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Abstract

In this paper we consider a particular type of partition of Zn, called H-partition and

obtain a necessary and sufficient condition for existence of a set of four symmetric circulant

matrices for a Hadamard matrix of order 4n in terms of such partitions when n odd.

1. Introduction

A (1,−1) matrix H of order n is called a Hadamard matrix if HH ′ = nI,

where H ′ is the transpose of H. If H is a Hadamard matrix of order n then

n = 2 or n ≡ 0(mod 4). The converse of this seems to be true and is known

as Hadamard conjecture.

Many exciting results have stemmed from the following basic idea put

forward by Williamson . Consider the array

H =











W X Y Z

−X W −Z Y

−Y Z W −X

−Z −Y X W











If W,X, Y , and Z are replaced by square matrices A,B,C, and D of order

n, respectively, then H becomes a square matrix of order 4n. Williamson

proved that a sufficient condition for H to be a Hadamard matrix is that
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A,B,C, and D are (1,−1) matrices of order n with

AA′ +BB′ +CC ′ +DD′ = 4nI (1)

and for every pair X,Y of matrices chosen from A,B,C,D

XY ′ = Y X ′ (2)

If A,B,C, and D are symmetric and circulant then condition (2) is satisfied

trivially and condition(1) becomes

A2 +B2 + C2 +D2 = 4nI (3)

The basic difficulty lies in finding the matrices A,B,C, and D which satisfy

the condition (3). In this article we give a necessary and sufficient condition

for the existence of such symmetric circulant matrices A,B,C, and D. Our

result also gives a method for finding a set of such matrices.

2. Definitions

Definition 2.1. For any odd integer n, let Zn be the cyclic group of integers

modulo n under addition. Let A be a proper subset of Zn such that 0 ∈ A

and A = −A. Then A,B = Zn − A is clearly a partition of Zn such that

B = −B. We call such a partition of Zn to be an H-partition of Zn.

For an H-partition (A,B) of Zn, let A+B = {a+ b(modn) | a ∈ A, b ∈

B}. Let C denote the set of distinct elements of A+ B. For any c ∈ C we

denote nc the frequency of occurrence of c in A+ B. Clearly 0 /∈ C for any

H-partition (A,B) of Zn.

Definition 2.2. A set of 4 symmetric circulant matrices A,B,C, and D

satisfying the condition A2+B2+C2+D2 = 4nI is called a set of Williamson

circulant matrices.

Definition 2.3. The shift matrix T of order n is a (0, 1)-square matrix

defined as T = [uij ], where

uij =







1, if j − i ≡ 1modn;

0, otherwise.
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Definition 2.4. For any matrix A, the Match matrix A(m) of A is defined

as A(m) = [nij], where nij = number of places in which the ith row and jth

row of A have same non-zero entry at corresponding places.

Definition 2.5. For any matrix A with nonzero entries, the Mis-match

matrix A(mm) of A is defined to be A(mm) = [ńij], where ńij = number

of places in which the ith row and jth row of A have different entries at

corresponding places.

Definition 2.6. Let a0, a1, . . . , an−1 be a sequence of n elements then a

matrix C = [cij ] is called a Circulant matrix with entries a0, a1, . . . , an−1 if

cij = a(j−i)modn
; for 1 ≤ i, j ≤ n.

Clearly C is a circulant matrix if and only if C =

n−1
∑

i=0

aiT
i.

We now have the following result.

3. Result

Theorem 3.1. There exists a set of four Williamson symmetric circulant

matrices of order n if and only if there exists four H-partitions (Ai, Bi),

i = 1, 2, 3, 4, of Zn, not necessarily distinct, such that

4
⋃

i=1

Ci = Zn−{0} and

4
∑

i=1

ni
c = n for each c ∈ Zn−{0} where ni

c denotes the occurrence number of

c in Ai +Bi.

Proof. Let T be the shift matrix of order n. For any set of four H-partitions

(Ai, Bi), i = 1, 2, 3, 4 of Zn of the stated type, let Pi =
∑

ai∈Ai

T ai and

Ni =
∑

bi∈Bi

T bi . Then Pi and Ni are symmetric circulant (0, 1) matrices and

PiNi =
∑

c∈Ci

ni
cT

c

⇒
4

∑

i=1

PiNi = n
∑

c∈Zn−{0}

T c = n(J − I) (1)
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Now let Xi = Pi−Ni for i = 1, 2, 3, 4; then X ′
is are symmetric circulant ma-

trices with entries 1 and −1 and hence Xi,Xj commutes for i, j ∈ {1, 2, 3, 4}.

From Definition 2.4 it is clear that for a symmetric (0, 1)-matrix A the

match matrix A(m) = A2. Since Pi’s and Ni’s are symmetric (0, 1)-matrices,

P
(m)
i = P 2

i and N
(m)
i = N2

i , and X
(m)
i = P

(m)
i +N

(m)
i for i = 1, 2, 3, 4; since

(Ai, Bi) is a partition of Zn. So

X
(m)
i = P 2

i +N2
i ; i = 1, 2, 3, 4; (2)

From Definition 2.5 it is clear that, for a (1,−1)-matrix A of order n, the

mis-match matrix A(mm) = [ńij ] = [n − nij], where nij is the (i, j)th entry

of A(m).

Therefore A(mm)= nJ −A(m), where J is the square matrix with entry

1. Since Xi is a (1,−1)-matrix,

X
(mm)
i = nJ −X

(m)
i

⇒ X
(mm)
i = nJ − (P 2

i +N2
i ); i = 1, 2, 3, 4 (3)

Also, since Xi is a symmetric (1,−1)-matrix X2
i =[xkl], where xkl = inner

product of the kth row and lth row of Xi = (number of places in which the

kth row and lth row of Xi have the same entries) - (number of places in which

the kth row and lth row of Xi have different entries).

Thus

X2
i = X

(m)
i −X

(mm)
i

⇒ X2
i = 2(P 2

i +N2
i )− nJ ; i = 1, 2, 3, 4

⇒

4
∑

i=1

X2
i = 2(

4
∑

i=1

P 2
i +

4
∑

i=1

N2
i )− 4nJ (4)

Again

4
∑

i=1

X2
i =

4
∑

i=1

(Pi −Ni)
2

=

4
∑

i=1

P 2
i +

4
∑

i=1

N2
i − 2

4
∑

i=1

PiNi
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⇒
4

∑

i=1

P 2
i +

4
∑

i=1

N2
i =

4
∑

i=1

X2
i + 2

4
∑

i=1

PiNi (5)

From equations (4) and (5)

4
∑

i=1

X2
i = 2(

4
∑

i=1

X2
i + 2

4
∑

i=1

PiNi)− 4nJ

⇒

4
∑

i=1

X2
i = 4nJ − 4

4
∑

i=1

PiNi (6)

So equations (1) and (6) imply

4
∑

i=1

X2
i = 4nJ − 4n(J − I)

= 4nI

Thus Xi, i = 1, 2, 3, 4 form a set of four Williamson circulant matrices for a

Hadamard matrix of order 4n.

Conversely, let Xi, i = 1, 2, 3, 4 be a set of four Williamson symmetric

circulant matrices of order n. Then

4
∑

i=1

X2
i = 4nI (7)

and

XiXj = XjXi, (8)

for i, j = {1, 2, 3, 4}.

Since Xi is a (1,−1) circulant matrix, it can be written as

Xi =
n−1
∑

k=0

akT
k; ai = ±1 ; i = 1, 2, 3, 4 (9)

Let Ai = {k, k ∈ Zn | ak = +1} and Bi = {k, k ∈ Zn | ak = −1}, then

clearly (Ai, Bi), i = 1, 2, 3, 4 are four partitions of Zn and exactly one of

Ai and Bi contains 0. Since equation (7) remains valid if Xi is replaced by

−Xi, replacing Xi by −Xi, if necessary, we can assume that Ai contains 0,

for i = 1, 2, 3, 4. As ±Xi is a symmetric circulant matrix k ∈ Ai ⇒ n−k ∈ Ai
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and so (Ai,Bi), i = 1, 2, 3, 4 are four H-partitions of Zn. Let Pi =
∑

k∈Ai

T k

and Ni =
∑

k∈Bi

T k. Then Xi = Pi − Ni; i = 1, 2, 3, 4 and Pi and Ni are

symmetric matrices with entries (0, 1). Thus P
(m)
i = P 2

i and N
(m)
i = N2

i ,

and X
(m)
i = P

(m)
i +N

(m)
i for i = 1, 2, 3, 4. So

X
(m)
i = P 2

i +N2
i ; i = 1, 2, 3, 4. (10)

Since Xi is a (1,−1)-matrix from Definition 2.5

X
(mm)
i = nJ −X

(m)
i . (11)

Using equations (7), (10) and (11) we get

4
∑

i=1

PiNi = n(J − I) (12)

Now, if possible, let us assume that for some element k ∈ Zn−{0},
4

∑

i=1

ni
k =

nk 6= n. As PiNi =
∑

c∈Ci

ni
cT

c; i = 1, 2, 3 and 4, where Ci is the set determined

by Ai +Bi.

4
∑

i=1

PiNi =
4

∑

i=1

(
∑

c∈Ci

ni
cT

c) =
∑

c∈C

(
4

∑

i=1

ni
c)T

c, where C =
4
⋃

i=1

Ci

=
∑

c∈C−{k}

(

4
∑

i=1

ni
c)T

c +

4
∑

i=1

ni
kT

k =
∑

c∈C−{k}

(

4
∑

i=1

ni
c)T

c + nkT
k

But this contradicts

4
∑

i=1

PiNi = n(J − I), as nk 6= n.

So C =

4
⋃

i=1

Ci = Zn − {0} and

4
∑

i=1

ni
c = n for each c ∈ Zn − {0}. Hence the

theorem. ���
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4. Examples

Example 4.1. For n = 5; let A1 = {0}, B1 = {1, 2, 3, 4}; A2 = {0}, B2 =

{1, 2, 3, 4}; A3 = {0, 1, 4}, B3 = {2, 3}; A4 = {0, 2, 3}, B4 = {1, 4}. Then

A1+B1 = {1, 2, 3, 4} A2+B2 = {1, 2, 3, 4} A3+B3 = {1, 2, 2, 3, 3, 4} and A4+

B4 = {1, 1, 2, 3, 4, 4}. These four H-partitions clearly satisfy the condition of

the theorem and yield a set of four Williamson symmetric circulant matrices

whose first rows are given by

+1 −1 −1 −1 −1

+1 −1 −1 −1 −1

+1 +1 −1 −1 +1

+1 −1 +1 +1 −1

Example 4.2. For n = 9; (i) A1 = {0, 1, 8}, B1 = {2, 3, 4, 5, 6, 7}; A2 =

{0, 2, 7}, B2 = {1, 3, 4, 5, 6, 8}; A3 = {0, 3, 6}, B3 = {1, 2, 4, 5, 7, 8}; A4 =

{0, 4, 5}, B4 = {1, 2, 3, 6, 7, 8}. Then A1+B1 = {1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6,

6, 6, 7, 7, 8}

A2 +B2 = {1, 1, 1, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 6, 7, 8, 8, 8}

A3 +B3 = {1, 1, 1, 2, 2, 2, 4, 4, 4, 5, 5, 5, 7, 7, 7, 8, 8, 8}

and A4 + B4 = {1, 1, 2, 2, 2, 3, 3, 3, 4, 5, 6, 6, 6, 7, 7, 7, 8, 8}. These four H-

partitions clearly satisfy the condition of the theorem and yield a set of

four Williamson symmetric circulant matrices whose first rows are given by

+1 +1 −1 −1 −1 −1 −1 −1 +1

+1 −1 +1 −1 −1 −1 −1 +1 −1

+1 −1 −1 +1 −1 −1 +1 −1 −1

+1 −1 −1 −1 +1 +1 −1 −1 −1

as listed in [2]. Some other sets of such matrices are obtained dy considering

the partitions,

(ii) A1 = {0, 1, 8}, B1 = {2, 3, 4, 5, 6, 7}; A2 = {0, 1, 3, 6, 8}, B2 = {2, 4, 5, 7};

A3 = {0, 2, 3, 6, 7}, B3 = {1, 4, 5, 8}; A4 = {0, 1, 3, 4, 5, 6, 8}, B4 = {2, 7}.

(iii) A1 = {0, 2, 7}, B1 = {1, 3, 4, 5, 6, 8}; A2 = {0, 2, 3, 6, 7}, B2 = {1, 4, 5, 8};

A3 = {0, 3, 4, 5, 6}, B3 = {1, 2, 7, 8}; A4 = {0, 1, 2, 3, 6, 7, 8}, B4 = {4, 5}.

(iv) A1 = {0, 4, 5}, B1 = {1, 2, 3, 6, 7, 8}; A2 = {0, 3, 4, 5, 6}, B2 = {1, 2, 7, 8};

A3 = {0, 1, 3, 6, 8}, B3 = {2, 4, 5, 7}; A4 = {0, 2, 3, 4, 5, 6, 7}, B4 = {1, 8}.

The first row of the respective sets of Williamson matrices are,

(ii)
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+1 +1 −1 −1 −1 −1 −1 −1 +1

+1 +1 −1 +1 −1 −1 +1 −1 +1

+1 −1 +1 +1 −1 −1 +1 +1 −1

+1 +1 −1 +1 +1 +1 +1 −1 +1

(iii)

+1 −1 +1 −1 −1 −1 −1 +1 −1

+1 −1 +1 +1 −1 −1 +1 +1 −1

+1 −1 −1 +1 +1 +1 +1 −1 −1

+1 +1 +1 +1 −1 −1 +1 +1 +1

(iv)

+1 −1 −1 −1 +1 +1 −1 −1 −1

+1 −1 −1 +1 +1 +1 +1 −1 −1

+1 +1 −1 +1 −1 −1 +1 −1 +1

+1 −1 +1 +1 +1 +1 +1 +1 −1

5. Possible size of partitions for Williamson matrices

Theorem 5.1. Let (Ai, Bi), i = 1, 2, 3, 4 be a set of H-partitions of Zn, which

gives rise to a set of Williamson matrices. Then

4
∑

i=1

ki(n − ki) = n(n− 1),

where ki = |Ai|; i = 1, 2, 3, 4.

Proof. Let (Ai, Bi); i = 1, 2, 3, 4 be a set of H-partitions of Zn, which

constructs a Hadamard matrix. Then

4
∑

i=1

ni
c = n for all c ∈ Zn − {0}. Let

ki = |Ai|; i = 1, 2, 3, 4.

Without loss of generality we can assume that 0 ∈ Ai; i = 1, 2, 3, 4.

As Ai = −Ai; i = 1, 2, 3, 4, ki is an odd positive integer and consequently

|Bi| = n − ki is an even integer for all i = 1, 2, 3, 4. Since Ai + Bi is a

ki × (n − ki) sub-matrix of the matrix corresponding to the composition

table of Zn, for i = 1, 2, 3, 4; we have.

∑

c∈Zn

ni
c = ki(n− ki); i = 1, 2, 3, 4.
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⇒
4

∑

i=1

(
∑

c∈Zn

ni
c) =

4
∑

i=1

ki(n− ki) (13)

Again

4
∑

i=1

(
∑

c∈Zn

ni
c) =

4
∑

i=1

(
∑

c∈Zn−{0}

ni
c) as ni

0 = 0; i = 1, 2, 3, 4

=
∑

c∈Zn−{0}

(
4

∑

i=1

ni
c)

⇒

4
∑

i=1

(
∑

c∈Zn

ni
c) =

∑

c∈Zn−{0}

n = n(n− 1) (14)

From (13) and (14) we have

4
∑

i=1

ki(n− ki) = n(n− 1). ���

So the possible size of Ai; i = 1, 2, 3, 4 are k1, k2, k3 and k4 respectively

which is a set of odd integer solution of the equation

w(n− w) + x(n− x) + y(n− y) + z(n− z) = n(n− 1)

Theorem 5.2. The equation

w(n− w) + x(n− x) + y(n− y) + z(n− z) = n(n− 1)

has an integer solution if and only if there exists an integer solution of the

equation

X1 +X2 +X3 +X4 = n− 1

in {m(m− 1)}∞m=0 .

Proof. Let {k1, k2, k3, k4} be an integer solution of the equation

w(n − w) + x(n− x) + y(n− y) + z(n − z) = n(n− 1). (15)
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Thus
4

∑

i=1

ki(n− ki) = n(n− 1).

Let Xi = (n−1
2 )(n+1

2 )− ki(n− ki), i = 1, 2, 3, 4.

Since ki + (n− ki) = n; i = 1, 2, 3, 4, so (n−1
2 )(n+1

2 ) ≥ ki(n− ki); i = 1, 2, 3, 4

⇒ Xi = (n−1
2 )(n+1

2 )− ki(n − ki) ≥ 0; i = 1, 2, 3, 4 Then

4
∑

i=1

Xi =

4
∑

i=1

{(
n − 1

2
)(
n + 1

2
)− ki(n− ki)}

= (n− 1)(n + 1)−

4
∑

i=1

ki(n− ki)

= (n− 1)(n + 1)− n(n− 1) [from(15)]

= n− 1

Now we have to show that Xi ∈ {m(m− 1)}∞m=0 for i = 1, 2, 3, 4.

For i = 1, 2, 3, 4 we have

Xi = (
n− 1

2
)(
n+ 1

2
)− ki(n− ki)

= (
n− 1

2
)(
n+ 1

2
)− ki(

n+ 1

2
) + ki(

n+ 1

2
)− ki(n− ki)

= (
n+ 1

2
)(
n− 1

2
− ki)− ki(

n− 1

2
− ki)

= (
n+ 1

2
− ki)(

n − 1

2
− ki)

= mi(mi − 1) [say mi =
n+ 1

2
− ki]

If n+1
2 > ki ⇒ mi > 0 ⇒ mi(mi − 1) ≥ 0 ⇒ Xi ≥ 0.

If n+1
2 ≤ ki ⇒ mi ≤ 0 ⇒ mi(mi − 1) ≥ 0 ⇒ Xi ≥ 0.

Thus for i = 1, 2, 3, 4; Xi ∈ {m(m− 1)}∞m=1.

Conversely, let mi(mi − 1); i = 1, 2, 3, 4 be an integer solution of

X1 +X2 +X3 +X4 = n− 1 (16)

Then

4
∑

i=1

mi(mi − 1) = n− 1. We claim that for i = 1, 2, 3, 4; mi ≤
n−1
2 . If
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not, suppose for some i = 1, 2, 3, 4; mi >
n−1
2 ⇒ mi(mi − 1) > n−1

2
n+1
2 for

n ≥ 3. For n = 1, X1 = X2 = X3 = X4 = 0 is a solution of (16) and the

corresponding solution of (15) is w = x = y = z = 1.

Now consider ki =
n+1
2 −mi : i = 1, 2, 3, 4.

Then

4
∑

i=1

ki(n− ki) =

4
∑

i=1

(
n+ 1

2
−mi){n− (

n+ 1

2
−mi)}

=

4
∑

i=1

(
n+ 1

2
−mi)(

n− 1

2
+mi)

=

4
∑

i=1

{(
n + 1

2
)(
n − 1

2
) +mi(

n + 1

2
−

n− 1

2
)−m2

i }

= 4(
n + 1

2
)(
n− 1

2
)−

4
∑

i=1

mi(mi − 1)

= (n+ 1)(n − 1)− (n− 1)

= n(n− 1).

So ki(n− ki); i = 1, 2, 3, 4 is a solution set of equation (15).

Example. For n = 31; the solutions of the equation

X1 +X2 +X3 +X4 = n− 1,

in {m(m+ 1)}∞m=0 are given by

(i) (12, 12, 6, 0), (ii) (12, 6, 6, 6), (iii) (30, 0, 0, 0) and (iv)(20, 6, 2, 2). Using

theorem (5.2) the corresponding solutions of

w(n− w) + x(n− x) + y(n− y) + z(n− z) = n(n− 1)

are (a) (19, 19, 13, 15), (b) (19, 13, 13, 13), (c) (21, 15, 15, 15) and (d) (11, 13,

17, 17) [taking all odd solutions] respectively. So possible size of part Ai of

the H-partitions (Ai, Bi); i = 1, 2, 3, 4 are given by one of the solutions (a),

(b), (c) and (d) only. Using these concepts the exhaustive search becomes

quite easy as other sizes of H-partitions are disposed off.
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Let us consider the solution (a) (19,19,13,15). By hit and trial we obtain

A1 = {0, 1, 2, 4, 7, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 24, 27, 29, 30},

A2 = {0, 4, 5, 8, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 23, 26, 27},

A3 = {0, 2, 6, 9, 12, 14, 15, 16, 17, 19, 22, 25, 29}

and

A4 = {0, 2, 3, 4, 9, 10, 11, 13, 18, 20, 21, 22, 27, 28, 29};

such that the frequencies ni
j; j = 1, 2, . . . , 15; i = 1, 2, 3, 4 are as follows:

n1
j = {8, 8, 6, 8, 7, 9, 10, 8, 8, 7, 8, 7, 7, 6, 7},

n2
j = {6, 9, 8, 5, 5, 7, 8, 8, 8, 8, 8, 7, 10, 9, 8},

n3
j = {10, 7, 6, 8, 9, 7, 8, 7, 9, 7, 9, 8, 8, 7, 7},

n4
j = {7, 7, 11, 10, 10, 8, 5, 8, 6, 9, 6, 9, 6, 9, 9}.

Since

4
∑

i=1

ni
j = 31 for j = 1, 2, . . . , 15, the conditions of the theorem (3.1) are

satisfied by this set of four H-partitions and we have a set of four Williamson

matrices giving rise to a Hadamard matrix of order 4× 31.

If we consider the solution (a) (19, 13, 13, 13). By hit and trial we obtain

A1 = {0, 4, 5, 6, 8, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 23, 25, 26, 27},

A2 = {0, 1, 2, 3, 7, 9, 14, 17, 22, 24, 28, 29, 30},

A3 = {0, 2, 3, 9, 11, 12, 15, 16, 19, 20, 22, 28, 29}

and

A4 = {0, 2, 3, 9, 11, 12, 15, 16, 19, 20, 22, 28, 29};

such that the frequencies ni
j; j = 1, 2, . . . , 15; i = 1, 2, 3, 4 are as follows:

n1
j = {8, 7, 9, 7, 6, 7, 8, 6, 10, 6, 8, 8, 9, 9, 6},

n2
j = {7, 6, 8, 8, 7, 8, 7, 7, 9, 7, 9, 9, 10, 8, 7},

n3
j = {8, 9, 7, 8, 9, 8, 8, 9, 6, 9, 7, 7, 6, 7, 9},

n4
j = {8, 9, 7, 8, 9, 8, 8, 9, 6, 9, 7, 7, 6, 7, 9}.
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Since
4

∑

i=1

ni
j = 31 for all j = 1, 2, . . . , 15, the conditions of the theorem

(3.1) are satisfied by this set of four H-partitions and we have a set of four

Williamson matrices giving rise to a Hadamard matrix of order 4× 31.

Both of these are listed in [3].

Remark. It can be observed that the set of H-partitions which construct

Williamson matrices also yields Supplementary Difference Sets [7, 8].
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