
Bulletin of the Institute of Mathematics
Academia Sinica (New Series)
Vol. 6 (2011), No. 2, pp. 115-243

SOLVING BOLTZMANN EQUATION, PART I:

GREEN’S FUNCTION

TAI-PING LIU1,a AND SHIH-HSIEN YU1,b

1Institute of Mathematics, Academia Sinica, Taipei.

aE-mail: liu@math.stanford.edu

2Department of Mathematics, National University of Singapore.

bE-mail: matysh@nus.edu.sg

Abstract

We present an approach for solving the Boltzmann equation based on the explicit

construction of the Green’s functions. The Green’s function approach has been useful for

the study of nonlinear interior waves and the boundary waves. In this Part I we study the

Green’s functions for the initial and initial-boundary value problems. In the forthcoming

Part II, we will study the general solutions of the Boltzmann equation. Our presentation

is self-contained, and, besides the synthesis of the existing ideas, we also established the

detailed analysis of the leading terms of the Green’s function.

1. Introduction

The kinetic theory starts with the density distribution function f(x, t, ξ)

where x = (x1, x2, x3) ∈ R
3 is the space variables, t ≥ 0 is the time variable,

and ξ = (ξ1, ξ2, ξ3) ∈ R
3 is the microscopic velocity. Thus the kinetic theory

differs from the fluid dynamic description of the gases in the inclusion of

the microscopic velocity ξ as an independent variables. With the knowledge

of the density distribution function f(x, t, ξ) one can derive the macroscopic
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variables, functions of the space and time variables (x, t) through computing

the moments:


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








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






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























ρ(x, t) ≡
∫

R3 f(x, t, ξ)dξ, density,

ρv(x, t) ≡
∫

R3 ξf(x, t, ξ)dξ, momentum, v = (v1, v2, v3) fluid velocity,

ρe(x, t) ≡
∫

R3
|ξ−v|2

2 f(x, t, ξ)dξ, internal energy,

ρE(x, t) ≡
∫

R3
|ξ|2
2 f(x, t, ξ)dξ = ρe+ 1

2ρ|v|2, total energy,

pij(x, t) ≡
∫

R3(ξ
i−vi)(ξj−vj)f(x, t, ξ)dξ,P = (pij)1≤i,j≤3, stress tensor,

qi(x, t) ≡
∫

R3(ξ
i − vi)1

2 |v − ξ|2f(x, t, ξ)dξ, heat flux.

(1.1)

The most important equation for the kinetic theory for the gases is the

Boltzmann equation, [2],

∂tf(x, t, ξ) + ξ · ∂xf(x, t, ξ) =
1

k
Q(f, f)(x, t, ξ), (1.2)

The left hand side of the equation, ∂tf+ξ ·∂xf, is the transport term, measur-

ing the time rate of change along the particle path. The Boltzmann equation

says that the change is due to the collision operator Q(f, f), which takes the

form of the binary collision:

Q(g, h) ≡ 1

2

∫

R
3×S2

(ξ−ξ∗)·Ω≥0

(−g(ξ)h(ξ∗) − h(ξ)g(ξ∗) + g(ξ′)h(ξ′∗)

+h(ξ′)g(ξ′∗))B(ξ − ξ∗,Ω)dξ∗dΩ; (1.3)

{

ξ′ = ξ − [(ξ − ξ∗) · Ω] Ω,

ξ′∗ = ξ∗ + [(ξ − ξ∗) · Ω] Ω.
(1.4)

The cross section B(ξ−ξ∗,Ω) depends on the inter-molecular forces between

the particles. For the hard sphere models

B(ξ − ξ∗,Ω) = (ξ − ξ∗) · Ω. (1.5)

The Maxwellian, thermo-equilibrium states have the defining property that

Q(M,M) = 0
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and are of the form

M = M(ρ,v,θ) ≡
ρ(x, t)

(2πRθ(x, t))3/2
e
− |ξ−v(x,t)|2

2Rθ(x,t) ,

determined by the macroscopic variables. Here θ is the temperature defined

by p/ρ = Rθ. For simplicity, in most part of our presentation, we will set

the mean free path k = 1.

The main purpose of this Part I and the forthcoming Part II of the

present paper is to present the Green’s function approach for the study of

the solutions of the Boltzmann equation. The Green’s function approach

aims at pointwise, more quantitative understanding of the solutions of the

Boltzmann equation. This is necessary for the qualitative understanding

of the rich phenomena that the kinetic theory can model, particularly the

nonlinear interior waves and the behavior of the solution near the boundary.

There are studies based on physical considerations and asymptotic theory

for the Boltzmann equation, see [42], [43], [18], [19], [20]. We start with

the construction and analysis of the Green’s function in this Part I. The

construction involves explicit inversion of the Fourier transform for the fluid-

like waves and Picard iterations for particle, particle-like and other singular

waves. The Green’s functions are for the linearized Boltzmann equation. The

simplest situation is to consider the Boltzmann equation linearized around

a global Maxwellian M:

f = M +
√

Mg

so that the linearization yields















gt + ξ · ∂xg = Lg, linearized Boltzmann equation,

Lg =
2Q(

√
Mg,M)√
M

, linearized collision operator.
(1.6)

The most basic Green’s function is for the initial value problem for the above

linearized Boltzmann equation. Because we are considering the Boltzmann

equation linearized around a fixed Maxwellian, the equation is of constant

coefficients in (x, t). Thus the equation is both time and space translational

invariant and so the Green’s function has the property:

G(x,x0, t, s, ξ; ξ0) = G(x − x0, t− s, ξ; ξ0)
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and satisfies
{

Gt + ξ · ∂xG = LG,

G(x, 0, ξ; ξ0) = δ(x)δ(ξ − ξ0).
(1.7)

The Green’s function G(x−x0, t− s, ξ; ξ0) describes the propagation of the

perturbation over the Maxwellian M when at time s the perturbation consists

of particles concentrated at the location x = x0 and with the microscopic

velocity concentrated at ξ0. The basic reason for the study of the Green’s

function is that it can be used to study the general solutions. The simplest

situation is to consider the initial value problem for the linear Boltzmann

equation with a given source h = h(x, t, ξ):

{

gt + ξ · ∂xg = Lg + h,

g(x, 0, ξ) = g0(x, ξ).
(1.8)

Multiply the equation with the Green’s function and integrate to yield the

solution representation:

g(x, t, ξ) =

∫

R3

∫

R3

G(x − y, t, ξ; ξ0)g0(y, ξ0) dξ0dy

+

∫ t

0

∫

R3

∫

R3

G(x − y, t− s, ξ; ξ0)h(y, s, ξ0) dξ0dyds. (1.9)

We will construct this Green’s function first for the 1-dimensional case, x ∈
R, and then for the 3-dimensional case, x ∈ R

3. In preparation for these

constructions, we make the following preliminaries. In Section 2, we will

first review the basics for the Boltzmann equation and in Section 3 for the

linearized Boltzmann equation. For the study of the fluid aspects of the

Boltzmann equation, we consider in Section 4 the Euler and Navier-Stokes

equations in gas dynamics. The construction of the Green’s function is done

first for the case of plane waves, i.e. the case when the space variable is

1-dimensional, x ∈ R,

{

Gt + ξ1∂xG = LG,

G(x, 0, ξ; ξ0) = δ1(x)δ(ξ − ξ0);
(1.10)
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and the solution formula for the general initial value problem becomes















gt + ξ1∂xg = Lg,

g(x, 0, ξ) = g0(x, ξ),

g(x, t, ξ) =
∫

R

∫

R3 G(x− y, t, ξ; ξ0)g0(y, ξ0) dξ0dy.

(1.11)

We will consider the fluid-like waves in Section 5 and the particle-like and

other singular waves in Section 6. The fluid-like waves are studied by the

Fourier transform and the spectral analysis near the origin. The particle-like

waves are constructed by Picard iterations and their regularity properties are

studied by the Mixture Lemma. To combine these two types of waves for the

complete picture of the Green’s function requires intricate analysis.

In Section 7 we construct the Green’s function for the initial value prob-

lem for the general waves in 3-dimensional space. There are Huygens waves

and other fluid-like waves.

After the Green’s function for a global Maxwellian is constructed for the

initial value problem, we will use it to construct the Green’s function for the

initial-boundary value problem in Section 8.

These construction are pointwisely explicit and will be used in the forth-

coming Part II for the study of nonlinear waves and boundary layers for the

Boltzmann equation. Our presentation is essentially self-contained. The

existing materials, [31], [32], for the initial value problem, [33], for initial-

boundary value problem, are reorganized with new perspectives. Some issues

are clarified and new materials are added. We raise open problems from time

to time. For the Green’s function approach aimed at the understanding of

the dissipation effects of the boundary, see [34] and [47].

2. Boltzmann Equation

In this section we review two basic properties of the Boltzmann equation

(1.2): the conservation laws and the H-Theorem.

2.1. Conservation laws

The collision operator Q(f, f), (1.3), redistributes the density function



120 TAI-PING LIU AND SHIH-HSIEN YU [June

f(x, t, ξ) as a function of the microscopic velocity ξ. Nevertheless, on the

macroscopic level, the collision operator conserves the mass, momentum and

energy:

∫

R3







1

ξ
1
2 |ξ|2






Q(g, h)dξ = 0,







mass

momentum

energy






. (2.1)

The above is proved by simple change of variables, noting that the transfor-

mation (1.4) has Jacobian one:

∫

R3

Ψ(ξ)Q(g, h)(ξ)dξ =
1

4

∫

R3

(Ψ(ξ) + Ψ(ξ∗) − Ψ(ξ′) − Ψ(ξ′∗))Q(g, h)(ξ)dξ.

(2.2)

The key property is thus that the functions

Ψ0(ξ) ≡ 1, Ψi(ξ) ≡ ξi, i = 1, 2, 3, Ψ4(ξ) ≡ |ξ|2/2, Ψ = Ψj, j = 0, . . . , 4,

(2.3)

are collision invariants in the following sense.

Definition 2.1. A function Ψ(ξ) of the microscopic velocity ξ is a collision

invariant if

Ψ(ξ) + Ψ(ξ∗) = Ψ(ξ′) + Ψ(ξ′∗) (2.4)

under the transformation (1.4).

In fact, the relation (1.4) is equivalent to the fact that the functions

1, ξ, |ξ|2/2 are collision invariant. Thus any function in the span of these

functions are also collision invariant and has the property that the integration

of them times the collision operator vanishes. There is the basic theorem

of Boltzmann saying that these are all the collision invariants; its proof is

omitted, [8].

Theorem 2.2 (Boltzmann). Any collision invariant is a linear combination

of 1, ξ, |ξ|2/2.

Multiply 1, ξ, |ξ|2/2 with the Boltzmann equation (1.2) and integrate
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to yield the conservation laws for the macroscopic variables of (1.1):















∂tρ+ ∂x · (ρv) = 0, conservation of mass,

∂t(ρv) + ∂x · (ρv ⊗ v + P ) = 0, conservation of momentum,

∂t(ρE) + ∂x · (ρvE + P v + q) = 0, conservation of energy.

(2.5)

Remark 2.3. There are 5 conservation laws: 1 for the mass, 3 for the

momentum, and 1 for the energy. On the other hand, there are 14 unknowns:

1 for the density ρ, 3 for the fluid velocity v, 6 for the symmetric stress

tensor P , 3 for the heat flux q, and 1 for the internal energy e. Thus

the conservation laws are not a system of self-contained partial differential

equations. The macroscopic quantities are computed as moments of the

density function f(x, t, ξ). The stress tensor consists of second moments and

the heat flux consists of third moments. To derive equations for these would

require the fourth moments and so on. For instance, one may multiply

the Boltzmann equation by (ξi − vi)(ξj − vj) and integrate to derive the

evolutionary equation for the stress tensor pij, a second moment:

∂t(p
ij) + ∂x ·

∫

R3

(ξi − vi)(ξj − vj)ξfdξ =

∫

R3

(ξi − vi)(ξj − vj)Q(f, f)dξ.

This would involve the third moment, the integration of (ξi − vi)(ξj − vj)ξf.

The evolution of the third moments then involves the fourth moments and

so on. Also the right hand side is not zero anymore, as (ξi − vi)(ξj − vj)

is not a collision invariant. Thus the Boltzmann equation is equivalent to

a system of infinite partial differential equations. Another way to view the

kinetic theory is to consider the distribution function f(x, t, ξ), for each fixed

space and time variables (x, t), as a function of the microscopic variables ξ.

The space of functions in ξ is infinite dimensional.

For the fluid dynamics, the conservation laws are closed by making

assumptions on the dependence of the stress tensor and heat flux on the

conserved quantities and their differentials. For the Euler equations in gas

dynamics,

pij
E = pδij , qE = 0, Euler stress and heat flux; (2.6)
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and for the Navier-Stokes equations,



















pij
NS = pδij − µ[ ∂vi

∂xj + ∂vj

∂xi − 2
3

∑3
k=1

∂vk

∂xk δij] − µB
∑3

k=1
∂vk

∂xk δij ,

Navier-Stokes stress;

qNS = κ∇xθ, Navier-Stokes heat flux.

(2.7)

We will derive the viscosity µ and the heat conductivity κ later. They are

functions of the temperature

µ = µ(θ), κ = κ(θ).

For the in-depth study of the fluid dynamics from the point of view of the

kinetic theory, the readers are referred to [42], [43].

2.2. H-Theorem and Maxwellians

The Boltzmann equation has the so-called molecular chaos hypothesis

built in the collision operator in that the loss term −f(ξ)f(ξ∗) and the gain

term f(ξ′)f(ξ′∗) in the collision operator Q(f, f) are supposed to be the two

particles distributions before the collision, taken here as the products of the

single particle distributions f. This is the hypothesis of no correlation before

collision. An important consequence is the H-Theorem on the irreversibility

of the Boltzmann process:

∫

R3

log fQ(f, f)dξ =
1

4

∫

R3

∫

R3

∫

S2
+

log
ff∗
f ′f ′∗

[f ′f ′∗ − ff∗]BdΩdξ∗dξ ≤ 0. (2.8)

The above is proved by simple change of variables, again using fact that the

transformation (1.4) has Jacobian one, (2.2). From (2.8), the Boltzmann

Theorem yields that

∫

R3

log fQ(f, f)dξ = 0, if and only if log f is a collision invariant,

in the span of 1, ξ, |ξ|2/2. (2.9)

In other words, log f, as a function of the microscopic velocity ξ, is quadratic,

or, equivalently, f is gaussian in ξ. Direct calculations show that the dis-

tribution function is explicitly given in terms of the macroscopic variables:
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f(x, t, ξ) =
ρ(x, t)

(2πRθ(x, t))3/2
e
− |ξ−v(x,t)|2

2Rθ(x,t) ≡ M[(ρ,v, θ)]. (2.10)

Here we have introduced the macroscopic quantity θ, the temperature, through

the ideal gas relation between the temperature θ, the pressure p and the den-

sity ρ:

p = Rρθ. (2.11)

The states M(ρ,v,θ) are called the Maxwellian distributions. They are the

thermo-equilibrium states in that

Q(M,M) = 0. (2.12)

The H-Theorem is obtained by integrating the Boltzmann equation (1.2)

times log f

∂tH + ∂x · H ≤ 0, H ≡
∫

R3

f log fdξ, H ≡
∫

R3

ξf log fdξ. (2.13)

Thus a Boltzmann solution has the tendency to reach the thermo-equilibrium

and the Boltzmann process is irreversible.

Remark 2.4. From the kinetic theory point of view, the fluid dynamics and

thermodynamics are the study around the Maxwellians. The fact that the

Maxwellian distribution (2.10) is determined by only two state variables ρ

and θ, and is consistent with the basic axiom in thermodynamics that there

are exactly two independent state variables. One can choose any two state

variables and all the other state variables are functions, the constitutive

relations, of the two chosen state variables. With the given distribution

(2.10), this thermodynamics axiom clearly holds. For the non-equilibrium

situation one can define, symbolically, the pressure

p ≡ p11 + p22 + p33

3
=

1

3

∫

R3

|v − ξ|2f(x, t, ξ)dξ, pressure,

and we have from (1.1) that the internal energy and the pressure are related

as:

p =
2

3
ρe. (2.14)
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This is the relation for the monatomic gases and, when combined with the

ideal gas relation (2.11), we have

e =
3

2
Rθ. (2.15)

In fact, one often takes (2.15) as the defining property of the temperature θ

in terms of the internal energy e. The monatomic gases have the 3 degrees

of freedom of translational energy. For the non-monatomic gases, there are

other degree of freedom of rotational and vibrational energy, for instance.

For a gas with α, α ≥ 3, degrees of freedom, we would have e = α
2Rθ.

2.3. One-dimensional flows

For plane waves, the density function f(x, t, ξ) depends only on 1-di-

mensional space variable x1, x = (x1, x2, x3). We will write x1 = x. The

Boltzmann equation becomes

∂tf(x, t, ξ) + ξ1∂xf(x, t, ξ) = Q(f, f)(x, t, ξ), (2.16)

Note that the microscopic velocity ξ = (ξ1, ξ2, ξ3) must remain 3-dimensional.

The Green’s function G(x, t, ξ; ξ0), x ∈ R, for the initial value problem, c.f.

(1.7), becomes
{

Gt + ξ1∂xG = LG for x ∈ R,

G(x, 0, ξ; ξ0) = δ1(x)δ3(ξ − ξ0).
(2.17)

Here we have highlighted the dimension of the delta functions. For conve-

nience, we assume that the density distribution

f(x, t, ξ) is even in ξ2 and ξ3. (2.18)

It is easy to see that if this assumption is made for the initial data, it remains

so for later time. With this, the fluid velocity v = (v1, v2, v3) becomes

v = (v1, 0, 0) ≡ (v, 0, 0), (2.19)

and we will write the Maxwellians as

M[ρ,v,θ] ≡ M[ρ,v,θ]. (2.20)
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The thermo-equilibrium manifold, the collection of all Maxwellians, is then

3-dimensional. There are 3 effective collision invariants:

1, ξ1,
|ξ|2
2
, 1−dimensional collision invariants. (2.21)

3. Linearized Boltzmann Equation

Consider the solution f of the Boltzmann equation (1.2) as a perturba-

tion of the Maxwellian M = M[ρ,v,θ]:







































f = M +
√

Mg,

gt + ξ · ∂xg = Lg + Γ(g),

Lg =
2Q(

√
Mg,M)√
M

, linearized collision operator,

Γ(g) =
Q(

√
Mg,

√
Mg)√

M
, nonlinear term.

(3.1)

The Boltzmann equation linearized around M with the weight function
√

M

is

gt + ξ · ∂xg = Lg. (3.2)

3.1. Linear collision operator

Any Maxwellian M̄ = M[ρ,v,θ] is a thermo-equilibrium state, Q(M̄, M̄) =

0. The equilibrium manifold is a 5-dimensional manifold of the Maxwellians,

parametrized by (ρ,v, θ). As a consequence, the kernel of linearized collision

operator Lg = 2Q(
√

Mg,M)/
√

M is the tangent space of the equilibrium

manifold at the base Maxwellian M of the linearization. This is found by

the differentiation of the explicit form (2.10) of the Maxwellian state with

respect to the 5 parameters (ρ,v, θ). For instance the differentiation with

respect to v yields

∂M

∂v
=

ξ − v

Rθ
M,

which is, as a function of the microscopic velocity ξ, in the span of {M, ξM}.
In the form of the linearized variable g with the weight

√
M, (3.1), it is in the
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span of {
√

M, ξ
√

M}. The other differentiations yield altogether the span

{
√

M, ξ
√

M, |ξ|2
√

M} of the tangent space, and we have

{

Lψj = 0, j = 0, . . . , 4,

ψ0 ≡
√

M, ψi = ξi
√

M, i = 1, 2, 3, ψ4 ≡ |ξ|2
2

√
M, linear collision kernel.

(3.3)

There is also the algebraic way of finding the linear collision kernel, cf. (2.2),

(3.13).

Remark 3.1. The Boltzmann Theorem says that the linear collision ker-

nel is exactly the above 5-dimensional space, the linear equilibrium states.

The study of the Boltzmann solutions contains the following two important

considerations. The first is the tendency of the Boltzmann solutions con-

verging to the local Maxwellians, as predicted by the H-Theorem. There

is the Cercignani conjecture, [7] related to this efforts, see [12], [6], [46],

[21]. Then there is the study of the Boltzmann solutions flowing around

the 5-dimensional equilibrium manifold. The study of the later is essential

for the understanding of the relation of the kinetic theory with the fluid

dynamics. On the linear level, we call the projection, in the function space

of the microscopic variable, onto the linear collision kernel the linear macro

projection. Its orthogonal projection is called the micro projection. These

projections have been used for a long while, see for instance, in the content

of energy method, the recent papers, [22], [23], [24], and the hypocoercivity

theory, [39]; its introduction for the above specific purpose was done in [30].

A good part of the present effort is to illustrate the Boltzmann flow from

the perspective of these two basic considerations.

For the hard sphere models, (1.5), and taking the base Maxwellian M

for linearization to be

M[1,0,1] =
1

(2π)3/2
e−

|ξ|2

2 (3.4)
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the linearized collision operator has the explicit form, e.g. [9],



























































Lg(ξ) = (−ν + K)g(ξ) ≡ −ν(ξ)g(ξ) +
∫

R3 K(ξ, ξ∗)g(ξ∗)dξ∗,

ν(ξ) ≡ 1√
2π

(

2e−
|ξ|2

2 + 2(|ξ| + 1

|ξ| )
∫ |ξ|

0
e−

η2

2 dη

)

,

C1(1 + |ξ|) ≤ ν(ξ) ≤ C2(1 + |ξ|) for some C1, C2 > 0,

K(ξ, ξ∗) ≡
2√

2π|ξ − ξ∗|
exp

(

−(|ξ|2 − |ξ∗|2)2
8|ξ − ξ∗|2

− |ξ − ξ∗|2
8

)

−|ξ − ξ∗|
2

exp

(

−(|ξ|2 + |ξ∗|2)
4

)

.

(3.5)

The linearized collision operator around a Maxwellian M[ρ,v,θ] is a simple

translation and dilation of the above. Here, as in what follows, we have

taken, for simplicity, the gas constant R = 1.

The Hilbert space L2
ξ for functions of the microscopic variables will be

used. We will also use the weighted spaces:

‖g‖L∞
ξ,β

≡ sup
ξ∈R3

|g(ξ)|(1 + |ξ|)β, β ≥ 0. (3.6)

The integral operator K has some boundedness and smoothing properties.

The following lemma follows from direct computations.

Lemma 3.2. The operator K is compact and the integral operators Kξ, Kξ∗ ,

defined by the kernel Kξ, Kξ∗ respectively, are bounded in L2
ξ. For any β > 0

there exist positive constants C(β) and C1 such that







‖K j‖L∞
ξ,β+1

≤ C(β)‖j‖L∞
ξ,β
,

‖Kj‖L∞
ξ,0

≤ C1‖j‖L2
ξ
.

(3.7)

The integral operator K has limited smoothing property in ξ, (3.7).

This is due to the singularity of the kernel K(ξ, ξ∗) at ξ = ξ∗, (3.5). We
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decompose it into



















































K = K0 + K1 = K0,D + K1,D,

Kiz(ξ) ≡
∫

R3 Ki(ξ, ξ∗)z(ξ∗) dξ∗ for i = 0, 1,

K0(ξ, ξ∗) = χ0

(

|ξ−ξ∗|
Dν0

)

K(ξ, ξ∗),

K1(ξ, ξ∗) =
(

1 − χ0

(

|ξ−ξ∗|
Dν0

))

K(ξ, ξ∗),

χ0(r) ≡ 1 for r ∈ [−1, 1],

supp(χ0) ⊂ [−2, 2], χ0 ∈ C∞
c (R), χ0 ≥ 0.

(3.8)

Here the cutoff parameter D will be chosen to be small. We may write the

linearized Boltzmann equation (3.2) as:

∂tg + ξ1∂xg + ν(ξ)g = (K0 + K1)g. (3.9)

The operator K0 shares the same smoothing property as K and has strength

of the order of the cut-off parameter D:

‖K0h‖L∞
ξ,β+1

≤ CβD‖h‖L∞
ξ,β

for β ≥ 0. (3.10)

The operator K1 is a smoothing operator because it does not inherit the

singular nature of the kernel K(ξ, ξ∗) at ξ = ξ∗.

Lemma 3.3. The operator K1 given in (3.8) is a smoothing operator in ξ:

for any h ∈ L2
ξ, i ≥ 0,

‖K1h‖Hi
ξ

= O(1)‖h‖L2
ξ
.

Here H i
ξ are the standard Sobolev spaces on L2

ξ.

Proof. From the definition of K1 in (3.8),

∂α
ξ K1h(ξ) ≡

∫

R3

h(ξ∗)∂
α
ξ

((

1 − χ0

( |ξ − ξ∗|
Dν0

))

K(ξ, ξ∗)

)

dξ∗.

The function K(ξ, ξ∗) is smooth for |ξ−ξ∗| > Dν0. Thus,
((

1−χ0

(

|ξ−ξ∗|
Dν0

))

K(ξ, ξ∗)
)

is a globally smooth function. It is easy to see that for any i ≡
|α| ≥ 0 the function ∂α

ξ ((1− χ0(
|ξ−ξ∗|
Dν0

))K(ξ, ξ∗)) ∈ L1
ξ and therefore defines

a bounded operator from L2
ξ to L2

ξ, and the lemma is proved. ���
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We have the following basic theorems, [4], [5], [9].

Theorem 3.4. The linearized collision operator L is non-negative self-adjoint

in L2
ξ and the Green’s function G is bounded in L2

x(L2
ξ):

‖G‖L2
x(L2

ξ
) ≤ 1. (3.11)

Proof. The form of the linear collision operator with the weight of
√

M

serves the convenient purpose that the collision operator is self-adjoint in

the Hilbert space L2
ξ:

(Lg, h) = (g,Lh), (g, h) = (g, h)L2
ξ
≡
∫

R3

g(ξ)h(ξ)dξ. (3.12)

This is shown by simple changes of variables in the integrations such as (2.2),



















(Lg, h) = (g,Lh)

= − 1
16

∫

R3

∫

R3

∫

S2 MM∗[
g′∗√
M′

∗

+ g′√
M′

− g√
M

− g∗√
M∗

]

×[ h′∗√
M′

∗

+ h′√
M′

− h√
M

− h∗√
M∗

]BdΩdξ∗dξ,

(3.13)

making use of the fact that the Maxwellians have the defining property that

log M is collision invariant, or, M′M′
∗ = MM∗. To prove the boundedness of

the Green’s function, we use the energy method by integrating the linear

Boltzmann equation (3.2) times g to yield, using the non-negativeness of L:

d

dt

∫

R3

(g, g)L2
ξ
dx =

∫

R3

(Lg, g)L2
ξ
dx ≤ 0. (3.14)

Thus the Green’s function as an operator in propagating the solution of the

initial value problem, (1.8), (1.9), is contractive in L2
x(L2

ξ) and so (3.11)

holds. ���

3.2. Macro-micro projections

One forms the orthogonal basis for the kernel of the collision operator



130 TAI-PING LIU AND SHIH-HSIEN YU [June

(3.3):














χ0 ≡ M1/2,

χi ≡ (ξi − vi)M1/2, i = 1, 2, 3,

χ4 ≡ 1√
6
(|ξ − v|2 − 3)M1/2.

(3.15)

The macro projection P0 and the micro projection P1 are

P0g ≡
4
∑

j=0

(g, χj)χj , P1 ≡ I − P0. (3.16)

We will write

g0 ≡ P0g, g1 ≡ P1g, g = g0 + g1, (g0, g1) = 0. (3.17)

The macro projection P0 consists of the isotropic part Piso
0 and the momen-

tum part Pm
0 :

P0 = Piso
0 + Pm

0 , Piso
0 g = (g, χ0)χ0 + (g, χ4)χ4, Pm

0 ≡
3
∑

i=1

(g, χi)χi. (3.18)

Clearly, the linear collision operator L satisfies

P0L = LP0 = 0, P1L = LP1 = L; (3.19)

and, from the Boltzmann Theorem, the nonlinear collision term Γ(g), (3.1),

also satisfies

P0Γ = 0, P1Γ = Γ. (3.20)

Theorem 3.5. The spectrum σ(L) of the linearized collision operator L has

the following property:

(1) There is the eigenvalue 0 with corresponding eigenfunctions the 5-dimensional

collision invariants, (3.3).

(2) Besides the 0 eigenvalues, the maximum value of the spectrum is a nega-

tive number −ν0. In other words, there is a spectrum gap between 0 and

the rest of the spectrum.
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Consequently,

(Lg, g) ≤ −ν1(P1g,P1g), (3.21)

for any function g ∈ L2
ξ.

Proof. From (3.5), the collision operator can be viewed as the compact

perturbation K of the multiplicative operator −ν(ξ). From the Weyl’s The-

orem, the essential spectrum σess = {y : y ≤ −ν0} of L is the values taken

by ν(ξ). As ν(ξ) is an increasing function of |ξ|,

ν0 ≡ ν(0) = min
ξ
ν(ξ), (3.22)

As L is self-adjoint and nonpositive, the discrete eigenvalues σdiscrete(L) =

σ(L)\σessential(L) ⊂ (−ν(0), 0]. Therefore, there are finite eigenvalues in in-

terval [−ν0 + ε, 0] for any small positive ε. In particular, the zero eigenvalue

is isolated. Thus the maximum of the rest of the spectrum −ν1 is negative,

ν0 > ν1 > 0. Finally, (3.21) follows from the fact that the micro projection

P1 projects to the orthogonal complement of the kernel of L. This establishes

(3.21) and the theorem is proved. ���

The above theorem is due to the efforts of Hilbert, Carleman, and Grad.

For constructive estimates of the spectrum gap, see [1], [37], [38].

Corollary 3.6. There exist positive constants C1, C2 such that

(Lg, g) ≤ −C1((1 + |ξ|)P1g,P1g), (3.23)

|(|ξ|g, g)| ≤ C2[(g, g) + (−Lg, g)]. (3.24)

Proof. From the expression L = K − ν(ξ) and the estimates, (3.5),

ν(ξ) ≥ D1(1 + |ξ|), ‖K‖L2
ξ

= D2 <∞,

for some positive constants D1, D2, and so we have

(Lg, g) = (LP1g,P1g) ≤ −D1((1 + |ξ|)P1g,P1g) +D2(P1g,P1g). (3.25)

The estimate (3.23) is shown with C1 = D1ν1/(D2 + ν1) by adding (3.21)

times D2/ν1 and (3.25). We have from the Cauchy-Schwarz inequality that

|(|ξ|g, g)| = |(|ξ|(g0 + g1), g0 + g1)|
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= O(1)[((1 + |ξ|)P0g,P0g) + ((1 + |ξ|)P1g,P1g)].

Thus (3.24) follows from (3.23) if

((1 + |ξ|)P0g,P0g) = O(1)(P0g,P0g),

which holds trivially because, after the macro projection P0, it is a finite

dimensional situation. This completes the proof of the corollary. ���

3.3. Macroscopic variables

The fluid variables for the conservation laws



















ρ ≡ (g,M1/2) = (g0,M
1/2),

mi ≡ (g, ξiM1/2) = (g0, ξ
iM1/2), m ≡ (m1,m2,m3),

E ≡ (g, 1
2 |ξ|2M1/2) = (g0,

1
2 |ξ|2M1/2).

(3.26)

There is some ambiguity with earlier notations, as, for instance, the ρ here

is not the density, but the perturbation of the density. There is no confusion

here and we use these for the sake of notational simplicity. We will also use

the projection to the orthogonal basis χi, i = 0, 1, 2, 3, 4:



















ρ̄ ≡ (g, χ0) = (g0, χ0),

m̄i ≡ (g, χi) = (g0, χi),

Ē ≡ (g, χ4) = (g0, χ4),

(3.27)

g0(x, t, ξ) = ρ̄(x, t)χ0(ξ) +

3
∑

i=1

m̄i(x, t)χi(ξ) + Ē(x, t)χ4(ξ). (3.28)

4. Euler and Navier-Stokes

For the discussion of this section, the mean free path k is retrieved to

highlight the dependence of the hydrodynamics dissipation parameters, the

viscosities and heat conductivity on k.
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Boltzmann equation has its fluid dynamics aspects. The most basic equa-

tions for gas dynamics are the Euler equations. The Euler equations in gas

dynamics can be directly derived from the Boltzmann equation and provide

the basic information on the propagation of fluid-like waves in the kinetic

theory. The Navier-Stokes equations and the Boltzmann equation share

the basic property that they are both dissipative. Boltzmann equation is

dissipative partly as a consequence of the H-Theorem. The heat conduc-

tivity and viscosity coefficients for the Navier-Stokes equations are also the

basic dissipation parameters for the Boltzmann solutions. We will derive

the compressible Navier-Stokes equations in the spirit of Chapman-Enskog

expansion.

4.1. Euler equations

Each Maxwellian is a constant solution of the Boltzmann equation,

(2.12). In general, local Maxwellians do not form a solution of the Boltz-

mann equation. As the mean free path k tends to zero, for smooth solutions,

one expects Q(f, f) to go to zero:

Q(f, f)(x, t, ξ) = k[∂tf(x, t, ξ) + ξ · ∂xf(x, t, ξ)] → 0.

And so, by the H-Theorem, (2.12), f → Mf , where Mf are the Maxwellians

determined by the macroscopic variables of the solution f. We call

(Mf)t + ξ · ∂x(Mf) = 0 (4.1)

the Euler equations in the kinetic form. Assuming that the distribution

function is locally Maxwellian

f = Mf ,

then, by direct calculations, it is easy to see that

stress tensor P = pI, the pressure p; heat flux q = 0.

Here I is the 3 by 3 identity matrix. Thus in this zero mean free path limit,

k → 0+, the conservation laws (2.5) are simplified to the Euler equations in
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gas dynamics














∂tρ+ ∂x · (ρv) = 0,

∂t(ρv) + ∂x · (ρv ⊗ v + pI) = 0,

∂t(ρE) + ∂x · (ρvE + pv) = 0.

(4.2)

The state variables are related by the constitutive relations for the monatomic

gases:

p = Rρθ =
2

3
ρe = p0e

Asρ
5
3 . (4.3)

Here the first relation is the ideal gas law, (2.11). We will take the gas

constant R = 1. The second equality comes from the monatomic gases

law (2.14). From these we have the last equality by the thermal dynamics

relation de = −pd(1/ρ) + θds, with s the entropy, for any choice of positive

constants A and p0.

The Euler equations are self-contained, as the stress tensor is now a

given function of the conserved quantity and the heat flux is zero. So the

number of the dependent variables is now 14 − 6 − 3 = 5, the same as the

number of equations.

Similarly, the linear Euler equations are the projection of the linearized

Boltzmann equation (3.2) to the tangent space of the equilibrium Maxwellian

states manifold at the base Maxwellian M = M0 = M[ρ0,v0,θ0]. Thus the linear

Euler equations in the kinetic form is the macro projection of the linearized

Boltzmann equation, (3.19):

(P0g)t + ∇x · P0ξP0g = 0. (4.4)

The resulting conservation laws, in terms of the macroscopic variables are

the linear Euler equations in gas dynamics. There are two versions. The

first is using the conservative macroscopic variables (3.26). This one is the

same as the linearized version of the full Euler equations (4.2):















ρt + ∇x · m = 0,

mt + 2
3∇xE = 0,

Et + 5
2∇x · m = 0.

(4.5)
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Here we have, for simplicity, assumed that the base state for the linearization

is taken to be ρ0 = 1, v0 = 0, θ0 = 1. The second version is using the

macroscopic variables through the orthogonal projections (3.27), (3.28):



















ρ̄t + v0 · ∇xρ̄+ ∇x · m̄ = 0,

m̄t + v0 · ∇xm̄ + ∇xρ̄+
√

2
3∇xĒ = 0,

Ēt + v0 · ∇xĒ +
√

2
3∇x · m̄ = 0.

(4.6)

4.2. Euler, Euler flux projections

In the linear Euler equations (4.4), the flux operators P0ξ
iP0, i = 1, 2, 3,

is on the 5-dimensional space {χj , j = 0, . . . , 4}. For definiteness, we con-

sider P0ξ
1P0. By straightforward calculations, we have the following Euler

characteristics λ1
i and Euler characteristic directions E1

i :















































































P0ξ
1E1

j = λ1
jE

1
j , j = 1, . . . , 5,

λ1
1 = v1 − c, λ1

2 = v1, λ1
3 = v1 + c, λ1

4 = λ1
5 = v1,

E1
1 =

√

3
10χ0 −

√

1
2χ1 +

√

1
5χ4,

E1
2 = −

√

2
5χ0 +

√

3
5χ4,

E1
3 =

√

3
10χ0 +

√

1
2χ1 +

√

1
5χ4,

E1
4 = χ2,

E1
5 = χ3.

(4.7)

Here we have taken the base state to be (ρ,v, θ) and so the sound speed c is

c =

√

5θ

3
. (4.8)

The Euler characteristic directions are orthogonal:

(E1
j ,E

1
k) = 0 for λ1

j 6= λ1
k. This is seen easily as follows:

λ1
j (E

1
j ,E

1
k) = (P0ξ

1E1
j ,E

1
k) = (ξ1E1

j ,E
1
k) = (E1

j , ξ
1E1

k)

= (E1
j ,P0ξ

1E1
k) = λ1

k(E
1
j ,E

1
k).
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The above Euler characteristic directions have been normalized:

(E1
i ,E

1
j ) = δij , i, j = 1, . . . , 5, (4.9)

so that the macro projection can also be written as

P0g =
4
∑

j=0

(g,E1
j )E

1
j .

We define the Euler projections Bj :

Bjg = (g,E1
j )E

1
j , j = 1, . . . , 5. (4.10)

For the 1-dimensional Boltzmann equation, (2.16), the linearized Euler

equations are

P0gt + (P0ξ
1P0g)x = 0. (4.11)

The kernel of the linearized collision operator is the span of

Lψj = 0, j = 0, 1, 4, ψ0 ≡
√

M, ψ1 = ξ1
√

M, ψ4 ≡ |ξ|2
2

√
M,

1-dimensional linear collision kernel, (4.12)

and the macro and micro projections become, with v = (v, 0, 0),



























P0g ≡ (g, χ0)χ0 + (g, χ1)χ1 + (g, χ4)χ4; P1 ≡ I − P0,

χ0 ≡ M1/2,

χ1 ≡ (ξ1 − v)M1/2,

χ4 ≡ 1√
6
(|ξ − v|2 − 3)M1/2.

(4.13)

The Euler characteristics are







































P0ξ
1Ej = λ1

jEj , j = 1, 2, 3,

λ1 = v − c, λ2 = v, λ3 = v + c,

E1 =
√

3
10χ0 −

√

1
2χ1 +

√

1
5χ4,

E2 = −
√

2
5χ0 +

√

3
5χ4,

E3 =
√

3
10χ0 +

√

1
2χ1 +

√

1
5χ4.

(4.14)
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t

x

dx
dt

= λ1
dx
dt

= λ2
dx
dt

= λ3

Figure 1: Euler waves.

The Euler projections Bj are defined as:

Bjg = (g,Ej)Ej , j = 1, 2, 3. (4.15)

The initial value problem for the Euler equations

{

P0gt + (P0ξ
1P0g)x = 0,

P0g(x, 0, ξ) = ḡ(x, ξ),
(4.16)

is decoupled by the Euler projections:















gj ≡ (g,Ej), ḡj ≡ (ḡ,Ej),

(gj)t + λj(gj)x = 0,

gj(x, 0) = ḡj(x).

(4.17)

This can be solve by the characteristic method to yield the Euler waves,

Figure 1:
{

g(x, t, ξ) =
∑3

j=1 gj(x, t)Ej(ξ),

gj(x, t) = ḡj(x− λjt).
(4.18)

The Euler flux projections B̃j are defined for nonzero Euler characteristic

speeds λj as follows:

B̃jg =
1

λj
(ξ1g,Ej)Ej , j = 1, 2, 3, P̃0 ≡

3
∑

j=1

B̃j. (4.19)
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It is easy to see that

P0 =

3
∑

j=1

Bj, P1Bi = BiP1 = 0,

(4.20)
B̃iEj = δijEi, Biξ

1B̃j = δijλiB̃i, i, j = 1, 2, 3, P1B̃i = 0.

Although BiP1 = 0, it is not true in general that B̃iP1 = 0.

For the study of initial-boundary and the boundary value problems, it is

essential to differentiate the direction of the Euler waves. For this, we define

the upwind Euler projection B+ and the downwind Euler projection B−:

B+ ≡
∑

λi>0

Bi, B− ≡
∑

λi<0

Bi. (4.21)

Similarly, the upwind-downwind Euler flux projections B̃± are defined as

B̃+ ≡
∑

λi>0

B̃i, B̃− ≡
∑

λi<0

B̃i. (4.22)

4.3. Navier-Stokes dissipation parameters

The full Euler equations (4.2) are derived by assuming that the distri-

bution function is locally Maxwellian, f = Mf . For the derivation of the

Navier-Stokes equations, the distribution function is assumed to deviates

slightly from the local Maxwellian. For our purpose of the construction of

the Green’s function, we will consider the case of linear Navier-Stokes equa-

tions only. In the linear case, the Euler equations (4.6) are derived from the

linear Boltzmann equation (3.2) by considering only the macro projection

of the macro part g0 = P0g of the Boltzmann solution g, (4.6). The macro

projection is the same as considering the conservation laws (4.6) induced by

the macro part. We now derive the linear Navier-Stokes equations by the

same procedure. First we write the linear Boltzmann equation (3.2) as:

(g0 + g1)t + ξ · ∂x(g0 + g1) =
1

k
Lg1, g0 ≡ P0g, g1 ≡ P1g.
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The macro and micro projections of this equation are

(g0)t + ∂x · P0ξ(g0 + g1) = 0, macro part of linear Boltzmann equation;

(4.23)

(g1)t + ∂x · P1ξ(g0 + g1) =
1

k
Lg1, micro part of linear Boltzmann equation.

(4.24)

In the spirit of Chapman-Enskog expansion, we assume that the macro part

g0 dominates the micro part g1 and that the differential ∇x,th is dominated

by the quantity h itself. Another way of thinking of this is to consider

the time-asymptotic dissipation of the Boltzmann solution toward a given

Maxwellian. As we will see, the macro part decays slower than the micro

part. Thus we will make the simplification of the micro part (4.24) of the

linear Boltzmann equation into

∂x · P1(ξg0) ≡
1

k
Lg1, or g1 ≡ kL−1[∂x · P1(ξg0)] Chapman-Enskog relation.

(4.25)

Plug the Chapman-Enskog relation (4.25) into the macro part (4.23) of the

Boltzmann equation:

(g0)t + ∂x · P0(ξg0) = k∂x · P0ξ(−L)−1[∂x · P1(ξg0)]; or,

(g0)t + ∂x · P0(ξg0) = k
3
∑

i,j=1

∂xi∂xjP0ξ
i(−L)−1[P1(ξ

jg0)],

Navier-Stokes equations in kinetic form. (4.26)

The linear Navier-Stokes equations in gas dynamics form are the con-

servation laws, obtained by integrating the kinetic equation (4.26) by the

linear collision invariants, the kernel of the linear collision operator, (3.15),

(3.26). The integration of (4.26) times χ0 yields the usual conservation of

mass:

ρt + ∇x · m + v0 · ∇ρ = 0.

The integration of (4.26) times χ4 yields the conservation of energy:

Et + v0 · ∇E +

√

2

3
∇x · m = κ△xE,
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with the heat conductivity coefficient κ:

κ = −k
(

P1ξ
1χ4,L

−1P1ξ
1χ4

)

. (4.27)

We now compute the integration of (4.26) times χl, l = 1, 2, 3, to yield the

conservation of momentum and the viscosity coefficients:

∂ml

∂t
+

3
∑

i=1

vi
0

∂ml

xi
+
∂ρ

∂xl
+

√

2

3

∂E

∂xl

= −k
3
∑

i,j,n=1

∂2mn(x, t)

∂xi∂xj

(

χl,P0

(

ξiL−1
[

P1(ξ
jχn)

]))

. (4.28)

Observe that

3
∑

i,j,n=1

∂2mn(x, t)

∂xi∂xj

(

χl,P0

(

ξiL−1
[

P1(ξ
jχn)

]))

=

3
∑

i,j,n=1

∂2mn(x, t)

∂xi∂xj

(

P1

(

ξiχl

)

,L−1
[

P1(ξ
jχn)

])

=

3
∑

i,j,n=1

∂2mn(x, t)

∂xi∂xj

(

P1

(

ξi
(

ξl−vl
0

)√
M
)

,L−1
[

P1(ξ
j (ξn−vn

0 )
√
M)
])

=
3
∑

i,j,n=1

∂2mn(x, t)

∂xi∂xj

(

P1

(

ξiξl
√
M
)

,L−1
[

P1(ξ
jξn

√
M)
])

=
3
∑

j=1

∂2mj(x, t)

∂xl∂xj

(

P1

(

(ξl)2
√
M
)

,L−1
[

P1((ξ
j)2

√
M)
])

(i= l, n=j)

+
∑

n 6=l

∂2mn(x, t)

∂xn∂xl

(

P1

(

ξnξl
√
M
)

,L−1
[

P1(ξ
lξn

√
M)
])

(j= l, i=n)

+
∑

j 6=l

∂2ml(x, t)

∂xj∂xj

(

P1

(

ξjξl
√
M
)

,L−1
[

P1(ξ
jξl

√
M )
])

(n= l, i=j) .

Due to the rotational invariance of the L−1 and integration, for i 6= j,

(

P1

(

ξiξj
√
M
)

,L−1
[

P1

(

ξiξj
√
M
)])

=
(

P1

(

(ξi)2
√
M
)

,L−1
[

P1

(

(ξj)2
√
M
)])
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and

(

P1

(

(ξi)2
√
M
)

,L−1
[

P1

(

(ξi)2
√
M
)])

=

(

P1

(

(

ξi + ξj

√
2

)2 √
M

)

,L−1

[

P1

(

(

ξi + ξj

√
2

)2 √
M

)])

=

(

P1

((

(ξi)2 + (ξj)2

2
+ ξiξj

)√
M

)

,

L−1

[

P1

((

(ξi)2 + (ξj)2

2
+ ξiξj

)√
M

)])

=
1

2

(

P1

(

(ξi)2
√
M
)

,L−1
[

P1

(

(ξi)2
√
M
)])

+
3

2

(

P1

(

ξiξj
√
M
)

,L−1
[

P1

(

ξiξj
√
M
)])

,

which implies that

(

P1

(

(ξi)2
√
M
)

,L−1
[

P1

(

(ξi)2
√
M
)])

= 3
(

P1

(

ξiξj
√
M
)

,L−1
[

P1

(

ξiξj
√
M
)])

. (4.29)

With these, (4.28) becomes

∂ml

∂t
+

3
∑

i=1

vi
0

∂ml

xi
+
∂ρ

∂xl
+

√

2

3

∂E

∂xl

= 3µ
∂2ml(x, t)

∂xl∂xl
+µ







∑

j 6=l

∂2mj(x, t)

∂xl∂xj
+
∑

n 6=l

∂2mn(x, t)

∂xn∂xl
+
∑

j 6=l

∂2ml(x, t)

∂xj∂xj







= µ
3
∑

j=1

{

∂2ml(x, t)

∂(xj)2
+ 2

∂2mj(x, t)

∂xl∂xj

}

=

3
∑

j=1

∂

∂xj

{

µ

(

∂ml

∂xj
+
∂mj

∂xl
− 2

3
δjl

3
∑

n=1

∂mn

∂xn

)

+
5

3
µδjl

3
∑

n=1

∂mn

∂xn

}

Here the viscosity µ and the bulk viscosity µB are given as

µ ≡ −k
(

P1

(

ξ1ξ2
√
M
)

,L−1
[

P1

(

ξ1ξ2
√
M
)])

, µB ≡ 5

3
µ. (4.30)

Using (4.27) and (4.30) the linear Navier-Stokes equations in gas dynamics
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form are then:











































ρt + ∇x · m + v0 · ∇xρ = 0,

∂ml
∂t +

3
∑

i=1
vi
0

∂ml

xi + ∂ρ
∂xl +

√

2
3

∂E
∂xl

=
3
∑

j=1

∂
∂xj

{

µ

(

∂ml

∂xj +
∂mj

∂xl − 2
3δjl

3
∑

n=1

∂mn
∂xn

)

− 5
3µδjl

3
∑

n=1

∂mn
∂xn

}

, l=1, 2, 3,

Et + v0 · ∇xE +
√

2
3∇x · m = κ△xE.

(4.31)

Another form of the Navier-Stokes equations that are convenient for the

study of fluid waves are obtained by integrating the kinetic equation (4.26)

times the Euler characteristic directions. We do this for 1-D case so that the

Navier-Stokes equation in the kinetic form is

∂g0
∂t

+
∂

∂x
P0

(

ξ1g0
)

= −k ∂
2

∂x2
P0

(

ξ1L−1
[

P1(ξ
1g0)

])

. (4.32)

Express

g0 =

3
∑

j=1

gjEj

in terms of the Euler characteristic directions Ej , j = 1, 2, 3, (4.14). This

yields the Navier-Stokes equations in gas dynamics form:











(gi)t + λi(gi)x =
3
∑

j=1
Aij(gj)xx, i = 1, 2, 3,

Aij = −k
(

P1ξ
1Ei,L

−1
[

P1(ξ
1Ej)

])

.

(4.33)

The dissipation parameters matrix Aij are related to the viscosity µ and

heat conductivity κ. For instance, from (4.14),

− 1

k
A11 =

(

P1ξ
1E1,L

−1
[

P1(ξ
1E1)

])

=
1

5

(

P1ξ
1
(

√

3

2
χ0 −

√

5

2
χ1 + χ4

)

,L−1
[

P1ξ
1
(

√

3

2
χ0 −

√

5

2
χ1 + χ4

)])

Note that ξ1χ0 is a linear collision invariant and so P1ξ
1χ0 = 0, and that

ξ1χ4 is odd in ξ1 and ξ1χ1 is even in ξ1 and so (P1ξ
1χ1,L

−1ξ1χ4) = 0. Thus
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it follows from (4.27), (4.30), and (4.29) that

A11 = −k1

5

{

5

2

(

P1ξ
1χ1,L

−1
[

P1ξ
1χ1

])

+
(

P1ξ1χ4,L
−1P1ξ1χ4

)

}

=
3

2
µ+

1

5
κ.

Similarly, we have

A12 = −k(P1ξ
1E1,L

−1[P1(ξ
1E2)])

=

√
3

5

(

P1ξ
1
(

√

3

2
χ0 −

√

5

2
χ1 + χ4

)

,L−1
[

P1ξ
1
(

−
√

2

3
χ0 + χ4

)])

=

√
3

5

(

P1ξ1χ4,L
−1P1ξ1χ4

)

=

√
3

5
κ,

A13 = −k
(

P1ξ
1E1,L

−1
[

P1(ξ
1E3)

])

=
1

5

(

P1ξ
1
(

√

3

2
χ0−

√

5

2
χ1+χ4

)

,L−1
[

P1ξ
1
(

√

3

2
χ0+

√

5

2
χ1+χ4

)])

=
1

5

{

−5

2

(

P1ξ
1χ1,L

−1
[

P1ξ
1χ1

])

+
(

P1ξ1χ4,L
−1P1ξ1χ4

)

}

= −3

2
µ+

1

5
κ,

A22 = −k
(

P1ξ
1E2,L

−1
[

P1(ξ
1E2)

])

= −k3

5

(

P1ξ
1
(

−
√

2

3
χ0 + χ4

)

,L−1
[

P1ξ
1
(

−
√

2

3
χ0 + χ4

)])

= −k3

5

(

P1ξ1χ4,L
−1P1ξ1χ4

)

=
3

5
κ,

A23 = −k
(

P1ξ
1E2,L

−1
[

P1(ξ
1E3)

])

= −k
√

3

5

(

P1ξ
1
(

−
√

2

3
χ0 + χ4

)

,L−1
[

P1ξ
1
(

√

3

2
χ0 +

√

5

2
χ1 + χ4

)])

= −k
√

3

5

(

P1ξ1χ4,L
−1P1ξ1χ4

)

=

√
3

5
κ,

A33 = −k
(

P1ξ
1E3,L

−1
[

P1(ξ
1E3)

])

= −k1

5

(

P1ξ
1
(

√

3

2
χ0+

√

5

2
χ1+χ4

)

,L−1
[

P1ξ
1
(

√

3

2
χ0+

√

5

2
χ1+χ4

)])

= −k1

5

{

5

2

(

P1ξ
1χ1,L

−1
[

P1ξ
1χ1

])

+
(

P1ξ1χ4,L
−1P1ξ1χ4

)

}

=
3

2
µ+

1

5
κ.
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Due to the symmetry of Aij we have

[Aij ] =







3
2µ+ 1

5κ
√

3
5 κ −3

2µ+ 1
5κ√

3
5 κ

3
5κ

√
3

5 κ

−3
2µ+ 1

5κ
√

3
5 κ

3
2µ+ 1

5κ






(4.34)

where the viscosity µ and heat conductivity κ are given by (4.30) and (4.27).

The dissipation parameters matrix [Aij ] is non-negative, and but not

positive definite. This is typical for systems of viscous conservation laws

with physical viscosity matrix, [25]. It follows from the general theory for

the system of hyperbolic-parabolic equations that the dominant dissipation

waves are given by the diagonal system, [35]:

(ḡj)t + λj(ḡj)x = Aj(ḡj)xx, j = 1, 2, 3, (4.35)

with the dissipation parameters















A1 ≡ A11 = −k
(

P1ξ
1E1,L

−1
[

P1(ξ
1E1)

])

= 3
2µ+ 1

5κ,

A2 ≡ A22 = −k
(

P1ξ
1E2,L

−1
[

P1(ξ
1E2)

])

= 3
5κ,

A3 ≡ A33 = −k
(

P1ξ
1E3,L

−1
[

P1(ξ
1E3)

])

= A1 = 3
2µ+ 1

5κ.

(4.36)

The Green’s function

{

(Ḡj)t + λj(Ḡj)x = Aj(Ḡj)xx, j = 1, 2, 3,

Ḡ(x, 0) = δ(x),
(4.37)

consists of dissipation waves for this simplified system are the collection of

heat kernels H(x, t;A), Figure 2, c,f, Figure 1:







Ḡj(x, t) = H(x− λjt, t;Aj),

H(x, t;A) ≡ 1√
4πAt

e−
x2

4At .
(4.38)

In the kinetic form, (4.32), (4.33), this is translated into

Ḡ(x, t) =

3
∑

j=1

H(x− λjt, t;Aj)Ej ⊗ 〈Ej |, (4.39)
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t

x

dx
dt

= λ1
dx
dt

= λ2
dx
dt

= λ3

Figure 2: Navier-Stokes leading waves.

containing the operator in the function of the microscopic velocity:

Ej ⊗ 〈Ej |g ≡ (Ej , g)Ej . (4.40)

5. 1-D Green’s Function, Fluid-Like Waves

In this and the following two sections, we will construct the Green’s

function for the initial value problem for the linear Boltzmann equation.

This and the next sections will concentrate on the 1-dimensional linearized

Boltzmann equation, cf. (3.2),

gt + ξ1∂xg = Lg. (5.1)

For simplicity, we will take the base Maxwellian for linearization, (3.1) to be

M = M0 ≡ M[1,0,1] so that the explicit expression of the linearized collision

operator is given in (3.5) and the Euler characteristic values are

λ1 = −
√

5

3
, λ2 = 0, λ3 =

√

5

3
.

The 1-D Green’s function G(x, x0, t, s, ξ; ξ0) = G(x−x0, t− s, ξ; ξ0) satisfies

(2.17):
{

Gt + ξ1∂xG = LG for −∞ < x <∞, t > 0,

G(x, 0, ξ; ξ0) = δ(x)δ3(ξ − ξ0).
(5.2)

The Green’s function G(x− y, t− s, ξ; ξ0) describes the propagation of the

perturbation over the Maxwellian M0 when at time σ the perturbation con-
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sists of particles concentrated at space x = 0 and with microscopic velocity

ξ0.

Consider the initial value problem

{

gt + ξ1∂xg = Lg,

g(x, 0, ξ) = g0(x, ξ).
(5.3)

Multiply the equation with the Green’s function and integrate to yield the

solution representation for (5.3):

g(x, t, ξ) =

∫

R

∫

R3

G(x− y, t, ξ; ξ0)g0(y, ξ0) dξ0dy (locally in (x, t, ξ)),

(5.4)

g(x, t) ≡ G
tg0(x) (locally in (x, t) and in a semi-group format). (5.5)

Here the formula (5.4) is for pointwise expression; (5.5) is to view the Green’s

function as an operator. Consider the Fourier transform in the space variable

x:

ĝ(η, t) ≡ 1√
2π

∫

R

e−iηxg(x, t)dx, g(x, t) ≡ 1√
2π

∫

R

eiηxĝ(η)dη.

Take the Fourier transform of (2.17) to obtain







Ĝt + iξ1ηĜ = LĜ, −∞ < η <∞, t > 0,

Ĝ(x, 0, ξ; ξ0) = 1√
2π
δ3(ξ − ξ0).

(5.6)

With this, one can use the isometry property of the Fourier transform in the

L2
x to study the dissipation property of the Boltzmann solutions. Instead,

we will invert the Fourier transform for the fluid-like part of Ĝ, to gain quan-

titative information on the Green’s function in the physical space variable

x. The formal expression of the Green’s function is

G(x, t, ξ; ξ0) =
1

2π

∫

R

eiηx+(−iξ1η+L)tδ3(ξ − ξ0)dη. (5.7)

Plug this into the solution formula (5.4) to yield

g(x, t, ξ) =

∫

R

[

1

2π

∫

R

eiη(x−y)+(−iξ1η+L)tdηg0(y, ·)
]

(ξ)dy. (5.8)
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Thus in the operator expression, c.f. (5.5), we can write

G(x, t) ≡ 1

2π

∫

R

eiηx+(−iξ1η+L)t dη. (5.9)

Remark 5.1. The operator −iξ1η + L on functions of the microscopic ve-

locity ξ is the focus of our study for this section. As the operator has the

one-dimensional Fourier parameter η, we do not have complete information

of its spectrum. Nevertheless, the point spectrum for η near origin has

explicit expression and correspond to the fluid-like waves, similar to that

for the compressible Navier-Stokes equations. These waves dominate the

Green’s function time-asymptotically. The construction and description of

these waves is the main concern of this section.

To obtain the complete description of the Green’s function, there are two

further steps to take. The first is to construct the singular waves through

a series of Picard iterations, done in Section 6. These two constructions of

waves offers two distinct decompositions of the Green’s function, and allows

us finally to apply the soft analysis of weighted energy method and Sobolev

calculus toward the end of Section 6 for the complete pointwise description

of the Green’s function.

5.1. Spectral near origin

From the expression (5.9) for the Green’s function, it is natural to con-

sider the spectrum of the operator −iξ1η + L. We consider first the situa-

tion near the origin, |η| small. Let (σ, e) = (σ(η), e(η)) be the eigenvalue-

eigenfunctions for −iξ1η + L:

(−iξ1η + L)e = σe. (5.10)

We know from Theorem 3.5 that the zero eigenvalue of the linear collision

operator L is isolated and with multiplicity 3, (4.12). Thus for |η| ≪ 1 the

spectrum of −iξ1η + L should be also be 3 eigenvalues near zero.

The following Lemma 5.4 provides the spectrum information we need.

Statement (I)–(III) of Lemma 5.4 are true for hard potentials with Grad

cutoff. However, the analytic property, (IV), is only true for the hard sphere
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model, see Remark 5.5. Since analyticity is required for the following anal-

ysis, we will assume the hard sphere model throughout. Still, for the sake of

completeness, we point out the fact that (I)–(III) are generally true for hard

potentials with Grad cutoff.

Definition 5.2. For any complex φ,ψ ∈ L2
ξ, define the pseudo inner product

as

[φ,ψ] =

∫

R3

φ(ξ)ψ(ξ)dξ. (5.11)

Remark 5.3. Note that we do not take complex conjugate in (5.11), so [·, ·]
is not an inner product.

Since (−iηξ1+L) is the sum of two multiplicative operators, −iηξ1,−ν(ξ),

and an integral operator K, (−iηξ1 + L), is symmetric with respect to [·, ·].
Namely,

[

φ, (−iηξ1 + L)ψ
]

=
[

(−iηξ1 + L)φ,ψ
]

. (5.12)

Consequently, if σi 6= σk, [ej , ek] = 0.

Lemma 5.4. Consider the spectrum Spec (η) of the operator −iξ1η+L, η ∈
R. For hard potentials with Grad cutoff, the following statement (I)–(III)

are true.

(I) For any 0 < δ ≪ 1, there corresponds τ = τ(δ) > 0 such that

(i) For |η| > δ,

Spec (η) ⊂ {z ∈ C : Re (z) < −τ} .

(ii) For |η| ≤ δ, the spectrum within the region {z ∈ C : −τ ≤ Re (z)}
consisting of exactly three eigenvalues σ1(η), σ2(η), σ3(η):

Spec (η) ∩ {z ∈ C : −τ ≤ Re (z)} = {σ1(η), σ2(η), σ3(η)} .

(II) For |η| ≪ 1, the eigenvalues σ1(η), σ2(η), σ3(η) satisfy











σ1(η) = −iηλ1 −A1η
2 +O(|η|3),

σ2(η) = −iηλ2 −A2η
2 +O(|η|3),

σ3(η) = −iηλ3 −A3η
2 +O(|η|3),

(5.13)
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cf. Figure 3, where Aj = −(P1ξ
1Ej ,L

−1P1ξ
1Ej) is the Navier-Stokes

dissipation coefficient, cf. (4.36).

In view of (5.13), for 0 < |η| ≪ 1, the eigenvalues σ1(η), σ2(η), σ3(η)

are distinct. After being normalized according to [ej , ek] = δjk, cf.

Remark 5.3, the eigenvectors e1(η), e2(η), e3(η) take the following form:

ej(η) =Ej + iη
(

∑

k 6=j

Ajk

λk − λj
Ek + e⊥j

)

+O(|η|2),

e⊥j =L−1P1ξ
1Ej ,

(5.14)

where Ajk = −(P1ξ
1Ej ,L

−1P1ξ
1Ek) is the Navier-Stokes dissipation

coefficient, cf. (4.34).

(III) For all 0 < δ ≪ 1, the semigroup e(−iξ1η+L)t can be decomposed as

e(−iηξ1+L)t = Πδ + χ{|η|<δ}
1

2πi

∮

Γ
ezt
(

z − (−iηξ1 + L)
)−1

dz, (5.15)

where ‖Πδ‖L2
ξ

= O(1)e−a(τ)t, a(τ) > 0 depends on τ (and therefore on

δ), χ{·} is the indicator function, and Γ can be any close curve that

lies entirely on {Re z > −τ} and that encloses the three eigenvalues

σ1(η), σ2(η), σ3(η), Figure 3.

(IV) Particularly, for the hard sphere model, σj(η), ej(η) are holomorphic

in η for all |η| ≪ 1. Consequently, (5.13) and (5.14) hold even for

complex η.

Proof. The spectrum of −iξ1η + L has been studied and this lemma has

been proved, [41], [36], [14], [45], by making use of the spectral gap at origin

for L, Theorem 3.5. Here we emphasize the computation of eigenvalues and

eigenvectors, (5.13) and (5.14), and prove (II) only.

Apply Macro-Micro projection to the equation (−iξ1η + L)ej = σjej :

− iηP0ξ
1
(

(P0ej) + (P1ej)
)

= σj(P0ej), (5.16a)

− iηP1ξ
1(P0ej) − iηP1ξ

1(P1ej) + L(P1ej) = σj(P1ej). (5.16b)

In view of (5.16a), it is convenient to set σj = iηγj . From (5.16b) we can

solve P1ej in terms of P0ej as P1ej = iη[L − iηP1ξ
1 − iηγj ]

−1P1ξ
1(P0ej).
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σ3(η)

σ2(η)

σ1(η)

Im

Γ

Re

Re (z) = −τ

Figure 3: Spectrum near origin.

Substituting this back to (5.16a), we obtain the following equation for P0ej :

(

P0ξ
1 + iηP0ξ

1
(

L − iηP1ξ
1 − iηγj

)−1
P1ξ

1

)

(P0ej) = −γj(P0ej). (5.17)

Through Macro-Micro decomposition, we have transformed the original infi-

nite dimensional eigen-equation into the 3 dimensional equation (5.17). Our

next step is to solve (5.17) by the implicit function theorem. We will do this

only for e1, since e2, e3 can be treated similarly.

Instead of normalizing e1 according to [e1, e1] = 1, we temporarily adopt

the normalization e1 to e′1 by (E1, e
′
1) = 1. Set

P0e
′
1 = E1 + β2E2 + β3E3.

Under this setup, (5.17) becomes

G1(γ1, β2, β3; η)

≡ λ1 + iη
(

P0ξ
1(L − iηP1ξ

1 − iηγj)
−1P1ξ

1(E1 + β2E2 + β3E3),E1

)

+γ1 = 0,

G2(γ1, β2, β3; η)

≡ λ2β2 + iη
(

P0ξ
1(L − iηP1ξ

1 − iηγj)
−1P1ξ

1(E1 + β2E2 + β3E3),E2

)

+γ1β2 = 0,
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G3(γ1, β2, β3; η)

≡ λ3β3 + iη
(

P0ξ
1(L − iηP1ξ

1 − iηγj)
−1P1ξ

1(E1 + β2E2 + β3E3),E3

)

+γ1β3 = 0. (5.18)

This equation has a solution (γ1, β2, β3; η) = (−λ1, 0, 0; 0). Moreover,

∣

∣

∣

∣

∂(G1,G2,G3)

∂(γ1, β2, β3)

∣

∣

∣

∣

(−λ1,0,0,0)

=

∣

∣

∣

∣

∣

∣

∣

1 0 0

0 (λ2 − λ1) 0

0 0 (λ3 − λ1)

∣

∣

∣

∣

∣

∣

∣

6= 0.

Consequently, by the implicit function theorem, for |η| ≪ 1, (5.18) has

the solution (γ1(η), β2(η), β3(η)), smooth in η, with (γ1(0), β2(0), β3(0)) =

(−λ1, 0, 0).

Differentiating (5.18) with respect to η yields

∂γ1

∂η
(0) = − i

(

P0ξ
1L−1P1ξ

1E1,E1

)

= iA1,

∂β2

∂η
(0) = − i

(

P0ξ
1L−1P1ξ

1E1,E2

) 1

λ2 − λ1
=

iA12

λ2 − λ1
,

∂β3

∂η
(0) = − i

(

P0ξ
1L−1P1ξ

1E1,E3

) 1

λ3 − λ1
=

iA13

λ3 − λ1
.

Hence σ1(η) = −iηλ1−A1η
2+O(η3). Moreover, since P1e

′
1 = iη[L−iηP1ξ

1−
iηγ1]

−1P1ξ
1(P0e

′
1),

e′1(η) = E1 + iη

(

A12

λ2 − λ1
E2 +

A13

λ3 − λ1
E3 + L−1P1ξ

1E1

)

+O(η2).

We now normalize e′1: put e1 =
e′1√

[e′1,e′1]
. Note that [e′1, e

′
1] is generally a

complex number. By some direct computation, [e′1, e
′
1] = 1 + O(η2) ≈ 1.

We unambiguously refer to
√

[e′1, e
′
1] as the complex square root closer to

1. Under this choice,
√

[e′1, e
′
1] is smooth in η, and, in the case of (IV),

holomorphic in η. Also we have (5.14):

e1(η) =
(

1 +O(η2)
)

(

E1 + iη

(

A12

λ2 − λ1
E2 +

A13

λ3 − λ1
E3 + L−1P1ξ

1E1

))

+O(η2)



152 TAI-PING LIU AND SHIH-HSIEN YU [June

=E1 + iη

(

A12

λ2 − λ1
E2 +

A13

λ3 − λ1
E3 + L−1P1ξ

1E1

)

+O(η2). �

Remark 5.5. The linear collision operator L = −ν + K has the property

that

ν(ξ) ∼ 1 + |ξ|α,

where α = 1 for the hard sphere models and 0 < α < 1 for Grad cut-off hard

potentials. The analyticity of the eigenvalues σi(η) holds only for the hard

sphere models because of this. To see that, note that

γ1 + λ

−iη =
(

E1,P0ξ
1[L − iηP1ξ

1 + iη(λ1 + ρ)]−1P1ξ
1(E1 + b0)

)

The key is the behavior at |ξ| = ∞:

∂n

∂η
[L − iηP1ξ

1 + iη(λ1 + ρ)]−1 ∼ n!
|ξ|n
νn(ξ)

e−
|ξ|2

2 ,

for hard sphere model. Hence,

γ1 + λ

−iη ∼
∞
∑

n=1

n(n+ 1)(n − 1)!

(n+ 1)!
ηn+1 ∼ −iλ1η +

∞
∑

n=1

ηn+1,

which converges as |η| ≪ 1. On the other hand, for hard potentials

γ1 + λ

−iη ∼
∞
∑

n=1

n!

∫

|ξ|n(1−α)e−
|ξ|2

2 dξ ∼
∞
∑

n=1

Γ(n(1 − α))ηn+1,

which diverges for any 0 < α < 1 and η 6= 0. Thus the complex analytic

method that we will use to obtain the explicit expression of the inverse

Fourier transform for the hard sphere models cannot be applied to the hard

potential models. There is the study for the hard potential models, [28],

which yields a version of the pointwise estimates for the Green’s function

weaker than that of Theorem 5.9 for hard sphere models. The real analytic

method used in [28] is motivated by [29] for viscous conservation laws and

[10] for the boundary layers. It would be interesting to obtain, for the hard

potential models, similar estimates as for the hard sphere models in Theorem

5.9.

We now proceed to compute explicitly the second term of (7.21).
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Definition 5.6. For φ ∈ L2
ξ,

(

ej ⊗ [ej |
)

φ ≡ [φ, ej ]ej .

Lemma 5.7. For |η| ≪ 1,

1

2πi

∮

Γ
ezt
(

z − (−iηξ1 + L)
)−1

dz =
3
∑

j=1

eσjtej ⊗ [ej |. (5.19)

Proof. Define a subspace Hη of L2
ξ as

Hη ≡ {φ : [φ, ej(η)] = 0, for j = 1, 2, 3} .

Let 〈·〉 be the linear span. Clearly, L2
ξ = 〈e1, e2, e3〉 ⊕Hη,

∑3
1 ej ⊗ [ej | is the

projection onto 〈e1, e2, e3〉 along Hη, and 1 −∑3
1 ej ⊗ [ej | is the projection

onto Hη along 〈e1, e2, e3〉. Moreover, since ej is an eigenvector of (−iηξ1 +L)

and (−iηξ1 + L) is symmetric with respect to [·, ·], (5.12), both 〈e1, e2, e3〉
and Hη are (z − (−iηξ1 + L))–invariant:

(

z − (−iηξ1 + L)
)

〈e1, e2, e3〉 ⊂ 〈e1, e2, e3〉 ,
(

z − (−iηξ1 + L)
)

Hη ⊂ Hη.

(5.20)

Set

Sη =
(

− iηξ1 + L
)

3
∑

j=1

ej ⊗ [ej |, Tη =
(

− iηξ1 + L
)(

1 −
3
∑

j=1

ej ⊗ [ej |
)

.

As a consequent of (5.20), (z − Sη) : 〈e1, e2, e3〉 −→ 〈e1, e2, e3〉, (z − Tη) :

Hη −→ Hη, and (z− (−iηξ1 + L))−1 = (z−Sη)
−1 + (z− Tη)

−1. Sη becomes

a 3 by 3 diagonal matrix under the basis {e1, e2, e3}, so by some direct

computations:

1

2πi

∮

Γ
ezt(z − Sη)

−1dz =

3
∑

j=1

eσjtej ⊗ [ej |.

It remains only to show
∮

Γ e
zt(z−Tη)

−1dz = 0. First, since (−iηξ1+L) ∼
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[−(1 + |ξ| +O(η))ν0 + K], for |η| ≪ 1,

(−iηξ1 + L)−1 = L−1 + O(η), (5.21)

where O(η) symbolizes an operator with ‖O(η)‖L2
ξ

= O(η). Next, for each

φ ∈ Hη,

[φ, ej(η)] = 0 = [φ,Ej ] + [φ,O(η)] = (φ,Ej) + ‖φ‖O(η)

=⇒ (φ,Ej) = ‖φ‖O(η).

Therefore, P0φ = O(η) ‖φ‖. Combine this fact with (5.21) and Lemma 3.5

to obtain

∥

∥T−1
η φ

∥

∥

L2
ξ

‖φ‖L2
ξ

=

∥

∥

∥

(

L−1 + O(η)
)(

P1φ+ ‖φ‖O(η)
)∥

∥

∥

L2
ξ

‖φ‖L2
ξ

≤
ν1 ‖P1φ‖L2

ξ
+O(η) ‖φ‖L2

ξ

‖φ‖L2
ξ

= ν1 +O(η).

Consequently, T−1
η is uniformly bounded for |η| ≪ 1. Since Γ encloses

σ1, σ2, σ3 and σj = O(η), in the region enclosed by Γ we may assume

|z| ∼ |η| ≪ 1. Under this assumption, (z − Tη)
−1 = −T−1

η (1 + z(Tη)
−1 +

(zT−1
η )2 + . . .) is holomorphic in z and therefore

∮

Γ e
zt(z−Tη)

−1dz=0. ���

5.2. Fluid-like Waves

Plugging (7.21) and (5.19) to (5.7), we have

G(x, t, ξ; ξ0) =
1√
2π

F
−1 ◦ Πδ +

3
∑

j=1

1

2π

∫ δ

−δ
eixη+σj (η)tej(η) ⊗ [ej(η)| dη,

where F−1 symbolizes the inverse Fourier transform. Since F−1 : L2
η → L2

x

is an isometry,
∥

∥F
−1 ◦ Πδ

∥

∥

L2
x(L2

ξ
)
= O(1)e

− t
C(δ) , (5.22)

for some C(δ) > 0 depending on δ.
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Definition 5.8. Define the fluid-like waves as

GL(x, t, ξ; δ) ≡
3
∑

j=1

1

2π

∫ δ

−δ
eixη+σj(η)tej(η) ⊗ [ej(η)| dη. (5.23)

To highlight the dependence on t, we will frequently abbreviate GL(x, t, ξ;

δ) as G
t
L.

Our goal of this subsection is to the extract leading terms, the main

fluid-like waves, from GL.

Theorem 5.9. For any fixed Cj > Aj, j = 1, 2, 3, there exists C > 0 and

δ > 0 such that

∥

∥

∥

∥

∥

∥

∥

GL(x, t, ξ; δ) −
3
∑

j=1

e
− (x−λjt)2

4Ajt

√

4πAj(t+ 1)
Ej ⊗ 〈Ej |

∥

∥

∥

∥

∥

∥

∥

L2
ξ

= O(1)







3
∑

j=1

e
− (x−λjt)2

4Cjt

t+ 1
+ e−

t
C






. (5.24)

Note that here our estimate is pointwise in x, unlike (), which is L2 in

x.

Proof. Pick Cj > C ′′
j > C ′

j > Aj . We then fix some δ > 0, so small such

that whenever |η| < 2δ:

(1) σj, ej are holomorphic in η.

(2) (5.13), (5.14), and Lemma 5.7 hold. Moreover,

∣

∣

∣σj(η) −
(

− iλjη −Ajη
2
)∣

∣

∣ < min

{(

1 − Aj

C ′
j

)

,
1

3

}

×Aj|η|2. (5.25)

Because of the analyticity property of the eigenvalues and eigenfunc-

tions, we can apply the complex analysis method to compute explicitly the

inverse Fourier transform by the contour integral. This will yield the fluid-

like behavior of the Green’s function. By Cauchy integral theorem, we can

substitute the path [−δ, δ] by any other path, lying entirely in the ana-

lytic region {|η| < 2δ}, with the same endpoints. We choose the contour



156 TAI-PING LIU AND SHIH-HSIEN YU [June

Γ1

Γ2

Γ3

Im

Re
Re (η) = −δ Re (η) = δ

Im (η) = c

Figure 4: Path of integration.

Γ1 + Γ2 + Γ3, Figure 4,

Γ1 = Γ1(c) ≡{η : Re (η) = −δ, Im (η) lies between 0 and c} ,
Γ2 = Γ2(c) ≡{η : −δ ≤ Re (η) ≤ δ, Im (η) = c} ,
Γ3 = Γ3(c) ≡{η : Re (η) = δ, Im (η) lies between 0 and c} ,

(5.26)

where c is a constant, specified later. On Γ2, put Re (η) = u so that η = u+ic.

Since

eixη+σj (η)t = exp

[

−Ajt

(

η − i
x− λjt

2Ajt

)2

− (x− λjt)
2

4Ajt
+O(η3)t

]

,

it is desirable to set c =
x−λjt
2Ajt . However, in order that Γ1 + Γ2 + Γ3 lies

entirely in {|η| < 2δ}, |c| cannot be arbitrarily large. For this reason, we will

process the integral on Γ2 in two separated situations.

Case 1:

∣

∣

∣

x−λjt
2Ajt

∣

∣

∣
< δ

2 In this case, set c =
x−λjt
2Ajt .

On Γ2,

eixη+σj (η)t = e
− (x−λjt)2

4Ajt e−Ajtu2
+ e

− (x−λjt)2

4Ajt e−Ajtu2
(

eO(|η|3)t − 1
)

.

By (5.25),

e
− (x−λjt)2

4Ajt e−Ajtu2

{

O(1)|η|3t, for |η|3t < 1

eO(|η|3)t , for |η|3t > 1

}

= O(1)e
− (x−λjt)2

4Ajt e−Ajtu2
eO(|η|3)t|η|3t



2011] SOLVING BOLTZMANN EQUATION, PART I: GREEN’S FUNCTION 157

= O(1) exp

[

− (x− λjt)
2

4Ajt
−Ajtu

2 + min

{(

1 − Aj

C ′
j

)

,
1

3

}

×tAj

(

u2 +

(

x− λjt

2Ajt

)2
)]

|η|3t

= O(1) exp

[

−(x− λjt)
2

4Ajt
−Ajtu

2 +

(

1 − Aj

C ′
j

)

(x− λjt)
2

4Ajt
+
Ajtu

2

3

]

×
(

|u|3t+
|x− λjt|3

t2

)

= O(1)e
− (x−λjt)2

4C′′
j

t e−
Ajtu2

3

(

|u| +
∣

∣

∣

∣

x− λjt

t

∣

∣

∣

∣

)

.

Therefore,

1

2π

∫

Γ2

eixη+σj (η)ej(η) ⊗ [ej(η)|dη

=
1

2π

∫ δ

−δ
e
− (x−λjt)2

4Ajt e−u2tAj

(

Ej ⊗ 〈Ej | + |η|O(1)
)

du

+
1

2π

∫ δ

−δ
e
− (x−λjt)2

4C′′
j

t e−u2t
Aj
3

(

|u| +
∣

∣

∣

∣

x− λjt

t

∣

∣

∣

∣

)

ej(η) ⊗ [ej(η)|du

=
e
− (x−λjt)2

4Ajt

√
4π

(

1√
π

∫ δ

−δ
e−Ajtu2

du

)

Ej ⊗ 〈Ej |

+e
− (x−λjt)2

4Cjt

∫ δ

−δ
e−u2t

Aj
4

1√
t+ 1

O(1)du

=







e
− (x−λjt)2

4Ajt

√

4πAjt
Ej ⊗ 〈Ej | +

e
− (x−λjt)2

4Cjt

√

(t+ 1)t
O(1)







(

1√
π

∫ δ
√

Ajt

−δ
√

Ajt
e−u2

du

)

=
e
− (x−λjt)2

4Ajt

√

4πAj(t+ 1)
Ej ⊗ 〈Ej|

+e
− (x−λjt)2

4Ajt

[

1√
t

(

1√
π

∫ δ
√

Ajt

−δ
√

Ajt
e−u2

du

)

− 1√
t+ 1

]

O(1)

+
e
− (x−λjt)2

4Cjt

√

(t+ 1)

(

1√
t

∫ δ
√

Ajt

−δ
√

Ajt
e−u2

du

)

O(1)



158 TAI-PING LIU AND SHIH-HSIEN YU [June

=
e
− (x−λjt)2

4Ajt

√

4πAj(t+ 1)
Ej ⊗ 〈Ej| +

e
− (x−λjt)2

4Cjt

t+ 1
O(1).

Case 2:

∣

∣

∣

x−λjt
2Ajt

∣

∣

∣
> δ

2 In this case, set c = δ
2sign (x− λjt).

Note that in this case we have |x− λjt| > δAjt. On Γ2, by (5.25),

∣

∣

∣eixη+σj(η)t
∣

∣

∣ ≤
∣

∣

∣

∣

exp

[

i(x− λjt)η −Ajtη
2 +

Aj

3
|η|2t

]∣

∣

∣

∣

= exp

[

−|x− λjt|
δ

2
+Ajt

(

δ2

4
− u2

)

+
Ajt

3

(

δ2

4
+ u2

)]

≤ exp

[

−Ajt

(

δ2

2
− δ2

3

)]

= O(1)e−
t
C .

Consequently,

1

2π

∫

Γ2

eixη+σj (η)ej(η) ⊗ [ej(η)|dη = O(e−
t
C ).

For both cases, on Γ1,Γ3, Im (η) takes the same sign as x− λjt. There-

fore, |ei(x−λjt)η | ≤ 1. Moreover, for both cases, |Im (η)| ≤ |c| ≤ δ
2 . Combin-

ing this fact with (5.25), we have

∣

∣

∣
ei(x−λj)tη−η2Ajt+O(η3)t

∣

∣

∣
≤ exp

[

−Ajt

(

δ2 − δ2

4

)

+
Ajt

3

(

δ2 +
δ2

4

)]

= O(1)e−
t
C .

This implies

1

2π

∫

Γ1 or Γ3

eixη+σj(η)ej(η) ⊗ [ej(η)|dη = O(e−
t
C ). ���

Remark 5.10. The computation of the inverse Fourier transform is an es-

sential part of the study of the Green’s function here. The approach goes

back to Zeng 1994, [48], Liu-Zeng 1997, [35] for the viscous conservation

laws. This is generalized to the Boltzmann equation, Liu-Yu 2004 [31]. For
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the generalization to the 3-D case, Liu-Yu 2006 [32], to be presented later,

the inversion of the Fourier transform using the complex analytic method re-

quires additional thinking. There is an essential difference between Green’s

function for the viscous conservation laws and that for the Boltzmann equa-

tion in that the former contains heat kernel with singularity, c.f. (4.39), while

the later’s singularity resides not in the heat kernels, (5.24). Instead, the

singularity for the Boltzmann equation is contained in the essential kinetic

waves that will be constructed in the next section.

5.3. Scale separations

Boltzmann equation has much richer wave phenomena than the equa-

tions for the fluid dynamics. We illustrate here a basic separation of scales

property, that the micro part decays at a faster rate than the macro part.

Theorem 5.11. For any fixed Cj > Aj , j = 1, 2, 3, there exists C and δ

such that

‖GL(x, t, ξ; δ)P1‖L2
ξ
, ‖P1GL(x, t, ξ; δ)‖L2

ξ
=O(1)







3
∑

j=1

e
− (x−λjt)2

4Cjt

t+ 1
+ e−

t
C






,

(5.27a)

‖P1GL(x, t, ξ; δ)P1‖L2
ξ

=O(1)







3
∑

j=1

e
− (x−λjt)2

4Cjt

(t+ 1)
3
2

+ e−
t
C






.

(5.27b)

Proof. Since P1 (Ej ⊗ 〈Ej|) = (Ej ⊗ 〈Ej |) P1 = 0, Theorem 5.9 immediately

implies (5.27a).

For (5.27b), after referring to the proof of Theorem 5.9, one finds that:

In Case 1,
1

2π

∫

Γ1 or Γ3

eixη+σj (η)ej(η) ⊗ [ej(η)|dη = O(e−
t
C ),

In Case 2,
1

2π

∫

Γ1+Γ2+Γ3

eixη+σj(η)ej(η) ⊗ [ej(η)|dη = O(e−
t
C ).
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Now that P1O(e−t/C )P1 = O(e−t/C), it remains only to consider

Case 1:
1

2π

∫

Γ2

eixη+σj (η)P1

(

ej(η) ⊗ [ej(η)|
)

P1dη.

P1ej = O(η) implies P1

(

ej(η) ⊗ [ej(η)|
)

P1 = O(η2). Therefore,

1

2π

∫

Γ2

eixη+σj(η)P1

(

ej(η) ⊗ [ej(η)|
)

P1dη =

∫

Γ2

eixη+σj(η)|η|2dηO(1)

=

∫ δ

−δ
e
− (x−λjt)2

4C′′
j

t e−u2t
Aj
3

(

u2 +

(

x− λjt

t

)2
)

duO(1)

= e
− (x−λjt)2

4Cjt

∫ δ

−δ

1

t+ 1
e−u2t

Aj
4 duO(1)

=
e
− (x−λjt)2

4Cjt

(t+ 1)
3
2

O(1). �

6. 1-D Green’s Function, Particle-Like Waves

The Boltzmann equation is the meso-scopic equation, being between the

microscopic interacting particle systems and the macroscopic fluid dynamics

equations. In the last section we have shown that the fluid-like waves for

the Boltzmann solution have as their leading terms closely related to the

Euler and Navier-Stokes waves. In this section we finish the construction of

the Green’s function by considering the short waves in the Green’s function.

However, because the spectrum the short waves represent is not explicit,

the construction is indirect and elaborate, starting with the construction of

the singular waves. These waves contains particle wave, particle-like waves,

essential kinetic waves and a series of increasingly smooth waves. We now

outline the definition of these waves. For this, we need the following solution

operators, c.f. (3.8):

Definition 6.1. Denote by S
t and O

t
D the solution operators of the equa-

tions

{

ht + ξ1∂xh + ν(ξ)h = 0,

h(x, 0) = h0(x), x ∈ R,
(6.1)
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h(x, t) ≡ S
th0(x),

and
{

jt + ξ1∂xj + ν(ξ)j = K0j,

j(x, 0) = j0(x), x ∈ R,
(6.2)

j(x, t) ≡ O
t
Dj0(x).

These operators are studied in the first subsection. For the complete

construction of the singular waves, the first step is to use the damped trans-

port operator (6.1) and the essential kinetic operator (6.2) to extract the

particle-like waves from the Green’s function. Recall the Green’s function,

(2.17),

Gt + ξ1∂xG + ν(ξ)G = KG, x ∈ R, ξ ∈ R
3,

G(x, 0, ξ; ξ0) = δ(x)δ3(ξ − ξ0), x ∈ R.

The first term is the particle waves defined by

{

h0
t + ξ1∂xh0 + ν(ξ)h0 = 0,

h0(x, 0) = δ(x)δ3(ξ − ξ0).
(6.3)

We then define the particle-like waves hj, j = 1, 2, . . . , as follows: We have

(G − h0)t + ξ1∂x(G − h0) + ν(ξ)(G − h0) = K(G − h0) + Kh0,

(G − h0)(x, 0, ξ; ξ0) = 0.

Thus we define the second term h1 by

{

h1
t + ξ1∂xh1 + ν(ξ)h1 = Kh0 = KS

tδ(x)δ3(ξ − ξ0),

h1(x, 0) = 0.
(6.4)

In general, the particle-like waves are defined through the Picard iterations

as:
{

h
j
t + ξ1∂xhj + ν(ξ)hj = Khj−1,

hj(x, 0) = 0, j = 1, 2, . . . .
(6.5)
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The Green’s function minus these particle-like waves

gk ≡ G −
k
∑

i=0

hi (6.6)

satisfies
{

gkt + ξ1gkx = Lgk + Khk,

gk(x, 0, ξ) = 0.
(6.7)

The source Khk is bounded for k ≥ 2, Lemma 6.9; and as it turns out, this

is so also for the 3−D case. We next use the essential kinetic operator O
t
D,

(6.2), (3.8), to construct an essential kinetic wave h̄:

{

h̄t + ξ1h̄x + ν(ξ)h̄ = K0h̄ + Kh2,

h̄(x, 0, ξ) = 0.
(6.8)

The function h̄ is named the essential kinetic wave as it is localized. More-

over, the new source K1h̄ is now smooth in microscopic velocity ξ, Lemma

3.3:


















(G − h0 − h1 − h2 − h̄)t + ξ1(G − h0 − h1 − h2 − h̄)x

= L(G − h0 − h1 − h2 − h̄) + K1h̄,

(G − h0 − h1 − h2 − h̄)(x, 0, ξ) = 0.

(6.9)

With the source smooth in microscopic velocity, we use the Picard iter-

ations, c.f. (6.5), again:















g0
t + ξ1∂xg0 + ν(ξ)g0 = K1h̄,

g
j+1
t + ξ1∂xgj+1 + ν(ξ)gj+1 = Kgj ,

gj(x, 0) = 0, j = 0, 1, 2, . . . .

(6.10)

This is the final step in the construction of the singular waves. It is shown

by a Mixture Lemma that the smoothness of the source in ξ induces an

increasingly more smooth functions gj , as j increases.

The construction in the last section of the fluid-like waves and the con-

struction of singular waves in this section offer two decompositions of the

Green’s function. This allows us to apply the energy method and Sobolev
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calculus to gain global pointwise analysis of the Green’s function.

6.1. Essential kinetic operators

The operator S
t, (6.1), is a damped transport equation and is solved by

the characteristic method:

S
th0(x, ξ) = e−ν(ξ)th0(x− ξ1t, ξ). (6.11)

From this we have immediately the following lemma.

Lemma 6.2. For any β ≥ 0, the operator S
t satisfies







‖St‖L∞
x (L∞

ξ,β) ≤ e−ν0t,

‖St‖L2
x(L2

ξ
) ≤ e−ν0t.

(6.12)

The operator O
t
D, (6.2), captures the singular part of the linear Boltz-

mann operator.

Lemma 6.3. There exist positive constants D0 and C1 such that for any

D ∈ (0,D0) the operator O
t
D satisfies

‖Ot
D‖L2

x(L2
ξ
) ≤ C1e

−ν0t/2.

Proof. First, we regard O
t
D as an operator on L2

x(L2
ξ), and consider the

initial value problem

{

jt + ξ1jx + ν(ξ)j − K0j = 0

j(x, 0) ≡ g0(x).

Take the Fourier transform to result in

F (Ot
Dg0)(η) = ĵ(η, t) = e(−iξ1η−ν(ξ)+K0)tĝ0(η).

Since the operator K0, (3.8), is symmetry and ‖K0‖L2
ξ

= O(1)D, the real

part of the spectrum of the operator −iξ1η − ν(ξ) + K0 is in {z ∈ C :

Re(z) ≤ −ν0 + O(1)D}. Thus we may choose D sufficiently small so that
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−ν0 + O(1)D < −ν0/2. This implies that there exist positive constants

C1, D0 such that, for D ∈ (0,D0)

‖e(iηξ1−ν(ξ)+K0)t‖L2
ξ
≤ C1 e

−ν0t/2 for any η ∈ R.

From this

‖Ot
Dg0‖2

L2
x(L2

ξ
) =‖F (Ot

Dg0)‖2
L2

η(L2
ξ
) ≤ (C1)

2e−ν0t‖ĝ0‖2
L2

η(L2
ξ
)

=(C1)
2e−ν0t‖g0‖2

L2
x(L2

ξ
). �

This lemma results in the existence of the operator O
t
D in the functional

space L2
x(L

2
ξ) and global decaying rate in time. We next use the Picard’s

iteration to analyze the operator O
t
D in the sup norm.

Lemma 6.4. The operator O
t
D is a bounded operator on L∞

x (L∞
ξ,β) for any

β ≥ 0. There exist positive constants D0, C1 such that, for any D ∈ (0,D0),

‖Ot
Dg0‖L∞

x (L∞
ξ,β) ≤ C1e

−ν0t/2‖g0‖L∞
x (L∞

ξ,β).

Proof. From Lemma 3.2

‖K0h‖L∞
ξ,β+1

≤ CβD‖h‖L∞
ξ,β

for β ≥ 0.

This and Lemma 6.3 yield

∥

∥

∥

∥

∫ t

0
· · ·
∫ sk

0
S

t−s1K0S
s1−s2K0S

s2−s3K0 · · · Ssk−sk+1K0S
sk+1

dsk+1 · · · ds1
∥

∥

∥

∥

L∞
x (L∞

ξ,β)

≤ (Cβ)k+1Dk+1e−ν0t/2.

Thus, Picard’s iteration gives a convergent geometric sequence in L∞
x (L∞

ξ,β)

for sufficiently small D > 0:

O
t
D = S

t+

∫ t

0
S

t−s1K0S
s1ds1+

∫ t

0

∫ s1

0
S

t−s1K0S
s1−s2K0S

s2ds2ds1 + · · ·

+

∫ t

0
· · ·
∫ sk

0
S

t−s1K0S
s1−s2K0S

s2−s3K0 · · · Ssk−sk+1K0S
sk+1

dsk+1 · · · ds1 + · · · , (6.13)
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and the lemma follows. ���

The following lemma yields the significant hyperbolic property of the

operator S
t and O

t
D. We will use the crucial property that, for the hard

sphere model, (3.5), 1
2ν(ξ) ∼ ν1|ξ| as |ξ| → ∞ and so, for some positive

constant ν̄,

ν(ξ) = O(1)(1 + |ξ|), ν̄|ξ1t| ≤ ν(ξ)t for ξ ∈ R
3. (6.14)

Lemma 6.5. For any given β ≥ 0, there exists sufficiently small D > 0

such that

‖Stg0(x)‖L∞
ξ,β

≤O(1)e−2ν0t/3

[

max
|y−x|<t

‖g0(y)‖L∞
ξ,β

+ max
|y−x|>t

e−ν̄|y−x|/3‖g0(y)‖L∞
ξ,β

]

, (6.15)

‖Ot
Dg0(x)‖L∞

ξ,β

≤O(1)e−ν0t/2

[

max
|y−x|<t

‖g0(y)‖L∞
ξ,β

+ max
|y−x|>t

e−ν̄|y−x|/4‖g0(y)‖L∞
ξ,β

]

, (6.16)

where ν0 is given in (3.22) and ν̄ in (6.14).

Proof. We use the representation (6.11) for S
t.

For |ξ1| ≤ 1, we have from (6.14),

|Stg0(x, ξ)| ≤ e−ν(ξ)t(1 + |ξ|)−β‖g0(x− ξ1t, ·)‖L∞
ξ,β

≤ e−2ν0t/3(1 + |ξ|)−β max
|y−x|<t

‖g0(y)‖L∞
ξ,β
. (6.17)

From (6.14), for |ξ1| > 1

|Stg0(x, ξ)| ≤ e−ν(ξ)t/3−2ν0t/3(1 + |ξ|)−β‖g0(x− ξ1t, ·)‖L∞
ξ,β

≤ e−ν̄|ξ1t|/3−2ν0t/3(1 + |ξ|)−β‖g0(x− ξ1t, ·)‖L∞
ξ,β

≤ max
|y−x|>t

e−ν̄|x−y|/3−2ν0t/3(1 + |ξ|)−β‖g0(y)‖L∞
ξ,β
. (6.18)

The estimate (6.15) follows from (6.17) and (6.18). From the construction

of O
t
D in Lemma 6.4, one can view O

t
D as a small perturbation of S

t. From
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(3.10) and (6.15), one has that

∥

∥

∥

∥

∫ t

0
· · ·
∫ sk

0
S

t−s1K0S
s1−s2K0S

s2−s3K0 · · · Ssk−sk+1K0S
sk+1g0dsk+1 · · · ds1

∥

∥

∥

∥

L∞
ξ,β

≤ (CβD)k+1e−ν0t/2

[

max
|y−x|<t

‖g0(y)‖L∞
ξ,β

+ max
|y−x|>t

e−ν1|y−x|/4‖g0(y)‖L∞
ξ,β

]

.

(6.19)

Thus, the Picard’s iteration in (6.13) converges for sufficiently small D > 0

and (6.16) follows. ���

6.2. Particle-like waves

In this section we compute and estimate the particle-like waves h0, h1, h2,

(6.3), (6.4). First, by (6.11), we have

h0(x, t, ξ; ξ0) = e−ν(ξ)tδ1(x− ξ1t)δ3(ξ − ξ0). (6.20)

From (6.20) we compute h1 as the following:

Lemma 6.6. Set t1 ≡ t− (x−ξ1
0t)

ξ1−ξ1
0
. We have

h1(x, t, ξ; ξ0) =







e−ν(ξ)(t−t1)−ν(ξ0)t1K(ξ, ξ0)

(ξ1 − ξ10)
, for (x

t − ξ1)(x
t − ξ10) < 0,

0 , otherwise.

(6.21)

In particular,

|h1(x, t, ξ; ξ0)| = O(1)







e−
ν0t
2 −

ν0|x|
2

|ξ1−ξ1
0 |

K(ξ, ξ0), for |ξ1 − ξ10 | ≥
|x−ξ1

0t|
t ,

0 , otherwise.

(6.22)

Proof. By the Duhamel’s principle, (6.4), and (6.11), we have

h1(x, t; ξ, ξ0) =

∫ t

0
e−ν(ξ0)se−ν(ξ)(t−s)K(ξ, ξ0)δ(x−ξ1(t−s)−ξ10s)ds. (6.23)

The above integral is zero unless the characteristic line through (x, t) and
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y

s
dy

ds
= ξ10

dy
dt

= ξ1

(x, t)

s = t1

Figure 5: Characteristics.

with speed ξ1 intersects with the source δ(x − ξ10s) at some time s = t1

during the time period (0, t), Figure 5,

x− ξ1(t− t1) = ξ10t1.

This yields the expression (6.21). Note that we have

|x| = |ξ1(t− t1) + ξ10t1| ≤ |ξ1|(t− t1) + |ξ10 |t1,

and so the estimate (6.22) follows from the linear growth ν0(1 + |ξ|) of the

function ν(ξ), (3.5). ���

Lemma 6.7.

K(h1)(x, t, ξ)

= O(1)e−
ν0
2

(t+|x|)e−
|ξ−ξ0|

2

32

×
(

1 +
∣

∣

∣
log
∣

∣ξ1 − ξ10
∣

∣

∣

∣

∣

2
+

∣

∣

∣

∣

∣

log

∣

∣

∣

∣

x− ξ10t

t

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

χ˛

˛

˛

˛

x−ξ10t

t

˛

˛

˛

˛

<1

ff

)

, (6.24)

where χ{·} is the indicator function.

Proof. From the explicit expression (3.5), we obtain

K(ξ, ξ∗) = O(1)
1

|ξ∗ − ξ|e
− |ξ∗−ξ|2

9 . (6.25)
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Combining this with the estimate (6.22) for h1, we have

∣

∣K(h1)(x, t, ξ)
∣

∣

= O(1)e−
ν0
2

(t+|x|)
∫

|ξ1
∗−ξ1

0|>
˛

˛

˛

˛

x−ξ1
0

t

t

˛

˛

˛

˛

1

|ξ1∗ − ξ10 |
e−

|ξ∗−ξ0|
2

9

|ξ∗ − ξ0|
e−

|ξ∗−ξ|2

9

|ξ∗ − ξ| dξ∗

= O(1)e−
ν0
2

(t+|x|)e−
2|ξ∗−ξ|2+2|ξ∗−ξ0|

2

32

∫

|ξ1
∗−ξ1

0|>
˛

˛

˛

˛

x−ξ1
0

t

t

˛

˛

˛

˛

1

|ξ1∗ − ξ10 |
e−( 1

9
− 1

16
)|ξ∗−ξ0|2

|ξ∗ − ξ0|
e−( 1

9
− 1

16
)|ξ∗−ξ|2

|ξ∗ − ξ| dξ∗

= O(1)e−
ν0
2

(t+|x|)e−
|ξ−ξ0|

2

32

∫

|ξ1
∗−ξ1

0 |>
˛

˛

˛

˛

x−ξ1
0

t

t

˛

˛

˛

˛

1

|ξ1∗ − ξ10 |
e−( 1

9
− 1

16
)|ξ∗−ξ0|2

|ξ∗ − ξ0|
e−( 1

9
− 1

16
)|ξ∗−ξ|2

|ξ∗ − ξ| dξ∗

= O(1)e−
ν0
2

(t+|x|)e−
|ξ−ξ0|

2

32

(
∫

D1

+

∫

D2

)

(. . .)

≡ O(1)e−
ν0
2

(t+|x|)e−
|ξ−ξ0|

2

32 (I1 + I2),

where

D1 ≡
{

1 > |ξ1∗ − ξ10 | >
|x− ξ10t|

t

}

, D2 ≡
{

|ξ1∗ − ξ10 | > 1
}

.

We further split I1 into three parts:

I1 =

(
∫

A1

+

∫

A2

+

∫

A3

)

1

|ξ1∗ − ξ10 |
e−( 1

9
− 1

16
)|ξ∗−ξ0|2

|ξ∗ − ξ0|
e−( 1

9
− 1

16
)|ξ∗−ξ|2

|ξ∗ − ξ| dξ∗

≡ I11 + I12 + I13,

where

A1 ≡
{

ξ∗ ∈ D1 : |(ξ2∗ − ξ20)
2 + (ξ3∗ − ξ30)

2| < 1& |ξ∗ − ξ0| < |ξ∗ − ξ|
}

,

A2 ≡
{

ξ∗ ∈ D1 : |(ξ2∗ − ξ2)2 + (ξ3∗ − ξ3)2| < 1& |ξ∗ − ξ0| > |ξ∗ − ξ|
}

,

A3 ≡D1 \
(

A1 ∪ A2

)

.
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For I11,

|I11| ≤
∫

A1

1

|ξ1∗ − ξ10 |
1

|ξ∗ − ξ0|
1

|ξ∗ − ξ|dξ∗ ≤
∫

A1

1

|ξ1∗ − ξ10 |
1

|ξ∗ − ξ0|2
dξ∗

≤2

∫ 1
˛

˛

˛

˛

x−ξ1
0

t

t

˛

˛

˛

˛

∫ 1

0

∫ 2π

0

1

z

r

z2 + r2
dθdrdz =

∫ 1
˛

˛

˛

˛

x−ξ1
0

t

t

˛

˛

˛

˛

4π

z

∫ 1

0

r

z2 + r2
drdz

≤
∫ 1

˛

˛

˛

˛

x−ξ1
0

t

t

˛

˛

˛

˛

4π
| log z|
z

dz = 4π

(

log

∣

∣

∣

∣

x− ξ10t

t

∣

∣

∣

∣

)2

,

where we use the cylindrical coordinates:

r =
√

(ξ2∗ − ξ20)
2 + (ξ3∗ − ξ30)

2, z = |ξ1∗ − ξ10 |, θ = tan−1 ξ
2
∗ − ξ20
ξ3∗ − ξ30

.

Next, we compute I12 under the following three different conditions:

2 < |ξ1 − ξ10 |, 1 < |ξ1 − ξ10 | < 2, and |ξ1 − ξ10 | < 1. For |ξ1 − ξ10 | > 2, since

A2 = ∅, I12 = 0. For 1 < |ξ1 − ξ10 | < 2,

|I12| ≤
∫

A2

2

|ξ1∗ − ξ10 ||ξ∗ − ξ|dξ∗. (6.26)

Without lost of generality, assume 1 < ξ1−ξ10 < 2. We consider the following

cylindrical coordinates

r =
√

(ξ2∗ − ξ2)2 + (ξ3∗ − ξ3)2, z = ξ1∗ − ξ10 , θ = tan−1 ξ
2
∗ − ξ2

ξ3∗ − ξ3
.

Thus,

|I12| ≤
∫ 1

˛

˛

˛

˛

x−ξ1
0

t

t

˛

˛

˛

˛

∫ 4π

0

∫ 1

0

2r

|z| ×
∣

∣

∣

√

r2 + (z − (ξ1 − ξ10))
2
∣

∣

∣

drdθdz

≤
∫ 1

˛

˛

˛

˛

x−ξ1
0

t

t

˛

˛

˛

˛

2π

|z|dz ≤ 4π

∣

∣

∣

∣

∣

log

∣

∣

∣

∣

x− ξ10t

t

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ 4π

(

1 +

∣

∣

∣

∣

∣

log

∣

∣

∣

∣

x− ξ10t

t

∣

∣

∣

∣

∣

∣

∣

∣

∣

2)

.

(6.27)
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For a = |ξ1 − ξ10 | ≤ 1, we have

|I12| ≤
∫

A2

1

|ξ1∗ − ξ10 ||ξ∗ − ξ||ξ∗ − ξ0|
dξ∗ ≤

∫

A2

1

|ξ1∗ − ξ10 ||ξ∗ − ξ|2 dξ∗

≤
∫ 1

˛

˛

˛

˛

x−ξ10t

t

˛

˛

˛

˛

∫ 2π

0

∫ 1

0

r

|z|(r2 + (z − a)2)
drdθdz

≤ π

∫ 1

|x−ξ1
0

t

t
|

∣

∣ log |z − a|
∣

∣

z
dz. (6.28)

We shall estimate the integral on (|x−ξ1
0t

t |, a
2 ), and (a

2 , 2a), (2a, 1) separately.

In the first interval,

∫ a
2

|x−ξ1
0

t

t
|

∣

∣ log |z − a|
∣

∣

z
dz ≤ (2 + | log a|)

∫ a
2

|x−ξ1
0

t

t
|

1

z
dz

≤ (2 + | log a|)
∣

∣ log |x− ξ10t

t
|
∣

∣

≤ C(1 + | log a|2 +
∣

∣ log |x− ξ10t

t
|
∣

∣

2
).

In the second interval, we let τ = z
a . Thus,

∫ 2a

a
2

∣

∣ log |z − a|
∣

∣

z
dz =

∫ 2

1
2

∣

∣ log |a(1 − τ)|
∣

∣

τ
dτ

≤ 2 log 2| log a| +
∫ 2

1
2

∣

∣ log |1 − τ |
∣

∣

τ
dτ

≤ C(1 + | log a|2).

For the last interval,

∫ 1

2a

∣

∣ log |z − a|
∣

∣

z
dz ≤ | log a|

∫ 1

2a

1

z
dz ≤ C| log a|2. (6.29)

Therefore, we can conclude

I12 = O(1)

(

1 +
∣

∣

∣
log
∣

∣ξ1 − ξ10
∣

∣

∣

∣

∣

2
+

∣

∣

∣

∣

∣

log

∣

∣

∣

∣

x− ξ10t

t

∣

∣

∣

∣

∣

∣

∣

∣

∣

2)

. (6.30)
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Similarly,

|I13| ≤
∫

A3

1

|ξ1∗ − ξ10 |
e−

5
144

|ξ∗−ξ0|2e−
5

144
|ξ∗−ξ|2dξ∗

= O(1)

∫ 1

|x−ξ1
0

t

t
|

1

z
dz = O(1)

(

∣

∣ log |x− ξ10t

t
|
∣

∣

)

= O(1)

(

1 +
∣

∣ log |x− ξ10t

t
|
∣

∣

2
)

. (6.31)

In D2, note that |ξ∗ − ξ0| > |ξ1∗ − ξ10 | > 1 . Thus,

|I2| ≤
∫

D2

1

|ξ∗ − ξ|e
− 5

144
|ξ∗−ξ|2dξ∗ = O(1). (6.32)

Combine all the inequalities above we can conclude (6.24). ���

Apply the Duhamel principle to (6.5), we obtain a integral representa-

tion of h2:

h2(x, t, ξ) =

∫ t

0
e−ν(ξ)(t−s)K(h1)(x− (t− s)ξ1, s, ξ)ds. (6.33)

Lemma 6.8.

h2(x, t, ξ) = O(1)e−
ν0
3

(t+|x|)e−
|ξ−ξ0|

2

32 (1 +
∣

∣ log |ξ1 − ξ10 |
∣

∣

2
). (6.34)

Proof. Using the estimate (6.24), we obtain

|h2(x, t, ξ)| ≤
∫ t

0
O(1)e−ν(ξ)(t−s)e−

ν0
2

(s+|x−ξ1(t−s)|)e−
|ξ−ξ0|

2

32

×
(

1 +
∣

∣

∣log
∣

∣ξ1 − ξ10
∣

∣

∣

∣

∣

2
+

∣

∣

∣

∣

∣

log

∣

∣

∣

∣

x− ξ10t+ (ξ1 − ξ10)s

s

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

×χ˛

˛

˛

˛

x−ξ10t+(ξ1−ξ10)s

s

˛

˛

˛

˛

<1

ff

)

ds

≤ e−
ν0
2

(t+|x|)e−
|ξ−ξ0|

2

32

×
∫ t

0

(

1 +
∣

∣

∣
log
∣

∣ξ1 − ξ10
∣

∣

∣

∣

∣

2
+

∣

∣

∣

∣

∣

log

∣

∣

∣

∣

x− ξ10t+ (ξ1 − ξ10)s

s

∣

∣

∣

∣

∣

∣

∣

∣

∣

2
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×χ˛

˛

˛

˛

x−ξ1
0

t+(ξ1−ξ1
0
)s

s

˛

˛

˛

˛

<1

ff

)

ds. (6.35)

For simplicity, put β = −(ξ1 − ξ10), α = x − ξ1t. The problem is now

reduced to the estimate of the following integral

R =

∫ t

0

∣

∣

∣

∣

∣

log

∣

∣

∣

∣

x− ξ10t+ (ξ1 − ξ10)s

s

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

χ˛

˛

˛

˛

x−ξ10t+(ξ1−ξ10)s

s

˛

˛

˛

˛

<1

ffds

=

∫ t

0

∣

∣

∣

∣

∣

log

∣

∣

∣

∣

α− βs

s

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

χ{|α−βs
s |<1}ds. (6.36)

In order to prove the lemma, it is enough to show R = O(1)t(1 +
∣

∣ log |β|
∣

∣

2
).

Since we are considering (6.36), in order that χ 6= 0, we require

−s < α− βs < s. (6.37)

Express (6.37) in seven different cases, classified by the signs of α, β, Figure

6:






























































1. 0 < s <∞ , for α = 0, −1 < β < 1,

2. α
β+1 < s < α

β−1 , for α > 0, β > 1,

3. α
β+1 < s <∞ , for α > 0, 0 < β < 1,

4. α
β+1 < s <∞ , for α > 0, −1 < β < 0,

5. −α
−β+1 < s < −α

−β−1 , for α < 0, β < −1,

6. −α
−β+1 < s <∞ , for α < 0, −1 < β < 0,

7. −α
−β+1 < s <∞ , for α < 0, 0 < β < 1.

For case 1, we can evaluate the integral (6.36) directly and obtain

R =
∣

∣ log |β|
∣

∣

2
t.

Case 5, 6, and 7 are similar to case 2, 3, and 4 respectively, so, without lost

of generality, we consider only case 2, 3, and 4.
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s

α

α
β−1

α
β+1

s

−s

α− βs

Figure 6: range of s.

For case 2, since β > 1, α
2β <

α
β+1 . Therefore,

R ≤
∫ t

α
2β

∣

∣

∣

∣

∣

log

∣

∣

∣

∣

α− βs

s

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

ds ≤
∫ t

α
2β

2
(

log β
)2

+ 2

∣

∣

∣

∣

∣

log

∣

∣

∣

∣

α

βs
− 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

ds

≤2t
(

log β
)2

+ 2

(

∫ 2α
β

α
2β

χn

t> α
2β

o +

∫ t

2α
β

χn

t> 2α
β

o

) ∣

∣

∣

∣

∣

log

∣

∣

∣

∣

α

βs
− 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

ds

≤2t
(

log β
)2

+ χn

t> α
2β

o

×





2α

β

∫ 2

1
2

(

log

∣

∣

∣

∣

1

z
− 1

∣

∣

∣

∣

)2

dz + 2

∫ t

2α
β

∣

∣

∣

∣

∣

log

∣

∣

∣

∣

α

βs
− 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

ds





=2t
(

log β
)2

+ χn

t> α
2β

o ×
(

O(1)
α

β
+ 2t

(

log 2
)2
)

= O(1)t(1 + (log β)2).

For case 3, since 0 < β < 1,

R ≤
∫ t

α
2

(

log
∣

∣

∣

α

s
− β

∣

∣

∣

)2
ds

=

(

∫ min
n

t, α
2β

o

α
2

+

∫ 2α
β

α
2β

χn

t> α
2β

o +

∫ t

2α
β

χn

t> 2α
β

o

)

(

log
∣

∣

∣

α

s
− β

∣

∣

∣

)2
ds
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≤
∫ min

n

t, α
2β

o

α
2

(

log
∣

∣

∣

α

s
− β

∣

∣

∣

)2
ds+O(1)t

(

1 + (log β)2
)

.

For α
2 < s < α

2β , 0 < β < α
s − β < 2. Therefore,

R ≤
∫ min

n

t, α
2β

o

α
2

(

log
∣

∣

∣

α

s
− β

∣

∣

∣

)2
ds+O(1)t

(

1 + (log β)2
)

≤ t
(

2(log 2)2 + 2(log β)2
)

+O(1)t
(

1 + (log β)2
)

= O(1)t
(

1 + (log β)2
)

.

For case 4,

α

1 − |β| < s =⇒ |β| < |β| + α

s
< 1.

Therefore,

R ≤
∫ t

α
1−|β|

∣

∣

∣
log
(

|β| + α

s

)∣

∣

∣

2
ds ≤ t

(

log |β|
)2
. ���

The next lemma shows that the source K(h2) for the next Picard iter-

ation (6.5) is finite. That the source is gaussian in microscopic velocity is

an interesting fact, which follows from the detailed estimates in the above

lemma.

Lemma 6.9.

|K(h2)(x, t, ξ)| ≤ Ce−
ν0
3

(t+|x|)e−
|ξ−ξ0|

2

128 . (6.38)

Proof. Applying the estimate for h2, Lemma 6.8, and the estimate (6.25)

for K, we obtain

|K(h2)(x, t, ξ)| = O(1)

∫

R3

1

|ξ∗ − ξ|e
− |ξ∗−ξ|2

9 e−
ν0
3

(t+|x|)e−
|ξ∗−ξ0|

2

32

×
(

1 +
∣

∣ log |ξ1∗ − ξ10 |
∣

∣

2
)

dξ∗

= O(1)e−
|ξ−ξ0|

2

128 e−
ν0
3

(t+|x|)
∫

R3

1

|ξ∗ − ξ|e
−( 1

9
− 1

64
)|ξ∗−ξ|2

×(1 +
∣

∣ log |ξ1∗ − ξ10 |
∣

∣

2
)e−

|ξ∗−ξ0|
2

64 dξ∗.
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By Cauchy-Schwarz inequality,

∫

R3

1

|ξ∗ − ξ|e
−( 1

9
− 1

64
)|ξ∗−ξ|2(1 +

∣

∣ log |ξ1∗ − ξ10 |
∣

∣

2
)e−

|ξ∗−ξ0|
2

64 dξ∗

≤
(∫

R3

1

|ξ∗ − ξ|2 e
−2( 1

9
− 1

64
)|ξ∗−ξ|2dξ∗

)
1
2

×
(
∫

R3

(1 +
∣

∣ log |ξ1∗ − ξ10 |
∣

∣

2
)2e−

|ξ∗−ξ0|
2

32 dξ∗

)1
2

≤ ∞.

This completes the proof of the lemma. ���

6.3. Essential kinetic waves

With the estimate of the source K(h2) in Lemma 6.9, we now study the

essential kinetic wave h̄, (6.8).

Lemma 6.10. For any β ≥ 0, there exists D > 0 such that

‖h̄‖L∞
ξ,β

= O(1)e−
ν1(|x|+t)

D . (6.39)

Proof. With the operator O
t
D of (6.2), we have by Duhamel principle that

h̄ =

∫ t

0
O

t−s
D Kh2(s)ds =

∫ t

0
O

t−s
D O(1)e−

ν0
3

(s+|x|)e−
|ξ−ξ0|

2

128 ds,

where we have used Lemma 6.9 for Kh2. The estimate (6.39) now follows

from Lemma 6.5 on the exponential decay in time and the hyperbolicity

property of the operator OD. We omit the details. ���

With this we have

{

gt + ξ1gx + ν(ξ)g = Kg + K1h̄,

g(x, 0, ξ) = 0;
(6.40)

g ≡ G − [h0 + h1 + h2] − h̄. (6.41)

We have the following estimate on the smoothness in microscopic velocity ξ

for the source K1h̄.
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Lemma 6.11. For any fixed natural number l ≥ 0,

‖∂l
ξ(K1h̄)‖L2

x(L2
ξ
) = O(1)e−

ν1t
3D . (6.42)

Proof. From Lemma 3.3, we have ‖K1h‖Hi
ξ

= O(1)‖h‖L2
ξ

The lemma now

follows from Lemma 6.10. ���

For the singular waves gj of (6.10), we have the following estimate.

Lemma 6.12. For each fixed β > 0 and j = 0, 1, . . ., there exists positive

constants Dj such that

‖gj‖L∞
ξ,β

= O(1)e
− ν1(|x|+t)

Dj . (6.43)

Proof. This is proved by induction on j and uses Lemma 6.5. The procedure

is similar to the proof of Lemma 6.10; details are omitted. ���

We have, c.f. (6.9),



















(G −∑2
i=0 hi − h̄ −∑j

i=0 gi)t + ξ1(G −∑2
i=0 hi − h̄ −∑j

i=0 gi)x

= L(G −∑2
i=0 hi − h̄ −∑j

i=0 gi) + Kgj ,

(G −∑2
i=0 hi − h̄ −∑j

i=0 gi)(x, 0, ξ) = 0.

(6.44)

Using the notion of damped transport operator S and the integral operator

K, the Picard iteration (6.10) has the representation:

gj+1 =

∫ t

0
S

t−s1Kgj(s1)ds1 =

∫ t

0

∫ s1

0
S

t−s1KS
s1−s2Kgj−1(s2)ds2ds1.

and so inductively we have

gj =

∫ t

0

∫ s1

0
· · ·
∫ sj

0
S

t−s1KS
s1−s2KS

s2−s3K · · · Ssj−sj+1K1h̄(sj+1)

dsj+1 · · · ds1, j = 0, 1, 2, . . . . (6.45)

A major point is that the above repeated convolutions of the damped trans-

port operator S and the integral operator K yield the smoothness in (x, t) as
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a consequence of the smoothness of the source K1h̄ in ξ, (6.42). This is the

Mixture Lemma we study in the next subsection.

6.4. Mixture Lemma

We rewrite the linearized Boltzmann equation as follows:

gt + ξ1gx + ν(ξ)g = Kg. (6.46)

This form indicates that there are two essential mixing mechanisms:

(1) The mixing mechanism in x is due to particles travelling in different

velocity ξ1. This is represented by the operator S
t, the LHS of the

equation, which represents the transport as well as part of the loss term

in the collision operator.

(2) The mixing mechanism in ξ is due to the rest of the collision of particles.

This is represented through the integral operator K.

We introduce a sequence of mixture operators M
t
i as follows.

Definition 6.13. For any g0 ∈ L2
x(L2

ξ), k-th degree Mixture operator Mt
k is

given as follows:

M
t
kg0≡

∫ t

0

∫ s1

0
· · ·
∫ s2k−1

0
S

t−s1KS
s1−s2KS

s2−s3K · · · Ss2k−1−s2kKS
s2kg0ds2k· · ·ds1.

(6.47)

The Picard iteration for solving the initial value problem ∂th + ξ1∂xh−
Lh = 0, h(x, 0) ≡ h0(x), can be rewritten as

h(x, t) = S
th0(x) +

∫ t

0
S

t−sKS
sh0ds(x) + M

t
1h0(x)

+
∞
∑

j=1

(
∫ t

0
S

t−sKM
s
jh0ds(x) +

∫ t

0

∫ t1

0
S

t−t1KS
t1−t2KM

t2
j h0dt2dt1(x)

)

.

(6.48)

This series is an asymptotic expansion, useful for identifying the singular

parts of the solution.
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Remark 6.14. The Mixture Lemma states that the mixture of the two op-

erators S and K in M
t
k transports the regularity in the microscopic velocity

ξ to the regularity of the space time (x, t). The Mixture Lemma is similar in

spirit as the well-known Averaging Lemma, [15], [16], [3], [27], (see also [40]

for the gliding regularity for the non-dissipative Landau damping.) These

two Lemmas have been introduced independently and used for different pur-

poses.

Lemma 6.15 (Mixture Lemma). There exist Ck > 0, k = 1, 2, . . . , such

that

∥

∥

∥
∂k

xM
t
kg0

∥

∥

∥

L2
x(L2

ξ
)
≤ Cke

− ν0t
2

k
∑

l=0

∥

∥

∥
∂l

ξ1g0

∥

∥

∥

L2
x(L2

ξ
)
. (6.49)

Proof. In order to explain the main ideas, we will go to some details for the

cases of k = 1 and k = 2. The proof uses the characteristic method, [31],

[26]. For k = 1, we write down the explicit form of the Mixture operator by

spelling out the operator S
th(x, ξ) = e−ν(ξ)th(x− ξ1t, ξ), (6.11):

M
t
1g0(x, ξ) =

∫ t

0

∫ s1

0

∫

R3

∫

R3

e−ν(ξ)(t−s1)−ν(ξ1)(s1−s2)−ν(ξ2)s2K (ξ, ξ1)K (ξ1, ξ2)

·g0(x− ξ1(t− s1) − ξ11(s1 − s2) − ξ12s2, ξ2)dξ2dξ1ds2ds1. (6.50)

Set

A(ξ, ξ1, ξ2, t, s1, s2) ≡ e−ν(ξ)(t−s1)−ν(ξ1)(s1−s2)−ν(ξ2)s2K (ξ, ξ1)K (ξ1, ξ2) ,
(6.51)

z ≡ x− ξ1(t− s1) − ξ11(s1 − s2) − ξ12s2,

and we have

∂xM
t
1g0(x, ξ) =

∫ t

0

∫ s1

0

∫

R3

∫

R3

A(ξ, ξ1, ξ2, t, s1, s2)∂xg0(z, ξ2)dξ2dξ1ds2ds1.

(6.52)

Next, we use the change of variables and the chain rule:

V1 ≡ ξ − ξ1, V2 ≡ ξ1 − ξ2,

∂V 1
1
g0(z, ξ2) = s1∂xg0(z, ξ2) − ∂ξ1

2
g0(z, ξ2). (6.53)
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By the switching the order of differentiations and applying the integration

by parts, we obtain

∂xM
t
1g0(x, ξ)

=

∫ t

0

∫ s1

0

∫

R3

∫

R3

1

s1

{

A(ξ, ξ − V1, ξ − V1 − V2, t, s1, s2)∂ξ1
2
g0(z, ξ2)

−g0(z, ξ2)∂V 1
1
A(ξ, ξ − V1, ξ − V1 − V2, t, s1, s2)

}

dV2dV1ds2ds1. (6.54)

To estimate the L2 norm of ∂xM
t
1g0(x, ξ), we only need the integrability

of 1
s1

(

A+ ∂V 1
1
A
)

. Note that, as the result of the above switching of the

order of differentiation, it yields the integrability
∫ t
0

∫ s1

0
1
s1
ds2ds1 = t. If we

were to switch the differentiation with respect to x with the differentiation

with respect to V 1
2 , then we would get the non-integrable factor 1

s2
, instead

of 1
s1

. This would implies that the characteristic method only works for the

short time scale. On the other hand, we now have the partial differentiation

of the function A. The second point is then to show the integrability of

∂V 1
1
A. We have from (6.51)

∂V 1
1
A ∼ e−

3
4
ν0tK(ξ1, ξ2)∂ξ1

1
K(ξ, ξ1). (6.55)

From the Hőlder inequality and Fubini Theorem, we conclude

∥

∥∂xM
t
1g0
∥

∥

L2
x(L2

ξ)
≤ C1e

− ν0t
2

(

‖g0‖L2
x(L2

ξ)
+
∥

∥∂ξ1g0
∥

∥

L2
x(L2

ξ)

)

. (6.56)

For k = 2, there are more changes of variables that have to be done in

the right order. We have

∂2
xM

t
2g0(x, ξ)

=

∫ t

0

∫ s1

0

∫ s2

0

∫ s3

0

∫

R3

∫

R3

∫

R3

∫

R3

B(ξ, ξ1, ξ2, ξ3, ξ4, t, s1, s2, s3, s4)

·∂2
xg0(w, ξ4)dξ4dξ3dξ2dξ1ds4ds3ds2ds1 (6.57)

where

B(ξ, ξ1, ξ2, ξ3, ξ4, t, s1, s2, s3, s4)

≡ K (ξ, ξ1)K (ξ1, ξ2)K (ξ2, ξ3)K (ξ3, ξ4)



180 TAI-PING LIU AND SHIH-HSIEN YU [June

·e−ν(ξ)(t−s1)−ν(ξ1)(s1−s2)−ν(ξ2)(s2−s3)−ν(ξ3)(s3−s4)−ν(ξ4)s4 (6.58)

w ≡ x− ξ1(t−s1)−ξ11(s1−s2)−ξ12(s2−s3)−ξ13(s3−s4)−ξ14s4. (6.59)

Again, we change the variables and make the switching of the differentiations:

V1 = ξ − ξ1, V2 = ξ1 − ξ2, V3 = ξ2 − ξ3, V4 = ξ3 − ξ4,

∂V 1
1
g0(w, ξ4) = s1∂xg0(w, ξ4) − ∂ξ1

2
g0(w, ξ4),

∂V 1
3
g0(w, ξ4) = s3∂xg0(w, ξ4) − ∂ξ1

2
g0(w, ξ4),

∂2
xg0 =

1

s1s3

{

∂V 1
1
∂V 1

3
g0 + ∂V 1

1
∂ξ1

2
g0 + ∂V 1

3
∂ξ1

2
g0 + ∂2

ξ1
2
g0

}

. (6.60)

The key observation is that we switch the second derivative with respect

to x evenly to V 1
1 and V 1

3 . There are two reasons for doing this. The first

is that the resulting factor 1
s1s3

is integrable. Another is that B keeps the

integrability after integration by parts. We set s0 ≡ t, s5 ≡ 0 so that

B =

4
∏

i=0

{

e−ν(ξ−
Pi

j=1 Vj)(si−si+1)
}

·
4
∏

i=1

{

2√
2π|Vi|

exp

[

−
(|ξ −∑i−1

j=1 Vj |2 − |ξ −∑i
j=1 Vj|2)2

8|Vi|2
− |Vi|2

8

]

−|Vi|
2

exp

(

−
|ξ −∑i−1

j=1 Vj |2 + |ξ −∑i
j=1 Vj|2

4

)}

. (6.61)

With this and the boundedness of |∇ξν (ξ)|, we have

∂V 1
1
B

= O(1)e−
3
4
ν0t
{[

∂ξ1
1
K(ǫξ, ǫξ1)

]

K (ǫξ1, ǫξ2)K (ǫξ2, ǫξ3)K (ǫξ3, ǫξ4)

+K(ǫξ, ǫξ1)K (ǫξ1, ǫξ2)K (ǫξ2, ǫξ3)K (ǫξ3, ǫξ4)
}

,

∂V 1
3
B

= O(1)e−
3
4
ν0t
{

K(ǫξ, ǫξ1)K (ǫξ1, ǫξ2)
[

∂ξ1
3
K (ǫξ2, ǫξ3)

]

K (ǫξ3, ǫξ4)

+K(ǫξ, ǫξ1)K (ǫξ1, ǫξ2)K (ǫξ2, ǫξ3)K (ǫξ3, ǫξ4)
}

,

∂V 1
3
∂V 1

1
B

= O(1)e−
3
4
ν0t
{[

∂ξ1
1
K(ǫξ, ǫξ1)

]

K(ǫξ1, ǫξ2)
[

∂ξ1
3
K (ǫξ2, ǫξ3)

]

K (ǫξ3, ǫξ4)
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+
[

∂ξ1
1
K(ǫξ, ǫξ1)

]

K (ǫξ1, ǫξ2)K (ǫξ2, ǫξ3)K (ǫξ3, ǫξ4)

+K(ǫξ, ǫξ1)K (ǫξ1, ǫξ2)
[

∂ξ1
3
K (ǫξ2, ǫξ3)

]

K (ǫξ3, ǫξ4)

+K(ǫξ, ǫξ1)K (ǫξ1, ǫξ2)K (ǫξ2, ǫξ3)K (ǫξ3, ǫξ4)
}

, (6.62)

for some 0 < ǫ < 1. From these we obtain
∫ ∫ ∫ ∫

∂V 1
1
BdV4dV3dV2dV1 = O(1)e−

3
4
ν0t,

∫ ∫ ∫ ∫

∂V 1
3
BdV4dV3dV2dV1 = O(1)e−

3
4
ν0t, (6.63)

∫ ∫ ∫ ∫

∂V 1
3
∂V 1

1
BdV4dV3dV2dV1 = O(1)e−

3
4
ν0t.

We have

∂2
xM

t
2g0(x, ξ)

=

∫ t

0

∫ s1

0

∫ s2

0

∫ s3

0

∫

R3

∫

R3

∫

R3

∫

R3

1

s1s3

{

g0∂V 1
3
∂V 1

1
B

−
(

∂ξ1
2
g0

)(

∂V 1
1
B + ∂V 1

3
B
)

+B∂2
ξ1
2
g0

}

dV4dV3dV2dV1ds4ds3ds2ds1.

(6.64)

Apply (6.63) to the above, we conclude from the Hőlder inequality and Fubini

Theorem that

∥

∥∂2
xM

t
2g0
∥

∥

L2
x(L2

ξ)
≤C2e

− ν0t
2

(

‖g0‖L2
x(L2

ξ)
+
∥

∥∂ξ1g0
∥

∥

L2
x(L2

ξ)
+
∥

∥

∥
∂2

ξ1g0

∥

∥

∥

L2
x(L2

ξ)

)

.

(6.65)

This completes the proof of the Mixture Lemma. ���

Lemma 6.16. The wave gj of (6.45) satisfy, for some positive constant Dk,

‖∂l
x(g2k)‖L2

x(L2
ξ
) = O(1)e

− ν1t
Dk , k = 0, 1, 2 · · · , 0 ≤ l ≤ k. (6.66)

Proof. This is direct consequence of the smoothness of K1h̄ in microscopic

velocity, Lemma 6.10 and the Mixture Lemma, (6.49). ���
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6.5. Global wave structure of the Green’s function

We now put together the previous pieces of the waves in the Green’s

function to gain global understanding of the Green’s function. There is a

missing information on the pointwise description outside the finite Mach re-

gion. This missing information is obtained through the following process.

First, the regularity resulting from Picard iterations through the Mixture

Lemma allows use to apply the Sobolev calculus if we have pointwise infor-

mation on the Sobolev norms. The pointwise description of these Sobolev

norms is obtained by a weighted energy estimate in the proof of the follow-

ing main theorem for the 1-D Green’s function. In this theorem, we describe

only the Green’s function itself. We will be interested in the differential

of the Green’s function. For that we need to include other singular waves

besides the kinetic-like waves.

Lemma 6.17. The Green’s function minus the singular waves satisfies

∥

∥

∥

∥

∥

∂l
x

(

G −
2
∑

j=0

hj − h̄ −
2k
∑

j=0

gj

)∥

∥

∥

∥

∥

L2
x(L2

ξ
)

= O(1), k = 0, 1, 2 · · · , 0 ≤ l ≤ k.

(6.67)

Proof. The function G −∑2
j=0 hj − h̄ −∑2k

j=0 gj satisfies the linearized

Boltzmann equation with the source Kg2k, (6.44). From Lemma 6.16, we

know the smoothness and exponential decay in time of the source. Thus

the lemma follows from the boundedness of the solution operator for the

linearized Boltzmann equation, (3.14), and the Duhamel’s principle:

∥

∥

∥

∥

∥

∂l
x

(

G −
2
∑

j=0

hj − h̄ −
2k
∑

j=0

gj

)∥

∥

∥

∥

∥

L2
x(L2

ξ
)

=

∥

∥

∥

∥

∫ t

0
G

t−sK∂l
x(g2j)(s)ds

∥

∥

∥

∥

L2
x(L2

ξ
)

≤
∫ t

0

∥

∥G
t−s
∥

∥

L2
x(L2

ξ
)
× ‖K‖L2

ξ
×
∥

∥

∥∂l
x(g2j)

∥

∥

∥

L2
x(L2

ξ
)
ds

= O(1)

∫ t

0
e−

(t−s)
C ds = O(1). (6.68)

���

Theorem 6.18. The Green’s function

G = GF + GK + GR, (6.69)
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consists of the main fluid-like part:

GF ≡
3
∑

j=1

1
√

4πAj(t+ 1)
e
− (x−λjt)2

4Ajt Ej ⊗ 〈Ej | , (6.70)

where (λj ,Ej), j = 1, 2, 3, are Euler characteristics, (4.14), and Aj is the

Navier-Stokes dissipation parameters, (5.13); the particle-like part:

GK ≡ h0 + h1 + h2, (6.71)

(6.20), (6.21), (6.22), (6.33), (6.34); and the remainder GR, which is a

bounded function satisfying, for any fixed constants Cj > Aj , j = 1, 2, 3,

and some positive constant C,

‖GR‖L2
ξ

= O(1)

3
∑

j=1

1

t+ 1
e
− (x−λjt)2

4Cjt +O(1)e−
|x|+t

C . (6.72)

Moreover, the Green’s function as an operator has the following properties:

‖GP1‖L2
ξ
, ‖P1G‖L2

ξ
= O(1)

3
∑

j=1

1

t+ 1
e
− (x−λjt)2

4Cjt +O(1)e−
|x|+t

C (6.73)

‖P1GP1‖L2
ξ

= O(1)

3
∑

j=1

1

(t+ 1)
3
2

e
− (x−λjt)2

4Cjt +O(1)e−
|x|+t

C . (6.74)

Proof. The study of the structure of the Green’s function is done according

to the following two cases:

Case 1. Within finite Mach region, |x| ≤ M t, for some constant M >

|λj|, j = 1, 2, 3, and sufficiently large.

By (), ‖G − GL‖L2
x(L2

ξ
) decays exponentially in time. As the essential

kinetic waves hj , j = 0, 1, 2, and h̄, (6.20) Lemmas 6.6, Lemmas 6.8, Lemma

6.10, and gj , j = 0, 1, . . ., Lemma 6.12, also decay exponentially in time, we

have
∥

∥

∥

∥

∥

G − GL −
2
∑

j=0

hj − h̄ −
2
∑

j=0

gj

∥

∥

∥

∥

∥

L2
x(L2

ξ
)

= O(1)e−Ct. (6.75)
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The fluid-like wave GL is smooth and bounded, Theorem 5.9. This fact and

Lemma 6.17, applied here with k = 1, yield

∥

∥

∥

∥

∥

G − GL −
2
∑

j=0

hj − h̄ −
2
∑

j=0

gj

∥

∥

∥

∥

∥

H1
x(L2

ξ
)

= O(1). (6.76)

By Sobolev inequality, we have from (6.75) and (6.76) that for some constant

C > 0,
∥

∥

∥

∥

∥

G − GL −
2
∑

j=0

hj − h̄ −
2
∑

j=0

gj

∥

∥

∥

∥

∥

L∞
x (L2

ξ
)

= O(1)e−
t
C . (6.77)

Thus in the finite Mach region, for some constant C1 > 0,

∥

∥

∥

∥

∥

G − GL −
2
∑

j=0

hj − h̄ −
2
∑

j=0

gj

∥

∥

∥

∥

∥

L2
ξ

= O(1)e
− t+|x|

C1 . (6.78)

The theorem then follows from Theorem 5.9 and Theorem 5.11.

Case 2. Outside finite Mach region, |x| > M t.

Outside of the finite Mach region, (6.75) still holds. Therefore, it re-

mains to obtain the pointwise estimate in the space variable x. The Green’s

function minus the essential kinetic waves satisfies, (6.44):



























Rt + ξ1Rx = LR + S,

R(x, 0, ξ) = 0,

R ≡ G − GK − h̄ −∑2
j=0 gj ,

S ≡ Kg2.

(6.79)

We apply the weighted energy method to this equation with a weight w(x, t)R:

w(x, t) ≡ e
|x|−Mt

N , (6.80)

for some large constants M,N to be chosen later. Multiply (6.79) with
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w(x, t) and integrate to obtain

d

dt

∫

R

1

2
w(R,R)dx+

∫

R

1

2N
w(R, (M−ξ1 x|x| )R)+w(R,−LR)dx=

∫

R

w(R,S)dx.

(6.81)

There are terms on the left hand side of (6.81) that are of good sign:

∫

R

w[
1

2N
(R,MR) + (R,−LR)]dx =

∫

R

w[
M

2N
(R,R)dx+ (R,−LR)]dx.

From (3.23) and (3.24),

|
∫

R

1

N
w(R,−ξ1 x|x|R)dx| ≤ C2

∫

R

1

N
w[(R,R) + (−LR,R)]dx.

Thus we may choose

M

2N
=
C1

N
= 2,

and yield

d

dt

∫

R

1

2
w(R,R)dx +

∫

R

w(R,R)dx ≤
∫

R

w(R,S)dx. (6.82)

We conclude from the Cauchy-Schwarz inequality and the estimate of the

source S by (6.43) that

d

dt

∫

R

w(R,R)dx+

∫

R

w(R,R)dx=O(1)

∫

R

w(S,S)dx=O(1)

∫

R

we
− ν1(|x|+t)

D2 dx.

(6.83)

By further restriction of the choice of the weight function w(x, t), (6.80),

ν1

D2
≥ 2

N
,

we have

d

dt

∫

R

w(R,R)dx+

∫

R

w(R,R)dx = O(1)

∫

R

e
|x|−Mt

N e
− ν1(|x|+t)

D2 dx=O(1)e−4t,

(6.84)

and we obtain the desired energy estimate

∫

R

w(R,R)(x, t)dx+

∫ t

0

∫

R

w(R,R)(x, s)dxds ≤
∫

R

w(R,R)(x, 0)dx+O(1)
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=O(1). (6.85)

Similarly, since the function R is in H1
x(L2

ξ), (6.76), we may apply the above

weighted energy method to the equation for ∂xR and obtain

∫

R

w(∂xR, ∂xR)(x, t)dx = O(1). (6.86)

By the Sobolev inequality and with M chosen sufficiently large, we have

from (6.85) and (6.86) that, for some positive constant C,

‖R‖L2
ξ

= O(1)e−
|x|−Mt

N = O(1)e−C(|x|+t), for |x| > M t. (6.87)

This completes the proof of the theorem. ���

7. 3-D Green’s Function

In this section we consider the 3-D Green’s function for the initial-value

problem, (1.7):
{

Gt + ξ · ∂xG = LG for x ∈ R
3,

G(x, 0, ξ; ξ0) = δ(x)δ(ξ − ξ0).
(7.1)

Here δ(ξ−ξ0) was denoted by δ3(ξ−ξ0) in the last two sections for 1-D case

to emphasize that it is a 3-dimensional delta function. Here both δ(x) and

δ(ξ− ξ0) are 3-dimensional delta functions. We will derive the explicit form

of the Green’s function and give pointwise estimate of the remaining terms.

As in the 1-D case, we construct the essential kinetic waves and fluid-like

waves separately. However, there are essential differences with the 1-D case.

For instance, there is Huygens’ principle for 3-D case. The complex analytic

method for inverting the Fourier transform is also more sophisticated than

the 1-D case.

7.1. Kinetic waves

As with the 1-dimensional case, we construct the kinetic waves using
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the Picard’s iteration,c.f. (6.3), (6.5):

{

h0
t + ξ · ∂xh0 + ν(ξ)h0 = 0,

h0(x, 0) = δ(x)δ(ξ − ξ0);
(7.2)

{

h
j
t + ξ · ∂xhj + ν(ξ)hj = Khj−1,

hj(x, 0) = 0, j = 1, 2, . . . .
(7.3)

The difference here is that the delta function δ(x) = δ3(x) is now 3-

dimensional. Meanwhile, there is a stronger dispersion for the 3-D case. As

a consequence, the same number of iterations will result in a bounded source.

The first term is the same as before, (6.20), an exponentially decaying delta

function along the characteristic direction:

h0(x, t, ξ, ξ0) ≡ S
tδ(x)δ(ξ − ξ0) = e−ν(ξ)tδ(x − ξt)δ(ξ − ξ0). (7.4)

The second term is:

h1(x, t, ξ, ξ0)

≡
∫ t

0
S

t−sKh0(x, s, ξ, ξ0)ds

=

∫ t

0
e−ν(ξ)(t−s)

∫

R3

K(ξ, ξ∗)h0(x − ξ(t− s), s, ξ∗, ξ0)dξ∗ds

=

∫ t

0

∫

R3

e−ν(ξ)(t−s)−ν(ξ∗)sK(ξ, ξ∗)δ(x − ξ(t− s) − ξ∗s)δ(ξ∗ − ξ0)dξ∗ds

=

∫ t

0
e−ν(ξ)(t−s)−ν(ξ0)sK(ξ, ξ0)δ(x − ξ(t− s) − ξ0s)ds (7.5)

which is still a generalized function, though the generalized part is of lower

dimension. From direct calculations,

h2(x, t, ξ, ξ0)

≡
∫ t

0
S

t−sKh1(x, s, ξ, ξ0)ds

=

∫ t

0

∫

R3

∫ s

0
e−ν(ξ)(t−s)−ν(ξ∗)(s−τ)−ν(ξ0)τK(ξ, ξ∗)K(ξ∗, ξ0)

·δ(x − ξ(t− s) − ξ∗(s− τ) − ξ0τ)dτdξ∗ds
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=

∫ t

0

∫ s

0
exp

[

−ν(ξ)(t− s) − ν(
x − ξ(t− s) − ξ0τ

s− τ
)(s − τ) − ν(ξ0)τ

]

·K(ξ,
x − ξ(t− s) − ξ0τ

s− τ
)K(

x − ξ(t− s) − ξ0τ

s− τ
, ξ0)

1

(s − τ)3
dτds.(7.6)

From the explicit expression in (3.5),

K(ξ, ξ∗) = O(1)
1

|ξ − ξ∗|
exp

(

−|ξ − ξ∗|2
8

)

and hence

K(ξ,
x − ξ(t− s) − ξ0τ

s− τ
)

= O(1)
|s− τ |

|ξ(t− τ) + ξ0τ − x| exp

(

−|ξ(t− τ) + ξ0τ − x|2
8|s − τ |2

)

,

K(
x − ξ(t− s) − ξ0τ

s− τ
, ξ0)

= O(1)
|s− τ |

|x − ξ(t− s) − ξ0s|
exp

(

−|x − ξ(t− s) − ξ0s|2
8|s − τ |2

)

.

For (x, t, ξ, ξ0) ∈ R
3 × R

+ × R
3 × R

3 satisfying

min
0≤s≤t

|x − ξ(t− s) − ξ0s| > 0,

we have

K(ξ,
x − ξ(t− s) − ξ0τ

s− τ
)K(

x − ξ(t− s) − ξ0τ

s− τ
, ξ0)

1

(s − τ)3
= O(1),

0 ≤ τ ≤ s ≤ t.

We denote

S ≡ {(x, t, ξ, ξ0) : 0 ≤ x1 − ξ1t

ξ10 − ξ1
=
x2 − ξ2t

ξ20 − ξ2
=
x3 − ξ3t

ξ30 − ξ3
≤ t}.

Then for (x, t, ξ, ξ0) ∈
(

R
3 × R

+ × R
3 × R

3
)

\S, we have |h2(x, t, ξ, ξ0)| <
∞.

Moreover, we have

ν(ξ)(t− s) + ν(
x − ξ(t− s) − ξ0τ

s− τ
)(s − τ) + ν(ξ0)τ
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≥ ν0(1 + |ξ|)(t− s) + ν0(1 + |x − ξ(t− s) − ξ0τ

s− τ
|)(s− τ) + ν0(1 + |ξ0|)τ

≥ ν0 (t+ |x|) for (x, t, ξ, ξ0) /∈ S.

Therefore, there exists a C > 0 such that

∥

∥h2(x, t, ·, ξ0)
∥

∥

L2
ξ

≤ O(1)e−
(t+|x|)

C .

This implies
∥

∥Kh2
∥

∥

L∞
ξ

≤ O(1)e−
(t+|x|)

C

and so
∥

∥h3(x, t, ·, ξ0)
∥

∥

L∞
ξ

≤ O(1)e−
(t+|x|)

C .

As with the 1-D case, we can stop at h2 and construct h̄ as well as gj , j =

0, 1, . . .. The Mixture Lemma can also be generalized easily to the present

3-D case. We omit the details.

7.2. Euler waves

Before we study the fluid-like waves for the Boltzmann equation, we

consider the Euler waves. We use the conservative form of the linearized

Euler equations (4.5):















ρt + ∇x · m = 0,

mt + 2
3∇xE = 0,

Et + 5
2∇x · m = 0.

This is the linearization with base state ρ0 = 1,v0 = 0, θ0 = 1 and so the

sound speed c is given as

c2 =
5θ0
3

=
5

3
.

From this we derive the wave equation for ρt:

(

5

2
ρ− E

)

t

= 0,
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(ρt)tt = −∇x ·
(

2

3
∇xE

)

= ∇x ·
(

5

3
∇xρ

)

= c2∆x(ρt). (7.7)

The wave equation can be solved explicitly by the Kirchhoff’s formula and

exhibits the Huygens’ principle for the 3-D situation we consider here. With

ρt thus determined, the other variables can also be explicitly constructed:















ρ(x, t) = ρ(x, 0) +
∫ t
0 ρt(x, s)ds,

E(x, t) = E(x, 0) + 5
2

∫ t
0 ρt(x, s)ds,

m(x, t) = m(x, 0) + 2
3

∫ t
0 ∇xE(x, s)ds.

(7.8)

Note that, although ρt satisfies the Huygens’ principle, the formula for the

other variables involves time integration and so in general are not zero in-

side the acoustic cone and decay algebraically there. The viscous version is

studied in Lemma 7.3 later.

To draw the comparison with the Boltzmann equation, we take Fourier

transform of the Euler equations







ρ̂

m̂

Ê






+ i







0 ηt 0

0 0 2
3η

0 5
2ηt 0













ρ̂

m̂

Ê






= 0; (7.9)







ρ̂(η, t)

m̂(η, t)

Ê(η, t)






=









1 − i sin(c|η|t)
c|η| ηt 2

3c2 (−1+cos(c|η|t))
0 I+ cos(c|η|t)−1

|η|2 η ⊗ ηt −2i sin(c|η|t)
3c|η| η

0 −5i sin(c|η|t)
2c|η| ηt cos(c|η|t)















ρ̂(η, 0)

m̂(η, 0)

Ê(η, 0)






.

(7.10)

We therefore will be interested in the well-known inversion of the Fourier

transform of the following types:

Theorem 7.1 (Kirchhoff). The inversion of the Fourier transform of ĝŵ

and ĝŵt, where

ŵ =
sin(c|η|t)

c|η| , ŵt = cos(c|η|t),

are

w ∗ g(x) =
t

4π

∫ ∫

|y|=1
g(x + cty)dS(y), (7.11)
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wt ∗ g(x) =
1

4π

∫ ∫

|y|=1
g(x+cty)dS(y) +

ct

4π

∫ ∫

|y|=1
∇g(x+cty) · ydS(y).

(7.12)

The Kirchhoff’s formula for the Green’s function of the Euler equations

involves the function g as δ− functions. For study of the dissipative Navier-

Stokes and the Boltzmann equation, we consider g as the heat kernel. The

following lemma gives estimates of the viscous version of Huygens’ principle.

Lemma 7.2. For any positive integer l,

∣

∣

∣

∣

∣

∣

w ∗ e
− |x|2

C(t+1)

(t+ 1)
l
2

∣

∣

∣

∣

∣

∣

= O(1)
e
− (|x|−ct)2

2C(t+1)

(t+ 1)
l
2

, (7.13)

∣

∣

∣

∣

∣

∣

wt ∗
e
− |x|2

C(t+1)

(t+ 1)
l
2

∣

∣

∣

∣

∣

∣

= O(1)
e
− (|x|−ct)2

2C(t+1)

(t+ 1)
l+1
2

. (7.14)

Proof. By the Kirchhoff formula (7.11),

J1 ≡ w ∗ e
− |x|2

C(t+1)

(t+ 1)
l
2

=
t

4π

∫ ∫

|y|=1

e
− |x−cty|2

C(t+1)

(t+ 1)
l
2

dS(y).

There are two cases.

Case 1. ||x| − ct| ≤ O(1)
√

1 + t.

J1 = O(1)(t + 1)

∫ ∫

|y|=1

e−O(1)t|y|2

(t+ 1)
l
2

dS(y) = O(1)(t + 1)
1

(t+ 1)
l
2

(

1√
1 + t

)2

= O(1)
1

(1 + t)
l
2

. (7.15)

Case 2. ||x| − ct| ≥ O(1)
√

1 + t.

In this case,

min
|y|=1

|x − cty| = ||x| − ct|,
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and so

e
− |x−cty|2

C(t+1) ≤ e
− |x−cty|2

2C(t+1)
− (|x|−ct)2

2C(t+1) ; (7.16)

and

J1 = (t+ 1)

∫ ∫

|y|=1

e
− |x−cty|2

2C(t+1)
− |x−cty|2

2C(t+1)

(t+ 1)
l
2

dS(y)

≤ (t+ 1)e
− (|x|−ct)2

2C(t+1)

∫ ∫

|y|=1

e
− |x−cty|2

2C(t+1)

(t+ 1)
l
2

dS(y) ≤ e
− (|x|−ct)2

C(t+1)

(t+ 1)
l
2

. (7.17)

This proves (7.13); (7.14) is shown similarly. ���

The following will be needed for the viscous version of the procedure

(7.8) in yielding the algebraic decaying rate inside the acoustic cone.

Lemma 7.3. For |x| < ct

∣

∣

∣

∣

∣

∫ t

0

{

τ

∫ ∫

|y|=1

e−
|x−cτy|2

Ct

(1 + t)5/2
dS(y)

}

dτ

∣

∣

∣

∣

∣

≤ C

(1 + t)(|x| +
√
t+ 1)

; (7.18)

and for |x| > ct

∣

∣

∣

∣

∣

∫ t

0

{

τ

∫ ∫

|y|=1

e−
|x−cτy|2

Ct

(1 + t)5/2
dS(y)

}

dτ

∣

∣

∣

∣

∣

≤ Ce−
(|x|−ct)2

2Ct

(1 + t)2
. (7.19)

Proof. From (7.16),

∣

∣

∣

∣

∣

∫ t

0

{

τ

∫ ∫

|y|=1

e−
|x−cτy|2

Ct

(1 + t)5/2
dS(y)

}

dτ

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫ t

0

{

τ

∫ ∫

|y|=1

e−
|x−cτy|2

2Ct e−
(|x|−cτ)2

2Ct

(1 + t)5/2
dS(y)

}

dτ

∣

∣

∣

∣

∣

(7.20)

There are three cases.
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Case 1. |x| ≤ O(1)
√

1 + t.

∣

∣

∣

∣

∣

∫ t

0

{

τ

∫ ∫

|y|=1

e−
|x−cτy|2

Ct

(1 + t)5/2
dS(y)

}

dτ

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

(

∫

√
1+t

0
+

∫ t

√
1+t

){

τ

∫ ∫

|y|=1

e−
|x−cτy|2

2Ct e−
(|x|−cτ)2

2Ct

(1 + t)5/2
dS(y)

}

dτ

∣

∣

∣

∣

∣

≤
∫

√
1+t

0

τ

(1 + t)5/2
dτ +O(1)

∫ t

√
1+t

τ

(t+ 1)
5
2

te−
(|x|−cτ)2

2Ct

τ2
dτ =

O(1)

(1 + t)
3
2

.

Case 2.
√

1 + t ≤ |x| ≤ ct+
√

1 + t.

∣

∣

∣

∣

∣

∫ t

0

{

τ

∫ ∫

|y|=1

e−
|x−cτy|2

Ct

(1 + t)5/2
dS(y)

}

dτ

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

(

∫

√
1+t

0
+

∫ t

√
1+t

){

τ

∫ ∫

|y|=1

e−
|x−cτy|2

2Ct e−
(|x|−cτ)2

2Ct

(1 + t)5/2
dS(y)

}

dτ

∣

∣

∣

∣

∣

≤
∫

√
1+t

0

τe−
(|x|−cτ)2

2Ct

(1 + t)5/2
dτ +O(1)

∫ t

√
1+t

τ

(t+ 1)
5
2

te−
(|x|−cτ)2

2Ct

τ2
dτ =

O(1)

(1 + t)|x| .

Case 3. |x| ≥ ct+
√

1 + t.

∣

∣

∣

∣

∣

∫ t

0

{

τ

∫ ∫

|y|=1

e−
|x−cτy|2

Ct

(1 + t)5/2
dS(y)

}

dτ

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

(

∫ t
2

0
+

∫ t

t
2

){

τ

∫ ∫

|y|=1

e−
|x−cτy|2

2Ct e−
(|x|−cτ)2

2Ct

(1 + t)5/2
dS(y)

}

dτ

∣

∣

∣

∣

∣

≤
∫ t

2

0

τe−
c2t
4C e−

(|x|−cτ)2

2Ct

(1 + t)5/2
dτ +O(1)

∫ t

t
2

τ

(t+ 1)
5
2

te−
(|x|−cτ)2

2Ct

τ2
dτ

=
O(1)e−

(|x|−ct)2

2Ct

(1 + t)2
.

This completes the proof of the lemma. ���
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7.3. Spectrum near origin

Like the one-dimensional case, we have

Lemma 7.4. Consider the spectrum Spec (η) of the operator −iξ ·η+L, η ∈
R

3.

(I) For any 0 < δ ≪ 1, there corresponds τ = τ(δ) > 0 such that

(i) For |η| > δ,

Spec (η) ⊂ {z ∈ C : Re (z) < −τ} .

(ii) For |η| ≤ δ, the spectrum within the region {z ∈ C : −τ ≤ Re (z)}
consisting of exactly five eigenvalues σ1(η), σ2(η), σ3(η), σ4(η),

σ5(η):

Spec (η) ∩ {z ∈ C : −τ ≤ Re (z)} = {σ1(η), σ2(η), σ3(η), σ4(η), σ5(η)} .

(II) For all 0 < δ ≪ 1, the semigroup e(−iξ·η+L)t can be decomposed as

e(−iξ·η+L)t = Πδ + χ{|η|<δ}
1

2πi

∮

Γ
ezt
(

z − (−iξ · η + L)
)−1

dz, (7.21)

where ‖Πδ‖L2
ξ

= O(1)e−a(τ)t, a(τ) > 0 depends on τ (and therefore on

δ), and Γ can be any close curve that lies entirely on {Re z > −τ} and

that encloses the five eigenvalues σ1(η), σ2(η), σ3(η), σ4(η), σ5(η).

We now compute the eigenvalues and eigenfunctions:

(−iξ · η + L)ψj(η) = λj(η)ψj(η), η ∈ R
3. (7.22)

To simplify 7.22, we invoke a symmetric property of L. Consider the action

of a three dimensional orthonormal transformation Q ∈ O(3) on L2
ξ:

O(3) × L2
ξ −→ L2

ξ

(Q, f(ξ)) 7−→ f(Qξ).
(7.23)

Lemma 7.5. The collision operator Q and the linearized collision operator

L are invariant under orthonormal transformation. More precisely, for any
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Q ∈ O(3):

Q
(

Qf,Qg
)

= QQ(f, g), and LQ f = QL g.

Proof.

(

QQ(f, g)
)

(ξ) = Q(f, g)(Qξ)

=

∫

ξ̄∈R3

∫

Ω̄∈S2

[

f((Qξ)′)g(ξ̄′∗) − f(Qξ)g(ξ̄∗)
]

B(Qξ − ξ̄∗, Ω̄)dΩ̄dξ̄∗.

We change variables Ω̄ = QΩ and ξ̄∗ = Qξ∗ and observe the following

relations






















(Qξ)′ = Qξ − [(Qξ − ξ̄∗) · Ω̄]Ω̄ = Qξ − [(Qξ − Qξ∗) · QΩ]QΩ

= Qξ − [(ξ − ξ∗) · Ω]QΩ = Qξ′,

ξ̄′∗ = ξ̄∗ + [(Qξ − ξ̄∗) · Ω̄]Ω̄ = Qξ∗ + [(Qξ − Qξ∗) · QΩ]QΩ

= Qξ∗ + [(ξ − ξ∗) · Ω]QΩ = Qξ′∗,

Therefore,

(

QQ(f, g)
)

(ξ) =

∫

Qξ∈R3

∫

QΩ∈S2

[

f(Qξ′)g(Qξ′∗) − f(Qξ)g(Qξ∗)
]

×B(Qξ − Qξ∗,QΩ)dQΩdQξ∗

=

∫

ξ∈R3

∫

Ω∈S2

[

f(Qξ′)g(Qξ′∗) − f(Qξ)g(Qξ∗)
]

×B(ξ − ξ∗,Ω)dΩdξ∗ = Q(Qf,Qg)(ξ).

The invariance of L under Q can be proven similarly. We omit the details. ���

Let g ∈ O(3) be an orthonormal transformation that sends η
|η| to (1, 0, 0).

Apply g−1 to (7.22), we have, by Lemma 7.5,

−i
(

g−1ξ · η
)

g−1ψj + g−1Lψj = −i
(

g
(

g−1ξ
)

· gη + L
)

g−1ψj

= −i
(

ξ · gη + L
)

g−1ψj = −i
(

ξ1|η| + L
)

g−1ψj = λjg
−1ψj . (7.24)

Therefore, the original equation (7.22) is reduced to

(

− iξ1|η| + L
)

ej(|η|) = σj(|η|)ej(|η|), (7.25)



196 TAI-PING LIU AND SHIH-HSIEN YU [June

with λj = σj , ψj = gej .

Apply Macro-Micro projection to the equation (−iξ1|η| + L)ej = σjej :

− i|η|P0ξ
1
(

(P0ej) + (P1ej)
)

= σj(P0ej), (7.26a)

− i|η|P1ξ
1(P0ej) − i|η|P1ξ

1(P1ej) + L(P1ej) = σj(P1ej). (7.26b)

Set i|η| = ǫ and σj = ǫγj. From (7.26b) we can solve P1ej in terms of P0ej :

P1ej = ǫ[L − ǫP1ξ
1 − ǫγj]

−1P1ξ
1(P0ej). (7.27)

Substituting this back to (7.26a), we obtain the following equation for P0ej :

(

P0ξ
1 + ǫP0ξ

1
(

L − ǫP1ξ
1 − ǫγj

)−1
P1ξ

1

)

(P0ej) = −γj(P0ej). (7.28)

For notation simplicity, put

I (ǫ, γ) =

(

P0ξ
1 + ǫP0ξ

1
(

L − ǫP1ξ
1 − ǫγ

)−1
P1ξ

1

)

.

When ǫ = 0, (7.28) has degeneracy: γ2 = γ4 = γ5 = 0, so implicit function

theorem does not apply directly. However, as it turns out,

Lemma 7.6. (I (ǫ, γ)E1
j ,E

1
k) = 0, if j 6= k and j, k = 4 or 5, for any ǫ, γ.

Consequently, under the basis {E1
1,E

1
2,E

1
3,E

1
4,E

1
5}, the matrix representation

of I (ǫ, γ) becomes:














3 × 3 0

0
∗

∗















.

Proof. Consider the reflection J2 ∈ O(3) : (ξ1, ξ2, ξ3) 7→ (ξ1,−ξ2, ξ3).
Clearly, P0,P1,L, ξ

1, γj , ǫ, as linear operators, commute with J2. Therefore,

I commutes with J2. Consequently, since E1
4 = ξ2

√
M is an odd function

of ξ2, I E1
4 is also an odd function of ξ2. Now that E1

1,E
1
2,E

1
3,E

1
5 are even
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function of ξ2,

(I E1
j ,E

1
k) =

∫

R3

I E1
j (ξ)E1

k(ξ)dξ = 0, for j = 4, k = 1, 2, 3, 5. (7.29)

The case j = 5 can be proven similarly. We omit the details. ���

With the aid of Lemma 7.6, we can compute the eigenvalues and eigen-

functions. By (7.29), P0e1,P0e2,P0e3 ∈
〈

E1
1,E

1
2,E

1
3

〉

and P0e4,P0e5 ∈
〈

E1
4,E

1
5

〉

.

Therefore, the problem of solving for (γj ,P0ej) for j = 1, 2, 3 is reduced to

the 1-dimensional case.

For j = 4, 5, γ4(ǫ), γ5(ǫ) can be solved from

(I (ǫ, γ4)E
1
4,E

1
4) = γ4, γ4|ǫ=0 = 0,

(I (ǫ, γ5)E
1
5,E

1
5) = γ5, γ5|ǫ=0 = 0.

(7.30)

Consider E ∈ O(3) : (ξ1, ξ2, ξ3) 7→ (ξ1, ξ3, ξ2).

(I E4,E4) = (EI E4,EE4) = (I EE4,EE4) = (I E5,E5).

This, together with (7.30), imply γ4 = γ5. Since the eigenspace for γ4 = γ5

always degenerates with multiplicity 2, we gain extra freedom in specifying

e4, e5. However, the choice must obey [ej , ek] = δjk. As it turns out (see the

proof of the lemma below), we can choose

P0e4 ∈
〈

E1
4

〉

, P0e5 ∈
〈

E1
5

〉

.

Lemma 7.7. View ǫ as a real variable. For |ǫ| ≪ 1, γj(ǫ), j = 1, . . . , 5, are

real and analytic functions with

γj(ǫ) = −λj +Ajǫ+O(ǫ2), for j = 1, 2, 3, (7.31a)

γ4(ǫ) = γ5(ǫ) = A4ǫ+O(ǫ2), (7.31b)

where Aj is the Navier-Stokes dissipation coefficients. Note that A4 = A5.

Moreover,

P0ej(ǫ) =βj1(ǫ)E
1
1 + βj2(ǫ)E

1
2 + βj3(ǫ)E

1
3, for j = 1, 2, 3,

P0e4(ǫ) =β44(ǫ)E
1
4,

P0e5(ǫ) =β55(ǫ)E
1
5,
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where βjk(ǫ) is a real and analytic function with

βjj = 1 +O(ǫ) for j = 1, 2, 3, 4, 5,

βjk = O(ǫ), for j 6= k.

β44 = β55.

Proof. Since (I Ej ,Ek) is real (ǫ is thought of as a real variable here), σj(ǫ),

βjk(ǫ) are real. (7.31b) follows at once after we differentiate (7.30).

It remains only to compute P0e4,P0e5. Consider the ansatz:

P0e4 = β44E
1
4, P0e5 = β55E

1
5, β44, β55 ∈ R. (7.32)

Recall that P1ej = ǫ[L − ǫP1ξ
1 − ǫγj]

−1P1ξ
1(P0ej), (7.27). Therefore e4, e5

are real and

[e4, e5]=(e4, e5)=ǫ
2β44β55

(

(

L−ǫP1ξ
1−ǫγ4

)−1
E1

4,
(

L−ǫP1ξ
1−ǫγ5

)−1
E1

5

)

.

This is zero, since (L−ǫP1ξ
1−ǫγ4)

−1E1
4 is odd in ξ2 while (L−ǫP1ξ

1−ǫγ5)
−1E1

5

is even in ξ2. The validity of the ansatz (7.32) is justified. Subsequently,

β44, β55 can be solved from the normalization condition [ej , ej ] = (ej , ej) = 1:

β44=
1

1 +

∥

∥

∥

∥

ǫ
(

L−ǫP1ξ1−ǫγ4

)−1
E1

4

∥

∥

∥

∥

2

L2
ξ

=
1

1 +

∥

∥

∥

∥

ǫ
(

L−ǫP1ξ1−ǫγ5

)−1
E1

5

∥

∥

∥

∥

2

L2
ξ

=β55 = 1 +O(ǫ2). �

We continue with more detailed analysis of (σj , ej). Consider the reflec-

tion J1 : (ξ1, ξ2, ξ2) 7→ (−ξ1, ξ2, ξ3). Note that

(−ξ1ǫ+ L)J1ej(−ǫ) = J1(ξ
1ǫ+ L)ej(−ǫ) = J1(−ξ1(−ǫ) + L)ej(−ǫ)

= σj(−ǫ)J1ej(−ǫ) = ǫ
(

− γj(−ǫ)
)

J1ej(−ǫ).

Thus(ǫ(−γj(−ǫ)),J1ej(−ǫ)) is an eigenvalue-eigenfunction pair. Note also

that, for j = 1, 2, 3, P0J1ej = J1P0ej ∈
〈

E1
1,E

1
2,E

1
3

〉

, and this implies

−γ1(−ǫ),−γ2(−ǫ),−γ3(−ǫ) ∈ {γ1(ǫ), γ2(ǫ), γ3(ǫ)}. Since γ1(ǫ), γ2(ǫ), γ3(ǫ)

are distinct (for small ǫ), by the fact that γ1(0) = −c = −γ3(0), γ2(0) = 0
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and by continuity, we conclude

γ1(ǫ) = −γ3(−ǫ), γ2(−ǫ) = −γ2(ǫ),

J1e1(−ǫ) = e3(ǫ), J1e2(−ǫ) = e2(ǫ),

for all ǫ small.

For γ4 = γ5, a similar argument yields γ4(−ǫ) = −γ4(−ǫ). As for the

eigenvectors, P0J1e4(−ǫ),P0J1e5(−ǫ) ∈
〈

E1
4,E

1
5

〉

. Moreover, P0J1e4(−ǫ) is

odd in ξ2. Therefore, P0J1e4(−ǫ) ∈
〈

E1
4

〉

and J1e4(−ǫ) = e4(ǫ). Similarly,

J1e5(−ǫ) = e5(ǫ).

Summarizing, we have

σ1(−ǫ) = σ3(ǫ), (7.33a)

σj(−ǫ) = σj(ǫ), for j = 2, 4, 5, (7.33b)

J1e1(−ǫ) = e3(ǫ), (7.33c)

J1ej(−ǫ) = ej(ǫ), for j = 2, 4, 5. (7.33d)

Now we switch back to the variable i|η| = ǫ. Although so far we have

been working with real ǫ, since σj , ej are analytic in ǫ, (7.33) holds for all

complex ǫ, as long as |ǫ| ≪ 1. For simplicity, set

Lj = 1 +
(

L − iP1ξ · η − λj(η)
)−1(

iP1ξ · η
)

. (7.34)

Lemma 7.8. For η ∈ R
3 with |η| ≪ 1,

λ1(η) = − i|η|
(

c + Λ(|η|2)
)

−A1|η|2 +O(|η|4),

λ2(η) = −A2η
2 +O(|η|4)

λ3(η) =i|η|
(

c + Λ(|η|2)
)

−A1|η|2 +O(|η|4),

λ4(η) = −A4|η|2 +O(|η|4),
λ5(η) = −A4|η|2 +O(|η|4),
Aj = − (P1ξ

1E1
j ,L

−1P1ξ
1E1

j ),

(7.35)

for some analytic function Λ : R → R. Furthermore, there exists analytic
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functions a
j
k,l : R → R such that

ψ1(η) = L1

[(

a0
1,1(|η|2) + i|η|a0

1,2(|η|2)
)

χ0

+
(

a1
1,1(|η|2) + i|η|a1

1,2(|η|2)
)

3
∑

k=1

ηkχk

|η|

+
(

a4
1,1(|η|2) + i|η|a4

1,2(|η|2)
)

χ4

]

, (7.36a)

ψ2(η) = L2

[

a0
2,1(|η|2)χ0 + ia1

2,2(|η|2)
3
∑

j=1

ηjχj + a4
2,1(|η|2)χ4

]

, (7.36b)

ψ3(η) = L3

[(

a0
1,1(|η|2) − i|η|a0

1,2(|η|2)
)

χ0

−
(

a1
1,1(|η|2) − i|η|a1

1,2(|η|2)
)

3
∑

k=1

ηkχk

|η|

+
(

a4
1,1(|η|2) − i|η|a4

1,2(|η|2)
)

χ4

]

, (7.36c)

ψ4(η) = L4

[

a2
4,1(|η|2)gχ2

]

, (7.36d)

ψ5(η) = L4

[

a2
4,1(|η|2)gχ3

]

, (7.36e)

with

a0
1,1(0) =

√

3

10
, a1

1,1(0) = −
√

1

2
, a4

1,1(0) =

√

1

5
, a0

2,1(0) = −
√

2

5
,

a4
2,1(0) =

√

3

5
, a2

4,1(0) = 1.

Proof. From (7.31a), we have

σ1(i|η|) = i|η|
(

−c+A1(i|η|)+
∞
∑

k=1

(−|η|2)k 1

(2k)!

d2kγ1

dǫ2k
(0)

+i|η|
∞
∑

k=1

(−|η|2)k 1

(2k + 1)!

d2k+1γ1

dǫ2k+1
(0)
)

≡ i|η|
(

−c +A1(i|η|) − Λ(|η|2)

+i|η|
∞
∑

k=1

(−|η|2)k 1

(2k+1)!

d2k+1γ1

dǫ2k+1
(0)
)

= −i|η|
(

c + Λ(|η|2)
)

−A1|η|2 +O(|η|4).
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By (7.33),

σ3(i|η|) = σ1(−i|η|)

= −i|η|
(

−c−A1(i|η|)−Λ(|η|2)−i|η|
∞
∑

k=1

(−|η|2)k 1

(2k + 1)!

d2k+1γ1

dǫ2k+1
(0)
)

= i|η|
(

c + Λ(|η|2)
)

−A1|η|2 +O(|η|4).

Similarly, for j = 2, 4, 5, by (7.33),

σj(i|η|) =i|η|
(

Aj(i|η|) + i|η|
∞
∑

k=1

(−|η|2)k 1

(2k + 1)!

d2k+1γj

dǫ2k+1
(0)

)

= −Aj |η|2 +O(|η|4).

This proves (7.35). (7.36) follows by similar computations. We omit the

details. Note that

g P1ξ
1|η| = P1ξ · η g =⇒ g

(

1 +
(

L − iP1ξ
1|η| − λj(η)

)−1
(

iP1ξ
1|η|

)

)

=

(

1 +
(

L − iP1ξ · η − λj(η)
)−1

(

iP1ξ · η
)

)

g,

g
(

ξ1
√

M
)

= (gξ)1
√

M =

3
∑

k=1

ξkηk

|η|
√

M. �

7.4. Fluid-like waves, I

This and next subsections are for the study of the fluid-like waves. For

the 3-D case considered here, there is a geometrically richer class of fluid-like

waves as hinted by the study of the Euler waves. In this subsection, we will

explicitly constructed the leading fluid-like waves. The next subsection will

be concerned with the remaining fluid-like waves, which decay at faster rate

than the leading fluid-like waves considered here.

As the one dimensional case, we have

1

2πi

∮

Γ
ezt
(

z − (−iη · ξ + L)
)−1

dz =

5
∑

j=1

eλjtψj ⊗ [ψj |.
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This implies

G =
1√
2π

F
−1 ◦ Πδ +

5
∑

j=1

1

(2π)3

∫∫∫

|η|<δ
eix·η+λj(η)tψj ⊗ [ψj |dη,

with
∥

∥F
−1 ◦ Πδ

∥

∥

L2
x(L2

ξ
)
= O(1)e

− t
C(δ) .

We again define the fluid-like waves in the Green’s function as:

GL(x, t)

≡
5
∑

j=1

1

(2π)3

∫∫∫

|η|<δ
eix·η+λj (η)tψj(η) ⊗ [ψj(η)|dη

=

∫∫∫

|η|<δ
eix·η

[

eλ1(η)tψ1(η) ⊗ [ψ1(η)| + eλ3(η)tψ3(η) ⊗ [ψ3(η)|
]

dη

+

∫∫∫

|η|<δ
eix·ηeλ2(η)tψ2(η) ⊗ [ψ2(η)|dη

+

∫∫∫

|η|<δ
eix·ηeλ4(η)t

[

ψ4(η) ⊗ [ψ4(η)| + ψ5(η) ⊗ [ψ5(η)|
]

dη. (7.37)

We arrange the pairing in (7.37) to define the following pairings:

ĜL(η, t) = ĜH(η, t)+ ĜC(η, t)+ ĜR(η, t)+ ĜPR1
(η, t)+ ĜPR2

(η, t), (7.38)

where

Huygens Pairing

ĜH(η, t) =
∑

j=1,3

eλj(η)ψj(η) ⊗ [ψj(η)|

−
∑

j=1,3

eλj(η)
LjP

m
0 ψj(η) ⊗ [LjP

m
0 ψj(η)|,

Contact Pairing,

ĜC(η, t) = eλ2(η)ψ2(η) ⊗ [ψ2(η)|,
Rotational Pairing,

ĜR(η, t) = eλ4(η)

(

∑

j=4,5

ψj(η) ⊗ [ψj(η)|



2011] SOLVING BOLTZMANN EQUATION, PART I: GREEN’S FUNCTION 203

t

ct∼
√
t

R3

t

ct

R3

(a) Huygens wave. (b) Solid Huygens wave.

Figure 7: Huygens wave and solid Huygens wave.

+
∑

j=1,3

LjP
m
0 ψj(η) ⊗ [LjP

m
0 ψj(η)|

)

,

1st Riesz Pairing,

ĜPR1
(η, t) =

∑

j=1,3

eλj(η)
LjP

m
0 ψj(η) ⊗ [LjP

m
0 ψj(η)|

−e−A1(|η|2) ∑

j=1,3

LjP
m
0 ψj(η) ⊗ [LjP

m
0 ψj(η)|,

2nd Riesz Pairing,

ĜPR2
(η, t) = (e−A1(|η|2) − eλ4(η))

∑

j=1,3

LjP
m
0 ψj(η) ⊗ [LjP

m
0 ψj(η)|,

(7.39)

We define the leading fluid-like waves to be those induced by the quadratic

terms, in the Fourier variable η, in the eigenvalues and the constant term in

the eigenfunctions. This is made definite in the proof of the following theo-

rem, (7.44). There are richer wave patterns for the 3-D case. The Huygens

wave for the Euler equations is now a dissipative version G
0
H, with essential

support of width
√
t around the acoustic cone, Figure . As we have seen

for the Euler equations, there are time integrations of the waves around the

acoustic cone. These appear in G
0
PR1

+ G
0
PR2

, Figure . The contact, ther-

mal waves G
0
C as well as the rotational waves G

0
R are supported as the heat

kernel, Figure 8.
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t

∼
√
t

R3

Figure 8: Diffuse wave.

Theorem 7.9. The leading fluid-like waves are G
0 = G

0
H + G

0
C + G

0
R +

G
0
PR1

+ G
0
PR2

G
0
H(x, t) =

ct

4π

∫ ∫

|y|=1

H1(x + cty)dS(y) +
1

4π

∫ ∫

|y|=1

H2(x + cty)dS(y)

+
ct

4π

∫ ∫

|y|=1

∇H2(x + cty) · ydS(y),

H1 =
1√
15

3
∑

j=1

((4πA1(1 + t))−3/2e
− |x|2

4A1t )xj

(

ξj
√

M ⊗
[

|ξ|2
√

M

∣

∣

∣

+|ξ|2
√

M ⊗
[

ξj
√

M

∣

∣

∣

)

,

H2 =
1

15
(4πA1(1 + t))−3/2e

− |x|2

4A1t |ξ|2
√

M ⊗
[

|ξ|2
√

M
∣

∣

∣
,

G
0
C(x, t) =

1

10
(4πA2(1 + t))−3/2e

− |x|2

4A2t (|ξ|2 − 5)
√

M ⊗
[

(|ξ|2 − 5)
√

M
∣

∣

∣
,

G
0
PR1

(x, t) =

∫ t

0

c2τ

4π

∫ ∫

|y|=1

H3(x + cτy)dS(y)dτ

H3 =

3
∑

j,k=1

((4πA1(1 + t))−3/2e
− |x|2

4A1t )xjxkξj
√

M ⊗
[

ξk
√

M

∣

∣

∣,
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G
0
R(x, t) = (4πA4(1 + t))−3/2e

− |x|2

4A4t

3
∑

j=1

ξj
√

M ⊗
[

ξj
√

M
∣

∣

∣
,

G
0
PR2

(x, t) = (A1 −A4)

3
∑

j,k=1

(

∫ t

0

exp{− |x|2
4(max{A1,A4}t+|A1−A4|τ)}

(4π(max{A1, A4}(1 + t) + |A1 −A4|τ))3/2
dτ
)

xjxk
ξj
√

M

⊗
[

ξk
√

M
∣

∣

∣
, (7.40)

and







































‖G0
H(x, t)‖L2

ξ
≤ C(1 + t)−2e

(|x|−ct)2

Ct ,

‖G0
C(x, t)‖L2

ξ
, ‖G0

R(x, t)‖L2
ξ
, ‖G0

PR2
(x, t)‖L2

ξ
≤ C(1 + t)−

3
2 e−

|x|2

Ct ,

‖G0
PR1

(x, t)‖L2
ξ
≤ C

(

(1 + t)−2e
(|x|−ct)2

Ct + (1 + t)−
3
2 e−

|x|2

Ct

+χ|x|≤ct(1 + t)−
3
2 (1 + |x|2

t )−
3
2

)

.

(7.41)

Proof. From (7.35) and (7.36), we can see that the leading term of ĜL(η, t)

is

e−ic|η|t−A1|η|2tgE1
1 ⊗ [gE1

1| + e−A2|η|2tgE1
2 ⊗ [gE1

2| + eic|η|t−A1|η|2tgE1
3 ⊗ [gE1

3|
+e−A4|η|2tgE1

4 ⊗ [gE1
4| + e−A4|η|2tgE1

5 ⊗ [gE1
5|

≡ G1 + G2 + G3 + G4 + G5.

Direct computations yield

G2 ≡ e−A2|η|2tgE1
2 ⊗ [gE1

2| = e−A2|η|2t 1

10
(|ξ|2 − 5)

√
M ⊗ [(|ξ|2 − 5)

√
M| ≡ Ĝ

1
C.

For G1 + G3, we use symmetry of (λ1, ψ1) and (λ3, ψ3) to calculate

G1 + G3

≡ e−ic|η|t−A1|η|2tgE1
1 ⊗ [gE1

1| + eic|η|t−A1|η|2tgE1
3 ⊗ [gE1

3|

= e−ic|η|t−A1|η|2t(
1√
30

|ξ|2
√

M − 1√
2

3
∑

j=1

ηj

|η|ξ
j
√

M)
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⊗[(
1√
30

|ξ|2
√

M − 1√
2

3
∑

j=1

ηj

|η|ξ
j
√

M)|

+eic|η|t−A1|η|2t(
1√
30

|ξ|2
√

M +
1√
2

3
∑

j=1

ηj

|η|ξ
j
√

M)

⊗[(
1√
30

|ξ|2
√

M +
1√
2

3
∑

j=1

ηj

|η|ξ
j
√

M)|

= e−A1|η|2t(e−ic|η|t + eic|η|t)
[ 1

30
|ξ|2

√
M ⊗ [|ξ|2

√
M|

+
1

2

3
∑

j,k=1

ηjηk

|η|2 ξ
j
√

M ⊗ [ξk
√

M|
]

−e−A1|η|2t(e−ic|η|t − eic|η|t)
1

2
√

15

3
∑

j=1

ηj

|η|
[

ξj
√

M ⊗ [|ξ|2
√

M|

+|ξ|2
√

M ⊗ [ξj
√

M|
]

= e−A1|η|2t cos(c|η|t)
[ 1

15
|ξ|2

√
M ⊗ [|ξ|2

√
M| +

3
∑

j,k=1

ηjηk

|η|2 ξ
j
√

M ⊗ [ξk
√

M|
]

+e−A1|η|2t sin(c|η|t)
c|η|

3
∑

j=1

icηj

√
15

[

ξj
√

M ⊗ [|ξ|2
√

M| + |ξ|2
√

M ⊗ [ξj
√

M|
]

≡ Ĝ
1
H + e−A1|η|2t cos(c|η|t)

3
∑

j,k=1

ηjηk

|η|2 ξ
j
√

M ⊗ [ξk
√

M|.

In order to estimate G4+G5, we recall that gη/|η| = (1, 0, 0). Let {η/|η|,α,β}
be a basis for R

3 satisfying

g











η/|η|,
α,

β,

−→











(1, 0, 0),

(0, 1, 0),

(0, 0, 1),

(7.42)

Using the above relation, the operator gE1
4 ⊗ [gE1

4| + gE1
5 ⊗ [gE1

5| can be

rewritten as

[

gE1
4 ⊗ [gE1

4| + gE1
5 ⊗ [gE1

5|
]

h

= g(ξ2
√

M)

∫

g(ξ2∗
√

M)h(ξ∗)dξ∗ + g(ξ3
√

M)

∫

g(ξ3∗
√

M∗)h(ξ∗)dξ∗
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= ξ · α
√

M

∫

ξ∗ · α
√

M∗h(ξ∗)dξ∗ + ξ · β
√

M

∫

ξ∗ · β
√

M∗h(ξ∗)dξ∗

= ξ
√

M ·
[

∫

[(ξ∗ · α)α + (ξ∗ · β)β]
√

M∗h(ξ∗)dξ∗
]

= ξ
√

M ·
[

∫

[ξ∗ − (ξ∗ ·
η

|η| )
η

|η| ]
√

M∗h(ξ∗)dξ∗
]

. (7.43)

Thus we have

G4 + G5 = e−A4|η|2t
[

3
∑

j=1

ξj
√

M ⊗ [ξj
√

M| −
3
∑

j,k=1

ηjηk

|η|2 ξ
j
√

M ⊗ [ξk
√

M|
]

≡ Ĝ
1
R − e−A4|η|2t

3
∑

j,k=1

ηjηk

|η|2 ξ
j
√

M ⊗ [ξk
√

M|.

The two terms not yet given names are

e−A1|η|2t cos(c|η|t)
3
∑

j,k=1

ηjηk

|η|2 ξ
j
√

M ⊗ [ξk
√

M|

−e−A4|η|2t
3
∑

j,k=1

ηjηk

|η|2 ξ
j
√

M⊗[ξk
√

M|

= e−A1|η|2t(cos(c|η|t) − 1)

3
∑

j,k=1

ηjηk

|η|2 ξ
j
√

M ⊗ [ξk
√

M|

+(e−A1|η|2t − e−A4|η|2t)
3
∑

j,k=1

ηjηk

|η|2 ξ
j
√

M ⊗ [ξk
√

M| ≡ Ĝ
1
PR1

+ Ĝ
1
PR2

.

Thus we have the following named terms:



























































Ĝ
1
H = e−A1|η|2t cos(c|η|t) 1

15 |ξ|2
√

M ⊗ [|ξ|2
√

M|,
+e−A1|η|2t sin(c|η|t)

c|η|
3
∑

j=1

icηj
√

15

[

ξj
√

M ⊗ [|ξ|2
√

M|+|ξ|2
√

M ⊗ [ξj
√

M|
]

,

Ĝ
1
C = e−A2|η|2t 1

10 (|ξ|2 − 5)
√

M ⊗ [(|ξ|2 − 5)
√

M|,
Ĝ

1
R = e−A4|η|2t

∑3
j=1 ξ

j
√

M ⊗ [ξj
√

M|,

Ĝ
1
PR2

= (e−A1|η|2t − e−A4|η|2t)
∑3

j,k=1
ηjηk

|η|2 ξ
j
√

M ⊗ [ξk
√

M|,

Ĝ
1
PR1

= e−A1|η|2t(cos(c|η|t) − 1)
∑3

j,k=1
ηjηk

|η|2 ξ
j
√

M ⊗ [ξk
√

M|.
(7.44)
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To extract the leading waves (7.40) it is necessary to compute the inverse

Fourier transform of (7.44) explicitly. We carry the calculation for G
0
C.

F
−1
η→x{G2} ≡ 1

(2π)3

∫

|η|<δ
eix·ηe−A2|η|2tgE1

2 ⊗ [gE1
2|dη

=
1

(2π)3

∫

[− δ
2
, δ
2
]3
eix·ηe−A2|η|2tE1

2 ⊗ [E1
2|dη + O(e−

t
C )

=

3
∏

j=1

( 1

2π

∫ δ
2

− δ
2

eix
j ·ηj

e−A2|ηj |2tdηj
)

E1
2 ⊗ [E1

2| + O(e−
t
C ).

We now introduce contours Γj
1 + Γj

2 + Γj
3

Γj
1 = {ηj : Re(ηj) = −δ

2
, Im(ηj) lies between 0 and

ixj

2A2t
},

Γj
2 = {ηj :≤ −δ

2
≤ Re(ηj) ≤ δ

2
, Im(ηj) =

ixj

2A2t
},

Γj
3 = {ηj : Re(ηj) =

δ

2
, Im(ηj) lies between 0 and

ixj

2A2t
},

(7.45)

to move the path [− δ
2 ,

δ
2 ] to Γj

1+Γj
2+Γj

3, then use that Re{eixj ·ηj
e−A2|ηj |2t} ≤

−A2δ
2t on both Γj

1 and Γj
3

1

2π

∫ δ
2

− δ
2

eix
j ·ηj

e−A2|ηj |2tdηj

=
1

2π

∫

Γj
2

eix
j ·ηj

e−A2|ηj |2tdηj +O(1)e−
t
C

=
1

√

4πA2(1 + t)
e
− |xj |2

4A2t +O(1)
1

1 + t
e
− |xj |2

4A2t +O(1)e−
t
C .

Thus we have

1

(2π)3

∫

|η|<δ
G2dη = (4πA2(1+t))−

3
2 e

− |x|2

4A2t
1

10
(|ξ|2−5)

√
M ⊗ [(|ξ|2−5)

√
M|

+O(1)
e
− |xj |2

4A2t

(1 + t)2
+ O(e−

t
C ).

The Fourier inversion of Ĝ
1
H and Ĝ

1
PR1

are done using the Kirchhoff formulas

in Theorem 7.1. Unlike the heat kernel, our domain of integration is |η| < δ,
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which doesn’t yield the singularity at t = 0. A slight generalization of these

formulas of the following form is used:

cos(c|η|t) − 1

|η|2 = −c2

∫ t

0

sin(c|η|τ)
c|η| dτ,

and so the inverse Fourier of

cos(c|η|t) − 1

|η|2 ĝ

is

−c2

∫ t

0

τ

4π

∫ ∫

|y|=1
g(x + cτy)dS(y).

Note also that the term ηj corresponds to ∂/∂xj . We omit the details. This

establishes the explicit form of the leading fluid-like waves (7.40).

It remains to study the estimates (7.41). The second one is easy to see.

We use Theorem 7.1 and Lemma 7.2 to obtain the first one. We consider

the last Riesz leading wave for small time and large time scale, i.e. t ≤ 1

and t ≥ 1.

Case 1 t ≤ 1 We consider two subcase |x| ≤ ct
1
2 and |x| ≥ ct

1
2

For |x| ≤ ct
1
2 ,note that |x|2/t is bounded above and so 1 ≤ Ce−|x|2/t,

and, for some positive constant C

‖G0
PR1

(x, t)‖L2
ξ

≤ C

∫ t

0

c2τ

(1 + t)3/2t

∫ ∫

|y|=1

e
− |x+cτy|2

8A1t dS(y)dτ

≤ C(1 + t)−3/2 ≤ C(1 + t)−3/2e−
|x|2

Ct .

For |x| ≥ ct
1
2 , we have

‖G0
PR1

(x, t)‖L2
ξ

≤ C

∫ t

0

c2τ

(1 + t)3/2t

∫ ∫

|y|=1

e
− |x+cτy|2

8A1t dS(y)dτ

≤ Ce
− (|x|−ct)2

16A1t

∫ t

0

c2τ

(1 + t)3/2t

∫ ∫

|y|=1

e
− |x+cτy|2

16A1t dS(y)dτ
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≤ C(1 + t)−3/2e
− (|x|−ct)2

16A1t ≤ C(1 + t)−2e
− (|x|−ct)2

16A1t .

Case 2 t ≥ 1 We have three cases |x| ≤ ct
1
2 , ct

1
2 ≤ |x| ≤ ct and |x| ≥ ct.

The case |x| ≤ ct
1
2 is dealt with the same way as above. For ct

1
2 ≤ |x| ≤ ct,

in order to directly calculate the xj and xk derivatives in G
0
PR1

(x, t) we first

observe that

∫ t

0

c2τ

4π(4πA1(1 + t))3/2

∫ ∫

|y|=1

e
− |x+cτy|2

4A1t dSydτ = Ct
1
2

∫

|y|≤1

1

|y|e
− |x+cty|2

4A1t dy,

where C is agenetic constant independent of (x, ξ, t). We now adopt the

spherical coordinate and let x to be the polar axis.

∫

|y|≤1

1

|y|e
− |x+cτy|2

4A1t dy = C

∫ 1

0

∫ 2π

0

∫ π

0
re

− |x|2+2ct|x|r cos θ+c2t2r2

4A1t sin θdθdφdr

= C
1

|x|

∫ 1

0

(

e
− (|x|−ctr)2

4A1t − e
− (|x|+ctr)2

4A1t

)

dr. (7.46)

Here we change a variable again to obtain

∫ 1

0

(

e
− (|x|−ctr)2

4A1t − e
− (|x|+ctr)2

4A1t

)

dr

=
1

ct

(

∫ |x|

|x|−ct
e
− s2

4A1tds −
∫ ct+|x|

|x|
e
− s2

4A1t ds
)

=
1

ct

(

2

∫ |x|

0
e
− s2

4A1t ds−
∫ ct+|x|

ct−|x|
e
− s2

4A1t ds
)

. (7.47)

We now are ready to take derivatives with respect to spatial variables

∂2

∂xj∂xk

( 1

|x|
(

2

∫ |x|

0
e
− s2

4A1t ds−
∫ ct+|x|

ct−|x|
e
− s2

4A1t ds
))

=
(

− δjk
|x|3 +

3xjxk

|x|5
)(

2

∫ |x|

0
e
− s2

4A1tds −
∫ ct+|x|

ct−|x|
e
− s2

4A1t ds
)

+
( δjk
|x|2 − 3xjxk

|x|4
)(

2e
− |x|2

4A1t − e
− (ct+|x|)2

4A1t

)

−
( δjk
|x|2 − 3xjxk

|x|4
)

e
− (ct−|x|)2

4A1t − xjxk

|x|3
( |x|

2A1t
e
− |x|2

4A1t − ct+ |x|
2A1t

e
− (ct+|x|)2

4A1t

)
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+
xjxk

|x|3
|x| − ct

2A1t
e
− (ct−|x|)2

4A1t

≡ A1 + A2 + A3 + A4 + A5.

it is easy to see that |A1|, |A2| and |A4| ≤ Ct1/2|x|−3 and for |x| ≥ ct−
1
2

1

|x|3 ≤ (1 + c2)3
(

c2t+ c2|x|2
)− 3

2 ≤ (
1 + c2

c2
)3t−

3
2 (1 +

|x|2
t

)−
3
2 .

For |A3| and |A5| we can estimate







(|x|−2 + t−
1
2 |x|−1)e

− (ct−|x|)2

4A1t ≤ Ct−1e
− c2t2

32A1t e
− (ct−|x|)2

8A1t , |x| ≤ ct/2;

(|x|−2 + t−
1
2 |x|−1)e

− (ct−|x|)2

4A1(1+t) ≤ Ct−
3
2 e

− (ct−|x|)2

4A1t , |x| ≥ ct/2.

We combine estimates of Ai to conclude that

‖G0
PR1

‖L2
ξ
≤ C

(

t−
3
2 (1 +

|x|2
t

)−
3
2 + t−2e

− (ct−|x|)2

8A1t

)

.

For |x| ≥ ct,

‖G0
PR1

‖L2
ξ
≤ C

∫ t

0

c2τ

(1 + t)3/2t

∫ ∫

|y|=1

e
− |x+cτy|2

8A1t dS(y)dτ

≤ Ce
− (|x|−ct)2

16A1t

∫ t

0

c2τ

(1 + t)3/2t

∫ ∫

|y|=1

e
− |x+cτy|2

16A1t dS(y)dτ.

We break the time integral domain into two parts

‖G0
PR1

(x, t)‖L2
ξ

≤ Ce
− (|x|−ct)2

16A1t

{

∫ t1/2

0
+

∫ t

t1/2

} c2τ

(1 + t)3/2t

∫ ∫

|y|=1

e
− |x+cτy|2

16A1t dS(y)dτ

≤ Ce
− (|x|−ct)2

16A1t

(

∫ t1/2

0

τ

(1 + t)3/2t
dτ +

∫ t

t1/2

τ

(1 + t)3/2t

t

τ |x|e
− (x−cτ)2

16A1t dτ
)

,

where we use (7.46) and (7.47) and simple calculation to yield

‖G0
PR1

(x, t)‖L2
ξ

≤ C(1 + t)−2e
− (|x|−ct)2

16A1t
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+C(1 + t)−
3
2 |x|−1e

− (|x|−ct)2

16A1t

∫ t

t1/2

e
− (x−cτ)2

16A1t dτ

‖G0
PR1

‖L2
ξ

≤ C(1 + t)−2e
− (|x|−ct)2

16A1t + C(1 + t)−1|x|−1e
− (|x|−ct)2

16A1t .

From |x| ≥ ct equivalently |x|−1 ≤ (ct)−1 and so

‖G0
PR1

‖L2
ξ
≤ C(1 + t)−2e

− (|x|−ct)2

16A1t , for |x| ≥ ct.

This completes the study of leading waves. ���

7.5. Fluid-like waves, II

To study the remaining fluid-like waves, we first study the analyticity

of the pairings (7.39).

Proposition 7.10. There exist operators Hj , Hjk, Cj , Rjk, R0
jk, Pjkl,

P1
jk, P2

jk, which are bounded operators in L2
ξ and analytic in η so that

ĜH(η, t) = e−A1(|η|2)t
[

cos(c|η|t)
{

cos(|η|Λ(|η|2)t)

×
( 1

15
|ξ|2

√
M ⊗ [|ξ|2

√
M| +

3
∑

j=1

ηj
Hj

)

+
sin(|η|Λ(|η|2)t)

c|η|
( c√

15

3
∑

j=1

iηj(|ξ|2
√

M ⊗ [ξj
√

M|

+ξj
√

M ⊗ [|ξ|2
√

M|) +
3
∑

j,k=1

ηjηk
Hjk

)}

+
sin(c|η|t)

c|η|
{

cos(|η|Λ(|η|2)t)
( c√

15

3
∑

j=1

iηj(|ξ|2
√

M ⊗ [ξj
√

M|

+ξj
√

M ⊗ [|ξ|2
√

M|) +
3
∑

j,k=1

ηjηk
Hjk

)

+
sin(|η|Λ(|η|2)t)

c|η| c2|η|2
( 1

15
|ξ|2

√
M ⊗ [|ξ|2

√
M| +

3
∑

j=1

ηj
Hj

)}]

ĜC(η, t) = e−A2(|η|2)t
( 1

10
(|ξ|2 − 5)

√
M ⊗ [(|ξ|2 − 5)

√
M| + |η|2C0
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+
3
∑

j=1

ηj
Cj

)

ĜR(η, t) = e−A4(|η|2)t
[

3
∑

j=1

(χj ⊗ [χj | +
3
∑

k=1

ηk
Rjk) +

3
∑

j,k=1

ηjηk
R

0
jk

]

ĜPR1
(η, t) = e−A1(|η|2)t

[

cos(c|η|t)(cos(|η|Λ(|η|2)t) − 1)

×
3
∑

j,k=1

ηjηk

|η|2
(

χj ⊗ [χk| +
3
∑

l=1

ηl
Pjkl + |η|2P1

jk

)

+
sin(c|η|t)

c|η|
{

− sin(|η|Λ(|η|2)t)
|η|

×
3
∑

j,k=1

cηjηk
(

χj ⊗ [χk| +
3
∑

l=1

ηl
Pjkl + |η|2P1

jk

)

+ cos(|η|Λ(|η|2)t)
3
∑

j,k=1

ηjηk
P

2
jk

}

+ cos(c|η|t)sin(|η|Λ(|η|2)t)
c|η|

3
∑

j,k=1

ηjηk
P

2
jk

]

,

ĜPR2
(η, t) = (e−A1(|η|2)t − e−A4(|η|2)t)

×
3
∑

j,k=1

ηjηk

|η|2
[

χj ⊗ [χk| +
3
∑

l=1

ηl
Pjkl + |η|2P1

jk

]

(7.48)

Proof. Huygens Pairing ĜH(η, t)

First, we consider the macro part of Huygens pairing using (7.35), (7.36),

ĜH1(η, t)

= e−A1(|η|2)t2 cos(|η|A1
1(|η|2)t)

[

(a0
1,1(|η|2)2 − |η|2a0

1,2(|η|2)2)χ0 ⊗ [χ0|
+(a4

1,1(|η|2)2 − |η|2a4
1,2(|η|2)2)χ4 ⊗ [χ4| + (a0

1,1(|η|2)a4
1,1(|η|2)

−a0
1,2(|η|2)a4

1,2(|η|2))(χ0 ⊗ [χ4| + χ4 ⊗ [χ0|) + (a0
1,1(|η|2)2a1

1,2(|η|2)2

+a1
1,1(|η|2)2a0

1,2(|η|2)2)
3
∑

j=1

ηj(χ0 ⊗ [χj| + χj ⊗ [χ0|)
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+(a4
1,1(|η|2)2a1

1,2(|η|2)2 + a1
1,1(|η|2)2a4

1,2(|η|2)2)
3
∑

j=1

ηj(χ4 ⊗ [χj |+χj ⊗ [χ4|)
]

−e−A1(|η|2)t 2i sin(|η|A1
1(|η|2)t)

|η|
[

− 2i|η|2a0
1,1(|η|2)a0

1,2(|η|2)χ0 ⊗ [χ0|

−2i|η|2a4
1,1(|η|2)a4

1,2(|η|2)χ4 ⊗ [χ4| − |η|2(a0
1,1(|η|2)a4

1,2(|η|2)
+a4

1,1(|η|2)a0
1,2(|η|2))(χ0 ⊗ [χ4| + χ4 ⊗ [χ0|) + (a0

1,1(|η|2)a1
1,1(|η|2)

+|η|2a0
1,2(|η|2)a1

1,2(|η|2))
3
∑

j=1

ηj(χ0 ⊗ [χj| + χj ⊗ [χ0|)

+(a4
1,1(|η|2)a1

1,1(|η|2)

+|η|2a4
1,2(|η|2)a1

1,2(|η|2))
3
∑

j=1

ηj(χ4 ⊗ [χj| + χj ⊗ [χ4|)
]

Evaluation of ak
1,j(|η|2) at η = 0 in (7.36) gives

ĜH1(η) = e−A1(|η|2)t cos(|η|A1
1(|η|2)t)

( 1

15
|ξ|2

√
M ⊗ [|ξ|2

√
M|

+|η|2H00 +

3
∑

j=1

ηj
H0j

)

+e−A1(|η|2)t sin(|η|A1
1(|η|2)t)

c|η|
( c√

15

3
∑

j=1

iηj(|ξ|2
√

M ⊗ [ξj
√

M|

+ξj
√

M ⊗ [|ξ|2
√

M|) + |η|2H04

)

,

where H0j are analytic in η for j = 0, 1, 2, 3, 4. We now consider one of the

remaining micro parts

ĜH1(η, t) =eλ1(η)t(P0ψ1(η) ⊗ [P1ψ1(η)| − Pm
0 ψ1(η) ⊗ [(L1 − 1)Pm

0 ψ1(η)|)
+eλ3(η)t(P0ψ3(η) ⊗ [P1ψ3(η)| − Pm

0 ψ3(η) ⊗ [(L3 − 1)Pm
0 ψ3(η)|)

and note that P1ψ1 and P1ψ3 are related by























P1ψ1(η) = (L1 − 1)P0ψ1(η)

= (L − iP1ξ · η +A1(|η|2) + i|η|A1
1(|η|2))−1(P1iξ · η)P0ψ1(η),

P1ψ3(η) = (L3 − 1)P0ψ3(η)

= (L − iP1ξ · η +A1(|η|2) − i|η|A1
1(|η|2))−1(P1iξ · η)P0ψ3(η).

(7.49)
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Here we expand the operator (L−iP1ξ ·η+A1(|η|2)+i||A1
1(|η|2))−1, |η| ≪ 1,

as follows

1

L − iP1ξ · η +A1(|η|2) ± i|η|A1
1(|η|2)

=
1

(L − iP1ξ · η +A1(|η|2))(1 +
±i|η|A1

1(|η|2)
L−iP1ξ·η+A1(|η|2)

)

=
1

(L − iP1ξ · η +A1(|η|2))

∞
∑

j=0

( ∓i|η|A1
1(|η|2)

L − iP1ξ · η +A1(|η|2)
)j

=
1 ∓ i|η|A1

1(|η|2)
L−iP1ξ·η+A1(|η|2)

(L − iP1ξ · η +A1(|η|2))

∞
∑

j=0

(−1)j
( |η|2A1

1(|η|2)2
(L − iP1ξ · η +A1(|η|2))2

)j

=
1 ∓ i|η|A1

1(|η|2)
L−iP1ξ·η+A1(|η|2)

(L − iP1ξ · η +A1(|η|2))(1 +
|η|2A1

1(|η|2)2
(L−iP1ξ·η+A1(|η|2))2 )

Thus (L − iP1ξ · η + A1(|η|2) ± i|η|A1
1(|η|2))−1 can be expressed by the

summation of two operators, both analytic in η and P0ψ1 and P0ψ3 are

related

L1 − 1 = M1(η) + |η|M2(η),

L3 − 1 = M1(η) − |η|M2(η),

P0ψ1(η) = (a0
1,1(|η|2) + i|η|a0

1,2(|η|2))χ0 + (a1
1,1(|η|2) + i|η|a1

1,2(|η|2))

×
3
∑

k=1

ηkχk

|η| + (a4
1,1(|η|2) + i|η|a4

1,2(|η|2))χ4

≡ H1 + |η|(H2 +
H4

|η|2 ),

P0ψ3(η) = (a0
1,1(|η|2) − i|η|a0

1,2(|η|2))χ0 − (a1
1,1(|η|2) − i|η|a1

1,2(|η|2))

×
3
∑

k=1

ηkχk

|η| + (a4
1,1(|η|2) − i|η|a4

1,2(|η|2))χ4

≡ H1 − |η|(H2 +
H4

|η|2 ),

Pm
0 ψ1(η) = (a1

1,1(|η|2) + i|η|a1
1,2(|η|2))

3
∑

k=1

ηkχk

|η| ≡ H3 +
H4

|η| ,
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Pm
0 ψ3(η) = −(a1

1,1(|η|2) − i|η|a1
1,2(|η|2))

3
∑

k=1

ηkχk

|η| ≡ H3 −
H4

|η| .

Thus we may rewrite

ĜH1(η, t)

= e−A1(|η|2)t2 cos(|η|A1
1(|η|2)t)

[

(H1 −H3) ⊗ [M1H1

+M2(|η|2H2 +H4)| +H2 ⊗ [|η|2(M2H1 + M1H2) + M1H4|

+H3 ⊗ [M1(H1 −H3) + |η|2M2H2| +H4 ⊗ [M1H2 − M2(H1 −H3)|
]

−e−A1(|η|2)t 2i sin(|η|A1
1(|η|2)t)

|η|
[

(H1 −H3) ⊗ [|η|2(M2H1 + M1H2)

+H4| + |η|2H2 ⊗ [M1H1 + M2(|η|2H2 +H4)|

+|η|2H3 ⊗ [M1H2−M1(H1−H3)|+H4 ⊗ [M1(H1−H3)+|η|2M2H2|
]

= e−A1(|η|2)t2 cos(|η|A1
1(|η|2)t)

[

|η|2H 1
10 +

3
∑

j=1

ηj
H1j

]

−e−A1(|η|2)t sin(|η|A1
1(|η|2)t)

c|η|
[

|η|2H 2
10 +

3
∑

j,k=1

ηjηk
H1jk

]

,

where H l
01, H1j and H1jk is analytic in η for l = 1, 2 j, k = 1, 2, 3. We now

sum them up to obtain

ĜH(η, t) = e−A1(|η|2)t cos(|η|A1
1(|η|2)t)

( 1

15
|ξ|2

√
M⊗[|ξ|2

√
M|+

3
∑

j=1

ηj
Hj

)

+e−A1(|η|2)t sin(|η|A1
1(|η|2)t)

c|η|
( c√

15

3
∑

j=1

iηj(|ξ|2
√

M ⊗ [ξj
√

M|

+ξj
√

M ⊗ [|ξ|2
√

M|) +
3
∑

j,k=1

ηjηk
Hjk

)

,

then trigonometric equality gives the result for the Huygens pairing.
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Contact pairing ĜC(η, t)

We recall that from (7.36b)

ψ2(η) = L2P0ψ2(η)

=
(

1 + [L − iP1ξ · η +A2(|η|2)]−1iP1ξ · η
)

(a0
2,1(|η|2)χ0

+ia1
2,2(|η|2)

3
∑

j=1

ηjχj + a4
2,1(|η|2)χ4),

and that the micro part is zero when η = 0. Thus we can calculate contact

pairing as follows:

ĜC(x, t)

= e−A2(|η|2)tψ2(η) ⊗ [ψ2(η)|
= e−A2(|η|2)t

(

P0ψ2(η) ⊗ [P0ψ2(η)| + P0ψ2(η) ⊗ [(L2 − 1)P0ψ2(η)|

+(L2 − 1)P0ψ2(η) ⊗ [ψ2(η)|
)

= e−A2(|η|2)t
( 1

10
(|ξ|2 − 5)

√
M ⊗ [(|ξ|2 − 5)

√
M| + |η|2C0 +

3
∑

j=1

ηj
Cj

)

,

for some Cj analytic in η.

1nd Riesz Pairing ĜPR1
(η, t)

From (7.35), (7.36a), (7.36c) and (7.39) we have

ĜPR1
(η, t) = e−A1(|η|2)t−i|η|A1

1(|η|2)t
L1P

m
0 ψ1(η) ⊗ [L1P

m
0 ψ1(η)|

−e−A1(|η|2)t
L1P

m
0 ψ1(η) ⊗ [L1P

m
0 ψ1(η)|

+e−A1(|η|2)t+i|η|A1
1(|η|2)t

L3P
m
0 ψ3(η) ⊗ [L3P

m
0 ψ3(η)|

−e−A1(|η|2)t
L3P

m
0 ψ3(η) ⊗ [L3P

m
0 ψ3(η)|

= e−A1(|η|2)t(cos(|η|A1
1(|η|2)t) − 1)

[

L1P
m
0 ψ1(η) ⊗ [L1P

m
0 ψ1(η)

+L3P
m
0 ψ3(η) ⊗ [L3P

m
0 ψ3(η)

]

−e−A1(|η|2)t sin(|η|A1
1(|η|2)t)

[

L1P
m
0 ψ1(η) ⊗ [L1P

m
0 ψ1(η)

−L3P
m
0 ψ3(η) ⊗ [L3P

m
0 ψ3(η)

]

,
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= e−A1(|η|2)t2(cos(|η|A1
1(|η|2)t) − 1)

×
[

((1 + M1)i|η|a1
1,2(|η|2) + |η|M2a

1
1,1(|η|2))

×
3
∑

j=1

ηj

|η|χj ⊗ [((1 + M1)i|η|a1
1,2(|η|2) + |η|M2a

1
1,1(|η|2))

3
∑

k=1

ηk

|η|χk|

+((1 + M1)a
1
1,1(|η|2) + i|η|2M2a

1
1,2(|η|2))

×
3
∑

j=1

ηj

|η|χj ⊗ [((1 + M1)a
1
1,1(|η|2) + i|η|2M2a

1
1,2(|η|2))

3
∑

k=1

ηk

|η|χk|
]

+e−A1(|η|2)t2 sin(|η|A1
1(|η|2)t)

×
[

((1 + M1)i|η|a1
1,2(|η|2) + |η|M2a

1
1,1(|η|2))

×
3
∑

j=1

ηj

|η|χj ⊗ [((1 + M1)a
1
1,1(|η|2) + i|η|2M2a

1
1,2(|η|2))

3
∑

k=1

ηk

|η|χk|

+((1 + M1)a
1
1,1(|η|2) + i|η|2M2a

1
1,2(|η|2))

×
3
∑

j=1

ηj

|η|χj ⊗ [((1 + M1)i|η|a1
1,2(|η|2)

+|η|M2a
1
1,1(|η|2))

3
∑

k=1

ηk

|η|χk|
]

,

and that a1
1,1(0) =

√

1/2 and the microscopic parts containing one more η.

Thus we obtain

ĜPR1
(η, t) = e−A1(|η|2)t(cos(|η|A1

1(|η|2)t) − 1)

×
3
∑

j,k=1

ηjηk

|η|2
[

χj ⊗ [χk| +
3
∑

l=1

ηl
Pjkl + |η|2P1

jk

]

+e−A1(|η|2)t sin(|η|A1
1(|η|2)t)

c|η|

3
∑

j,k=1

ηjηk
P

2
jk,

for some Pjkl P1
jk and P2

jk analytic in η. Here we have used the trigono-

metric equalities as in the Huygens pairing case.
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2nd Riesz Pairing ĜPR2
(η, t)

ĜPR2
(η, t) = (e−A1(|η|2)t − e−A4(|η|2)t)

×
[

((1 + M1)i|η|a1
1,2(|η|2) + |η|M2a

1
1,1(|η|2))

×
3
∑

j=1

ηj

|η|χj ⊗ [((1 + M1)i|η|a1
1,2(|η|2) + |η|M2a

1
1,1(|η|2))

×
3
∑

k=1

ηk

|η|χk| + ((1 + M1)a
1
1,1(|η|2) + i|η|2M2a

1
1,2(|η|2))

×
3
∑

j=1

ηj

|η|χj ⊗ [((1 + M1)a
1
1,1(|η|2) + i|η|2M2a

1
1,2(|η|2))

3
∑

k=1

ηk

|η|χk|
]

= (e−A1(|η|2)t − e−A4(|η|2)t)

×
3
∑

j,k=1

ηjηk

|η|2
[

χj ⊗ [χk| +
3
∑

l=1

ηl
Pjkl + |η|2P1

jk

]

.

Rotational pairing ĜR(η, t)

We have

ĜR(η, t) = e−A4(|η|2)t
(

ψ4(η) ⊗ [ψ4(η)| + ψ5(η) ⊗ [ψ5(η)|

+L1P
m
0 ψ1(η) ⊗ [L1P0ψ1(η)| + L3P

m
0 ψ3(η) ⊗ [L3P0ψ3(η)|

)

.

First, we recall that from the above cases

L1P
m
0 ψ1(η) ⊗ [L1P0ψ1(η)| + L3P

m
0 ψ3(η) ⊗ [L3P0ψ3(η)|

−a1
1,1(|η|2)2

3
∑

j,k=1

ηjηk

|η|2 (1 + M1)χj ⊗ [(1 + M1)χk|.

We now use (7.36d) and (7.36e)

{

P0ψ4(η) = a2
4,1(|η|2)gχ2,

P0ψ5(η) = a2
4,1(|η|2)gχ3.

to yield

ψ4(η) ⊗ [ψ4(η)| + ψ5(η) ⊗ [ψ5(η)|
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= a2
4,1(|η|2)2

(

L4gχ2 ⊗ [L4gχ2| + L4gχ3 ⊗ [L4gχ3|)
)

≡ a2
4,1(|η|2)2(

3
∑

j=1

L4χj ⊗ [L4χj | −
3
∑

j,k=1

ηjηk

|η|2 L4χj ⊗ [L4χk|),

Here our calculations are similarly to (7.43) and we have used g(η/|η|,α,

β) = ((1, 0, 0), (0, 1, 0), (0, 0, 1)). We now observe that, for small η,

L4 − (1 + M1)

=
[(

L − iP1ξ · η +A4(|η|2)
)−1

−
(

L−iP1ξ · η+A1(|η|2)
)−1(

1+
|η|2A1

1(|η|2)2
(L−iP1ξ · η+A1(|η|2))2

)−1]

(iP1ξ · η)

= |η|2N (iP1ξ · η),

for some N analytic in η. Thus we have

3
∑

j,k=1

ηjηk

|η|2
[

a2
4,1(|η|2)2L4χj⊗[L4χk|−a1

1,1(|η|2)2(1+M1)χj⊗[(1+M1)χk|
]

=

3
∑

j,k=1

ηjηk
R

0
jk,

and conclude that

ĜR(η, t) = e−A4(|η|2)t
[

3
∑

j=1

(χj ⊗ [χj | +
3
∑

k=1

ηk
Rjk) +

3
∑

j,k=1

ηjηk
R

0
jk

]

.

This completes the proof of the proposition. ���

With the analyticity property, we adopt complex analysis technique to

estimate the pairings of (7.39). We state first a general lemma.

Lemma 7.11. Suppose that f(η, t) = O(1)eO(|η|4)t is analytic in η for |η| <
δ ≪ 1. Then in the region of |x| < (M+1)ct, M any given positive constant,

there exists a constant C such that the following inequality holds:

∫

|η|<δ
eix·ηe−A|η|2tηαf(η, t)dη ≤ C

(

(1 + t)−
3+|α|

2 e−
|x|2

Ct + e−t/C
)

.
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Proof. We choose an orthogonal transformation Ox which maps x
|x| to

(1, 0, 0), i.e.,

Ox
x

|x| = (1, 0, 0). (7.50)

We change variables ξ → ζ = Oxξ, then by virtue of the orthogonality of

the transformation,

x · ξ = Oxx ·Oxξ = |x|(1, 0, 0) · ζ = |x|ζ1, |ξ| = |ζ|, and ξi = (O−1
x ζ)i.

(7.51)

Thus we may rewrite

∫

|η|<δ
ei|x|η

1
e−A|η|2tηαf(η, t)dη

=

∫

|η|<δ
eix·ηe−A|η|2t(O−1

x η)αf(O−1
x η, t)dη

We will prove this lemma only in the case of α = 0. The extra factor ηi,

i = 1, 2, 3 result in the extra time-decaying factor t−
1
2 ; details are omitted.

We first divide the integral into two region {|η| < δ} = B ∪ (Bc ∩ {|η| <
δ}) ≡ D1 ∪D2 where

B ≡ [−δ
2
,
δ

2
] × [−δ

2
,
δ

2
] × [−δ

2
,
δ

2
].

On D2, |η| > δ
2 and so

∫

D2

ei|x|η
1
e−A|η|2tf(O−1

x η, t)dη ≤ Ce−t/C . (7.52)

To estimate the integration on D1 part, we use analyticity of f(O−1
x η, t)

to equate the integral with respect to η1 on [− δ
2 ,

δ
2 ] with the integral on

Γ(− δ
2 ,

δ
2 ,

|x|
tM ),

Γ(−δ
2
,
δ

2
,
|x|
tM

) = Γ1 ∪ Γ2 ∪ Γ3

= {η1 : Re(η1) = −δ
2
, 0 < Im(η) <

|x|
tM

}

∪ {η1 : −δ
2
< Re(η1) <

δ

2
, Im(η1) =

|x|
tM

.}
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∪ {η1 : Re(η1) =
δ

2
, 0 < Im(η1) <

|x|
tM

},

B
2 = {(η2, η3) ∈ R

2||η2|, |η3| < κ

2
},

here we take M large enough such that on the contour we have the growth

rate

|f(O−1
x η, t)| ≤ O(1)eo(1)|η|

2
.

We now break the domain of integration into two parts

∫

D1

ei|x|η
1
e−A|η|2tf(O−1

x η, t)dη

=

∫

B2

∫

Γ1∪Γ3

ei|x|η
1
e−A|η|2tf(η, t)dη1dη2dη3

+

∫

B2

∫

Γ2

ei|x|η
1
e−A|η|2tf(η, t)dη1dη2dη3 = J1 + J2.

Note that |η| > δ
2 on Γ1 and Γ3, and

J1 =

∫

B2

∫

Γ1∪Γ3

ei|x|η
1
e−A|η|2tf(η, t)dη ≤ Ce−t/C . (7.53)

We now estimate the integral over Γ2

J2 ≡
∫

B2

∫

Γ2

ei|x|η
1
e−A|η|2t+o(1)|η|2tdη1dη2dη3

= e−
|x|2

4At

∫

B2

∫

Γ2

e−At|η1− i|x|
2At

|−At|η2|2−At|η3|2+o(1)|η|2tdη1dη2dη3

= e−
|x|2

4At

∫

B2

∫ δ
2

− δ
2

e−At|u+ i|x|
Mt

− i|x|
2At

|−At|η2|2−At|η3|2+o(1)(|u+ i|x|
Mt

|2+|η2|2+|η3|2)t

dudη2dη3

= e−
|x|2

4At
(1−(1− 2A

M
)2)

∫

B2

∫ δ
2

− δ
2

e−Au2t−2Aut(
i|x|
Mt

− i|x|
2At

)−At|η2|2−At|η3|2+o(1)(|u+
i|x|
Mt

|2+|η2|2+|η3|2)t

dudη2dη3,
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and so

|J2| ≤ Ce−
|x|2

Ct

∫

B2

∫ δ
2

− δ
2

e−
A
2

u2t−At
2
|η2|2−At

2
|η3|2dudη2dη3

≤ C
1

(1 + t)
3
2

e−
|x|2

Ct , (7.54)

We combine (7.52), (7.53) and (7.54) to complete the proof. ���

Theorem 7.12. For any given Mach number M > 1, there exists C > 0

such that for |x| ≤ (M + 1)ct,

‖GH(x, t) − G
0
H(x, t)‖L2

ξ
≤ C

[e−
(|x|−ct)2

Ct

(1 + t)5/2
+ e−t/C

]

,

‖GPR1
(x, t) − G

0
PR1

(x, t)‖L2
ξ
≤ C

[e−
(|x|−ct)2

Ct

(1 + t)5/2
+

e−
|x|2

Ct

(1 + t)5/2

+χ|x|≤ct(1 + t)−2(1 +
|x|2
t

)−
3
2 + e−t/C

]

,

‖GC(x, t)−G
0
C(x, t)‖L2

ξ
, ‖GPR2

(x, t)−G
0
PR2

(x, t)‖L2
ξ
, ‖GR(x, t)−G

0
R(x, t)‖L2

ξ

≤ C
[ e−

|x|2

Ct

(1 + t)2
+ e−t/C

]

. (7.55)

Proof. It is enough to provide the proof for ‖GP(x, t)−G
1
P(x, t)‖L2

ξ
for any

pairing P since we have showed the remainder of G
1
P decay faster when the

explicit leading fluid-like waves G
0
P(x, t) has been taken away in Theorem

7.9. The Huygens wave are calculated using Theorem 7.1 and Lemma 7.2:

‖GH(x, t) − G
1
H(x, t)‖L2

ξ
=
∥

∥

∥

1

(2π)3

∫

|η|<δ/2
eix·η(ĜH(η, t) − Ĝ

1
H(η, t))dη

∥

∥

∥

L2
ξ

.

From Proposition 7.10,

ĜH(η, t) − Ĝ
1
H(η, t)

= e−A1|η|2t(eO(|η|4)t − 1)
[

cos(c|η|t)
{

cos(|η|Λ(|η|2)t)

×
( 1

15
|ξ|2

√
M ⊗ [|ξ|2

√
M| +

3
∑

j=1

ηj
Hj

)
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+
sin(|η|Λ(|η|2)t)

c|η|
( c√

15

3
∑

j=1

iηj(|ξ|2
√

M ⊗ [ξj
√

M| + ξj
√

M ⊗ [|ξ|2
√

M|)

+

3
∑

j,k=1

ηjηk
Hjk

)}

+
sin(c|η|t)

c|η|
{

cos(|η|Λ(|η|2)t)

×
( c√

15

3
∑

j=1

iηj(|ξ|2
√

M ⊗ [ξj
√

M| + ξj
√

M ⊗ [|ξ|2
√

M|) +
3
∑

j,k=1

ηjηk
Hjk

)

+
sin(|η|Λ(|η|2)t)

c|η| c2|η|2
( 1

15
|ξ|2

√
M ⊗ [|ξ|2

√
M| +

3
∑

j=1

ηj
Hj

)}]

+e−A1|η|2t
[

cos(c|η|t)
{

(cos(|η|Λ(|η|2)t) − 1)
1

15
|ξ|2

√
M ⊗ [|ξ|2

√
M|

+ cos(|η|Λ(|η|2)t)
3
∑

j=1

ηj
Hj

+
sin(|η|Λ(|η|2)t)

c|η|
( c√

15

3
∑

j=1

iηj(|ξ|2
√

M ⊗ [ξj
√

M|

+ξj
√

M ⊗ [|ξ|2
√

M|) +
3
∑

j,k=1

ηjηk
Hjk

)}

+
sin(c|η|t)

c|η|
{

(cos(|η|Λ(|η|2)t) − 1)
c√
15

3
∑

j=1

iηj(|ξ|2
√

M ⊗ [ξj
√

M|

+ξj
√

M ⊗ [|ξ|2
√

M|) + cos(|η|Λ(|η|2)t)
3
∑

j,k=1

ηjηk
Hjk

+
sin(|η|Λ(|η|2)t)

c|η| c2|η|2
( 1

15
|ξ|2

√
M ⊗ [|ξ|2

√
M| +

3
∑

j=1

ηj
Hj

)}]

≡ cos(c|η|t)O(|η|4)te−A1|η|2tH1 +
sin(c|η|t)

c|η| O(|η|4)te−A1|η|2tH2

+ cos(c|η|t)e−A1|η|2tH3 +
sin(c|η|t)

c|η| e−A1|η|2tH4.

We have

∥

∥

∥

1

(2π)3

∫

|η|<δ
eix·η

sin(c|η|t)
c|η| e−A1|η|2tHjdη

∥

∥

∥

L2
ξ
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=
∥

∥

∥w ∗ 1

(2π)3

∫

|η|<δ
eix·ηe−A1|η|2tHjdη

∥

∥

∥

L2
ξ

,

∥

∥

∥

1

(2π)3

∫

|η|<δ
eix·η cos(c|η|t)e−A1|η|2tHjdη

∥

∥

∥

L2
ξ

=
∥

∥

∥
wt ∗

1

(2π)3

∫

|η|<δ
eix·ηe−A1|η|2tHjdη

∥

∥

∥

L2
ξ

.

To apply Theorem 7.1 and Lemma 7.2 we only need to estimate
∥

∥

∥

∫

|η|<δ/2 e
ix·ηe−A1|η|2tHjdη

∥

∥

∥

L2
ξ

. Note that

| cos(|η|Λ(|η|2)t)|,
∣

∣

∣

sin(|η|Λ(|η|2)t)
|η|

∣

∣

∣
≤ CeO(|η|3)t,

and that H1 and H2 have extra O(|η|4)t. These induce extra (1+ t)−1 decay

by Lemma 7.11:

∥

∥

∥

∫

|η|<δ/2
eix·ηO(|η|4)te−A1|η|2tH1dη

∥

∥

∥

L2
ξ

≤ C
( e−

|x|2

Ct

(1 + t)5/2
+ e−t/C

)

,

∥

∥

∥

∫

|η|<δ/2
eix·ηO(|η|4)te−A1|η|2tH2dη

∥

∥

∥

L2
ξ

≤ C
( e−

|x|2

Ct

(1 + t)3
+ e−t/C

)

Similarly, for H3 and H4 we use the following equality

cos(|η|Λ(|η|2)t) − 1 = |η|2Λ(|η|2)
∫ t

0

sin(|η|Λ(|η|2)τ)
|η| dτ,

to obtain

∥

∥

∥

∫

|η|<δ
eix·ηO(|η|4)te−A1|η|2tH3dη

∥

∥

∥

L2
ξ

≤ C
(e

− |x|2

C(1+t)

t2
+ e−t/C

)

,

∥

∥

∥

∫

|η|<δ
eix·ηO(|η|4)te−A1|η|2tH4dη

∥

∥

∥

L2
ξ

≤ C
(e

− |x|2

C(1+t)

t5/2
+ e−t/C

)

.

We now consider 1st Riesz wave.

ĜPR1
(η, t) − Ĝ

1
PR1

(η, t)

= e−A1|η|2t(eO(|η|4)t − 1)
[

(cos(c|η|t) cos(|η|Λ(|η|2)t) − 1)
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×
3
∑

j,k=1

ηjηk

|η|2
(

χj ⊗ [χk| +
3
∑

l=1

ηl
Pjkl + |η|2P1

jk

)

+
sin(c|η|t)

c|η|
{

− sin(|η|Λ(|η|2)t)
|η|

3
∑

j,k=1

cηjηk
(

χj ⊗ [χk| +
3
∑

l=1

ηl
Pjkl

+|η|2P1
jk

)

+ cos(|η|Λ(|η|2)t)
3
∑

j,k=1

ηjηk
P

2
jk

}

+ cos(c|η|t)sin(|η|Λ(|η|2)t)
c|η|

3
∑

j,k=1

ηjηk
P

2
jk

]

+e−A1|η|2t
[

cos(c|η|t)
{

(cos(|η|Λ(|η|2)t) − 1)
3
∑

j,k=1

ηjηk

|η|2
(

χj ⊗ [χk|

+
3
∑

l=1

ηl
Pjkl + |η|2P1

jk

)sin(|η|Λ(|η|2)t)
c|η|

3
∑

j,k=1

ηjηk
P

2
jk

}

+(cos(c|η|t) − 1)
3
∑

j,k=1

ηjηk

|η|2
(

3
∑

l=1

ηl
Pjkl + |η|2P1

jk

)

+
sin(c|η|t)

c|η|
{

− sin(|η|Λ(|η|2)t)
|η|

3
∑

j,k=1

cηjηk
(

χj ⊗ [χk|

+
3
∑

l=1

ηl
Pjkl + |η|2P1

jk

)

+ cos(|η|Λ(|η|2)t)
3
∑

j,k=1

ηjηk
P

2
jk

}]

≡ O(|η|4)te−A1|η|2t
(

cos(c|η|t)P1 +
sin(c|η|t)

c|η| P2

−
3
∑

j,k=1

ηjηk

|η|2
(

χj ⊗ [χk| +
3
∑

l=1

ηl
Pjkl + |η|2P1

jk

))

+e−A1|η|2t
(

cos(c|η|t)P3 +
sin(c|η|t)

c|η| P4 + (cos(c|η|t) − 1)P5

−
3
∑

j,k=1

ηjηk
P

1
jk

)

.

We now use Theorem 7.1 and Lemma 7.2 and Lemma 7.11 to obtain

∥

∥

∥

∫

|η|<δ
eix·ηO(|η|4)te−A1|η|2tPjdη

∥

∥

∥

L2
ξ
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≤ C
( e−

|x|2

Ct

(1 + t)5/2
+ e−t/C

)

, for j=1, 2,

∥

∥

∥

∫

|η|<δ
eix·ηe−A1|η|2tPjdη

∥

∥

∥

L2
ξ

≤ C
( e−

|x|2

Ct

(1 + t)5/2
+ e−t/C

)

, for j=3, 4,

∥

∥

∥

∫

|η|<δ
eix·ηO(|η|4)te−A1|η|2t

3
∑

j,k=1

ηjηk

|η|2
(

χj ⊗ [χk|

+

3
∑

l=1

ηl
Pjkl+|η|2P1

jk

)

dη
∥

∥

∥

L2
ξ

≤ C
( e−

|x|2

Ct

(1 + t)5/2
+ e−t/C

)

,

∥

∥

∥

∫

|η|<δ
eix·ηe−A1|η|2t

3
∑

j,k=1

ηjηk
P

1
jk

]

dη
∥

∥

∥

L2
ξ

≤ C
( e−

|x|2

Ct

(1 + t)5/2
+ e−t/C

)

.

To calculate cos(c|η|t) − 1)P5, we write

cos(c|η|t) − 1)P5 = (cos(c|η|t) − 1)

3
∑

j,k,l=1

ηjηkηl

|η|2 Pjkl

=

∫ t

0

sin(c|η|τ)
c|η|

3
∑

j,k,l=1

c2ηjηkηl
Pjkldτ,

and so the inverse Fourier transform of cos(c|η|t) − 1)P5 satisfies

∥

∥

∥

∫

|η|<δ
eix·ηe−A1|η|2t cos(c|η|t) − 1)P5dη

∥

∥

∥

L2
ξ

=
∥

∥

∥

∫ t

0

∫

|η|<δ
eix·η

sin(c|η|τ)
c|η|

3
∑

j,k,l=1

c2ηjηkηl
Pjkldηdτ

∥

∥

∥

L2
ξ

=
∥

∥

∥

∫ t

0
w(x, τ) ∗

∫

|η|<δ
eix·η

3
∑

j,k,l=1

c2ηjηkηl
Pjkldηdτ

∥

∥

∥

L2
ξ

.

The above has one more η factor comparing to Ĝ
1
PR1

(η, t) which induces

extra (1 + t)−1/2 decay. We can apply similar argument to ‖GC(x, t) −

G
1
C(x, t)‖L2

ξ
, ‖GR(x, t) − G

1
R(x, t)‖L2

ξ
and ‖GPR2

(x, t) − G
1
PR2

(x, t)‖L2
ξ

to

complete the proof. ���
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7.6. Global wave pattern for Green’s function

With the construction of essential kinetic waves and the fluid-like waves

in the finite Mach region, the global structure of the Green’s function can

now be studied following the basic procedure of the 1-D case in the last

two sections. The Mixture Lemma for the 3-D case is a straightforward

generalization of the 1-D case; and similarly for the weighted energy method.

We will not elaborate this and only state the result.

Theorem 7.13. The Green’s function, (7.1),

G = G
0 + GK + GR, (7.56)

consists of the leading fluid-like waves G
0 of Theorem 7.9, the essential ki-

netic waves GK = h0 + h1 + h2 given by (7.4), (7.5)(7.6), and the remainder

GR satisfying

‖GR‖L2
ξ
=O(1)

[e−
(|x|−ct)2

Ct

(1 + t)5/2
+

1

(1+t)2(1+ |x|2
t )

3
2

χ{|x|<ct}+
e
− |x|2

C(1+t)

(1 + t)2
+e−(|x|+t)/C

]

.

(7.57)

Moreover,

‖GP1‖L2
ξ

+ P1‖G‖L2
ξ

= O(1)
[e−

(|x|−ct)2

Ct

(1 + t)5/2
+

1

(1 + t)2(1 + |x|2
t )

3
2

χ{|x|<ct}

+
e
− |x|2

C(1+t)

(1 + t)2
+ e−(|x|+t)/C

]

; (7.58)

‖P1GP1‖L2
ξ

= O(1)(t+ 1)−1/2
[e−

(|x|−ct)2

Ct

(1 + t)5/2
+

1

(1 + t)2(1 + |x|2
t )

3
2

χ{|x|<ct}

+
e
− |x|2

C(1+t)

(1 + t)2
+ e−(|x|+t)/C

]

. (7.59)

Remark 7.14. The Boltzmann equation and the Navier-Stokes equations

share some similarity, for instance, in the large-time behavior of fluid-like

waves. On the other hand, the Boltzmann equation is semi-linear hyper-

bolic; while the Navier-Stokes equations are hyperbolic-parabolic. Thus the
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small time behaviors are quite different. In particular, the Green’s function

for the linear Navier-Stokes equations contains the singularity of the heat

kernel type; while that for the Boltzmann equation does not. Thus in the

above theorem we have expression like (t+ 1)−α instead of t−α. This is seen

analytically as follows: For the hyperbolic-parabolic systems, the inversion

of the Fourier transform is done for the Fourier variables in the whole space,

as the spectrum is known there. For the Boltzmann equation, the spectrum

is known explicitly only near origin. Meanwhile, it is possible to identify

the singular waves, the essential kinetic waves. The Green’s function minus

these singular waves can be as smooth as needed by the Mixture Lemma.

Thus the singularity near the initial time is not of the heat kernel type.

8. Initial-Boundary Value Problem

In this section we use the 1-dimensional Green’s function G(x, t), (5.2),

Theorem 6.18, for the initial value problem to study the pointwise structure

of the solution for the initial-boundary value problem:















gt + ξ1gx = Lg, x > 0

g(x, 0) = I0(x),

g(0, t, ξ)|ξ1>0 = b+(t, ξ).

(8.1)

The Boltzmann equation is semilinear hyperbolic with characteristic lines

d

dt
x(t) = ξ1.

The characteristic lines pointing toward the interior region x > 0 from the

boundary x = 0 correspond to ξ1 > 0. Thus the boundary data b+ is defined

only for positive ξ1, c.f. [11], [17], [33].

As the boundary x = 0 is stationary, we will see that it is important

to specify the sign of the Euler characteristics λj , j = 1, 2, 3, of the base

Maxwellian M = M[1,u,θ] of the linearization. One of the main purposes is

to understand the boundary effect on the wave propagation. For this, we
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choose a localized initial value:






supp(I0) ⊂ [−1, 1],

supx‖I0(x, ·)‖L∞
ξ,3/2

≤ 1,
(8.2)

and the imposed boundary data tends to a constant state exponentially in

time:

sup
ξ1>0

(1 + |ξ|)4|b+| ≤ e−γt/D for some D > 3/min
λi>0

λi. (8.3)

Here, the Mach number of the Maxwellian state M[1,u,θ] is assumed to satisfy

|u|/
√

5θ/3 6= 0, 1; and b+ is a given boundary data for ξ1 > 0, t > 0 with

sufficient decay rate supξ1>0(1 + |ξ|)3|b+(t, ξ)| < ∞ for all t > 0. When

all the Euler characteristics are of the same sign, one can use the energy

method; otherwise, there is no straightforward energy method for the study

of the initial-boundary value problem (8.1). The energy method yields the

existence of the solutions. Our aim is to study the pointwise behavior of

solutions without the same sign property of the Euler characteristics. We

will design a series of approximations through two approximate solution

operators.

8.1. Two approximate solution operators

If the full boundary values g(0, t) = b(t, ξ), ξ ∈ R
3 is known, then there

is the solution formula

g(x, t) =

∫ ∞

0
G(x− y, t)I0(y)dy +

∫ t

0
G(x, t− σ)ξ1b(·, σ)dσ. (8.4)

We introduce the first approximate solution operator using (8.4):











H[I0, b](x, t) : a solution of linearized Boltzmann equation in x > 0,

H[I0, b](x, t) ≡
∫ ∞

0
G(x− y, t)I0(y)dy +

∫ t

0
G(x, t− σ)ξ1b(·, σ)dσ.

(8.5)

Remark 8.1. As the boundary value should only be posted for ξ1 > 0,

the function g(x, t) = H[I0, b](x, t) satisfies only the first two equations of

(8.1) and not the third equation for the boundary values. In other words,
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in general, g(0, t, ξ) 6= b(t, ξ), even for ξ1 > 0. Nevertheless, with the ex-

plicit expression of the Green’s function, Theorem 6.18, the formula (8.4)

offers pointwise expression and will be useful for our analysis of the initial-

boundary value problem (8.1).

The second approximation solution operator is by the damped equation

with physical boundary data b+



































I
γ [I0, b+](x, t) : a solution of damped Boltzmann equation in x ≥ 0,

h(x, t) ≡ I
γ [I0, b+](x, t),















ht + ξ1hx = Lh − γB+h,

h|x=0,ξ+>0 = b+,

h(x, 0) = I0(x).

(8.6)

Here, the Euler waves propagating toward the gas region x > 0 is damped

through the upwind Euler projection operator B+, (4.21). We will also write

B
γ [I0, b+](t) ≡ I

γ [I0, b+](0, t). (8.7)

Remark 8.2. The operator I
γ [I0, b+] does satisfy the physical boundary

value

B
γ [I0, b+](t, ξ)|ξ1>0 = b+(t, ξ).

On the other hand, I
γ [I0, b+] is not an exact solution operator for the origi-

nal Boltzmann equation. Nevertheless, as an approximate operator with the

damped coefficient γ taken to be small, the operator is accurate in restoring

the full boundary values as the waves being damped are leaving the bound-

ary. In fact, in the iterations below, this operator is used mainly for the

purpose of restoring the full boundary values. Moreover, as the Euler waves

with positive speed are damped, we can use the weighted energy method to

estimate the solutions of (8.6).

We now design an iterated scheme based on the above two operators

for the construction of the original initial-boundary value problem (8.1).
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Consider the iterations:















































































q1(x, t) = I
γ [I0, b+](x, t),

b1(t) = q1(0, t),

g1(x, t) = H[I0, b1](x, t),

d1,+(t) ≡ −(g1(0, t) − b+(t))|ξ1>0;

and, for n ≥ 2,

qn(x, t) = I
γ [0, dn−1,+](x, t),

bn(t) = qn(0, t),

gn(x, t) = H[0, bn](x, t),

dn,+(t) = −(gn(0, t) − dn−1,+)|ξ1>0.

(8.8)

As noted above, the functions gn(x, t) are solutions of the Boltzmann equa-

tion, but the boundary condition is not satisfied in general. However, the

discrepancy of the boundary values will shown to decrease and, if the se-

ries
∑∞

n=1 gn(x, t) converges, then it is easy to see that it converges to the

solution of the initial-boundary value problem (8.1).

8.2. Weighted energy method

The initial-boundary value problem for the damped Boltzmann equation

with 0 < γ ≪ 1,















qt + ξ1qx = Lq − γB+ξ
1q, x > 0,

q|x=0,ξ1>0 = q+(t)|ξ1>0,

q|t=0 = u0,

(8.9)

is studied by the weighted energy method. Integrate the first equation in

(8.9) taken inner product with 2q and multiplied with the weight w(x) = eγx:

d

dt

∫ ∞

0
eγx(q, q)dx+

∫ ∞

0
γeγx(q, 2B+ξ

1q − ξ1q)dx− (q(0, t), ξ1q(0, t))

=

∫ ∞

0
eγx(2q,Lq). (8.10)
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We now study the second integral. Decompose the solution into

q = P0q + P1q = q0 + q1 =

3
∑

j=1

(q,Ej)Ej + q1 =

3
∑

j=1

q0jEj + q1.

The macro part of the integrant for the second integral above is

(q0, 2B+ξ
1q0 − ξ1q0) = 2

∑

λj>0

λj(q0j)
2 −

3
∑

j=1

λj(q0j)
2

≥
3
∑

j=1

|λj |(q0j)
2 ≥ Λ(q0, q0), (8.11)

where

Λ ≡ min
λj>0

λj.

The estimate for the micro part is provided by the term (2q,Lq). Thus we

have control of the energy of both parts by using (3.23) and (3.24) and

conclude that, for sufficiently small γ c.f. (6.81),

d

dt

∫ ∞

0
eγx(q, q)dx +

2γ

3
Λ

∫ ∞

0
eγx(q, q)dx− 2(q(0, t), ξ1q(0, t))−

≤ 2(q+, ξ
1q+)+ + 2

∫ ∞

0
eγx(u0, u0)dx, (8.12)

Here,

(f, h)|± ≡
∫

ξ∈R3,±ξ1>0
f(ξ)h(ξ)dξ.

This leads to the estimate

∫ ∞

0
eγx(q, q)dx|τ −

∫ τ

0
e−

γ
2
Λ(τ−t)2(q(0, t), ξ1q(0, t))−dt

≤
∫ τ

0
e−

γ
2
Λ(τ−t)2(q(0, t), ξ1q(0, t))+dt+ e−

γ
2
Λτ2

∫ ∞

0
eγx(u0, u0)dx. (8.13)

By the above estimates, one has

∫ ∞

0
e

γ
2
Λt2(b1(0, t), ξ

1b1(0, t))−dt ≤ O(1)
1

γΛ
, (8.14)
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∫ ∞

0
eγx(q, q)dx|τ ≤ O(1)

e−γτ/D

γ
, (8.15)

where D is given in (8.3).

Remark 8.3. The operator I
γ [I0, b+] is used in the iterations (8.8) to restore

the full boundary values b(t) from the given values b+(t). From (8.13) we

have

∫ t

0
e−

γ
2
Λ(t−s)(b(s), |ξ1|b(s))ds

≤ 2

∫ t

0
e−

γ
2
Λ(t−s)(b+(s), |ξ1|b+(s))ds + 4e−

γ
2
Λτ

∫ ∞

0
eγx(I0, I0)dx, (8.16)

b(t) ≡ I
γ [I0, b+](0, t).

Thus the weighted energy method yields the estimate for the full boundary

values b(t) in terms of the boundary data b+ and the initial data I0. This

turns out to be sufficient for further analysis.

8.3. Pointwise estimates

For the operator I
γ [0, dn−1,+](x, t) in (8.8), we need an estimate for the

function of the form H[I0, b]|x=0 for ξ1 > 0. In carrying out the estimate for

H[0, bn](x, t) in the iteration (8.8), what we have from the previous iteration

is the boundary estimate of the form (8.16). We carry out these estimates

in this subsection. For this, we need to make essential use of the decompo-

sition of the Green’s function into fluid-like, essential kinetic parts, and the

remaining parts, G = GF + GK + GR, (7.56), (6.71), Theorem 5.11, (8.14),

and (8.15).

The first term b1(0, t) = I
γ [I0, b+](0, t) in the iteration is estimated by

the weighted energy method and shown to satisfies estimate of the form

(8.14). We then study the next term in the iteration. The component h0

in (6.71), GK = h0 + h1 + h2, contributes
∫ t
0 h0ξ1b1dσ to H[I0, b1] which

has pointwise estimates when b1 has pointwise structure for ξ1 > 0, with

the same sign as x. This is due to the delta-function in h0. The compo-

nent
∫ t
0 (h1 + h2)ξ1b1dσ gives pointwise structure for all x because of the

regularizing effect from K in constructing h1 and h2. Thus we conclude that
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∫ t
0 GK(x, t−σ)ξ1b1dσ has pointwise estimate given that the boundary values

b1 are given with estimate of the form (8.14):

‖
∫ t

0
GK(x, t− σ)ξ1b+(t− σ)dσ‖L2

ξ

≤ O(1)
1√
γ
e−(|x|+γt)/C0 for x > 0 and some C0 > 0. (8.17)

The detailed calculations are straightforward and omitted.

By the pointwise structure of the fluid-like wave component in (6.70)

and the remainder component in (6.72) together with (8.14), one has that

∥

∥

∥

∥

∥

∫ t

0
GF (x, t− σ)ξ1b1(σ)dσ

∥

∥

∥

∥

∥

L2
ξ

=

∥

∥

∥

∥

∥

∫ t

0
GF (x, t− σ)e−γΛσ/4eγΛσ/4ξ1b1(σ)dσ

∥

∥

∥

∥

∥

L2
ξ

≤ O(1)

(
∫ t

0
‖GF (x, t− σ)‖2

L2
ξ
e−γΛσ/2dσ

)
1
2

×
(
∫ t

0
eγΛσ/2(b1(σ), |ξ1|b1(σ))dσ

)
1
2

≤ O(1)
1

γ







∑

λj>0

e
− (x−λjt)2

C0t

√
1 + t

+O(1)e
−γ

|x|+t
C0






(8.18)

for some C0 > 0. The estimates in (8.17) and (8.18) give the pointwise

estimate of the operator H[I0, b1].

For the convergence of the iterations, we will need more detailed struc-

ture of the Green’s function stated in Theorem 5.11. We can also construct

the Green’s function, GD with similar property for the damped equation

ht + ξ1hx − Lh = −γB+ξ
1h in a whole space problem.

The estimates of b1|ξ1>0 − b0+|ξ1>0.

We know the full values of the function b1(t) = q(0, t) of the solution of
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an initial-boundary problem of the damped Boltzmann equation:















qt + ξ1qx = Lq − γB+ξ
1q, x > 0,

q|x=0,ξ1>0 = b+(t),

q|t=0 = I0.

(8.19)

By the Green’s identity we have in turn the following representation of the

boundary data b+|ξ1>0:

b+|ξ1>0 =

(
∫ ∞

0
G(−y, t)I0(y)dy +

∫ t

0
G(0, t− σ)ξ1q(0, σ)dσ

)∣

∣

∣

∣

ξ1>0

−γ
∫ t

0

∫ ∞

0
G(−y, t− σ)ξ1B+ξ

1qdydσ

∣

∣

∣

∣

ξ1>0

. (8.20)

By the definitions of H[I0, b1] and that b1(t) = q(0, t), one has that

d1,+ = b+|ξ1>0 − H[I0, b1](0, t)|ξ1>0

= −γ
(
∫ t

0

∫ ∞

0
G(−y, t− σ)B+ξ

1q(y, s)dydσ

)

|ξ1>0

. (8.21)

The combination of the energy estimate and separation scale of the Green’s

function is used in the next step:

γ

∥

∥

∥

∥

∫ t

0

∫ ∞

0
G(−y, t− σ)B+ξ

1q(y, s)dydσ

∥

∥

∥

∥

L2
ξ

= γ

∥

∥

∥

∥

∫ t

0

∫ ∞

0
G(−y, t− σ)e−γx/2B+ξ

1q(y, s)eγx/2dydσ

∥

∥

∥

∥

L2
ξ

≤ O(1)γ

∫ t

0

(

∫ ∞

0

(

∑

λj<0

e
− (−y−λj(t−σ))2

C0(t−σ)

(t− σ + 1)2

+
∑

λj>0

e
− (−y−λj(t−σ))2

C0(t−σ)

(t− σ + 1)
+ e

− |x−y|+t−σ
C0

)

e−γydy

)1/2

×
(

∫ ∞

0
eγy(q, q)dy

)1/2

dσ
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≤ O(1)γ

∫ t

0

(

e−K0(t−σ)γ

(t− σ + 1)3/2
+ e−Λ(t−σ) + e

− (t−σ)
C0

)1/2
e−γσ/D

√
γ

dσ

= O(1)γ1/4e−γt/D. (8.22)

Here, we have used the fact that G(x, t)B+ gains an extra decaying factor

0f 1/
√
t+ 1 in the fluid-like wave component located around to |x− λjt| ≤

O(1)
√
t for λj < 0. (8.22) gives the estimate of d0+ in ‖ · ‖L2

ξ ,+. We need

to improve it into a pointwise estimate in ξ1 > 0. For this, one uses the

Green’s function G
γ
D(x, t) for the damped Boltzmann equation (∂t + ξ1∂x −

L+γB+ξ
1)h = 0 for a whole space problem and the estimate (8.14), and the

representation

q(x, t) =

∫ ∞

0
G

γ
D(x− y, t)u0(y)dy +

∫ t

0
G

γ
D(x, t− σ)ξ1b1(σ)dσ

to yield a pointwise ‖q(x, t)‖L2
ξ

estimate in (x, t). With this estimate, one

can interpret the function

D(x, t) ≡
∫ t

0

∫ ∞

0
G(x− y, t− σ)B+ξ

1q(y, σ)dydσ

as the solution of the following initial value problem with a given inhomo-

geneous term γ Heaviside (x)B+ξ
1q with pointwise structure in (x, t, ξ):

{

(∂t + ξ1∂x − L)D = γ Heaviside (x)B+ξ
1q,

D(x, 0) ≡ 0.

where Heaviside (x) is the Heaviside function. With the estimate on ‖
∫ t
0

∫∞
0

G(x− y, t− σ)B+ξ
1q(y, σ)dydσ‖L2

ξ
, by a standard bootstrap procedure, one

obtains estimate of the form:

sup
ξ1>0

(1 + |ξ|)4|d1,+(t, ξ)| ≤ O(1)γ1/4e−γt/D. (8.23)

The estimate (8.23) is compared to that for the given boundary data b+ in

(8.3). Then, one can repeat the procedure from (8.9) by replacing b+ with
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d1,+ and I0 with 0. We therefor show that the iteration scheme satisfies



























sup
ξ1>0

(1 + |ξ|)4dn,+(t) ≤ C1γ
n/5e−γt/D ,

‖gn(x, t)‖L2
ξ
≤ C1γ

−1+ n−1
5







∑

λj>0

e
− (x−λjt)2

C0t

√
1 + t

+O(1)e
−γ |x|+t

C0







(8.24)

for some C1 > 0. This yields the convergence of the iteration scheme and

the series g(x, t) =
∑∞

j=1 gj solves the initial boundary value problem (8.1)

with

‖g(x, t)‖L2
ξ
≤ O(1)C1γ

−1







∑

λj>0

e
− (x−λjt)2

C0t

√
1 + t

+O(1)e
−γ |x|+t

C0






. (8.25)

This structure of g(x, t) and that of the G(x, t) are used to generate the

solution of an given initial boundary value problem with any y > 0:



























(∂t + ξ1∂x − L)h = 0,

h(0, t)|ξ1>0 = 0,

h(x, 0) = 0 for |x− y| ≥ 1,

‖h(·, 0)‖L∞
x (L∞

ξ,4) ≤ 1.

(8.26)

The solution satisfies, for x, t > 0,

‖h(x, t)‖ ≤ O(1)







3
∑

j=1

e
− (x−y−λjt)2

C0(1+t)

√
1 + t

+ e
− |x−y|+t

C0







+O(1)γ−1

∫ t

0

3
∑

j,i=1

e
− (x−λj (t−σ))2

C0(t−σ+1) e
− (y+λiσ))2

C0(σ+1)

√

(t− σ + 1)(σ + 1)
dσ. (8.27)

For the case λ1 < λ2 < 0 < λ3, the solution has the essential support as

depicted in Figure 9. The Green’s function Gb for the initial-boundary value
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problem














(∂t + ξ1∂x − L)Gb = 0,

Gb(0, t)|ξ1>0 = 0,

Gb(x, 0) = δ(x− x0)δ
3(ξ − ξ0), x0 > 0,

(8.28)

can also be constructed. Because of the boundary, the Green’s function is

not translational invariant in x and is of the general form Gb(x, x0, t, ξ; ξ0).

The procedure in the preceding sections of constructing the essential kinetic

and fluid-like waves are needed. The construction of the fluid-like waves

have been outlined above. The construction of essential kinetic waves are

similar. We conclude with the form of the Green’s function, again for the

case of λ1 < λ2 < 0 < λ3:































































































































































Gb = G
F
b + G

K
b + G

R
b ,

G
K
b = h0 + h1 + h2,

h0 = e−ν(ξ)tδ(x− x0 − ξ1t)δ3(ξ − ξ0),

h1 =











































0, for (x− x0 − ξ10t)(ξ
1t− x+ x0) < 0,

0, for (x− x0 − ξ10t)(ξ
1t− x+ x0) > 0,

−x0/ξ
1
0 + x/ξ1 < t, ξ1 > 0, ξ10 < 0,

e−nu(ξ)(t−t1)−nu(ξ0)t1K(ξ−ξ0)
ξ1−ξ1

0)
, otherwise,

t1 ≡ t− (x−x0 − ξ10t)/(ξ
1 − ξ10),

|h2| = O(1)e−ν0(t+|x−x0|)/3 1+|ξ−ξ0|
|ξ−ξ0| (1 + |ξ|)−1,

‖GF
b ‖L2

ξ
= O(1)[

3
∑

j=1

(1 + t)−1/2e−
(x−λjt−x0)2

Ct

+

2
∑

j=1

[(t+ 1)(1 + x0)]
−1/2e−

(x−λ3t−λ3x0/λj)2

Ct ],

‖GR
b ‖L2

ξ
= O(1)e−

(|x|+|x0|+t)
C .

(8.29)

Moreover, the algebraic decay rates are higher when the Green’s function

acts on the micro part of the initial data.
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t

xx0

dx
dt

= λ3
dx
dt

= λ3
dx
dt

= λ3

dx
dt

= λ1

dx
dt

= λ2

Figure 9: Solution for the case λ1 < λ2 < 0 < λ3.
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43. Sone, Y., Molecular Gas Dynamics: Theory, Techniques, and Applications,
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