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ORIENTED CIRCUIT DOUBLE COVER AND

CIRCULAR FLOW AND COLOURING
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Abstract

For a set C of directed circuits of a graph G that form

an oriented circuit double cover, we denote by IC the graph with

vertex set C, in which two circuits C and C′ are connected by

k edges if |C ∩ C′| = k. Let Φ∗
c (G) = minχc(IC), where the

minimum is taken over all the oriented circuit double covers of G.

It is easy to show that for any graph G, Φc(G) ≤ Φ∗
c (G). On the

other hand, it follows from well-known results that for any integer

2 ≤ k ≤ 4, Φ∗
c(G) ≤ k if and only if Φc(G) ≤ k; for any integer

k ≥ 1, Φ∗
c (G) ≤ 2 + 1

k
if and only if Φc(G) ≤ 2 + 1

k
. This papers

proves that for any rational number 2 ≤ r ≤ 5 there exists a graph

G for which Φ∗
c(G) = Φc(G) = r. We also show that there are

graphs G for which Φc(G) < Φ∗
c(G).

1. Introduction

Graphs in this paper may have parallel edges but no loops. Suppose

G = (V,E) is a bridgeless graph. Replace each edge e of G by two opposite

arcs, we obtain a symmetric digraph, whose arc set is denoted by D(G).

For an arc x in D(G), denote by x−1 the opposite arc of x (i.e., x and x−1

correspond to the same edge of G). For a subset S of D(G), let S−1 = {x−1 :

x ∈ S}. A subset S of D(G) is called asymmetric if S ∩ S−1 = Ø. For an
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asymmetric subset S of D(G), denote by S the set of edges obtained from

S by omitting the orientations.

For each subset A of V , denote by ∂+(A) the set of arcs with heads in

A and tails in V − A. A cut of G is a set X of arcs in D(G) such that

X = ∂+
G(A) for some A ⊂ V . A bond of G is a minimal cut of G. A directed

circuit of G is a subset C of D(G) such that C ∩ C−1 = Ø and C induces

a connected digraph (also denoted by C) with d+
C(v) = d−C(v) = 1 for each

vertex v ∈ V (C). Unless explicitly specified, a circuit means a directed

circuit. A cycle C is the union of a set of circuits C1, C2, · · · , Ck such that

Ci ∩ Cj = Ø for i 6= j. Here k could be 0, in which case C = Ø. An

oriented circuit double cover (respectively, an oriented cut double cover) of

G is a family C of circuits (respectively, a family B of bonds) which form a

partition of D(G). Note that cuts and cycles of G are asymmetric subsets

of D(G).

A chain in G is a mapping f : D(G) → R such that f(x−1) = −f(x)

for all x ∈ D(G). If f is a chain in G and S is a subset of D(G), then

f(S) =
∑

x∈S f(x). A flow in G is a chain f such that for each cut X,

f(X) = 0. A flow f in G is called an r-flow if for every arc x ∈ D(G),

1 ≤ |f(x)| ≤ r − 1. The circular flow number Φc(G) of G is the least r for

which G admits an r-flow.

A tension in G is a chain f such that for each circuit C, f(C) = 0.

An r-tension is a tension f such that 1 ≤ |f(x)| ≤ r − 1 for all x ∈ D(G).

The circular chromatic number χc(G) is the least r such that G admits an

r-tension.

As circuit and cut are dual concepts, tension and flow, and consequently,

the circular chromatic number and the circular flow number, are dual con-

cepts. In particular, for planar graphs G, χc(G) = Φc(G
∗), where G∗ is the

geometrical dual of G.

It is well-known [24] and not difficult to prove that χ(G)− 1 < χc(G) ≤

χ(G), and Φ(G) − 1 < Φc(G) ≤ Φ(G), where χ(G) is the chromatic number

of G, and Φ(G) is the flow number of G, i.e., the least positive integer k such

that G admits a nowhere zero k-flow. So χc(G) is a refinement of χ(G), and

Φc(G) is a refinement of Φ(G).

For a graph G, the circular chromatic number χc(G) of G has an al-

ternate (and more commonly used) definition. Given a real number r ≥ 1,
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an r-colouring of G is a mapping c : V → [0, r) such that for each edge

e = uv of G, |c(u) − c(v)|r ≥ 1, here |a|r = min{|a|, r − |a|}. The circular

chromatic number of G is χc(G) = inf{r : G admits an r-colouring }. It

is known [24] that the infimum in the definition is always attained. If G is

finite then χc(G) = p/q is a rational number. In case r = p/q is a rational

number then the existence of an r-colouring of G is equivalent to the exis-

tence of a mapping f : V → {0, 1, · · · , p−1} such that for each edge e = uv,

q ≤ |f(u) − f(v)| ≤ p − q. Such a mapping is called a (p, q)-colouring of G.

There is no dual concept for the concept of a vertex of a graph. By

observing that the set of vertices corresponds to a family of cuts that form

an oriented cut double cover, we give an alternate definition of the circular

chromatic number of a graph in terms of cuts. This definition has a natural

dual form. First we define the concept of intersection graph. Suppose X

is a family of asymmetric subsets of D(G). The intersection graph induced

by X , denoted by IX , has vertex set X in which two vertices A and B are

connected by k(A,B) parallel edges, where k(A,B) = |A ∩ B|. We write

A ∼ B if k(A,B) 6= 0, i.e., A and B are connected by at least one edge.

For a graph G, let χ∗
c(G) = min{χc(IX ) : X is an oriented cut double

cover of G}.

Lemma 1. For any graph G, χc(G) = χ∗
c(G).

Proof. Let X = {∂+(v) : v ∈ V (G)}. Then X is an oriented cut double

cover of G and IX is isomorphic to G. So χc(G) ≥ χ∗
c(G). On the other

hand, if X is an oriented cut double cover of G and c is a (p, q)-colouring

of IX , then we can obtain a p/q-tension of G as follows: for each arc x of

D(G), let B and B′ be the cuts in X containing x and x−1, respectively.

Let f(x) = (c(B) − c(B′))/q. As c is a (p, q)-colouring of IX , we know that

1 ≤ |f(x)| ≤ p/q − 1. Observe that

f(x) =
1

q





∑

B∈B,x∈B

c(B) −
∑

B∈B,x−1∈B

c(B)



 .

For any circuit C of G, for each cut B in X , |C ∩ B| = |C−1 ∩ B|. So

f(C) =
1

q

∑

B∈B

(
∑

x∈C∩B

c(B) −
∑

x−1∈C∩B

c(B)) = 0.
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Hence f is a p/q-tension of G. Therefore χc(G) ≤ χ∗
c(G), and hence equality

holds. �

For those graphs that have an oriented circuit double cover, the param-

eter χ∗
c(G) has a natural dual form. Suppose C is an oriented circuit double

cover of G. Let IC be the intersection graph induced by C. In case G is

a planar graph and C is the set of facial circuits of G, then IC is just the

planar dual of G. In this case, we have Φc(G) = χc(IC). Thus for any graph

G which has an oriented circuit double, we define

Φ∗
c(G) = min{χc(IC) : C is an oriented circuit double cover of G}.

If the oriented circuit double cover conjecture is true, this definition applies

to all bridgeless graphs G. In other words, Φ∗
c(G) is defined if and only if

Φc(G) is defined.

Lemma 2. For any graph G which has an oriented circuit double cover,

Φc(G) ≤ Φ∗
c(G).

Proof. Let C be an oriented circuit double cover of G with χc(IC) =

Φ∗
c(G) = p/q. Let c be a (p, q)-colouring of IC . For each arc x of D(G),

let C and C ′ be the circuits containing x and x−1, respectively. Let f(x) =

(c(C) − c(C ′))/q. Similarly as in the proof of Lemma 1, f is a p/q-flow of

G. So Φc(G) ≤ Φ∗
c(G). �

Compare to Lemma 1, a natural question is whether or not the equality

Φc(G) = Φ∗
c(G) holds for all graphs G for which Φ∗

c(G) are defined. In other

words, the question is as follows:

Question 1. Suppose G is a bridgeless graph which has an oriented circuit

double cover. Suppose Φc(G) ≤ p/q. Is it true that there exists an oriented

circuit double cover C of G with χc(IC) ≤ p/q?

If q = 1, i.e., p/q = p is an integer, then we are considering flow number

(instead of circular flow number) and circuit double cover. There seems

to be a mysterious connection between flow and circuit double cover. A

k-cycle double cover is a circuit double cover in which the circuits can be

partitioned into k parts, each part is a cycle (i.e., edge disjoint union of

circuits). Equivalently, a k-cycle double cover is a circuit double cover C
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with χ(IC) ≤ k. It was proved by Tutte [16] that a graph admits a nowhere

zero 3-flow if and only if G has an oriented 3-cycle double cover, and proved

by Jaeger [5] and Archdeacon [1] that G admits a nowhere zero 4-flow if and

only if G has an oriented 4-cycle double cover. Of course, a graph G admits a

nowhere zero 2-flow if and only if G itself is a cycle, and hence has an oriented

2-cycle double cover. In other words, for k = 2, 3, 4, Φc(G) ≤ k if and only

if Φ∗
c(G) ≤ k. For k = 5, the question remains open. However, it was

conjectured by Tutte [17] that every bridgeless graph G admits a nowhere

zero 5-flow, and conjectured by Archdeacon [1] and Jaeger [6] that every

bridgeless graph has an oriented 5-cycle double cover. If both conjectures

are true, then we would have Φc(G) ≤ k if and only if Φ∗
c(G) ≤ k for any

integer k.

It was proved by Jaeger [6] that a graph G admits an integer flow f

with |f(e)| ∈ {k, 2k + 1} if and only if G has an oriented cycle double cover

C consisting of 2k + 1 cycles C0, C1, · · · , C2k such that Ci ∩ Cj 6= Ø only if

|i − j| = 1. This is equivalent to say that Φc(G) ≤ (2k + 1)/k if and only if

Φ∗
c(G) ≤ (2k + 1)/k.

A common feature of these results and conjectures is to assert that for

some rational numbers r, Φ∗
c(G) ≤ r if and only if Φc(G) ≤ r. As the

inequality Φc(G) ≤ Φ∗
c(G) always hold, this implies that for these rational

numbers r, the answer to Question 1 is “yes”, i.e., Φ∗
c(G) = r if and only if

Φc(G) = r. Is this true for every rational number? If not, then for which

rational numbers, such equivalence exists?

As mentioned above, if G is a planar graph, then Φ∗
c(G) = Φc(G).

Instead of embedding a graph on the plane (or sphere), one may embed

a graph on other orientable surfaces. An embedding of a graph G in a

surface Σ is called a 2-cell embedding if each face of the embedded graph

is homeomorphic to the open unit disk. A 2-cell embedding of a connected

graph in a surface Σ is circular if the boundary of each face is a circuit. If

G has a circular 2-cell embedding in an orientable surface Σ, then the faces

F of G form an oriented circuit double cover of G. The graph IF is the

surface dual of G. It is known [16] that if a circular 2-cell embedding of

G in an orientable surface is k-face colourable, then Φ(G) ≤ k. The same

proof shows that if such an embedding is circular r-face colourable, then

Φc(G) ≤ r. The converse is not true. There are graphs G with Φc(G) ≤ r
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such that no circular 2-cell embedding of G in an orientable surface which

is circular r-colourable.

Our question is of similar flavor, but is different. Instead of consider-

ing all possible circular 2-cell embedding of G in an orientable surface, we

consider all possible oriented circuit double covers of G. The latter cor-

responds to consider all possible circular 2-cell embedding of G in an ori-

entable ‘pseudo’ face or ‘pinched’ face, a topological space obtained from an

orientable surface by repeatedly identifying some points into a single point

(that is why it is called a pinched surface). So we are choosing among a

wider range of embeddings. However, the answer is still negative. In this

paper, we shall prove that for each rational number 2 ≤ p/q ≤ 5 there is a

graph G with Φc(G) = Φ∗
c(G) = p/q. On the other hand, there are graphs

G for which Φ∗
c(G) > Φc(G).

2. Edge Rooted Graphs and Series-Parallel Joins of Graphs

Let G = (V,E) be a multi-graph and C an oriented circuit double cover

of G. Let IC be the intersection graph induced by C. Note that each edge

of G corresponds to an edge of IC . We shall denote by e∗ the edge in IC
corresponding to the edge e in G.

Let e be an edge of G. The pair (G, e) is called a rooted graph, or a graph

with root edge e. Then (IC , e
∗) is called the rooted dual graph (induced by

C).

Suppose (G, e) and (G′, e′) are vertex disjoint rooted graphs, and e = uv,

e′ = u′v′.

• The parallel join P ((G, e), (G′ , e′)) of (G, e) and (G′, e′) is the rooted

graph (G′′, e′′), where G′′ is obtained from the disjoint union of G and

G′ by deleting e, e′, identifying u and u′ into a vertex u′′, identifying

v and v′ into a vertex v′′, and adding an edge joining u′′ and v′′. The

root edge e′′ of G′′ is the edge joining u′′ and v′′.

• The series join S((G, e), (G′ , e′)) of (G, e) and (G′, e′) is the rooted

graph (G′′, e′′), where G′′ is obtained from the disjoint union of G and

G′ by deleting the edges e, e′, identifying u and u′, one adding an edge

joining v and v′. The root edge e′′ is the edge joining v and v′.
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Note that given (G, e) and (G′, e′), the graphs P ((G, e), (G′ , e′)) and

S((G, e), (G′, e′)) are not uniquely determined. In P ((G, e), (G′ , e′)), instead

of identifying u and u′, v with v′, one could also identify u with v′, v with

u′. However, for our purpose, the difference between the resulting graphs is

insignificant. Indeed, no matter which corresponding vertices are identified,

they have isomorphic cyclic matroids, and hence have the same circular flow

number as well as the same circular chromatic number.

For simplicity, when the roots are clear from the context, we may simply

write S(G,G′) and P (G,G′). It should be understood that S(G,G′) and

P (G,G′) are also rooted graphs, where the root edges are as specified in the

previous paragraph.

Given an oriented circuit double cover C of G and an oriented circuit

double cover C′ of G′, one obtain an oriented circuit double cover of S(G,G′)

and an oriented circuit double cover of P (G,G′) as follows: Suppose e = uv

and e′ = u′v′ and S(G,G′) and P (G,G′) are defined as before. We may

assume that A ∈ C contains the arc uv, B ∈ C contains vu, A′ ∈ C′ contains

v′u′ and B′ ∈ C′ contains u′v′. Let X be the union of A−e,A′−e′ and v′v, Y

be the union of B−e,B′−e′ and vv′. Then (C∪C′−{A,B,A′, B′})∪{X,Y } is

an oriented circuit double cover of S(G,G′). Let X ′ be the union of A−e and

A′−e′, Y ′ be the union of B−e and v′′u′′, Z be the union of B′−e′ and u′′v′′.

Then (C∪C′−{A,B,A′, B′})∪{X ′, Y ′, Z} is an oriented circuit double cover

of P (G,G′). We shall denote by S(C, C′) and P (C, C′) the above constructed

oriented circuit double covers of S(G,G′) and P (G,G′), respectively.

Lemma 3. Suppose G,G′ are rooted graphs, and C, C′ are oriented circuit

double covers of G and G′, respectively. Then S(IC , IC′) is isomorphic to

IP (C,C′) and P (IC , IC′) is isomorphic to IS(C,C′).

Proof. This is just the duality of the operations of series join and parallel

join. Compare the graphs S(IC , IC′) and IP (C,C′). When we form the circuit

cover P (C, C′) of P (G,G′), we take the union of A and A′ to obtain a new

circuit X ′. This corresponds to the operation of identifying the two vertices

A,A′ into a single vertex in S(IC , IC′). The circuits B,B′ are replaced by Y ′

and Z, which are actually the same as B,B′, except the edge e is replaced

by a new edge which is common to Y ′ and Z. This corresponds to the

operation of deleting the root edges of IC and IC′ and adding an edge joining



356 ZHISHI PAN AND XUDING ZHU [December

the two vertices B and B′ in S(IC , IC′). The other half of the lemma is

proved analogously. �

Suppose (G, e) is a rooted graph and r ≥ 2 is a real number. For a real

number a, let a (mod r) be the unique real number a′ such that 0 ≤ a′ < r

and a − a′ is a multiple of r. Let x be any of the two arcs corresponding to

e. We introduce a few sets as follows:

• Fr(G, e) is the set of flows f in G such that for each edge e′ 6= e,

1 ≤ |f(e′)| ≤ r − 1.

• Tr(G, e) the set of tensions f in G such that for each edge e′ 6= e,

1 ≤ |f(e′)| ≤ r − 1.

• LF
r (G, e) = {f(x) (mod r) : f ∈ Fr(G, e)}.

• LT
r (G, e) = {f(x) (mod r) : f ∈ Tr(G, e)}.

If u, v are the end vertices of e, then x = uv or x = vu does not make any

difference in the definition above. This is so because f(uv) = −f(vu) and

for any f ∈ Fr(G, e), −f ∈ Fr(G, e); for any f ∈ Tr(G, e), −f ∈ Tr(G, e).

Note that Fr(G, e) (respectively, Tr(G, e)) could be empty, in which

case LF
r (G, e) (respectively, LT

r (G, e)) is also empty. Indeed, it is easy to see

that LF
r (G, e) 6= Ø if and only if Φc(G/e) ≤ r, 0 ∈ LF

r (G, e) if and only if

Φc(G − e) ≤ r, and LF
r (G, e) ∩ [1, r − 1] 6= Ø if and only if Φc(G) ≤ r. Here

G/e is the graph obtained from G by contracting e, and G − e is obtained

from G by deleting e. Similarly, LT
r (G, e) 6= Ø if and only if χc(G − e) ≤ r,

0 ∈ LT
r (G, e) if and only if χc(G/e) ≤ r, and LT

r (G, e) ∩ [1, r − 1] 6= Ø if and

only if χc(G) ≤ r.

Suppose A and B are subsets of [0, r). Let A + B = {a + b (mod r) :

a ∈ A, b ∈ B}. We view the interval [0, r) as forming a circle, by identifying

0 and r. For a, b ∈ [0, r), we denote by [a, b]r the interval from a to b in this

circle, along the increasing direction. To be precise, if a < b, then [a, b]r =

{x : a ≤ x ≤ b}, if a > b, then [a, b]r = {x : a ≤ x < r} ∪ {x : 0 ≤ x ≤ b}.

As a convention, we denote by [a, a]r the set consisting the single element a

and denote by [0, r]r the set of all real number 0 ≤ x < r. The length of an

interval [a, b]r is equal to b − a if a ≤ b and equal to r − a + b if a > b.

The following lemmas are easy (and an equivalent form appeared in

[11, 12]).
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Lemma 4. Suppose (G, e) and (G′, e′) are rooted graphs and r ≥ 2 is a real

number. Then

LF
r (S((G, e), (G′ , e′))) = LF

r (G, e) ∩ LF
r (G′, e′)

and

LF
r (P ((G, e), (G′ , e′))) = LF

r (G, e) + LF
r (G′, e′).

LT
r (S((G, e), (G′ , e′))) = LT

r (G, e) + LT
r (G′, e′)

and

LT
r (P ((G, e), (G′ , e′))) = LT

r (G, e) ∩ LT
r (G′, e′).

Proof. Assume e = uv, e′ = u′v′. If f ∈ Fr(G, e) is a flow with f(uv) = t

and g ∈ Fr(G
′, e′) is a flow with g(v′u′) = t, then the mapping h defined as

h(z) = f(z) if z ∈ D(G) − {uv, vu}, h(z) = g(z) if z ∈ D(G′) − {u′v′, v′u′}

and h(v′v) = f(uv) = g(v′u′) = t is flow in Fr(S(G,G′), e′′). Conversely,

from a flow h ∈ Fr(S(G,G′), e′′) is a flow with h(v′v) = t, one obtains a

flow f ∈ Fr(G, e) with f(uv) = t and g ∈ Fr(G
′, e′) with g(v′u′) = t, which

are the restrictions of h to G − e and G′ − e′, respectively, plus the obvious

definition of flows on the arcs of e and e′. Therefore

LF
r (S((G, e), (G′ , e′))) = LF

r (G, e) ∩ LF
r (G′, e′).

The other equalities are proved similarly. �

The following lemma is easy and well-known [11, 8].

Lemma 5. Suppose A = [a, b]r and B = [c, d]r. If the sum of the lengths

of A and B is less than r, then A + B = [a + c, b + d]r (here the addition

is modulo r). If one of A,B is an empty set, then A + B = Ø. Otherwise,

A + B = [0, r]r.

We call a rooted dual (IC , e
∗) of (G, e) perfect if for any 2 ≤ r, LF

r (G, e) =

LT
r (IC , e

∗). When the roots are clear from the context or is of no significance,

we simply say that IC is a perfect dual of G. It is easy to verify that for

a planar graph G, the facial circuits form an oriented circuit double cover
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which induces a perfect dual with any edge as the root edge. Thus we have

the following lemma.

Lemma 6. If G is a planar graph then for any edge e of G, (G, e) has a

perfect dual.

Lemma 7. For any oriented circuit double cover C of G, for any edge e of

G, for any r ≥ 2, LT
r (IC , e

∗) ⊆ LF
r (G, e).

Proof. Suppose C is an oriented circuit double cover of G. Let e be an edge

of G and e∗ the corresponding edge in IC . For any tension g ∈ LT
r (IC , e

∗), we

obtain a flow f ∈ LF
r (G, e) as follows: For each circuit C ∈ C, let ϕC be the

characteristic flow on C, i.e., ϕC(x) = 1 if x is an arc of C, ϕC(x) = −1 if

x−1 is an arc of C, and ϕC(x) = 0 otherwise. Let f =
∑

C∈C g(C)ϕC . Then

it is straightforward to verify that f ∈ LF
r (G, e) and f(e) = g(e∗). �

Lemma 8. If G has a perfect dual , then Φ∗
c(G) = Φc(G).

Proof. By definition, Φc(G) = min{r : LF
r (G, e) ∩ [1, r − 1] 6= Ø}. Let IC

be a perfect dual of G. Then χc(IC) = min{r : LT
r (IC , e

∗) ∩ [1, r − 1] 6= Ø}.

As LF
r (G, e) = LT

r (IC , e
∗) for any r ≥ 2, we conclude that χc(IC) = Φc(G).

Hence Φ∗
c(G) ≤ χc(IC) = Φc(G). As Φ∗

c(G) ≥ Φc(G) for any graph G, the

equality holds. �

Lemma 9. If IC is a perfect dual of G, IC′ is a perfect dual of G′, then

GP (C,C′) is a perfect dual of S(G,G′) and GS(C,C′) is a perfect dual of P (G,G′).

Proof. This follows easily from Lemma 4 and Lemma 3. �

3. Graphs G with Φc(G) = Φ∗

c
(G)

Let C be the oriented circuit double cover of the Petersen graph G as

shown in Figure 1 below. Then IC is a copy of K5 with a few edges duplicated.

Let e be an edge of G as depicted in Figure 1 such that e∗ is an edge

of K5 with no parallel edges, i.e., the two circuits containing e intersect at e

only. Assume e′ = xy is an edge of K5. It is easy to verify that for any r < 4,
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Figure 1: Oriented circuit double cover of the Petersen graph.

K5 − e′ is not r-colourable, and for any 4 ≤ r < 5, for any δ ∈ [4, r − 4],

K5 − e′ has an r-colouring c with |c(x) − c(y)| = δ and moreover, for any

r-colouring c of K5−e′, we have |c(x)− c(y)| ≤ r−4. It follows that if r < 4

then LT
r (K5, e

′) = Ø, and if 4 ≤ r < 5 then LT
r (K5, e

′) = [4, r − 4]r. Note

that for a rooted graph (G, e), by duplicating an edge other than the root

edge e will not change the set LT
r (G, e). Therefore the LT

r (IC , e
∗) is equal to

LT
r (K5, e

′) for all r.

Lemma 10. For any edge e of the Petersen graph G, the rooted graph (G, e)

has a perfect dual.

Proof. It was shown in [13] that for r < 4, LF
r (G, e) = Ø and for 4 ≤ r < 5,

LF
r (G, e) = [4, r − 4]r. So for any 2 ≤ r < 5, LT

r (IC , e
∗) = LF

r (G, e). I.e.,

(IC , e
∗) is a perfect dual of (G, e). �

Theorem 1. For any rational number 2 ≤ p/q ≤ 5, there is a graph G with

Φc(G) = p/q and moreover G has an edge e such that (G, e) has a perfect

dual. Consequently, Φ∗
c(G) = Φc(G).



360 ZHISHI PAN AND XUDING ZHU [December

Proof. For 2 ≤ p/q ≤ 4, it is known [22] that there is a planar graph G

with χc(G) = p/q. Hence the dual graph G∗ has Φc(G
∗) = p/q, and the

conclusion follows from Lemma 6. Thus we only need to consider rational

numbers p/q ∈ (4, 5]. Assume 4 < p/q ≤ 5. We shall construct, by induction

on q, a rooted graph (Gp/q, e) with Φc(Gp/q) = p/q which has a perfect dual.

It is well-known (cf. [22]) that for each fraction p/q with p, q > 1 (and

(p, q) = 1), there are unique integers 0 < a < p and 0 < b < q such that

pb − aq = 1. We call the fraction a/b the lower parent of p/q, denote it by

pl(p/q) = a/b. Let a′ = p− a and b′ = q − b. The fraction a′/b′ is called the

upper parent of p/q, and denoted by pu(p/q) = a′/b′. Observe that

pl(p/q) < p/q < pu(p/q).

Moreover, since a′b−ab′ = (p−a)b−a(q−b) = pb−qa = 1, so if a < a′ then

pl(a
′/b′) = a/b. It is also easy to see that in case a > a′ then pl(a

′/b′) < a/b.

So in any case, pl(a
′/b′) ≤ a/b. Similarly, pu(a/b) ≥ a′/b′. �

Lemma 11. Suppose 4 < p/q < 5 and that a/b = pl(p/q), a′/b′ = pu(p/q).

There exists a rooted graph (Gp/q, e) which has a perfect dual. Moreover, for

a/b ≤ r < a′/b′,

LF
r (Gp/q) = [p − 1 − (q − 1)r, qr − p + 1],

for r < a/b,

Lr(Gp/q) = Ø.

Proof. Let G5/1 be the Petersen graph. It follows from Lemma 10 that G5/1

has a perfect dual and for 4 ≤ r < 5,

LF
r (G5/1) = [4, r − 4]r,

and for r < 4,

Lr(G5/1) = Ø.

If p/q = (4k +1)/k and k ≥ 2, then a/b = 4/1 and a′/b′ = (4k−3)/(k−

1). Let G(4k+1)/k be the parallel join of G(4(k−1)+1)/(k−1) and G5/1. By
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Lemma 9, G(4k+1)/k has a perfect dual. Moreover, by Lemma 4 and Lemma

5,

LF
r (G(4k+1)/k) = [4(k − 1) − (k − 2)r, (k − 1)r − 4(k − 1)]r + [4, r − 4]r

= [4k − (k − 1)r, kr − 4k]r.

(Because r < (4(k−1)+1)/(k−1), the sum of the lengths of the two intervals

is less than r. Also note that 4k − (k − 2)r (mod r) = 4k − (k − 1)r). For

r < a/b = 4,

LF
r (G(4k+1)/k) = Ø.

Assume that 4 < p/q < 5 and p/q 6= (4k + 1)/k. Then a/b 6= 4 and

b < q, a′/b′ ≤ 5 and b′ < q. By induction hypothesis, both graphs Ga/b and

Ga′/b′ have been constructed. Let Q be the graph consisting of two vertices

and two parallel edges. Then LF
r (Q) = [1, r − 1]r. We construct the graph

Gp/q as follows:

Let X be the series join of Ga/b and Q. Let Y be the parallel join of

two copies of X. Let Z be the series join of Y and G5/1. Finally, let Gp/q

be the parallel join of Z and Ga′/b′ . It follows from Lemma 9 that Gp/q has

a perfect dual. It remains to calculate the label set LF
r (Gp/q).

If r < a/b, then LF
r (Ga/b) is either empty, or equal to [a − 1 − (b −

1)r, br−a+1]r. In the former case, LF
r (X) = Ø. In the latter case, LF

r (X) =

[a − 1 − (b − 1)r, br − a + 1]r ∩ [1, r − 1]r = Ø. So in any case LF
r (X) = Ø

and hence LF
r (Gp/q) = Ø. Now consider the case that a/b ≤ r < a′/b′.

LF
r (X) = [a − 1 − (b − 1)r, br − a − 1]r ∩ [1, r − 1]r

= [1, br − a + 1]r ∪ [a − 1 − (b − 1)r, r − 1]r.

LF
r (Y ) = LF

r (X) + LF
r (X) = ([1, br − a + 1] ∪ [a − 1 − (b − 1)r, r − 1])

+([1, br − a + 1] ∪ [a − 1 − (b − 1)r, r − 1])

= [2, 2br − 2a + 2] ∪ [2a − 2 − (2b − 1)r, r − 2]

∪[a − (b − 1)r, br − a].

LF
r (Z) = LF

r (Y ) ∩ Lr(G5/1)
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= ([2, 2br − 2a + 2] ∪ [2a − 2 − (2b − 1)r, r − 2]

∪[a − (b − 1)r, br − a]) ∩ [4, r − 4]

= [a − (b − 1)r, br − a]r.

(See Figure 2 below. for a possible position of the points).

r-4

a-(b-1)r br-a

2a-2-(2b-1)r

r-2
2

2br-2a+2

4

Figure 2: Illustration of the involved intervals

LF
r (Gp/q) = LF

r (Z) + LF
r (Ga′/b′)

= [a − (b − 1)r, br − a] + [a′ − 1 − (b′ − 1)r, b′r − a′ + 1]

= [(a + a′) − 1 − (b + b′ − 1)r, (b + b′)r − (a + a′) + 1]

= [p − 1 − (q − 1)r, qr − p + 1].

This completes the proof of Lemma 11. �

Since [p−1− (q−1)r, qr−p+1]r ∩ [1, r−1]r 6= Ø if and only if r ≥ p/q,

we conclude that Φc(Gp/q) = p/q.

3. Graphs with Φ∗

c
(G) > Φc(G)

In this section, we present a class of graphs G for which Φ∗
c(G) > Φc(G).

Let J2k+1 be the flower snark which has vertex set V (J2k+1) = {ai, bi, ci, di :

i = 0, 1, · · · , 2k} and edge set E(J2k+1) = {biai, bici, bidi, aiai+1, cidi+1, dici+1 :

i = 0, 1, · · · , 2k}, where the summation in indices are modulo 2k + 1. The

figure 3 is a example of flower snark for k = 3. It is known [15] and [9] that

Φc(J2k+1) = (4k + 1)/k.
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Figure 3: The graph of flower snark J7.

Theorem 2. If k ≥ 4, then Φ∗
c(J2k+1) > Φc(J2k+1).

Proof. Assume to the contrary that Φ∗
c(J2k+1) = Φc(J2k+1) = (4k + 1)/k.

Then J2k+1 has an oriented circuit double cover C which contains at least p ≥

4k + 1 circuits. When k ≥ 4, all circuits of J2k+1 is of length at least 6. Let

Hi be the subgraph of J2k+1 induced by {ai, bi, ci, di, ai+1, bi+1, ci+1, di+1}.

Each circuit of length 6 is contained in Hi for some i. Moreover, there are

only three circuits of length 6 contained in Hi. These circuits are

Ai = {ai, bi, di, ci+1, bi+1, ai+1},

Bi = {ai, bi, ci, di+1, bi+1, ai+1},

Ci = {ci, bi, di, ci+1, bi+1, di+1}.

Note that any two circuits of these three circuits share three consecutive

edges. If C contains two of these three circuits, say C contains two circuits

Ai, Bi, then there is no circuit in C that can cover the edge ai−1ai. So C

contains at most one circuit of length 6 of Hi. Therefore, C contains at most

2k + 1 circuits of length 6. Let s be the number of circuits of length 6 of C.

Then the sum of the lengths of the circuits in C is at least

6s + 7(4k + 1 − s) ≥ 6(4k + 1) + 2k.

So if k ≥ 4, then the sum is at least 6(4k + 1) + 8 > 6(4k + 2). On the

other hand, each edge of J2k+1 is covered by two circuits, so the sum of the
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lengths of circuits in C is equal to 6(4k + 2), which is a contradiction. �

The proof above actually shows something more: let Φ#
c (G) be the

least r such that there is a cycle double cover (not necessarily oriented) C

of G such that χc(IC) = r. Then for flower snarks J2k+1, if k ≥ 4 then

either Φ#
c (J2k+1) ≤ 4 or Φc(J2k+1) < Φ#

c (J2k+1). Thus we conclude that

Φc(J2k+1) 6= Φ#
c (J2k+1). But the possibility that Φ#

c (J2k+1) < Φc(J2k+1) is

not ruled out. Actually, for many other graphs G, we do have Φ#
c (J2k+1) <

Φc(J2k+1). For example, it is known [19] that if G admits a nowhere zero 4-

flow then G has a 3-cycle double cover. So if Φc(G) ≤ 4, then Φ#
c (J2k+1) ≤ 3.

As observed before, for planar graphs G we have Φ∗
c(G) = Φc(G). Peter-

son minor free graphs share many properties with planar graphs. A natural

question is whether or not the equality Φ∗
c(G) = Φc(G) holds for Peter-

son minor free graphs. In the following, we give a negative answer to this

question.

Suppose G is a graph. An orientation D of G is an asymmetric subset

of D(G) such that D = E. The following lemma is proved in [3].

Lemma 12. For any graph G, Φc(G) ≤ r if and only if G has an orientation

D such that for any bond B of G,

1

r − 1
≤

|B ∩ D|

|B−1 ∩ D|
≤ r − 1.

Theorem 3. Let G be the graph defined as Figure 4. Then Φ∗
c(G) > Φc(G).

First we show that Φc(G) = 7/2. Let D be the orientation of G in

which the cycle (v0, v1, . . . , v7) is a directed cycle, and for i = 0, 1, 2, 3, v2i

has out-degree 2, v2i+1 has in-degree 2. The edge ab is arbitrarily oriented.

It can be verified that for any bond B of G, 2/5 ≤ |B∩D|/|B−1 ∩D| ≤ 5/2.

By Lemma 12, Φc(G) ≤ 7/2. On the other hand, let D be an orientation of

G. Assume Φc(G) < 7/2. By Lemma 12, G has an orientation D such that

for any bond B, 2/5 < |B∩D|
|B−1∩D| < 5/2. If for some i, both vi and vi+1 has

out-degree (or in-degree) at least 2, then for B = ∂+({vi, vi+1}), we have

|B∩D|/|B−1∩D| = 3 (or |B∩D|/|B−1∩D| = 1/3), which is a contradiction.

So we may assume that for i = 0, 1, 2, 3, v2i has out-degree 2, v2i+1 has in-

degree 2. By considering the bond ∂+({a}), we know that a has either

in-degree 3 and out-degree 2 or in-degree 2 and out-degree 3. Assume a has
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Figure 4: The graph G.

in-degree 3 and out-degree 2. Then for the bond B = ∂+({v0, a, v4}), we have

|B ∩ D|/|B−1 ∩ D| = 5/2, a contradiction. This proves that Φc(G) = 7/2.

Lemma 13. There is no oriented circuit double cover C of G such that IC
is (7, 2)-colourable.

Proof. Assume that C is an oriented circuit double cover of G and IC is

(7, 2)-colourable. Let C = {C : C ∈ C}.

Since Φc(G) = 7/2, we know χc(IC) = 7/2, and hence any colour class

is non-empty. For i = 0, 1, . . . , 6, let Ci be a circuit of colour i. Then for

any circuit C ∈ C of colour i, C is disjoint from Ci−1 and Ci+1. It is obvious

that Ci−1 6= C−1
i+1 (see Claim 1 below). So for any C ∈ C, G−C contains at

least two distinct undirected circuits.

Let D be the undirected circuit (v0, v1, . . . , v7). As G−D is acyclic, for

any 0 ≤ i ≤ 6, Ci ∩ D 6= Ø.

Because C is a circuit double cover of the G, we have the following

Claim 1. If C,C ′ ∈ C are two circuits that both C,C ′ contain edge vivi+1,

then exactly one of C,C ′ contains the edge vi+1vi+2 and exactly one of them

contains the edge vi−1vi.

Assume C is a circuit of G such that C ∩ D = {vi−1vi, vivi+1}. If

ab /∈ C, then C must contains the other edge of D, a contracdition. So by

the observation above, ab ∈ C Thus we have the following claim.
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Claim 2. If C ∈ C, and C ∩ D = {vi−1vi, vivi+1}, then ab ∈ C.

Assume C is a circuit of G such that |C ∩ D| ≥ 5 or |C ∩ D| = 4 but

C ∩D is not a subpath of D, then it can be verified that G−C contains at

most one circuit. Therefore we have the following

Claim 3. If C ∈ C, then |C ∩D| ≤ 4. Moreover, if C ∈ C and |C ∩D| = 4,

then C ∩ D is a subpath of D.

Since (G−D)∪{v7v0} contains a unique circuit (v7, v0, a, b), we conclude

that if C ∈ C and C ∩ D = {v7v0} then ab ∈ C. Similarly, we have the

following

Claim 4. If C ∈ C, and C ∩ D = {v0v7}, {v1v2}, {v3v4} or {v5v6}, then

ab ∈ C.

Claim 5. For C ∈ C, |C ∩ D| ≤ 3.

Proof. Assume |C1∩D| = 4. By Claim 3, C1∩D is a subpath of D. Without

loss of generality, assume C1 ∩D = {v0v1, v1v2, v2v3, v3v4}. Then C0 and C2

are two circuits contained in G − {v0, v1, . . . , v4}.

If |C0 ∩ D| = 2, then C0 = (a, v5, v6, v7, b), and C2 = (a, v5, v6, b) or

(v6, v7, b). Then no other circuit in C contains v4v5 or v0v7, which is a

contradiction.

Thus we assume that |C0∩D| = 1 and similarly |C2∩D| = 1. So C0, C2

must be circuits (a, b, v6, v5) and (a, v6, v7). Since C is a circuit double cover

of G, we conclude that for some C ′ ∈ C, C ′ = (v0, a, v4, v5, v6, v7).

Since |C ′ ∩D| = 4, the same argument as above shows that (v1, v2, b, a)

and (v2, v3, b) belongs to C. This implies that for some C ′′ ∈ C, C ′′ =

(v0, v1, a, v5, v4, v3, b, v7). But |C ′′ ∩ D| = 4 and C ′′ ∩ D is not a subpath of

D, in contrary to Claim 3. �

Claim 6. At least one of the triangles (v0, v1, a), (v2, v3, b), (v4, v5, a) and

(v6, v7, b) belongs to C.
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Proof. Assume that none of the circuits (v0, v1, a), (v2, v3, b), (v4, v5, a) and

(v6, v7, b) belongs to C. Since |C ∩D| ≤ 3 for all C ∈ C, and
∑

C∈C |C ∩D| =

16, there are at least 3 circuits C of C such that |C ∩ D| ≤ 2. By Claims 2

and 4, there are at least 3 circuits of C containing the edge ab, which is a

contradiction. �

We assume (v0, v1, a) ∈ C. By Claims 1 and 5, (v7, v0, v1, v2, b) ∈ C.

Without loss of generality, assume C1 = (v7, v0, v1, v2, b). Then C0, C2 are

distinct circuits of G − {v7, v0, v1, v2}.

Assume first that (v4, v5, a) /∈ C. If C0 ∩ C2 ∩ D = Ø, then we may

assume that C0 = (v5, v6, b, a). Then C2 = (v3, v4, a, b) or (v3, v4, v5, a, b). It

follows from Claim 1 that the other circuit C ′ in C containing edge v5v6 also

contains v4v5 and v6v7. As |C ′ ∩ D| ≤ 3, we have C ′ = (v7, v6, v5, v4, a, b),

but then ab is covered three times by C, a contradiction. Thus C0, C2 must

be (v4, v5, v6, b, a) and (v5, v4, v3, b, a). It is easy to see that either (b, a) or

(v4, v5) are in the same direction in C0 and C2. This is contrary to the

assumption that C is an oriented circuit double cover of G.

Assume next that (v4, v5, a) ∈ C. By claim 1, (v3, v4, v5, v6, b) ∈ C.

It is easy to verify that if one of (v2, v3, b), (v6, v7, b), (v1, v2, v3, v4, a) and

(v5, v6, v7, v0, a) belongs to C, then all of them belong to C. But then there

is no circuit in C that can cover the edge ab, a contradiction. So, none of

(v2, v3, b), (v6, v7, b),(v1, v2, v3, v4, a) and (v5, v6, v7, v0, a) belongs to C. This

implies that (v1, v2, v3, b, a) and (v4, v3, v2, b, a) must belong to C. It is easy to

verify that either (b, a) or (v2, v3) in the same direction in these two circuits,

a contradiction.
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