn
′

y, we obtain as before that

[β(x)b, ψ1(x, y)] = 0 for all x, y ∈ [FR,FR]. Now we can finish the proof

by using the same argument as we did for the case n ≥ 1. The proof of the

main theorem is complete. ���
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Finally, we give an example to show that the exceptional case in the

main theorem does occur.

Example. Let R = M2(F ), where F is a field of characteristic 2 and let

L = [R,R] = Fe12 + Fe21 + F (e11 − e22). Clearly, L is a noncommutative

Lie ideal of R and x2 ∈ Z(R) for all x ∈ L. Let f be the map defined by

f(x) = e11x−xe12 for all x ∈ R. Then f is a nonzero generalized derivation

of R and [f(x), x]2 = [f(x), x2] = 0 for all x ∈ L. However, e11, e12 and

e11 + e12 are not in Z(R).
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