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Abstract

A 2—primal ring is one in which the prime radical is exactly the set of nilpotent
elements. A ring is clean, provided every element is the sum of a unit and an idempotent.
Keith Nicholson introduced clean rings in 1977 and proved the following: “Every clean ring
is an exchange ring. Conversely, every exchange ring in which all idempotents are central,
is clean.” In this paper, we investigate some of the relationships among ring-theoretic
properties and topological conditions, such as a 2-primal weakly exchange ring and its

prime spectrum Spec(R).

1. Introduction

Throughout this paper, R denotes an associative ring with identity and
Spec(R) (resp. Max(R)) denotes the set of all prime (resp. maximal) ideals
of R. In addition, P(R), J(R) and N (R) are used to denote the prime radi-

cal, Jacobson radical and the set of all nilpotent elements of R, respectively.

From Birkenmeier, Heatherly and Lee |2], a ring R is called 2-primal if
P(R) = N(R). Every reduced rings are 2-primal, but the converse is not
true. According to Crawley and Jonsson [4], a left R-module M is said
to have the exchange property if, for every left R-module A and any two
decompositions of A

A=MEPN =4,
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where M’ = M, there exists submodules A, C A; such that

A=u'P(Pa).

iel

A left R-module M has the finite exchange property if the above condi-
tion is satisfied whenever the index set is finite. Warfield [14] called a ring R
an exchange ring when R has the finite exchange property. Nicholson [10]
gave characterization of exchange rings: R is an exchange ring if and only
if R/J(R) is an exchange ring and idempotents can be lifted modulo J(R),
if and only if for any a € R there exists an idempotent e € Ra such that
1—e€ R(1—a).

A ring R is said to be suitable [10] if for any a € R, there exists an
idempotent e € R such that e € Ra and 1 —e € R(1 — a). Nicholson
[10] proved that the suitable rings and the exchange rings are the same.
We adopted the definition of a suitable ring instead of the definition of an

exchange ring.

A ring is called a clean ring if every element is the sum of a unit and
an idempotent. Nicholson [10] introduced clean rings in 1977 and proved:
Every clean ring is an exchange ring. Conversely, every exchange ring in
which all idempotents are central is clean. Lu and Yu |8] characterized clean
rings by topological properties of their prime spectrums in the commutative

case.

In this paper, we characterize weakly exchange rings by topological prop-
erties of their prime spectrums in non commutative case by proving the re-
sults that if R is a 2-primal ring, then Spec(R) is strongly zero-dimensional,
if and only if R = R/P(R) is a weakly exchange ring, if and only Spec(R)
is strongly zero-dimensional.

We use @ and I to denote a + P(R) and I/P(R), where a € R and I is
an ideal of R containing P(R), respectively.

2. Preliminaries

In this section we recall basic definitions that are needed for our purpose.
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An ideal P of a ring R is said to be prime (resp. completely prime)
if for any a,b € R, aRb C P (resp. ab € P) implies either a € P or b € P.
A ring R is called a strongly 2-primal ring [12] if P (R/I) = N (R/I) for all
proper ideal I of R, where the term proper means only I # R. Note that
every strongly 2-primal is 2-primal. A ring is reduced provided it has no
non zero nilpotent elements. An element e € R is said to be idempotent if
e? = e. Let I be any ideal of R, we say that idempotents lift modulo I if
every idempotents in R/I can be lifted to R (i.e., for any idempotent a + I
of R/I, there exists an idempotent e of R such that a+1 =e+1I). A ring R
is called a pm ring if each prime ideal of R is contained in a unique maximal
ideal of R.

A ring R is called w-regular if for every x € R, there exists a natural
number n = n(x), depending on z, such that " € 2" Rz". A ring R is called
right (left) weakly m-regular if for any x € R, there exists a natural number
n such that 2" € z"Rz"R (2" € Ra"Rx"). A set S C R is m-system if
for any a, b € S, there exists 7 € R such that arb € S. For any ideal [
of R,P(I) = {a € R| every m-system containing a meets I'}. Note that
P(I) C{a € R|a" € I for some n > 1} and P(I) is the intersection of all
prime ideals which contain I. An ideal I is called a radical ideal if P(I) = I.

For any ideal I of R and a € R, we set V(a) = {P € Spec(R) |a € P}

and V(I) = {P € Spec(R)|I C P}. Hence the sets V(I) = () V(a), where
acl
I is the ideal of R, satisfy the axioms for the closed sets of a topology on

Spec(R), called Zariski topology. Dually we set

U(a) = {P € Spec(R) |a ¢ P} and
U(I) = {PeSpec(R) |I L P}.

We say that a space X is zero-dimensional if it has a base consisting of
clopen sets, and is strongly zero-dimensional if for any closed set A and open
set V' containing A, there exists a clopen set U such that A C U C V. Note
that these are equivalent to the concepts defined in McGovern [9] and Samei
[11], respectively, for a Tychonoff space. Since a space satisfies T; if and only

if every singleton set is closed, any strongly zero-dimensional space with T3
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is always zero-dimensional and converse holds for a compact Ti-space by

Gillman and Jerision [6, Theorem 16.16], or being proven directly.

3. Prime spectrums of 2-primal rings

In this section, we introduce the notion of weakly exchange rings. We

begin with the following definition.

Definition 3.1. A ring R is called a weakly exchange ring if for any a € R,
there exists an idempotent e € R such that e € RaR and 1 —e € R(1 —a)R.

Example 3.2.

(1) Let @ be the ring of all rational numbers and L is the set of all rational
numbers with odd denominators. Then clearly L is a sub ring of Q.
Define

R=R(Q,L)={(z1,x2,...,2pn,8,8,...) |[n>1,x;€Q,for1<i<n,s€L}

with componentwise operations. It can be easily seen that R is a weakly

exchange ring.

(2) Let R = Ms(D), where D is a division ring. Then R is a weakly exchange

00 00
ring. For, if x = ( > € R, then choose e = (O 0). It is clear that
00

01

10 10 10 10 .
. Clearly €? = e,e = = T € RzR. Since
01 01 01 01

00 00
l—z= , we have 1 —e = 00 € R(1—=z)R. Therefore, assume
00

a b 10 00 .
that x = € R— , . Since x # 0, any one of a, b, ¢
cd 01 00

11
and d is non-zero. If a # 0, then choose e = (0 0). It can be checked

10
e?=c,e€c ReRand1—e€ R(1—2)R. Ifz = < ),thenchoosee:



2011] ON PRIME SPECTRUMS OF 2-PRIMAL RINGS T

) 11 10\ fab) (11 10 11
that e = ¢, e = =1 =1 x €
00 00/ \ecd/ \0OO 00 00
0 -1 =0\ (l-a -b ) (01
RxR and 1 — e = = a _
0 1 -0 —c 1-d) \00
-1 9 01
11_“ 0 (1—x) 00 € R(1—z)R. Similarly, we can prove that the
T—a
same idempotent works for b # 0, ¢ # 0 and d # 0. Thus R is a weakly

exchange ring.

Lemma 3.3. Let R be a 2-primal ring. For any prime ideal P of R, there
is a completely prime ideal Q of R such that P(R) C Q C P.

Proof. Assume that R is a 2-primal ring. Then R = R/P(R) is reduced
and hence every minimal prime ideal of R is completely prime by [12, Propo-
sition 1.11], since any reduced ring is 2-primal. Clearly P is a prime ideal of
R if and only if P = P/P(R) is a prime ideal of R. For every P €Spec(R),
there is a minimal prime ideal @ of R such that P(R) C @ C P. We claim
that @ is a completely prime ideal of R. Since ) is minimal prime such that
P(R) C Q, Q@ = Q/P(R) is minimal prime in R. Hence Q is completely
prime in R and consequently Q is a completely prime ideal of R. O

The following is Theorem 3.5 of Zhang et al. [15]. But we prove it in a
different way.

Lemma 3.4. Let R be a 2-primal ring. Then

(i) U(x)=V(1 —z) and V(z) = U(1 — x) for any idempotent T in R.
(ii)) U(e) =V (1 —e) and V(e) = U(1 — e) for any idempotent e in R.

Proof. (i) Let T be an idempotent in R. It is clear that V(1 —x) C U(x).
Let P € U(x). Then = ¢ P. Suppose that P ¢ V(1 —x). Since R is 2 primal,
there is a completely prime ideal @ of R such that P(R) C @ C P by Lemma
B3l Sincex ¢ Pand 1 —2 ¢ P,2? — 2z ¢ Q and hence 22 — = ¢ P(R).
This shows that T is not an idempotent in R, a contradiction. Therefore
l1—ze€P.SoPeV(l—x). Thus U(x) = V(1 —z). Similarly, we can prove
that V(z) =U(1 — z).
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(ii) It is clear that V(1 —e) C Uf(e) for any idempotent e of R. Let
P e Uf(e). Then e ¢ P. Suppose that P ¢ V(1 —e). By the similar argument
used in part (i), there is a completely prime ideal @ of R such that e? —e ¢ Q,
ie, 0 ¢ @Q, a contradiction. Therefore U(e) = V(1 — e). Similarly, we can
prove that V(e) = U(1 — e). O

Note that clop(Spec(R)) denotes the set of all clopen (ie., both open
and closed) sets of Spec(R). Idempotents always lift modulo any nil ideal [1,
Proposition 27.1], and 2-primality guarantees that P(R) is a nil ideal. The
following lemma shows that every clopen subset of Spec(R) is from V'(e),
where e € R is an idempotent as proved in [15, Theorem 3.6]. However, it

is proved using a different approach in this paper.

Lemma 3.5.

(i) Let R be a 2-primal ring. Then
clop(Spec(R)) = {V (z) |Z is an idempotent in R}

and

clop(Spec(R)) = {V (Z) | T is an idempotent in R} .

(i)
clop(Spec(R)) = {V(e) | e is an idempotent in R}.

Proof. (i) Let V(I) € clop(Spec(R)), where [ is an ideal of R. Then there
exists an ideal J of R such that V(I)NV(J) = and V(I)UV(J) = Spec(R).
It can be seen that [+ J = R and I.J C P(R). So that there exist a € I and
1 —a € J such that a(l — a) € P(R). Hence @ is an idempotent in R. Since
acl,V(I)CV(a). Let P € V(a).If 1 —a € P, then 1 € P, a contradiction.
So that 1 —a ¢ P, but 1 —a € J. This shows that P ¢ V(J) and conse-
quently P € V(I). Therefore V(I) = V(a). Thus clop(Spec(R)) C {V(z)|Z
is an idempotent in R}. On the other hand, let @ be an idempotent in R.
It is enough to prove that the complement of V(a) is closed, i.e., U(a) is
closed. Since U(a) = V(1 — a), by Lemma [3.4] (i), U(a) is closed. Thus we
get clop(Spec(R)) = {V(z) |z an idempotent in R}. Similarly, we can prove

that clop(Spec(R)) = {V(Z)|Z is an idempotent in R} by using Lemma
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B.A4ii) and the fact that P(R) = 0, where 0 = P(R), since R is 2-primal.

(ii) Let V(1) € clop(Spec(R)), where [ is an ideal of R. By the similar
argument used in part (i), we get an idempotent @ in R such that a € I and
an ideal J of R such that V(I)NV (J) =0, V(I)UV(J) = Spec(R),1—a € J.
Since idempotents lift modulo P(R), there exists an idempotent e of R such
that @ = e. Our claim is that V(I) = V(e). Let P € V(e), then a € P,
because @ = €. Hence 1 —a ¢ P, but 1 —a € J. So that P ¢ V(J) and
consequently P € V(I). Clearly V(I) C V(e) because a € I. Thus

clop(Spec(R)) C {V(e) | e is an idempotent in R}.

On the other hand, let e be an idempotent in R. It is enough to prove that
the complement of V' (e) is closed, i.e., U(e) is closed. Since U(e) = V(1 —e),
by Lemma [B.4] (ii), U(e) is closed. Thus clop(Spec(R))= {V(e)|e is an
idempotent in R}. O

Theorem 3.6. Let R be a 2-primal ring. If R is m-regular, then Spec(R)
is zero-dimensional.

Proof. Assume that R is m-regular. Let U(I) be any open set in Spec(R).
For any a € I, there exist a positive integer n and b € R such that a™ = a"ba™
because of m-regularness. Take e = a™b, then e is an idempotent of R. We
claim that U(a) = U(e). Let P € U(a). Then a ¢ P. Since R is m-regular,
R is right weakly m-regular and hence R/P(R) is right weakly m-regular. So
every prime ideal of R is maximal by [7, Lemma 6]. Hence every prime ideal
of R is minimal by [3, Proposition 3.6]. From this we obtain every prime
ideal of R is completely prime by [12, Proposition 1.11]. So that o™ ¢ P. If
e € P, then a™b € P and hence b € P, which shows that a" = a"ba™ € P, a
contradiction and consequently e ¢ P, P € U(e). Therefore U(a) C U(e). It
is clear that U(e) C U(a). Thus U(a) = U(e). Since U(e) = V(1 — e), by

Lemma B.4((ii), U(a) is a clopen set. Again since U(I) = |J U(a), the result
acl
follows. O

Lemma 3.7. Let a and b be elements of a ring R such that U(a) C U(b).
Then there exists a positive integer n such that o™ € RbR. In particular, if
e is an idempotent with V(e) C V(b), then e € RbR.
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Proof. Suppose that a™ ¢ RbR for all n. Let S = {a,a?,...}. Then S is an
m-system which contains a and does not intersect RbR. So that a ¢ P(RbR).
Since P(RbR) equals the intersection of all prime ideals which contain RbR,
there exists P € Spec(R) such that a ¢ P and RbR C P. Hence P € U(a)
and P ¢ U(b), a contradiction to hypothesis. Therefore a™ € RbR for some
n.

Now suppose that e ¢ ROR, then e" ¢ RbR for all n, since e is an
idempotent of R. Hence the result follows from the above. O

The following is Lemma 2.5 of Lu et al. [§].

Lemma 3.8. For a space X, the following statements are equivalent:

(i) The space X is strongly zero-dimensional;

(ii) Any two disjoint closed sets are separated by clopen sets, i.e., if A, B
are disjoint closed sets, then there exist disjoint clopen sets, Cq,Cy such
that A C C1 and B C Cfy;

(iii) If Uy, Uy are open sets covering X, then there exist clopen sets Cp,Co
such that C; CU;,i =1,2, C1NCy =0 and C1 UCy = X.

Proof. Straight forward. O

Lemma 3.9. Let X and Y be two spaces and f : X — Y a homeomor-
phic function. If X is strongly zero-dimensional, then Y 1is strongly zero-
dimensional.

Proof. Assume that X is strongly zero-dimensional. Let U; and Uy be two
open sets which cover Y. Since f is continuous, f~1(U;) and f~1(Us) are
open sets which cover X. Since X is strongly zero-dimensional, there exist
clopen sets C1 and Cy such that C; C f~1(Uy), Cy C f~1(Us),C1NCy =0
and C7 U Cy = X. Hence it can be easily verified that f(C7) C Uy, f(C2) C
Us, f(C1) N f(C3) = 0 and f(C1) U f(Cs) =Y. It is enough to prove that
f(Ci)(i = 1,2) is clopen. Since Cp,Cy are open and f is an open map,
f(C1), f(Cy) are open. Again since f(C1)¢ = f(Cs), f(C1) is closed, where
f(C1)¢ is the complement of f(C1). Thus f(C) is clopen. Similarly, we
can prove that f(C3) is clopen. Thus, by Lemma [B.8 (iii), Y is strongly
zero-dimensional. O

The main result is now ready to be obtained.
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Theorem 3.10. Let R be a 2-primal ring. Then the following statements

are equivalent:

(i) Spec(R) is strongly zero-dimensional;
(ii) R is a weakly exchange ring;

(iii) Spec(R) is strongly zero-dimensional.

Proof. (i) implies (ii):

Assume that Spec(R) is strongly zero-dimensional and a is any element
of R. Since U(a) UU(1 — a) = Spec(R), there exist clopen sets C7,Csy such
that C1 C U(1 —a) and Cy C U(a),C1 N Cy = 0,Cy U Cy = Spec(R) by
Lemma 3.8 (iii). Hence there exist idempotent &; and é; in R such that
Cy = V(er) and Cy = V(ez2) by Lemma B.Al (i). By Lemma B4 (i), we
obtain V(e;) = U(1 — e1). Again since V(ea) = V(e1)9, V(ea) = Uley).
Hence U(1 —e1) CU(1 —a) and U(ey) C U(a). From Lemma 3.7, we have
el € RaR and (1 —e;)™ € R(1 — a)R for some positive integers n and m.
Hence e} € RaR and (1 —eé;)" € R(1—a)R. Since ¢; is an idempotent in R,
€1 € RaR and 1 —é; € R(1 — a)R. Thus R is a weakly exchange ring.

(ii) implies (iii):

Assume that R is a weakly exchange ring. Let I and J be two ideals in R
such that U(I)U(J) = Spec(R). Observe that I +.J = R. So there exists
a € I such that 1 —a € J . Since R is a weakly exchange ring, there exists
an idempotent Z € R such that € RaR and 1 —z € R(1 — a)R.

It is clear that U(z) C U(I),U(1 —z) C U(J) ,U@)UU( —z) =
Spec(R), and by Lemma 33, U(z) NU(1 — z) = . Since U(z) = V(1 — )
and U(1 —z) = V(z),U(z) and U(1 — ) are clopen sets of R by Lemma [B.5]
(i). Thus, by Lemma B.8] (iii), Spec(R) is strongly zero-dimensional .

(iii) implies (i):

Since Spec(R) is homeomorphic to Spec(R), by Lemma B.9] Spec(R) is

strongly zero-dimensional. O

Lemma 3.11. Let X be compact T1-space. Then X is strongly zero-dimen-

stonal space if and only if X is zero-dimensional.
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Proof. Any strongly zero-dimensional space with 77 is always zero-dimensional
and the converse holds for a compact T3-space by |6, Theorem 16.16]. O

Although the proof of (i) < (ii) part in the following theorem is almost
similar to that of Theorem B.I0] we have given to avoid difficulties. Note
that Max(R) C Spec(R), so we may assume that Max(R) is a subspace of
Spec(R).

Theorem 3.12. Let R be a 2-primal ring. Then the following statements
are equivalent:

(i) R is a weakly exchange ring;
(ii) Spec(R) is strongly zero-dimensional;
(iii) R is a pm ring and Max(R) is zero-dimensional;
)

(iv) R is a pm ring and Max(R) is strongly zero-dimensional.

Proof. (i) & (ii):

Assume that Spec(R) is strongly zero dimensional and a is any element of R.
Since U(a) UU(1 — a) = Spec(R), there exists clopen sets C7,Cy such that
Cy CU(1—a),Cy CU(a),C1 NCy = () and C7 U Co= Spec(R) by Lemma
B8 (iii). Hence there exist idempotents e; and es such that C; = V(ep)
and Cy = V(ez2) by Lemma (ii). As in the proof of Theorem B.I0, we
get e € RaR and (1 —e1)™ € R(1 — a)R. Since e; is an idempotent of
R,e; € RaR and 1 —e; € R(1 —a)R. Thus R is a weakly exchange ring.
Conversly, assume that R is a weakly exchange ring. Let I, J be ideals such
that U(I) UU(J) = Spec(R). Observing that I + J = R, so there exists
an idempotent e of R such that e € RaR and 1 —e € R(1 —a)R. It is
clear that U(e) CU(I),U(1 —e) CU(J),U(e) UU(1 —e) = Spec(R) and by
Lemma B3] U(e) NU(1 —e) = ). Thus Spec(R) is strongly zero-dimensional
by Lemma [B.8] (iii).

(iii) < (iv):

Since Max(R) is a compact T}-space, the results follow from Lemma B.111
(i) < (iv):

If Spec(R) is strongly zero-dimensional, then Spec(R) is normal by
Lemma [3.8] (ii). Hence R is pm and also Max(R) is a continuous retract
of Spec(R) by [13, Theorem 2.3|. Therefore the results follow from the fact
that the function u : Spec(R)— Max(R) given by sending each prime ideal
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P to the unique maximal ideal containing it is a continuous closed map |5,
Theorem 1.2]. O

Since the strongly 2-primal rings are 2-primal, we have the following
corollary.

Corollary 3.13. Let R be a strongly 2-primal ring. If Spec(R) is zero-
dimensional, then R is a weakly exchange ring.

Proof. Assume that Spec(R) is zero-dimensional and a is any element
of R. Then U(a) is the union of some clopen sets {U(I)/\ € A}, where
each Iy is an ideal. Let I = Y I,. Then a € P(I) , for otherwise, there
is a prime ideal P containing I and a ¢ P, which is impossible. So that
a™ € I for some positive integer n. Let A\, Ag, -+, A € A such that a”™ €
I+ 1, +---+1, then U(a") C ij U(Iy,) € U(a). Since R is strongly 2-

=1
primal, every prime ideal of R is completely prime [12, Proposition 1.13], and

so for any P € Spec(R) such that P € U(a) implies P € U(a™). Therefore
k

U(a) = J U(Iy,). Thus U(a) is a clopen set for all a € R. Hence Spec(R)
i=1

is a Tl-slgace by [12, Theorem 4.2]. But always Spec(R) is compact. This
shows that Spec(R) is strongly zero-dimensional by Lemma .11l Thus R is
a weakly exchange ring by Theorem [3.12] O

Corollary 3.14. Let R be a strongly 2-primal ring. Then R is a weakly
exchange ring if and only if idempotents lift modulo I for any radical ideal
I of R.

Proof. Assume that R is a weakly exchange ring. Then idempotents in R/T
can be lifted to every left ideal I of R by [10, Corollary 1.3]. In particular,
idempotents in R/I can be lifted to R for every radical ideal I of R.

Conversely, let A; and Ay be two disjoint closed sets in Spec(R). Take

L= () Pand I, = [) Q. Then [, I, are radical ideals, because R is
PecA; QEA2
strongly 2-primal. Since A; N Ay = (), 11 + 1o = R. Choose a € I; and b € I

such that a +b = 1, then ab = a(1 —a) € I; N Iz. So a is an idempotent
in R/(I; N I3). Since I} N I is a radical ideal, there exists an idempotent
e € R such that e — a € I; N Is by hypothesis. Since a € I,e € I; and again
since b € Ip,1 — e € I5. Therefore V(I1) C V(e) and V(I2) C V(1 —e). Since
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(e) and V(1 — e) are clopen sets, Spec(R) is strongly zero-dimensional by

Lemma [B8 (ii). Thus R is a weakly exchange ring by Theorem O
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