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ACYCLIC LIST EDGE COLORING OF PLANAR GRAPHS

BY

HSIN-HAO LAI∗1 AND KO-WEI LIH2

Abstract

A proper edge coloring of a graph is said to be acyclic if any

cycle is colored with at least three colors. The acyclic chromatic

index, denoted a′(G), is the least number of colors required for

an acyclic edge coloring of G. An edge-list L of a graph G is a

mapping that assigns a finite set of positive integers to each edge

of G. An acyclic edge coloring φ of G such that φ(e) ∈ L(e) for

any e ∈ E(G) is called an acyclic L-edge coloring of G. A graph G

is said to be acyclically k-edge choosable if it has an acyclic L-edge

coloring for any edge-list L that satisfies |L(e)| > k for each edge

e. The acyclic list chromatic index is the least integer k such that

G is acyclically k-edge choosable. In [2, 3, 4, 7, 10, 11, 12], upper

bounds for the acyclic chromatic index of several classes of planar

graphs were obtained. In this paper, we generalize these results

to the acyclic list chromatic index of planar graphs.

1. Introduction

Graphs considered in this paper are finite, without loops or multiple

edges unless otherwise stated. Let G be a graph with vertex set V (G) and

edge set E(G). We use |G| and ‖G‖ to denote the cardinalities of V (G)
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and E(G), respectively. An edge coloring of G is an assignment of colors

to the edges of G. In this paper, we always use some initial segment [k] =

{1, 2, . . . , k} of positive integers to represent colors. An edge coloring is said

to be proper if adjacent edges receive distinct colors. The least number of

colors, denoted χ′(G), needed for a proper edge coloring of G is called the

chromatic index of G. A proper edge coloring is said to be acyclic if any

cycle is colored with at least 3 colors. The acyclic chromatic index, denoted

a′(G), is the least number of colors required for an acyclic edge coloring of

G.

An edge-list L of G is a mapping that assigns a finite set of positive

integers to each edge of G. Assume that f is a mapping from E(G) to the

set of nonnegative integers. An edge-list L is an f -edge-list if |L(e)| > f(e)

for each e ∈ E(G). When f is the constant mapping fk(e) = k for every

e ∈ E(G), we also say that L is a k-edge-list. An acyclic edge coloring φ

of G such that φ(e) ∈ L(e) for any e ∈ E(G) is called an acyclic L-edge

coloring of G. A graph G is said to be acyclically f -edge choosable if it has

an acyclic L-edge coloring for any f -edge-list L. The acyclic list chromatic

index, denoted a′list(G), is the least integer k such that G is acyclically fk-

edge choosable. We also say that G is acyclically k-edge choosable when it

is acyclically fk-edge choosable. Let ∆(G) denote the maximum degree of a

vertex in G. Obviously, ∆(G) 6 χ′(G) 6 a′(G) 6 a′list(G).

We initiated the study of the list version of acyclic edge coloring in [8].

At the end of [8], the following conjecture was proposed.

Conjecture 1. For any graph G, a′list(G) 6 ∆(G) + 2.

This is the list version of the following outstanding conjecture about

acyclic edge coloring independently given by Fiamč́ık [5] and Alon, Sudakov,

and Zaks [1].

Conjecture 2. For any graph G, a′(G) 6 ∆(G) + 2.

The organization of this paper is as follows. After this introduction sec-

tion, the next section supplies auxiliary results that are needed to establish

later results. Section 3 gives a general acyclic edge choosability result for a

planar graph. In Sections 4 to 9, sufficient conditions on planar graphs are

determined to achieve acyclic (∆+13)-edge choosability, acyclic (∆+5)-edge
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choosability, acyclic (∆ + 3)-edge choosability, acyclic (∆ + 2)-edge choos-

ability, acyclic (∆ + 1)-edge choosability, and acyclic ∆-edge choosability.

2. Auxiliary Results

We have already established a sequence of useful lemmas for handling

acyclic list edge coloring in [8]. Lemmas 3 to 10 in this paper are paraphrased

from [8] without reproducing their proofs.

Let dG(v) denote the degree of a vertex v in the graph G. A vertex

of degree k is called a k-vertex and a vertex of degree at most k is called

a k−-vertex. A leaf is synonymous with a 1-vertex. For an edge e = uv

of the graph G, let N0(e) and N1(e) denote the sets {u, v} and {x | xu ∈

E(G) or xv ∈ E(G)}, respectively. For i = 0 and 1, let ∆G
i be the mapping

∆G
i (e) = max{dG(x) | x ∈ Ni(e)} for each e ∈ E(G). We use ∆i to denote

∆G
i when no confusion arises.

Lemma 3. If H is a subgraph of a graph G, then a′list(H) 6 a′list(G).

Lemma 4. Assume that G1, G2, . . . , Gk are all the components of the graph

G and f is a mapping from E(G) to the nonnegative integers. Then G is

acyclically f -edge choosable if and only if Gi is acyclically f -edge choosable

for each i. In particular, a′list(G) = max{a′list(G1), a
′

list(G2), . . . , a
′

list(Gk)}.

Lemma 5. Let u be a leaf of the graph G such that the neighbor of u is u′.

Suppose that L is an edge-list of G satisfying |L(uu′)| > dG(u′). If φ is an

acyclic L-edge coloring of G−u, then φ can be extended to an acyclic L-edge

coloring of G.

Proposition 6. If T is a tree, then T is acyclically ∆0-edge choosable and

a′list(T ) = ∆(T ).

Lemma 7. Let G be a graph and w be a 2-vertex with neighbors v and

x. Let L be an edge-list of G such that |L(e)| > ∆0(e) + 1 for each edge

e containing w as an endpoint. Suppose that G − w has an acyclic L-edge

coloring φ. Then φ can be extended to an acyclic L-edge coloring of G if all

of the following conditions hold.
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1. dG(v) + dG(x) 6 |L(wx)| + 3.

2. If dG(v) + dG(x) = |L(wx)| + 3, then v and x are adjacent.

3. If dG(v) + dG(x) > |L(wx)| + 2, then dG(u) + dG(v) 6 |L(vw)| + 1 for

some neighbor u 6= w of v.

Lemma 8. Assume that u and v are two vertices of a graph H and G is

obtained from H by adding a new path of length at least 4 joining u and v

and ∆(G) > 3. If H is acyclically max{∆0, 3}-edge choosable, then G is

acyclically max{∆0, 3}-edge choosable, where max{∆0, 3} denotes the map-

ping that takes the value max{∆0(e), 3} on any edge e of G.

Lemma 9. Let H be a graph and uvwxy be a path of H in which v and x

are non-adjacent 2-vertices and w is their unique common neighbor. Let G

be the graph obtained from H by adding a new edge joining v and x. Let L

be an edge-list of G such that |L(e)| > ∆0(e) + 1 for e ∈ {uv, vw,wx, xy}

and |L(vx)| > ∆1(vx) + 1. Suppose that H has an acyclic L-edge coloring.

Then G has an acyclic L-edge coloring if max{dG(u), dG(w), dG(y)} 6 3 or

at most one of u and y is of degree ∆1(vx) in G.

Lemma 10. Let H be a graph with two non-adjacent vertices v and x of

degree 2 such that each of them has a neighbor of degree at most 3. Let G

be the graph obtained from H by adding a new edge joining v and x. Let

L be an edge-list of G such that |L(e)| > max{∆1(e) + 1, 5} for any edge e

incident with v or x. If H has an acyclic L-edge coloring, so does G.

Now we are going to establish further auxiliary lemmas for later use.

We use the notation Cφ(v) to denote the set of colors assigned by a proper

edge coloring φ to all the edges incident with v.

Lemma 11. Let G be a graph and u be a d-vertex adjacent to one 2-vertex

u1 and (d− k − 1) (l + 1)−-vertices, for some 1 6 k 6 d− 1 and l > 1. Let

L be an edge-list of G such that |L(e)| > ∆0(e) + max{k, l} for each edge e

containing u1 as an endpoint. If G − u1 has an acyclic L-edge coloring φ,

then φ can be extended to an acyclic L-edge coloring of G.

Proof. Assume that the neighbors of u are u1, . . . , ud, where u2, . . . , ud−k

have degree at most l + 1. Let w1 6= u be the second neighbor of u1.
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We may assume that φ(uui) = i for 2 6 i 6 d. We color u1w1 with some

j ∈ L(u1w1) − (Cφ(w1) ∪ {d− k + 1, . . . , d}). If j /∈ {2, . . . , d − k}, then we

color uu1 with some element in L(uu1)− (Cφ(u)∪{j}). If j ∈ {2, . . . , d−k},

then we color uu1 with some element in L(uu1) − (Cφ(u) ∪ Cφ(uj)). �

We have the following by letting k be d− 1 in the above lemma.

Corollary 12. Let G be a graph and u1 be a 2-vertex adjacent to a d-vertex

for some d > 1. Let L be an edge-list of G such that |L(e)| > ∆0(e) + d− 1

for each edge e containing u1 as an endpoint. If G−u1 has an acyclic L-edge

coloring φ, then φ can be extended to an acyclic L-edge coloring of G.

Lemma 13. Let G be a graph and v be a k-vertex with neighbors v1, v2, . . . , vk

such that k > 3 and 2 6 dG(v1) 6 · · · 6 dG(vk). Let L be an edge-list of G

such that |L(e)| > ∆1(e) + max{dG(vk−1) + · · ·+ dG(v2)− k+ 2, dG(vk−2) +

· · ·+dG(v1)−k+3} for each edge e containing v as an endpoint. If G−v has

an acyclic L-edge coloring φ, then φ can be extended to an acyclic L-edge

coloring of G.

Proof. We color the edges adjacent to v according to the ordering vvk, vvk−1,

. . . , vv1. Since |Cφ(vk) ∪ · · · ∪Cφ(v3) ∪Cφ(v2)| 6 dG(vk) + dG(vk−1) + · · · +

dG(v2)− k+1 6 ∆1(vvk)+ dG(vk−1)+ · · ·+ dG(v2)− k+1, we can color vvk

with some ck ∈ L(vvk)− (Cφ(vk)∪ · · · ∪Cφ(v3)∪Cφ(v2)). Since |Cφ(vk−1)∪

· · ·∪Cφ(v2)∪Cφ(v1)∪{ck}| 6 ∆1(vvk−1)+dG(vk−2)+ · · ·+dG(v1)−k+2, we

can color vvk−1 with some ck−1 ∈ L(vvk−1)−(Cφ(vk−1)∪· · ·∪Cφ(v1)∪{ck}).

For 2 6 i 6 k−2, |Cφ(vi)∪· · ·∪Cφ(v1)∪{ci+1, . . . , ck}| 6 dG(vi)+ · · ·+

dG(v1)− i+ k− i 6 ∆1(vvi) + dG(vi−1) + · · ·+ dG(v1)− i+ dG(vi+1) + · · ·+

dG(vk−2)−(k−i−2)+2 6 ∆1(vvi)+dG(vk−2)+· · ·+dG(v1)−k+2. We color

vvi with ci ∈ L(vvi)−(Cφ(vi)∪Cφ(vi−1)∪· · ·∪Cφ(u1)∪{ci+1, . . . , ck}). If ck /∈

Cφ(v1), we color vv1 with some element in L(vv1)−(Cφ(v1)∪{ck, . . . , c2}). If

ck ∈ Cφ(v1), since |Cφ(v1)∪Cφ(vk)∪{ck, . . . , c2}| 6 dG(vk)+dG(v1)+k−4 6

∆1(vv1)+dG(v1)+k−4 6 ∆1(vv1)+dG(vk−2)+ · · ·+dG(v1) −k+2, we can

color vv1 with some element in L(vv1)− (Cφ(v1)∪Cφ(vk)∪ {ck, . . . , c2}). �
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3. A general upper bound

In this and subsequent sections, we will employ results proved in [2, 3,

4, 6, 7, 10, 11, 12] to establish our theorems about acyclic edge choosability.

Some statements of these lemmas have been adapted to suit our proofs.

Lemma 14. ([6]) Let G be a planar graph. Then there exists a vertex v

whose k neighbors v1, v2, . . . , vk satisfy dG(v1) 6 · · · 6 dG(vk) and one of the

following statements holds.

(A1) k 6 2;

(A2) k = 3 with dG(v1) 6 11;

(A3) k = 4 with dG(v1) 6 7 and dG(v2) 6 11;

(A4) k = 5 with dG(v1) 6 6, dG(v2) 6 7 and dG(v3) 6 11.

Theorem 15. If G is a planar graph, then G is acyclically max{2∆1 −

2,∆1 + 22}-edge choosable.

Proof. The proof is by induction on the number of vertices. The theorem is

trivially true for the induction basis of a single vertex graph.

By Lemma 5, we may assume that δ(G) > 2. Let L be a max{2∆1 −

2,∆1 + 22}-edge-list of G. By Lemma 14, there exists a vertex v whose

k neighbors v1, v2, . . . , vk satisfy dG(v1) 6 · · · 6 dG(vk) and we have the

following cases to discuss.

For (A1), we may assume that k = 2 in view of Lemma 5. Let G′ =

G − v if v1v2 ∈ E(G). By the induction hypothesis, G′ has an acyclic L-

edge coloring φ. Since |Cφ(v1) ∪ Cφ(v2)| 6 2dG(v2) − 3 6 2∆1(vv2) − 3

and L(vv2) > 2∆1(vv2) − 2, L(vv2) − (Cφ(v1) ∪ Cφ(v2)) is nonempty. We

color vv2 with some s ∈ L(vv2) − (Cφ(v1) ∪ Cφ(v2)) and vv1 with some

t ∈ L(vv1) − (Cφ(v1) ∪ {s}).

If v1 and v2 are non-adjacent, let G′ = (G − v) + v1v2. Let i be the

index such that ∆1(vvi) = max{∆1(vv1),∆1(vv2)}. Define a max{2∆1 −

2,∆1 + 22}-edge-list L′ of G′ by letting L′(v1v2) = L(vvi) and L′(e) = L(e)

for e 6= v1v2. By the induction hypothesis, G′ has an acyclic L′-edge coloring

ψ. Let φ be the acyclic L-edge coloring of G − v such that φ(e) = ψ(e) for

each edge e. We color vvi with s = ψ(v1v2) and color the other edge vv3−i

with some t ∈ L(vv3−i) − (Cφ(v3−i) ∪ {s}).
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For (A2), let G′ = G− v if v2v3 ∈ E(G). By the induction hypothesis,

G′ has an acyclic L-edge coloring φ. We color vv3 with some s ∈ L(vv3) −

(Cφ(v2) ∪Cφ(v3)), vv2 with some t ∈ L(vv2) − (Cφ(v1) ∪Cφ(v2) ∪ {s}), and

vv1 with some p ∈ L(vv1) − (Cφ(v1) ∪ Cφ(v3) ∪ {s, t}).

If v2 and v3 are non-adjacent, let G′ = (G−v)+v2v3. Let i be the index

such that ∆1(vvi) = max{∆1(vv2),∆1(vv3)}. Define a max{2∆1 − 2,∆1 +

22}-edge-list L′ of G′ by letting L′(v2v3) = L(vvi) and L′(e) = L(e) for

e 6= v2v3. By the induction hypothesis, G′ has an acyclic L′-edge coloring

ψ. Let φ be the acyclic L-edge coloring of G − v such that φ(e) = ψ(e)

for each edge e. We color vvi with s = ψ(v2v3) and vv5−i with some t ∈

L(vv5−i) − (Cφ(v1) ∪ Cφ(v5−i) ∪ {s}), and then color vv1 with some p ∈

L(vv1) − (Cφ(v1) ∪ Cφ(vi) ∪ {s, t}).

For (A3), let G′ = G− v if v3v4 ∈ E(G). By the induction hypothesis,

G′ has an acyclic L-edge coloring φ. We color vv4 with some s ∈ L(vv4) −

(Cφ(v3) ∪ Cφ(v4)). Since |Cφ(v1) ∪ Cφ(v2) ∪ Cφ(v3) ∪ {s}| 6 ∆1(vv3) + 16,

we can color vv3 with some t ∈ L(vv3) − (Cφ(v1) ∪ Cφ(v2) ∪ Cφ(v3) ∪ {s}).

Since |Cφ(v1) ∪ Cφ(v2) ∪ Cφ(v4) ∪ {s, t}| 6 dG(v4) + 17 6 ∆1(vv2) + 17, we

can color vv2 with some p ∈ L(vv2) − (Cφ(v1) ∪ Cφ(v2) ∪ Cφ(v4) ∪ {s, t}).

Since |Cφ(v1)∪Cφ(v4)∪{s, t, p}| 6 ∆1(vv1)+ 8, we can color vv1 with some

q ∈ L(vv1) − (Cφ(v1) ∪ Cφ(v4) ∪ {s, t, p}).

If v3 and v4 are non-adjacent, let G′ = (G − v) + v3v4. Let i be the

index such that ∆1(vvi) = max{∆1(vv3),∆1(vv4)} for some i = 3, 4. Define

a max{2∆1 − 2,∆1 + 22}-edge-list L′ of G′ such that L′(v3v4) = L(vvi)

and L′(e) = L(e) for e 6= v3v4. By the induction hypothesis, G′ has an

acyclic L′-edge coloring ψ. Let φ be the acyclic L-edge coloring of G − v

such that φ(e) = ψ(e) for each edge e. We color vvi with s = ψ(v3v4), vv7−i

with some t ∈ L(vv7−i)− (Cφ(v1)∪Cφ(v2)∪Cφ(v7−i)∪ {s}), vv2 with some

p ∈ L(vv2) − (Cφ(v1) ∪ Cφ(v2) ∪ Cφ(vi) ∪ {s, t}), and then vv1 with some

q ∈ L(vv1) − (Cφ(v1) ∪ Cφ(vi) ∪ {s, t, p}).

For (A4), let G′ = G− v if v4v5 ∈ E(G). By the induction hypothesis,

G′ has an acyclic L-edge coloring φ. We color vv5 with some s ∈ L(vv5) −

(Cφ(v4)∪Cφ(v5)). Since |Cφ(v1)∪Cφ(v2)∪Cφ(v3)∪Cφ(v4)∪{s}| 6 ∆1(vv4)+

21, we can color vv4 with some t ∈ L(vv4) − (Cφ(v1) ∪ Cφ(v2) ∪ Cφ(v3) ∪

Cφ(v4) ∪ {s}). If s /∈ Cφ(v1), we color vv1 with some element in L(vv1) −

(Cφ(v1) ∪ Cφ(v2) ∪ Cφ(v3) ∪ {s, r}). Otherwise, we can color vv1 with some

element in L(vv1)−(Cφ(v1)∪Cφ(v2)∪Cφ(v3)∪Cφ(v5)∪{s, t}) since |Cφ(v1)∪
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Cφ(v2)∪Cφ(v3)∪Cφ(v5)∪{s, t}| 6 dG(v5)+21 6 ∆1(vv1)+21. In both cases,

we denote the color of vv1 by p. Since |Cφ(v2)∪Cφ(v3)∪Cφ(v5)∪{s, t, p}| 6

∆1(vv2) + 18, we can color vv2 with some q ∈ L(vv2) − (Cφ(v2) ∪ Cφ(v3) ∪

Cφ(v5) ∪ {s, t, p}). Since |Cφ(v3) ∪ Cφ(v5) ∪ {s, t, p, q}| 6 ∆1(vv3) + 13, we

can color vv3 with some r ∈ L(vv3) − (Cφ(v3) ∪ Cφ(v5) ∪ {s, t, p, q}).

If v4 and v5 are non-adjacent, let G′ = (G − v) + v4v5. Let i be the

index such that ∆1(vvi) = max{∆1(vv4),∆1(vv5)} for some i = 4, 5. Define

a max{2∆1 − 2,∆1 + 22}-edge-list L′ of G′ such that L′(v4v5) = L(vvi) and

L′(e) = L(e) for e 6= v4v5. By the induction hypothesis, G′ has an acyclic

L′-edge coloring ψ. Let φ be the acyclic L-edge coloring of G− v such that

φ(e) = ψ(e) for each edge e. We color vvi with s = ψ(v4v5) and vv9−i with

some t ∈ L(vv9−i)−(Cφ(v1)∪Cφ(v2)∪Cφ(v3)∪Cφ(v9−i)∪{s}). If s /∈ Cφ(v1),

we color vv1 with some element in L(vv1)−(Cφ(v1)∪Cφ(v2)∪Cφ(v3)∪{s, t}).

Otherwise, we color vv1 with some element in L(vv1) − (Cφ(v1) ∪ Cφ(v2) ∪

Cφ(v3)∪Cφ(vi)∪{s, t}). In both cases, we denote the color of vv1 by p. We

color vv2 with some q ∈ L(vv2) − (Cφ(v2) ∪ Cφ(v3) ∪ Cφ(vi) ∪ {s, t, p}) and

vv3 with some r ∈ L(vv3) − (Cφ(v3) ∪Cφ(vi) ∪ {s, t, p, q}).

In every case, G has an acyclic L-edge coloring. Therefore, G is acycli-

cally max{2∆1 − 2,∆1 + 22}-edge choosable. �

Corollary 16. If G is a planar graph, then a′list(G) 6 max{2∆(G) −

2,∆(G) + 22}.

4. A Sufficient Condition for Acyclic (∆ + 13)-edge Choosability

Lemma 17. ([2]) If G is a planar graph without cycles of length 4, and

δ(G) > 2, then G contains at least one of the following configurations.

(B1) a 2-vertex v adjacent to one 9−-vertex;

(B2) a 3-vertex v adjacent to two 9−-vertices;

(B3) a 4-vertex v adjacent to three 7−-vertices;

(B4) a d-vertex v adjacent to one 2-vertex u1 and (d−6) 4−-vertices, where

d > 10;

(B5) a triangle v1v2v3 with dG(v1) = 3 and dG(v2) = 3.
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Remark. The original statements of Lemmas 17 and 29 in [2] assumed

2-connectedness of the planar graph G. However, an examination of their

proofs in [2] shows the results still hold for planar graphs with δ(G) > 2.

Theorem 18. If G is a planar graph without cycles of length 4, then G is

acyclically (∆1 + 13)-edge choosable.

Proof. The proof is by induction on the number of vertices plus the number

of edges. The theorem is trivially true for the induction basis of a single

vertex graph. By Lemma 5, we may assume that δ(G) > 2. Let L be a

(∆1 + 13)-edge-list of G. By Lemma 17, we have five cases to discuss.

By the induction hypothesis, each of the graphs G − v in cases (B1),

(B2), and (B3), the graph G − u1 in case (B4), and the graph G − v1v2
in case (B5) has an acyclic L-edge coloring φ. Using Corollary 12, Lemma

13 twice, Lemma 11, and Lemma 9, respectively, G has an acyclic L-edge

coloring.

In every case, G has an acyclic L-edge coloring. Therefore, G is acycli-

cally (∆1 + 13)-edge choosable. �

Corollary 19. If G is a planar graph without cycles of length 4, then a′list(G)

6 ∆(G) + 13.

5. Sufficient Conditions for Acyclic (∆ + 5)-edge Choosability

Lemma 20. ([4]) Let G be a graph with δ(G) > 2. If G satisfies ‖G‖ < 2|G|,

then G contains at least one of the following configurations.

(C1) a 2-vertex v adjacent to one 5−-vertices;

(C2) a 3-vertex v adjacent to two 5−-vertices;

(C3) a 6-vertex v adjacent to five 3−-vertices;

(C4) a 7-vertex v adjacent to seven 3−-vertices;

(C5) a d-vertex v adjacent to one 2-vertex u1 and (d−4) 3−-vertices, where

d > 4.

The maximum average degree mad(G) of a graph G is defined to be

max{2‖H‖/|H| | H is a subgraph of G}.
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Theorem 21. If G is a graph with mad(G) < 4, then G is acyclically

(∆1 + 5)-edge choosable.

Proof. The proof is by induction on the number of vertices plus the number

of edges. The theorem is trivially true for the induction basis of a single

vertex graph. By Lemma 5, we may assume that δ(G) > 2. Let L be a

(∆1 + 5)-edge-list of G. By Lemma 20, we have five cases to discuss.

For (C1) and (C2), the graph G − v has an acyclic L-edge coloring φ

by the induction hypothesis. Using Corollary 12 and Lemma 13, G has an

acyclic L-edge coloring.

For (C3), assume that the neighbors of v are u1, . . . , u6 where u1, . . . , u5

are 3−-vertices.

The graph G − vu1 has an acyclic L-edge coloring φ by the induction

hypothesis.

Subcase 3.1. Cφ(u1) ∩ Cφ(v) = ∅.

We color vu1 with some element in L(vu1) − (Cφ(u1) ∪ Cφ(v)).

Subcase 3.2. |Cφ(u1) ∩ Cφ(v)| = 1 and φ(vu6) /∈ Cφ(u1).

Let 2 6 i 6 5 be the index such that φ(vui) ∈ Cφ(u1). We color vu1

with some element in L(vu1) − (Cφ(u1) ∪ Cφ(v) ∪ Cφ(ui)).

Subcase 3.3. |Cφ(u1) ∩ Cφ(v)| = 1 and φ(vu6) ∈ Cφ(u1).

If L(vu1) 6= Cφ(v) ∪ Cφ(u1) ∪ Cφ(u6), we color vu1 with some element

in L(vu1) − (Cφ(v) ∪ Cφ(u1) ∪ Cφ(u6)). We may assume that L(vu1) =

Cφ(v)∪Cφ(u1)∪Cφ(u6), Cφ(v)∩Cφ(u6) = {φ(vu6)}, and dG(u6) = ∆1(vu1).

If L(vu6) 6= Cφ(v)∪Cφ(u1)∪Cφ(u6), we re-color vu6 with some element

in L(vu6)−(Cφ(v)∪Cφ(u1)∪Cφ(u6)) and this subcase is reduced to Subcase

3.1. We may assume that L(vu6) = Cφ(v) ∪ Cφ(u6) ∪ Cφ(u1).

If φ(vu6) /∈ Cφ(ur) for a certain 2 6 r 6 5, we re-color vu6 with φ(vur).

If Cφ(ur)∩Cφ(v) = {φ(vur)}, we re-color vur with some element in L(vur)−

(Cφ(ur) ∪Cφ(v)). If Cφ(ur) ∩Cφ(v) = {φ(vur), φ(vus)} for some 2 6 s 6 5,

we re-color vur with some element in L(vur)− (Cφ(v)∪Cφ(ur)∪Cφ(us)). If

Cφ(ur) ∩Cφ(v) = {φ(vur), φ(vus), φ(vut)} for some 2 6 s, t 6 5, we re-color

vur with some element in L(vur)− (Cφ(v)∪Cφ(ur)∪Cφ(us)∪Cφ(ut)). And

these three subcases are reduced to Subcases 3.1 or 3.2.
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We may assume that φ(vu6) ∈ Cφ(uj) for each 2 6 j 6 5. We re-color

vu6 with φ(vu2) and re-color vu2 with some element in L(vu2) − (Cφ(v) ∪

Cφ(u2)∪Cφ(u3)∪Cφ(u4)∪Cφ(u5)). And this subcase is reduced to Subcases

3.1 or 3.2.

Subcase 3.4. |Cφ(u1) ∩ Cφ(v)| = 2 and φ(vu6) /∈ Cφ(u1).

We may assume that Cφ(u1) = {φ(vuj), φ(vuk)} for 2 6 j, k 6 5. We

color vu1 with some element in L(vu1)− (Cφ(u1)∪Cφ(v)∪Cφ(uj)∪Cφ(uk)).

Subcase 3.5. |Cφ(u1) ∩ Cφ(v)| = 2 and φ(vu6) ∈ Cφ(u1).

We may assume that Cφ(u1) = {φ(vus), φ(vu6)} for some 2 6 s 6 5.

Let t be an element in L(vu1) − (Cφ(v) ∪ Cφ(u6)). If t /∈ Cφ(us), we

color vu1 with t. We may assume that L(vu1) ⊆ Cφ(v) ∪ Cφ(u6) ∪ Cφ(us)

and |Cφ(us) ∩ Cφ(v)| 6 2.

If Cφ(us) ∩ Cφ(v) = {φ(vus)}, we re-color vus with some element in

L(vus) − (Cφ(us) ∪Cφ(v)) and this subcase is reduced to Subcase 3.3.

If Cφ(us)∩Cφ(v) = {φ(vus), φ(vur)} for some 2 6 r 6 5, we re-color vus

with some element in L(vus) − (Cφ(us) ∪ Cφ(ur) ∪ Cφ(v)) and this subcase

is reduced to Subcase 3.3.

We may assume that Cφ(us) ∩ Cφ(v) = {φ(vus), φ(vu6)}. If L(vus) 6=

Cφ(us) ∪ Cφ(v) ∪ Cφ(u6), we re-color vus with some element in L(us) −

(Cφ(us) ∪ Cφ(v) ∪ Cφ(u6)) and this subcase is reduced to Subcase 3.3. We

may assume that L(vus) = Cφ(us) ∪ Cφ(v) ∪ Cφ(u6), dG(u6) = ∆1(vus),

and Cφ(v) ∩ Cφ(u6) = {φ(vu6)}. We re-color vu6 with some element in

L(vu6) − (Cφ(v) ∪Cφ(u6)) and this subcase is reduced to Subcase 3.2.

For (C4), assume that the neighbors of v are the 3−-vertices u1, . . . , u7.

The graph G−vu7 has an acyclic L-edge coloring φ by the induction hy-

pothesis. Assume that φ(vui) = i, for each 1 6 i 6 6. If Cφ(u7)∩{1, . . . , 6} =

∅, we color vu7 with some element in L(vu7) − (Cφ(u7) ∪ {1, . . . , 6}). If

Cφ(u7) ∩ {1, . . . , 6} = {k}, we color vu7 with some element in L(vu7) −

(Cφ(u7) ∪Cφ(uk) ∪ {1, . . . , 6}). If Cφ(u7) ∩ {1, . . . , 6} = {k, l}, we color vu7

with some element in L(vu7) − (Cφ(u7) ∪Cφ(uk) ∪ Cφ(ul) ∪ {1, . . . , 6}).

For (C5), The graph G − u1 has an acyclic L-edge coloring φ by the

induction hypothesis. By Lemma 11, G has an acyclic L-edge coloring.
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In every case, G has an acyclic L-edge coloring. Therefore, G is acycli-

cally (∆1 + 5)-edge choosable. �

Corollary 22. If G is a graph with mad(G) < 4, then a′list(G) 6 ∆(G) + 5.

The following is a folklore result (cf. [9]). The girth g(G) of a graph G

is the length of a shortest cycle in G. If G is a planar graph with g(G) > g,

then mad(G) < 2g
g−2 .

Corollary 23. If G is a triangle-free planar graph, then a′list(G) 6 ∆(G)+5.

6. A Sufficient Condition for Acyclic (∆ + 3)-edge Choosability

Lemma 24. ([10]) Let G be a planar graph with δ(G) > 2 and g(G) > 3. If

any two cycles of length 4 are vertex-disjoint, then G contains at least one

of the following configurations.

(D1) a 2-vertex v adjacent to one 4−-vertex;

(D2) a 3-vertex v adjacent to two 3-vertices;

(D3) a d-vertex v adjacent to (d− 3) 2-vertices, where d > 5;

(D4) a 4-vertex v adjacent to three 3-vertices u, x, and y;

(D5) a face f = v1v2v3v4 with dG(v1) = 2 and dG(v2) = 5.

Theorem 25. If G is a planar graph with g(G) > 3 such that any two cycles

of length 4 are vertex-disjoint, then G is acyclically (∆1 +3)-edge choosable.

Proof. The proof is by induction on the number of vertices plus the number

of edges. The theorem is trivially true for the induction basis of a single

vertex graph. By Lemma 5, we may assume that δ(G) > 2. Let L be

a (∆1 + 3)-edge-list of G. By Lemma 24, we have the following cases to

discuss.

For (D1) and (D2), the graph G − v has an acyclic L-edge coloring

φ by the induction hypothesis. By Corollary 12 and Lemma 13, G has an

acyclic L-edge coloring.

For (D3), let the neighbors of v be u1, . . . , ud, where u1, . . . , ud−3 are

2-vertices and adjacent to w1, . . . , wd−3, respectively. The graph G− u1 has
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an acyclic L-edge coloring φ by the induction hypothesis. By Lemma 11, G

has an acyclic L-edge coloring.

For (D4), let NG(v) = {u, x, y, w}, NG(u) = {v, u1, u2}, NG(x) =

{v, x1, x2}, andNG(y) = {v, y1, y2}. The graphG′ = G−uv has an acyclic L-

edge coloring φ by the induction hypothesis. We may assume that φ(vx) = 1,

φ(vy) = 2, and φ(vw) = 3.

Subcase 4.1. Cφ(u) ∩ {1, 2, 3} = ∅.

We color uv with some j ∈ L(uv) − (Cφ(u) ∪ {1, 2, 3}).

Subcase 4.2. Cφ(u) ∩ {1, 2, 3} is {1} or {2}.

It is sufficient to assume that φ(uu1) = 1 and φ(uu2) = 4. We color uv

with some j ∈ L(uv) − (Cφ(x) ∪ {2, 3, 4}).

Subcase 4.3. Cφ(u) ∩ {1, 2, 3} = {3}.

We may assume that φ(uu1) = 3 and φ(uu2) = 4. If L(uv) 6= Cφ(u1) ∪

{1, 2, 4}, then we color uv with some j ∈ L(uv)− (Cφ(u1)∪{1, 2, 4}). Hence,

we may assume that 4 /∈ Cφ(u1) and L(uv) = Cφ(u1)∪{1, 2, 4}. If L(uu1) 6=

Cφ(u1) ∪ {1, 2, 4}, then we re-color uu1 with some j ∈ L(uu1) − (Cφ(u1) ∪

{1, 2, 4}) and this subcase is reduced to Subcase 4.1. Otherwise, L(uu1) =

Cφ(u1) ∪ {1, 2, 4}. We re-color uu1 with 1 and this subcase is reduced to

Subcase 4.2.

Subcase 4.4. Cφ(u) = {1, 2}.

If Cφ(x) ∩ {2, 3} = ∅, then we re-color vx with some j ∈ L(vx) −

{1, 2, 3, φ(xx1), φ(xx2)} and this subcase is reduced to Subcase 4.2. Other-

wise, |Cφ(x)∪Cφ(y)∪{3}| 6 6. We color uv with some k ∈ L(uv)−(Cφ(x)∪

Cφ(y) ∪ {3}).

Subcase 4.5. Cφ(u) is {1, 3} or {2, 3}.

It is sufficient to assume that Cφ(u) = {1, 3}. If Cφ(x) ∩ {2, 3} = ∅,

then we re-color vx with some j ∈ L(vx) − {1, 2, 3, φ(xx1), φ(xx2)} and this

subcase is reduced to Subcase 4.3. If Cφ(w) ∩ {1, 2} = ∅, then we re-color

vw with some k ∈ L(vw) − (Cφ(w) ∪ {1, 2}) and this subcase is reduced to

Subcase 4.2. We may assume that Cφ(x)∩{2, 3} 6= ∅ and Cφ(w)∩{1, 2} 6= ∅.

Hence, |Cφ(x) ∪Cφ(w) ∪ {2}| 6 dG(w) + 2 6 ∆1(uv) + 2. We color uv with

some l ∈ L(uv) − (Cφ(x) ∪Cφ(w) ∪ {2}).



426 HSIN-HAO LAI AND KO-WEI LIH [December

For (D5), let NG(v2) = {v1, v3, x1, x2, x3}. The graph G′ = G − v1
has an acyclic L-edge coloring φ by the induction hypothesis. We may

assume that φ(v2x1) = 1, φ(v2x2) = 2, φ(v2x3) = 3, and φ(v2v3) = 4.

If L(v1v4) − (Cφ(v4) ∪ {1, 2, 3, 4}) 6= ∅, then we color v1v4 with some j ∈

L(v1v4)−(Cφ(v4)∪{1, 2, 3, 4}) and v1v2 with some k ∈ L(v1v2)−{1, 2, 3, 4, j}.

We may assume that {1, 4} ∩Cφ(v4) = ∅ and L(v1v4) = Cφ(v4)∪{1, 2, 3, 4}.

Subcase 5.1. 1 ∈ Cφ(v3).

We color v1v4 with 4 and v1v2 with some j ∈ L(v1v2)−(Cφ(v3)∪{2, 3}).

Subcase 5.2. 1 /∈ Cφ(v3).

We color v1v4 with 1 and v1v2 with some k ∈ L(v1v2) − ((Cφ(v4) −

φ(v3v4)) ∪ {1, 2, 3, 4}).

In every case, G has an acyclic L-edge coloring. Therefore, G is acycli-

cally (∆1 + 3)-edge choosable. �

Corollary 26. If G is a planar graph with g(G) > 3 such that any two

cycles of length 4 are vertex-disjoint, then a′list(G) 6 ∆(G) + 3.

7. Sufficient Conditions for Acyclic (∆ + 2)-edge Choosability

Lemma 27. ([7]) Let G be a planar graph with δ(G) > 2. If g(G) > 5, then

G contains at least one of the following configurations.

(E1) a 2-vertex v adjacent to one 3−-vertex;

(E2) a 3-vertex v adjacent to two 3-vertices u and w;

(E3) a d-vertex adjacent to one 2-vertex u and (d − 3) 3−-vertices, where

d > 4;

(E4) a face f = v1v2v3v4v5 with dG(v1) = dG(v4) = 2, dG(v2) = dG(v3) = 4,

and dG(v5) = 5.

Lemma 28. ([10]) Let G be a planar graph with δ(G) > 2. If any two cycles

of length 4 are edge-disjoint and there are no cycles of length 3 or 5, then

G contains at least one of (E1), (E2), (E3) of Lemma 27, or the following

configuration.

(E5) a face f = v1v2v3v4 with dG(v1) = 2 and dG(v2) = 4.
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Lemma 29. ([2]) Let G be a planar graph with δ(G) > 2 containing no

cycles of length 4, 6, 8, and 9. Then G contains at least one of (E1), (E2),

(E3) of Lemma 27, or one of the following configurations.

(E6) a triangle f = v1v2v3 with dG(v1) = 3 and dG(v2) = 3;

(E7) a triangle f = v1v2v3 with dG(v1) = 4, dG(v2) 6 4, and one of v1’s

neighbors not incident with f is of degree 2;

(E8) a triangle f = v1v2v3 with dG(v1) = 2 and dG(v2) = 4.

Lemma 30. ([11]) Let G be a planar graph with δ(G) > 2 containing no

cycles of length 4 or 5. If any two cycles of length 3 are vertex-disjoint or

there are no cycles of length from 6 to 8, then G contains at least one of

(E1), (E3) of Lemma 27, or (E6) of Lemma 29, or (E8) of Lemma 29.

Theorem 31. If G is a planar graph such that any of the following condi-

tions holds, then G is acyclically (∆1 + 2)-edge choosable.

1. g(G) > 5;

2. any two cycles of length 4 are edge-disjoint and there are no cycles of

length 3 or 5;

3. there are no cycles of length 4, 6, 8, and 9;

4. there are no cycles of length from 4 to 8;

5. any two cycles of length 3 are vertex-disjoint and there are no cycles of

length 4 or 5.

Proof. The proof is by induction on the number of vertices plus the number

of edges. The theorem is trivially true for the induction basis of a single

vertex graph. By Lemma 5, we may assume that δ(G) > 2. Let L be a

(∆1 +2)-edge-list of G. By Lemmas 27 to 30, we have the following cases to

discuss.

For (E1), the graph G − v has an acyclic L-edge coloring φ by the

induction hypothesis. By Corollary 12, G has an acyclic L-edge coloring.

For (E2), assume that NG(v) − {u,w} = {x}, NG(u) − {v} = {u1, u2},

and NG(w) − {v} = {w1, w2}. If ∆1(uv) = 3, then all neighbors of u have

degree at most 3. The graph G − uv has an acyclic L-edge coloring by

the induction hypothesis. By Lemma 10, G has an acyclic L-edge coloring.
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We may assume that ∆1(uv) > 4. The graph G − v has an acyclic L-

edge coloring φ by the induction hypothesis. We color vx with some j ∈

L(vx) − (Cφ(x) ∪ Cφ(u)). If j /∈ Cφ(w), we color vw with some element in

L(vw) − (Cφ(w) ∪ {j}). If j ∈ Cφ(w), we color vw with some element in

L(vw) − (Cφ(w) ∪ Cφ(x)). Denote the color of vw by k. If k /∈ Cφ(u), we

color uv with some element in L(uv) − (Cφ(u) ∪ {j, k}). If k ∈ Cφ(u), we

color uv with some element in L(uv) − (Cφ(u) ∪ Cφ(w) ∪ {j}).

For (E3), the graph G − u1 has an acyclic L-edge coloring by the in-

duction hypothesis. By Lemma 11, G has an acyclic L-edge coloring.

For (E4), assume that NG(v2) = {v1, v3, x1, x2} and NG(v3) = {v2, v4,

y1, y2}. The graph G− v1 has an acyclic L-edge coloring φ by the induction

hypothesis. We may assume that φ(v2v3) = 1, φ(v2x1) = 2, and φ(v2x2) = 3.

We color v1v5 with some j ∈ L(v1v5) − (Cφ(v5) ∪ {2, 3}). If j 6= 1, then we

color v1v2 with some k ∈ L(v1v2) − {1, 2, 3, j}. If j = 1, then we color v1v2
with some p ∈ L(v1v2) − {2, 3, φ(v3y1), φ(v3y2)}.

For (E5), assume that NG(v2) = {v1, v3, x1, x2}. The graph G− v1 has

an acyclic L-edge coloring φ by the induction hypothesis. We may assume

that φ(v2x1) = 1, φ(v2x2) = 2, and φ(v2v3) = 3. If L(v1v4) − (Cφ(v4) ∪

{1, 2, 3}) 6= ∅, then we color v1v4 with some j ∈ L(v1v4)− (Cφ(v4)∪{1, 2, 3})

and color v1v2 with some k ∈ L(v1v2) − {1, 2, 3, j}. We may assume that

{1, 3} ∩ Cφ(v4) = ∅ and L(v1v4) = Cφ(v4) ∪ {1, 2, 3}.

Subcase 5.1. 1 ∈ Cφ(v3).

We color v1v4 with 3 and v1v2 with some j ∈ L(v1v2) − (Cφ(v3) ∪ {2}).

Subcase 5.2. 1 /∈ Cφ(v3).

We color v1v4 with 1 and v1v2 with some k ∈ L(v1v2) − ((Cφ(v4) −

φ(v3v4)) ∪ {1, 2, 3}).

For (E6), the graph G − v1v2 has an acyclic L-edge coloring φ by the

induction hypothesis. By Lemma 9, G has an acyclic L-edge coloring.

For (E7), assume that NG(v1) = {u, v2, v3, v4} and NG(u) = {v1, u
′}.

The graphG−u has an acyclic L-edge coloring φ by the induction hypothesis.

We may assume that φ(v1v2) = 2, φ(v1v3) = 3, and φ(v1v4) = 4. If φ(v1v2) 6∈

Cφ(v3), then we color uu′ with some j ∈ L(uu′)− (Cφ(u′)∪{3, 4}). If j 6= 2,

then we color uv1 with some k ∈ L(uv1) − (Cφ(v1) ∪ {j}). If j = 2, then

we color uv1 with some l ∈ L(uv1) − ({3, 4} ∪ (Cφ(v2) − {φ(v2v3)})). If
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φ(v1v2) ∈ Cφ(v3), then we color uu′ with some p ∈ L(uu′)−(Cφ(u′)∪{2, 4}).

If p 6= 3, then we color uv1 with some q ∈ L(uv1)− (Cφ(v1)∪ {j}). If p = 3,

then we color uv1 with some r ∈ L(uv1) − ({4} ∪ Cφ(v3)).

For (E8), the graph G − v1 has an acyclic L-edge coloring φ by the

induction hypothesis. By Lemma 7, G has an acyclic L-edge coloring.

In every case, G has an acyclic L-edge coloring. Therefore, G is acycli-

cally (∆1 + 2)-edge choosable. �

Corollary 32. If G is a planar graph such that any of the five conditions

of Theorem 31 holds, then a′list(G) 6 ∆(G) + 2.

8. Sufficient Conditions for Acyclic (∆ + 1)-edge Choosability

A vertex of degree 3 is called weak if it has a neighbor of degree 2.

Lemma 33. ([2]) Let G be a graph such that mad(G) < 3 and δ(G) > 2,

then G contains at least one of the following configurations.

(F1) a 2-vertex v adjacent to one 2-vertex;

(F2) a 3-vertex v adjacent to one 2-vertex u and one 3−-vertex w;

(F3) a d-vertex v adjacent to (d− 1) 2-vertices, where d > 4;

(F4) a 4-vertex v adjacent to one 2-vertex v1 and three weak 3-vertices

v2, v3, v4;

(F5) a 4-vertex v adjacent to two 2-vertices v1, v2 and one weak 3-vertex

v3.

Theorem 34. If G is a graph with mad(G) < 3, then G is acyclically

(∆1 + 1)-edge choosable.

Proof. The proof is by induction on the number of vertices. If |G| 6 4, then

G is not K4, hence is acyclically (∆1 + 1)-edge choosable. By Lemma 5, we

may assume that δ(G) > 2. Let L be a (∆1 + 1)-edge-list of G. By Lemma

33, we have the following cases to discuss.

For (F1), the graph G − u has an acyclic L-edge coloring φ by the

induction hypothesis. By Corollary 12, G has an acyclic L-edge coloring.
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For (F2), if dG(w) = 3, assume that NG(v) − {u,w} = {x}, NG(u) −

{v} = {u′}, and NG(w) − {v} = {w1, w2}. We may assume that dG(x) >

dG(w). The graph G′ = G − u has an acyclic L-edge coloring φ by the

induction hypothesis. We may assume that φ(vw) = 1 and φ(vx) = 2. We

color uu′ with some j ∈ L(uu′) − (Cφ(u′) ∪ {2}). If j 6= 1, we color uv

with some element in L(uv) − {j, 1, 2}. We may assume that j = 1. By an

(a, b)-colored path we mean a path whose edges are colored only by the two

colors a and b. Let S be the set of positive integers s such that there exists a

(1, s)-colored path in φ between u′ and w avoiding v. If L(uv)−(S∪{1, 2}) is

nonempty, we color uv with some element in L(uv)−(S∪{1, 2}). Otherwise,

dG(x) = dG(u′) = 3 and we may assume that Cφ(w) = Cφ(u′) = {1, 3, 4}

and L(uv) = {1, 2, 3, 4}. If L(uu′) 6= {1, 2, 3, 4}, we re-color uu′ with some

j′ ∈ L(uu′)−{1, 2, 3, 4} and color uv with some element in L(uv)−{j′, 1, 2}.

We may assume that L(uu′) = {1, 2, 3, 4}. Similarly, we may assume that

L(vw) = {1, 2, 3, 4}. If i /∈ Cφ(x) for some i ∈ {3, 4}, we re-color uu′ with

2 and color uv with i. Otherwise, Cφ(x) = {2, 3, 4}. If L(vx) 6= {1, 2, 3, 4},

then we re-color vx with some p ∈ L(vx) − {1, 2, 3, 4} and color uv with

2. We may assume that L(vx) = {1, 2, 3, 4}. Since there is a (1, 3)-path

between w and u′, no (1, 3)-path between x and u′ exists. We re-color vw

with 2, vx with 1, and color uv with 3.

The case dG(w) 6 2 is similar.

For (F3), assume that v1 is a 2-vertices adjacent to v. The graph G−v1
has an acyclic L-edge coloring φ by the induction hypothesis. By Lemma

11, G has an acyclic L-edge coloring.

For (F4), assume that NG(v1) = {v,w1} and wi is a neighbor of vi of

degree 2 for i = 2, 3, 4. The graph G′ = G−v1 has an acyclic L-edge coloring

φ by the induction hypothesis. We color v1w1 with some j ∈ L(v1w1) −

Cφ(w1). If j /∈ Cφ(v), then we color vv1 with some element in L(vv1) −

(Cφ(v) ∪ {j}). Otherwise, we may assume that j = φ(vv2) = 2, φ(vv3) = 3,

and φ(vv4) = 4. Let w′

2 be the neighbor of v2 distinct from v and v2.

If L(vv1) − (Cφ(v) ∪ Cφ(w1)) 6= ∅ or L(vv1) − (Cφ(v) ∪ Cφ(v2)) 6=

∅, then we color vv1 with some element in L(vv1) − (Cφ(v) ∪ Cφ(w1)) or

L(vv1) − (Cφ(v) ∪ Cφ(v2)). Otherwise, |Cφ(v) ∪ Cφ(v2)| = ∆1(vv1) + 1 = 5.

In particular, dG(w1) 6 4 and 3 or 4 cannot belong to φ(w1). We may as-

sume that φ(v2w2) = 1, φ(v2w
′

2) = 5, and L(vv1) = {1, 2, 3, 4, 5}. We can

find some k ∈ L(v1w1) − (Cφ(w1) ∪ {2}). If k /∈ {3, 4}, then we re-color
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v1w1 with k and color vv1 with some element in L(vv1) − {2, 3, 4, k}. Now

we assume that k ∈ {3, 4}. If |Cφ(v) ∪ Cφ(vk)| < 5, then we re-color v1w1

with k and color vv1 with some element in L(vv1)− (Cφ(v) ∪Cφ(vk)). Oth-

erwise, |Cφ(v) ∪ Cφ(vk)| = 5 and 2 /∈ Cφ(vk). Let x2 be the neighbor of

w2 different from v2. If φ(w2x2) 6= 2, then we color vv1 with 1. Otherwise,

φ(w2x2) = 2. If L(v2w2) − {1, 2, 3, 4, 5} 6= ∅, then we re-color v2w2 with

some element in L(v2w2) − {1, 2, 3, 4, 5} and color vv1 with 1. Otherwise,

L(v2w2) = {1, 2, 3, 4, 5}. We re-color v2w2 with k and color vv1 with 1. Since

2 /∈ Cφ(vk), the resulted edge coloring is acyclic.

For (F5), assume that NG(v) = {v1, v2, v3, v4}, NG(v1) = {v,w1},

NG(v2) = {v,w2}, and NG(v3) = {v,w3, w
′

3}, where w3 is a 2-vertex. The

graphG′ = G−v1 has an acyclic L-edge coloring φ by the induction hypothe-

sis. If L(v1w1)−(Cφ(w1)∪{φ(vv3), φ(vv4)}) is not empty, then we color v1w1

with some j ∈ L(v1w1) − (Cφ(w1) ∪ {φ(vv3), φ(vv4)}). If j 6= φ(vv2), then

we color vv1 with some element in L(vv1) − (Cφ(v) ∪ {j}). If j = φ(vv2),

then we color vv1 with some element in L(vv1) − (Cφ(v) ∪ Cφ(v2)). Oth-

erwise, we may assume that φ(vv2) = 2, φ(vv3) = 3, φ(vv4) = 4, and

L(v1w1) = Cφ(w1) ∪ {3, 4}. We color v1w1 with 3.

If L(vv1)− (Cφ(v)∪Cφ(w1)) 6= ∅ or L(vv1)− (Cφ(v)∪Cφ(v3)) 6= ∅, then

we color vv1 with some element in L(vv1) − (Cφ(v) ∪ Cφ(w1)) or L(vv1) −

(Cφ(v) ∪ Cφ(v3)). Otherwise, |Cφ(v) ∪ Cφ(v3)| = ∆1(vv1) + 1 = 5. In

particular, dG(w1) 6 4 and dG(v4) 6 4. If 3 /∈ Cφ(w3), then we color vv1
with some element in L(vv1) − (Cφ(v) ∪ {φ(v3w3)}). We may assume that

Cφ(w3) = {1, 3}, φ(v3w
′

3) = 5, L(vv1) = {1, 2, 3, 4, 5}, and {1, 5} ⊆ Cφ(w1).

If 1 /∈ Cφ(v4), then we re-color v1w1 with 4 and color vv1 with 1. If 5 /∈

Cφ(v4), then we re-color v1w1 with 4 and color vv1 with 5. We may assume

that {1, 5} ⊆ Cφ(v4).

If L(v3w3) 6= {1, 2, 3, 4, 5}, then we re-color v3w3 with some element in

L(v3w3)−{1, 2, 3, 4, 5} and color vv1 with 1. We may assume that L(v3w3) =

{1, 2, 3, 4, 5}.

If Cφ(v2) 6= {2, 3}, then we re-color v3w3 with 2 and color vv1 with 1.

We may assume that Cφ(v2) = {2, 3}.

If L(vv2) 6= {1, 2, 3, 4, 5}, then we re-color v3w3 with 2, vv2 with some

element in L(vv2)−{1, 2, 3, 4, 5} and color vv1 with 1. We may assume that

L(vv2) = {1, 2, 3, 4, 5}.
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If 3 ∈ Cφ(v4), let s be an element in L(vv4) − {1, 3, 4, 5}. If s 6= 2, then

we re-color vv4 with s, v1w1 with 4, and color vv1 with 1. If s = 2, then we

re-color vv4 with 2, v1w1 with 4, vv2 with 4, and color vv1 with 1.

If 3 /∈ Cφ(v4), then we re-color v3w3 with 4 and color vv1 with 1.

In every case, G has an acyclic L-edge coloring. Therefore, G is acycli-

cally (∆1 + 1)-edge choosable. �

Corollary 35. If G is a graph with mad(G) < 3, then a′list(G) 6 ∆(G) + 1.

Lemma 36. ([12]) Let G be a planar graph with δ(G) > 2. If g(G) > 5 and

∆(G) > 11, then G contains at least one of (F1), (F2), (F3) of Lemma 33,

or one of the following configurations.

(F6) a 3-vertex v adjacent to one 2-vertex v1 and the other neighbors have

degree at least 4;

(F7) a 3-vertex v such that the sum of degrees of its neighbors is at most

∆(G) + 3;

(F8) a d-vertex v adjacent to one 2-vertex v1 and d − 1 (∆(G) + 2 − d)−-

vertices, where d > 4.

Theorem 37. If G is a planar graph with g(G) > 5 and ∆(G) > 11, then

G is acyclically min{∆0 + 2∆1 − 2,∆(G) + 1}-edge choosable.

Proof. The proof is by induction on the number of vertices plus the number

of edges. The theorem is trivially true for the induction basis of K1,11. By

Lemma 5, we may assume that δ(G) > 2. Let L be a min{∆0 + 2∆1 −

2,∆(G) + 1}-edge-list of G. By Lemma 36, we have eight cases to discuss.

For each cases, a subgraph G′ is obtained by deleting a suitable vertex or a

suitable edge. If ∆(G′) = ∆(G), then G′ has an acyclic L-edge coloring φ by

the induction hypothesis. If ∆(G′) < ∆(G), then G′ has an acyclic L-edge

coloring φ by Theorem 31.

For (F1), (F2), and (F3), we can use the same arguments in the proof

of Theorem 34.

For (F6), assume that NG(v) = {v1, v2, v3} and NG(v1) = {v,w1}. Let

G′ be the subgraph G− v1. Assume that φ(vv2) = 2 and φ(vv3) = 3.



2010] ACYCLIC LIST EDGE COLORING OF PLANAR GRAPHS 433

If L(v1w1) 6= Cφ(w1)∪{2, 3}, then we color v1w1 with some t ∈ L(v1w1)−

(Cφ(w1) ∪ {2, 3}) and vv1 with some element in L(vv1) − {t, 2, 3}. We may

assume that L(v1w1) = Cφ(w1) ∪ {2, 3}.

Let Si, i ∈ {2, 3}, be the set of positive integers s such that there exists

an (i, s)-colored path in φ between w1 and v avoiding v5−i. If L(vv1) 6=

Si ∪ {2, 3} for some i, then we color v1w1 with i and vv1 with some element

in L(vv1)−(Si∪{2, 3}). We may assume that S2 = S3 = Cφ(w1) = Cφ(v2)−

{2} = Cφ(v3) − {3}, 3 /∈ Cφ(v2), and 2 /∈ Cφ(v3).

If L(vvj) 6= Cφ(w1) ∪ {2, 3} for some j ∈ {2, 3}, we re-color vvj with

some p ∈ L(vvj) − (Cφ(w1) ∪ {2, 3}), color v1w1 with j, and color vv1 with

some element in L(vv1)−{2, 3, p}. We may assume that L(vv2) = L(vv3) =

Cφ(w1) ∪ {2, 3}. Let r be an element in Cφ(w1). Since there is a (2, r)-path

between w1 and v2 and 2 /∈ Cφ(v3), there is no (2, r)-path between w1 and

v3. We re-color vv2 with 3, vv3 with 2, and color v1w1 with 2, vv1 with r.

For (F7), assume that NG(v) = {v1, v2, v3}. By (F2) and (F6), we

may assume that 3 6 dG(vi) 6 ∆(G)− 3 for each i. Let G′ be the subgraph

G− vv1. Assume that φ(vv2) = 2 and φ(vv3) = 3.

Subcase 7.1. |Cφ(v1) ∩ {2, 3}| = 0.

We color vv1 with some element in L(vv1) − (Cφ(v1) ∪ {2, 3}).

Subcase 7.2. |Cφ(v1) ∩ {2, 3}| = 1.

Let s be the index such that Cφ(v1) ∩ {2, 3} = {s}. We color vv1 with

some element in L(vv1) − (Cφ(v1) ∪Cφ(vs) ∪ {5 − s}).

Subcase 7.3. |Cφ(v1) ∩ {2, 3}| = 2.

We color vv1 with some element in L(vv1)− (Cφ(v1)∪Cφ(v2)∪Cφ(v3)).

For (F8), assume that NG(v1) = {v,w1}. Let G′ be the subgraph

G− vv1.

Subcase 8.1. φ(v1w1) /∈ Cφ(v).

We color vv1 with some element in L(vv1) − (Cφ(v1) ∪ Cφ(v)).

Subcase 8.2. φ(v1w1) ∈ Cφ(v).

Let r be the index such that φ(vvr) = φ(v1w1). We color vv1 with some

element in L(vv1) − (Cφ(v) ∪Cφ(vr)).



434 HSIN-HAO LAI AND KO-WEI LIH [December

In every case, G has an acyclic L-edge coloring. Therefore, G is acycli-

cally min{∆0 + 2∆1 − 2,∆(G) + 1}-edge choosable. �

Corollary 38. A planar graph G satisfies a′list(G) 6 ∆(G) + 1 if either

g(G) > 6 or g(G) > 5 and ∆(G) > 11.

9. Sufficient Conditions for Acyclic ∆-edge Choosability

Lemma 39. ([3]) Let G be a planar graph with δ(G) > 2. Suppose that any

of the following conditions holds.

1. ∆(G) > 8 and g(G) > 7;

2. ∆(G) > 6 and g(G) > 8;

3. ∆(G) > 5 and g(G) > 9;

4. ∆(G) > 4 and g(G) > 10;

5. ∆(G) > 3 and g(G) > 14.

Then G contains at least one of the following configurations.

(G1) a 2-vertex u with neighbors v, w such that dG(v)+dG(w) 6 ∆(G)+1;

(G2) a d-vertex u adjacent to d 2-vertex, where d 6 ∆(G) − 1;

(G3) a path w1v1uv2w2 with dG(w1) = dG(v1) = dG(v2) = 2, dG(u) =

∆(G), and dG(w2) < ∆(G).

Theorem 40. If G is a planar graph such that any of the five conditions

in Lemma 39 holds, then G is acyclically min{∆0 + ∆1 − 1,∆(G)}-edge

choosable.

Proof. The proof is by induction on the number of vertices. The theo-

rem is true for the induction basis, which consists of the following graphs,

respectively: K1,8, K1,6, K1,5, K1,4, and K1,3.

By Lemma 5, we may assume that δ(G) > 2. Let L be a min{∆0 +

∆1 − 1,∆(G)}-edge-list of G. By Lemma 39, we have the following cases

to discuss. For each cases, a subgraph G′ is obtained by deleting a suitable

vertex. If ∆(G′) = ∆(G), then G′ has an acyclic L-edge coloring φ by

the induction hypothesis. If ∆(G′) < ∆(G), then G′ has an acyclic L-edge

coloring φ by Theorem 34.
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For (G1), let G′ be the subgraph G − u. Since |Cφ(v) ∪ Cφ(w)| 6

dG(v) + dG(w) − 2 6 min{∆0(uv) + ∆1(uv) − 2,∆(G) − 1}, we color uv

with some k ∈ L(uv) − (Cφ(v) ∪ Cφ(w)). Since dG(v) > δ(G) > 2, we have

|Cφ(w) ∪ {k}| 6 dG(w) 6 min{∆0(uw) + ∆1(uw) − 2,∆(G) − 1}. We color

uw with some element in L(uw) − (Cφ(w) ∪ {k}).

For (G2), let v be one neighbor of u and w be the other neighbor

of v. Let G′ be the subgraph G − v. We color vw with some element

j ∈ L(vw) − Cφ(w). If j /∈ Cφ(u), then we color uv with some element in

L(uv)− (Cφ(u)∪ {j}). If j = φ(ux) ∈ Cφ(u) for some neighbor x of u, then

we color uv with some element in L(uv) − (Cφ(u) ∪ Cφ(x)).

For (G3), assume that the neighbors of u are v1, v2, . . ., v∆(G). Let G′

be the subgraph G − v1. We color w1v1 with some element k ∈ L(w1v1) −

(Cφ(w1)∪{φ(uv3), . . . , φ(uv∆(G))}). If k 6= φ(uv2) and L(uv1) 6= Cφ(u)∪{k},

then we color uv1 with some element in L(uv1)−(Cφ(u)∪{k}). If k 6= φ(uv2)

and L(uv1) = Cφ(u) ∪ {k}, then we color uv1 with k and re-color w1v1 with

some element in L(w1v1)− (Cφ(w1)∪{k}). We may assume that k = φ(uv2)

and L(w1v1) = Cφ(w1) ∪ Cφ(u). Let j be some element in L(uv1) − Cφ(u).

If φ(uv2) /∈ Cφ(w2), or j /∈ Cφ(w1), or j /∈ Cφ(v2), then we color uv1 with

j. We may assume that L(uv1) = Cφ(w1)∪Cφ(u) = Cφ(u)∪ {φ(v2w2)} and

φ(uv2) ∈ Cφ(w2). If L(uv2) 6= Cφ(u) ∪ {φ(v2w2)}, then we re-color uv2 with

some element in L(uv2) − (Cφ(u) ∪ {φ(v2w2)}) and color uv1 with φ(v2w2).

We may assume that L(uv2) = Cφ(u) ∪ {φ(v2w2)}. We re-color v2w2 with

some α ∈ L(v2w2)−Cφ(w2) and uv2 with φ(v2w2). We color uv1 with φ(uv2)

and re-color v1w1 with some element in L(v1w1) − {φ(v2w2), φ(uv2)}.

In every case, G has an acyclic L-edge coloring. Therefore, G is acycli-

cally min{∆0 + ∆1 − 1,∆(G)}-edge choosable. �

Corollary 41. If G is a planar graph such that any of the five conditions

in Lemma 39 holds, then a′list(G) = ∆(G).

For planar graphs with girth at least 16, we have the following stronger

result.

Theorem 42. If G is a planar graph with g(G) > 16, then G is acyclically

max{∆0, 3}-edge choosable.
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Proof. The proof is by induction on the number of vertices. If |G| 6 16,

then G is a forest or a cycle on sixteen vertices. Hence, G is acyclically

max{∆0, 3}-edge choosable. By Lemma 5, we may assume that δ(G) > 2.

It is known ([7]) that, if a planar graph G satisfies δ(G) > 2 and g(G) > 16,

then G has a 2-vertex adjacent to two 2-vertices. Hence, there exists a path

uvwxy such that dG(v) = dG(w) = dG(x) = 2. Let L be a max{∆0, 3}-

edge-list of G. By the induction hypothesis, G − {v,w, x} is acyclically

max{∆0, 3}-edge choosable and G−{v,w, x} has an acyclic L-edge coloring.

By Lemma 8, G is acyclically max{∆0, 3}-edge choosable. �
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