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VISCOUS CONSERVATION LAWS,

PART I: SCALAR LAWS

BY
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Abstract

Viscous conservation laws are the basic models for the dis-

sipative phenomena. We aim at a systematic presentation of the

basic ideas for the quantitative study of the nonlinear waves for

viscous conservation laws. The present paper concentrates on the

scalar laws; an upcoming Part II will deal with the systems. The

basic ideas for scalar viscous conservation laws originated from

two sources: the theory for the hyperbolic conservation laws and

the Burgers equation. We have initiated the Green’s function ap-

proach. These ideas are streamlined, simplified and synthesized

here. We then apply them to some new problems and raise open

problems.

Quantitative understanding is necessary for further studies of the

richer wave phenomena of the coupling of distinct wave types and

the coupling of the boundary with the nonlinear waves. Viscous

conservation laws may be viewed as the basic models for general

dissipative systems.

1. Introduction

Consider the systems of hyperbolic and viscous conservation laws

ut + f(u)x = 0, (1.1)
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ut + f(u)x = (B(u)ux)x, u ∈ R
n. (1.2)

Important examples include the Euler equations and Navier-Stokes equations

in gas dynamics:

ρt + (ρv)x = 0,

(ρv)t + (ρv2 + p)x = 0,

(ρE)t + (ρEv + pv)x = 0;

(1.3)

ρt + (ρv)x = 0,

(ρv)t + (ρv2 + p)x = (νvx)x,

(ρE)t + (ρEv + pv)x = (κθx + νvvx)x.

(1.4)

We are interested in the nonlinear behavior of solutions for the system,

particularly the construction and stability of nonlinear waves such as the

shock, rarefaction waves and diffusion waves. There is the Green’s function

approach for studies of nonlinear waves for dissipative systems, [30], [16],

[23], [21], [22]. The approach is effective for the quantitative study of the

wave behavior. The present paper concentrates on the scalar conservation

laws

ut + f(u)x = 0, (1.5)

ut + f(u)x = κuxx, u ∈ R. (1.6)

The inviscid Burgers (Hopf) equation and the Burgers equation are impor-

tant examples:

ut + uux = 0, (1.7)

ut + uux = κuxx, u ∈ R. (1.8)

There have been very substantial progresses toward the understanding of

nonlinear waves for viscous conservation laws, due to the efforts of many

people in the recent decades. The purpose of the present Part I and the

upcoming Part II is to present the approaches for the quantitative under-

standing of the nonlinear waves. These ideas are streamlined, simplified,

and synthesized here. We start with the scalar hyperbolic conservation laws

ut + f(u)x = 0, u ∈ R.
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The basic notions of compressibility, expansion, and entropy condition, and

construction of elementary waves and their stability are presented using the

method of generalized characteristics. This is a rich area and forms a nec-

essary background for the study of viscous equations. We next consider

the Burgers equation and present the detailed analysis of the construction

of nonlinear waves and their Green’s function using the Hopf-Cole transfor-

mation, [8], [2]. We then consider the general convex viscous conservation

law

ut + f(u)x = κuxx, , f
′′(u) 6= 0, u ∈ R.

For these conservation laws, there is the energy method for the study of the

stability of nonlinear waves. The present authors have initiated the Green’s

function approach, which is effective for the quantitative study of nonlinear

waves. We will present the technique combining the characteristic method,

Hopf-Cole procedure, the weighted energy method, and the Green’s function

approach. We also consider the initial-boundary value problem, the study

of the boundary effect on the propagation of the nonlinear waves.

The study for scalar laws serves as the foundation for the study of the

systems in Part II. The theory for systems of conservation laws plays a

central role in nonlinear analysis as many physical systems are nonlinear and

dissipative. An important dissipative equation is the Boltzmann equation in

the kinetic theory, [20], and [29].

Besides a new presentation of the basic ideas, the paper also contains

new results and open problems are raised throughout the presentation.

2. Hyperbolic Conservation Laws

Consider scalar convex conservation laws:

ut + f(u)x = 0, f ′′(u) > 0; (2.1)

The inviscid linear model is the transport equation and is solved by the

characteristic method

ut + λux = 0, u(x, t) = u(x− λt, 0). (2.2)
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The simplest convex conservation law (2.1) is the inviscid Burgers equation,

f(u) = u2/2, the Hopf equation,

ht +
(h2

2

)

x
= 0. (2.3)

This can be solved by the characteristic method:

{

d
dth(x(t), t) = 0,

d
dtx(t) = h(x(t), t).

(2.4)

The characteristic method yields the global continuous solution for all time

t > 0 if the initial value h(x, 0) is a non-decreasing function. A par-

ticular solution of this kind is the centered rarefaction wave hR(x, t) =

hR(x, t;h−, h+), h− < h+, a self-similar solution:

hR(x, t) =











h−, for x < h−t,
x
t , for h−t < x < h+t,

h+, for x > h+t.

(2.5)

For general initial value h(x, 0) the characteristic lines compress and even-

tually intersect if h(x1, 0) > h(x2, 0) for some x1 < x2. The solution then

becomes discontinuous, containing shock waves. For the general conservation

law (1.5) the characteristic equation is

d
dtu(x(t), t) = 0,
d
dtx(t) = f ′(u(x(t), t)).

(2.6)

Thus the shock waves occur if the characteristic value f ′(u(x, 0)) is not an

increasing function in x. The conservation law is then interpreted in the

weak sense:

Definition 2.1. A bounded measurable function u(x, t) is a weak solution

of the initial value problem for the hyperbolic conservation law

ut + f(u)x = 0, u(x, 0) = u0(x)
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if
∫ ∞

0

∫ ∞

−∞
[φtu+ φxf(u)](x, t)dxdt +

∫ ∞

−∞
φ(x, 0)u0(x)dx = 0, (2.7)

for all smooth function φ = φ(x, t) of compact support in {(x, t) : −∞ <

x <∞, t ≥ 0.}

An equivalent, more physical definition is

Definition 2.2. A bounded measurable function u(x, t) is a weak solution

for the hyperbolic conservation law ut + f(u)x = 0 if

d

dt

∫ x2

x1

u(x, t)dx = f(u(x1, t)) − f(u(x2, t)), (2.8)

for all x1 and x2.

The second definition has clear physical interpretation in that u is the

conserved quantity and f(u) its flux. It is easy to see that, as a consequence

of either definition, a jump discontinuity along x = x(t), with end states

(u−, u+) and speed s:

u− ≡ u(x(t) − 0), , u+ ≡ u(x(t) + 0, t), s ≡ x′(t),

in a weak solution u(x, t) satisfies the Rankine-Hugoniot condition:

s(u+ − u−) = f(u+) − f(u−). (2.9)

For the Hopf equation (2.3) the shock speed is the arithmetic mean of its

end states:

s =
(h+)2/2 − (h−)2/2

h+ − h−
=
h+ + h−

2
. (2.10)

As we have seen, shock waves are consequence of the compression of char-

acteristics, that is, f ′(u(x, t)) decreases in x . This leads to the following

notion of the admissibility of weak solutions.

Definition 2.3. A jump discontinuity (u−, u+) with speed s for the convex

conservation law (2.1) is admissible if it satisfies the following Lax entropy
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condition, [12],

f ′(u−) > s > f ′(u+). (2.11)

Thus centered inviscid Burgers shock wave from the origin for the invis-

cid Burgers equation (2.3) takes the form

hS(x, t) =















h−, for x < st,

h+, for x > st,

s = h++h−
2 , h− > h+;

(2.12)

and the general centered shock wave for the general convex conservation law

(2.1) is, Figure 1:

uS(x, t) =















u−, for x < st,

u+, for x > st,

s = f(u+)−f(u−)
u+−u−

, u− > u+.

(2.13)

characteristics
dx

dt
= f ′(u+)

characteristics
dx

dt
= f ′(u−)

u− u+

shock

x

t

Figure 1. Centered shock wave.

Remark 2.4. The inviscid Burgers equation, the Hopf equation (2.3) has

direct relation to the more general scalar conservation law, (1.5)

ut + f(u)x = 0, f ′′(u) > 0.

This is done by the relation

λ(x, t) ≡ f ′(u(x, t)). (2.14)
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Multiplying the conservation law (1.5) by f ′′(u), it follows easily that the

function λ(x, t) satisfies the inviscid Burgers equation

λt +
(λ2

2

)

x
= 0. (2.15)

We have applied the chain rule. It is important to note that the notion of

weak solutions does not carry over when chain rule is applied. One can easily

see this by inspecting the Rankine-Hugoniot condition. Thus the equivalence

of convex conservation law to the Hopf equation holds only when the solution

u(x, t) is smooth. In particular, it holds in the case of rarefaction waves and

we have the centered rarefaction wave for the general conservation law (2.1),

Figure 2:

f ′(u(x, t)) =











f ′(u−), for x < f ′(u−)t,
x
t , for f ′(u−)t < x < f ′(u+)t,

f ′(u+), for x > f ′(u+)t.

(2.16)

u−

x = f ′(u−)t

x = f ′(u+)t

u+

x

t

Figure 2. Centered rarefaction wave.

For a shock (u−, u+), the speed according to (2.9) is

s =
f(u+) − f(u−)

u+ − u−
,

while for (2.3) it is

ŝ =
h+ + h−

2
=
f ′(u+) + f ′(u−)

2
.
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Direct calculations show that

s− ŝ =
f(u+) − f(u−)

u+ − u−
− f ′(u+) + f ′(u−)

2
= O(1)|u+ − u−|2. (2.17)

Thus for weak shocks, the approximation of a general convex conservation

law by the inviscid Burgers equation is accurate. In fact, for general systems,

it is shown that the speed of a weak shock is well approximated by the

arithmetic mean of the compressing characteristic speeds of its end states,

[12]. This fact was first raised and used crucially for the study of N-waves

for general system of hyperbolic conservation laws in [14] and [15] using the

Glimm scheme [3], and is important for the theory of viscous conservation

laws, as we shall see later in this Part I and also in the forthcoming Part II

for systems.

We have thus constructed the solution for the Riemann problem, the

initial value problem for (2.1) with Riemann data

ut + f(u)x = 0, f ′′(u) > 0,

u(x, 0) =

{

ul, for x < 0,

ur, for x > 0.

(2.18)

The solution is a centered shock wave if ul > ur and a centered rarefaction

wave if ul < ur.

Besides the above elementary waves of shock and rarefaction waves,

there is also the important N -waves. These are waves with compact sup-

port in x and dissipative due to the nonlinearity of the flux function f(u).

Consider the initial value problem for the inviscid Burgers equation

ht + hhx = 0,

h(x, 0) =











0 for |x| > 1,

−p for − 1 < x < 0,

q for 0 < x < 1,

h(x, t) ≡ N(x, t; p, q).

(2.19)

The construction of the N -wave N(x, t; p, q), p ≥ 0, q ≥ 0, is done easily

by characteristic method. There is a centered rarefaction wave hR(x, t;−p, q)
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(1, 0)(−1, 0)

−p q

(2, 2/q)

(−2, 2/p)

x2 =
√

2qtx1 = −√
2pt

0 0

x

t

Figure 3. N-wave.

which interacts with the two shock waves (0,−p) and (q, 0) at later time.

The solution consists of the centered rarefaction wave between two shock

waves (0, h1(t)), h1(t) ≡ h(x1(t)+0, t) and (h2(t), 0), h2(t) ≡ h(x2(t)−0, t),

Figure 3. The locations x = x1(t) and x = x2(t) of the two shock are

calculated using the Rankine-Hugoniot condition (2.10):

d

dt
x1(t) =

h1(t)

2
,
d

dt
x2(t) =

h2(t)

2
.

The starting time t1 for the left shock is the meeting time of the shock at

x = −1 + (−p/2)t with the left edge x = −pt of the centered rarefaction

wave:

−1 − p

2
t1 = −pt1, t1 =

2

p
.

And the meeting location is x1(t1) = −2. Similarly we have t2 = 2
q and

x2(t2) = 2 for the right shock. After the meeting times, the values h1(t) and

h2(t) are part of the rarefaction waves,

h1(t) =
x1(t)

t
, h2(t) =

x2(t)

t
,

and so the differential equations become

d

dt
x1(t) =

x1(t)

2t
, for t > t1;

d

dt
x2(t) =

x2(t)

2t
for t > t2.
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Solving the above differential equation for x1(t) and x2(t) with the initial

values x1(t1) = −2 and x2(t2) = 2, respectively, we obtain the location of

the shock waves

x1(t) = −
√

2pt, x2(t) =
√

2qt,

and the solution is, Figure 3,

N(x, t; p, q) =



































0, for x < −1 − pt
2 and 0 < t < 2

p ; or x < −√
2pt and t > 2

p ,

0, for x > 1 + pt
2 and 0 < t < 2

q ; or x >
√

2qt and t > 2
q ,

−p, for − 1 − pt
2 < x < −pt and 0 < t < 2

p ,

q, for qt < x < 1 + qt
2 and 0 < t < 2

q ,
x
t , otherwise.

(2.20)

There is of course the conservation law

d

dt

∫ ∞

−∞
u(x, t)dx = 0, for t ≥ 0,

for any solution of the conservation law, viscous or inviscid. It turns out

that there are two time-invariants p and q, which sum up to the conserved

quantity above:

min
x

∫ x

−∞
N(y, t)dy = −p, max

x

∫ ∞

x
N(y, t)dy = q,

∫ ∞

−∞
N(y, t)dy = q − p, for t ≥ 0. (2.21)

Another remarkable thing is that the N -wave dissipates like heat kernel; its

support x ∈ (−√
2pt,

√
2qt) is of the order

√
t and its magnitude

u(x, t) ∈
(−√

2pt

t
,

√
2qt

t

)

is of the order 1/
√
t. As we will soon see, such degree of spreading and

decaying holds for general initial data with compact support. This is referred

to as the inviscid, hyperbolic dissipation.

Consider the initial-boundary value problem for (2.1) for the quarter
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plane region x, t > 0:

ut + f(u)x = 0, x, t > 0,

u(x, 0) = u0(x),

u(0, t) = u1(t).

(2.22)

For basic understanding of the general initial-boundary problem , we con-

sider the elementary waves for the Riemann problem

ut + f(u)x = 0, x, t > 0,

u(x, 0) = ur, x > 0,

u(0, t) = ul, t > 0.

(2.23)

This problem can be over-determined, as the hyperbolic problem needs

boundary data ul at x = 0 only if the characteristic speed is positive and here

the characteristic speed f ′(u) varies with the solution u and is not known a

priori. Nevertheless, there is a unique algorithm to proceed if the boundary

layer is allowed. We first solve the corresponding Riemann problem (2.18).

If it is a shock wave with positive speed, then we set the solution to be the

shock wave, Figure 4. If the shock speed is negative, then we set the solution

to be the state ur that occupies the region x > 0 under consideration. In

the latter case there is the boundary layer (ul, ur) that separate the bound-

ary value ul with the interior solution ur at x = 0+. This boundary layer

correspond to a wave (ul, ur) with negative speed, Figure 5. In the other

case where the solution is a rarefaction wave, we do the same in that we

set the solution to be the rarefaction wave that propagates into the region

x > 0. The part of the rarefaction wave with negative speed, if exits, then

forms the boundary layer, Figure 6 and Figure 7. We note that the initial-

boundary value problem for the viscous conservation law is well-posed and

the algorithm just mentioned, as we will see later, is consistent with the zero

dissipation limit of the viscous conservation law

ut + f(u)x = κuxx, as κ→ 0 + .

The initial value problem for the scalar hyperbolic conservation laws is well-

posed in the L1(x) norm. The above resolution of waves around the bound-

ary is equivalent to that of [1] and also yields the L1(x) well-posedness.
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ur
ul

x

t

urul

x

t

Figure 4. Shock wave with no boundary layer.

urul

x

t

urul

x

t

Figure 5. Shock boundary layer.

urul

x

t

urul

x

t

Figure 6. Rarefaction wave with no boundary layer.

urul

u

x

t

ur

ul u

x

t

Figure 7. Rarefaction wave with boundary layer.

3. Stability of Hyperbolic Waves

We study the stability of shock, rarefaction and N waves for the hyper-

bolic conservation law (2.1) that have been constructed in the last section.

The main tool is the notion of generalized characteristics of James Glimm,
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[5], [13]. The entropy condition (2.11) says that the characteristic lines can

impinge on the shocks only in the forward time direction. Thus a charac-

teristic remains as a straight line in the backward time direction, Figure 8.

A generalized characteristic is defined as a characteristic line and then the

shock wave when the characteristic line impinges on the shock, Figure 8.

generalized characteristics backward characteristics

shock

x

t

Figure 8. Generalized characteristics.

We now start the stability analysis, first with the simplest case of shock

waves. Consider the centered shock wave uS(x, t), (2.13), connecting the

states u− and u+, u− > u+. Let u(x, t) be the solution of the initial value

problem for the convex conservation law (2.1) with initial data a perturbation

of the shock:

ut + f(u)x = 0, f ′′(u) > 0,

u(x, 0) =











u−, for x < −M,

u0(x), for |x| ≤M,

u+, for x > M,

(3.1)

for some M > 0 and a bounded function u0(x), |u0(x)| < M.

Theorem 3.1. The solution of the initial value problem (3.1), u− > u+,

approaches the shifted centered shock (u−, u+) in finite time:

u(x, t) =

{

u−, for x < x0 + st,

u+, for x > x0 + st, t > T,

and the shock formation time T and the shock shift x0 satisfy, for some
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β > 0,

T = O(1)
M

|u+−u−|β
, x0 =

1

u−−u+

[
∫ 0

−∞
(u0(x)−u−)dx+

∫ ∞

0
(u0(x)−u+)dx

]

.

Proof. Draw the generalized characteristics C1 : x = x1(t) through (−M, 0)

and C2 : x = x2(t) through (M, 0) and set

D(t) ≡ x2(t) − x1(t)

the distance between them. The generalized characteristic x = x1(t) may be

a characteristic line with u = u− along it; or it may be a shock (u−, u1(t)).

In the former case we set also u1(t) = u−. Similarly we set u2(t) to be the left

state of the solution along x = x2(t). To the left of x = x1(t) the solution

takes value of u− and to the right of x = x2(t) it takes the value of u+.

Through the generalized characteristics (x1(t), t) and (x2(t), t) at time t we

draw the backward characteristics, Figure 9,

B1 ≡ {(y, s) : y = x1(t) − f ′(u1(t))(t − s), 0 < s < t},
B2 ≡ {(y, s) : y = x2(t) − f ′(u2(t))(t − s), 0 < s < t}.

The characteristics B1, B2 meet the initial time t = 0 in the interval

(−M,M).

x = x1(t) x = x2(t)D(t)
u1(t) u2(t)u− u+

(−M, 0) (M, 0)

t = T

B1 B2

x

t

Figure 9. Stability of shock wave.

Along the characteristic line B1, u = u1(t); and along B2, u = u2(t).

Thus

D(t) = O(M) + [f ′(u2(t)) − f ′(u1(t))]t,
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where O(M) is a function bounded by 2M. On the other hand, from the

Rankine-Hugoniot condition (2.9),

D′(t) =
f(u+) − f(u2(t))

u+ − u2(t)
− f(u−) − f(u1(t))

u− − u1(t)

We have from the entropy condition that u1(t) ≤ u−, u2(t) ≥ u+. There is

the hypothesis u− > u+. Note that the solution u(x, t) is bounded, |u(x, t)| <
M , and so, by the convexity f ′′(u) > 0, there exists β independent of t such

that 0 < β < 1 and

D(t) ≤ (1 − β)[f ′(u+) − f ′(u−)] + β[f ′(u2(t)) − f ′(u1(t))].

We have thus obtain a differential inequality

D′(t) ≤ β
D(t) −O(M)

t
+ (1 − β)[f ′(u+) − f ′(u−)]. (3.2)

This is solved from t = 1 to yield

D(t) ≤ [D(0) +O(M)]tβ + (1 − β)[f ′(u+) − f ′(u−)]t, t > 1.

As β < 1 and f ′(u+) − f ′(u−) < 0, we have D(t) = 0 in finite time t = T

and the solution consists of a single shock after that

u(x, t) =

{

u−, for x < x0 + st,

u+, for x > x0 + st, t > T,

for some phase shift x0. The phase shift can be determined through the

conservation law

d

dt

[

∫ st

−∞
(u(x, t) − u−)dx+

∫ ∞

st
(u(x, t) − u+)dx

]

= 0,

when either the Rankine-Hugoniot condition (2.9) or the conservation law

(2.8) is used. Evaluating the conserved quantity at initial time t = 0 and

after the time t = T , we have

∫ 0

−∞
(u0(x) − u−)dx+

∫ ∞

0
(u0(x) − u+)dx = x0(u− − u+),
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which yields the above formula for the phase shift. This completes the proof

of the theorem. �

We next study the stability of centered rarefaction wave uR, (2.16),

connecting states u− and u+, u− < u+, and consider the initial value

ut + f(u)x = 0, f ′′(u) > 0,

u(x, 0) =











u−, for x < −M,

u0(x), for |x| ≤M,

u+, for x > M,

(3.3)

for some M > 0 and a bounded function u0(x), |u0(x)| < M.

Theorem 3.2. The solution of the initial value problem (3.3), u− < u+,

approaches the centered rarefaction wave uR, (2.16), at linear rate in the

interior region

|u(x, t) − uR(x, t)| = O(1)
1

t+ 1
, for f ′(u−)t < x < f ′(u+)t,

and there is a region of width O(1)(t+1)1/2 around the boundary x = f ′(u−)t

and x = f ′(u+)t where the convergence rate is sublinear

|u(x, t) − uR(x, t)| = O(1)(t + 1)−
1
2 .

Outside these finite regions in x, the two solutions are the same, equal to u−

to the left and u+ to the right. Consequently,

‖u(x, t) − uR(x, t)‖Lp(x) = O(1)(t + 1)
− p−1

2p , p ≥ 1.

Proof. Again we consider the generalized characteristics C1, C2 and use the

same notations, u1(t), u2(t) as the states next to the generalized character-

istics at x = x1(t), x = x2(t), respectively. Choose any location (x, t) be-

tween C1 and C2 and draw backward characteristic line with speed f ′(u(x, t))

through (x, t), meeting (x̄, 0) at initial time, Figure 10:

x = x̄+ f ′(u(x, t))t.
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(−M, 0) (M, 0)

D(t)

x = x1(t) x = x2(t)

u− u+

(x, t)

(x, 0)
x

t

Figure 10. Stability of rarefaction wave.

As |x̄| < M , we deduce that

f ′(u(x, t)) =
x

t
− x̄

t
= f ′(uR)(x, t) +O(M)

1

t+ 1

for (x, t) in the fan region of uR and between C1 and C2. This proves the

theorem for this region by the convexity f ′′(u) 6= 0. It remains to estimate

the distance between the edges C1, C2 of the solution u(x, t) and the edges

x−(t) = f ′(u−)t, x+(t) = f ′(u+)t of the centered rarefaction wave uR(x, t).

Set

D(t) ≡ x2(t) − x1(t), E(t) ≡ D(t) − [f ′(u+) − f ′(u−)]t.

By the backward characteristic analysis, as in the stability analysis for the

shock waves above,

D(t) = [f ′(u2(t)) − f ′(u1(t)]t+O(M),

with O(M) ≤ 2M. From the Rankine-Hugoniot condition,

D′(t) =
f(u+) − f(u2(t))

u+ − u2(t)
− f(u1(t)) − f(u−)

u1(t) − u−
.

From the entropy condition and our hypothesis of expansion, u1(t) ≤ u− <

u+ ≤ u2(t). From the above and the convexity of the flux f ′′(u) > 0, we

have

E′(t) ≤ α[f ′(u2) − f ′(u+) + f ′(u−) − f ′(u1)] = α
E(t) +O(M)

t
,
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for some constant α, 0 < α < 1. This can be solved to yield the sub-

linear growth of E(t) and the decay of the strength of the shocks (u−, u1(t)),

(u2(t), u+) on the generalized characteristics C1, C2. Next we use the Taylor

expansion instead to yield

E′(t) =
E(t) +O(1)M

2t

[

1 +O(1)
E(t) +O(1)M

2t

]

.

After large time, the value of α in the above analysis can be chosen to be

close to 2, the decay rate of the shocks (u−, u1(t)), (u2(t), u+) is close to

t−1/2, and the growth rate of E(t) is close to t1/2. And so we have

E′(t) =
E(t) +O(1)M

2t

[

1 +O(1)t−1+β
]

for some β close to 1
2 . The equation can be solved to yield

E(t) = O(1)(t + 1)
1
2 .

And the shock decays as

|u− − u1(t)| + |u2(t) − u+| = O(1)(t + 1)−
1
2 .

This proves the pointwise estimates. The Lp(x) decay follows immediately.

Notice that the decay is slower around the edge of the rarefaction wave. In

the interior, the decay rate in Lp(x) is (t+ 1)−(p−1)/p. �

We finally study the stability of N waves.

Theorem 3.3. Suppose that the initial data u(x, 0) of the inviscid Burgers

equation ut+f(u)x = 0 has compact support. The flux function is normalized

by f(0) = f ′(0) = 0, f ′′(0) = 1. Then the solution u(x, t) satisfies

−p ≡ min
x

∫ x

−∞
u(y, t)dy, q ≡ max

x

∫ ∞

x
u(y, t)dy (3.4)

are time-invariant, and the solution approaches the N -wave in the following

sense: There are two relative strong shock of strength
√

2p/t and
√

2q/t

located at x = x1(t) = −√
2pt+ O(1) and x = x2(t) =

√
2qt +O(1), respec-
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tively. The solution satisfies

u(x, t) =
x

t
+O(1)(t + 1)−1, for x1(t) < x < x2(t), t > 1.

In particular,

‖u(x, t) −N(x, t; p, q)‖Lp(x) = O(1)(t + 1)−
1
2 , p ≥ 1.

Proof. To prove the time invariants p, q, we first note that the minimum

and maximum defining them, (3.4), take place at the continuity points of the

solution, and the solution must be zero there. This is because the solution

jumps down across the shocks by the entropy condition. For instance, at

the infimum point x = x̂ defining p, the solution must be non-negative at

x = x̂ + 0 and non-positive at x = x̂− 0. Otherwise the integral from −∞
to x = x̂(t) + ε, or from −∞ to x = x̂(t) − ε, ε > 0 and small, would

reduce the integral. Thus u(x̂− 0) ≤ u(x̂+ 0), which precludes the shock at

x = x̂. Also the solution is zero there. Then at a continuity point, one can

draw the characteristic line C both forward and backward in time. From the

conservation law (2.8), the integral from −∞ to C is constant in time. As

p is defined to be the infimum, we have p(s) ≤ p(t) for |s − t| small. Thus

p′(t) ≡ 0. Similarly q′(t) ≡ 0.

To obtain the pointwise estimate of the solution we again draw the left

and right generalized characteristics C1 and C2. As in the case with the

above study of the stability of the rarefaction waves, the distance D(t) be-

tween the generalized characteristics expands at the rate of t1/2 and the shock

waves on them decay. Thus, for simplicity, we will make our proof easier by

concentrating on the inviscid Burgers equation f ′(u) = u. The remaining job

is to estimate the location x = xi(t), i = 1, 2, of the generalized character-

istics. As before, from the analysis using the backward characteristic lines,

we have

u(x, t) =
x

t
+O(1)

1

t+ 1
, for x1(t) < x < x2(t).

Thus the infimum defining the time-invariant p occurs around x = 0 and

−p =

∫ 0

x1(t)

[x

t
+O(1)

1

t+ 1

]

dx+O(1)
1

t+ 1
,

or x1(t) = −√
2pt+O(1). This completes the proof of the theorem. �
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Remark 3.4. The stability of the above three types of waves is indicative of

the different sense of stability that we will also see in the following sections

on viscous conservation laws. For the shock waves, the stability is in a

strong sense. In fact, for a compact supported perturbation, the stability

rate is infinite as the time asymptotic state is reached in finite time. Also

it can be shown that the convergence to the shock is in L1(x) sense even

for more general perturbation, so long as the conserved quantity is finite for

the perturbation. The stability is orbital in that the shock location needs to

be precisely located through conservation law. The approach given above is

through shock capturing. In the study of viscous shock waves we will either

determine the time-asymptotic location of the shock first or by wave tracing.

The stability of rarefaction wave cannot be in the L1(x) sense. This is

seen by comparing the translation, say of the amount a of the portion (u1, u2)

and of the amount b of the portion of (u2, u3) of the centered rarefaction wave

(u1, u3), Figure 11. The magnitude of the difference of the translated and

original rarefaction waves is of the order of (x + a)/t − x/t = a/t and b/t

and the region of their difference is u1t+a < x < u2t and u2t < x < u3t+ b,

Figure 11. Thus the Lp(x) norm of the difference is

[ap(u2 − u1) + bp(u3 − u2)]
1
p t

− p−1
p .

In particular, the L1(x) is non-decaying in time. As a perturbation of a

rarefaction wave can represent any shift of any portion of the wave, there

is no simple translation of the unperturbed wave to match the perturbed

solution in order to achieve the L1(x) convergence for large time.

u1

u2

u3

x

t

u1

u2

u3

(a, 0) (b, 0)
x

t

Figure 11. Translation of rarefaction wave.

The N waves are non-obvious consequence of the nonlinearity of the

flux. Although the N waves and rarefactions are both dissipative, it is

possible to study the more detailed dissipation of the N waves and its L1(x)
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behavior. For the viscous conservation laws, the viscosity will have strong

time-asymptotic effect and, instead of two time invariants p, q in the inviscid

case, there is only the usual one conserved quantity that survives after large

time. Nevertheless, the nonlinearity of the flux dictates that, in the L1(x)

and pointwise sense, the large time behavior is nonlinear, Burgers equation

type, rather than heat equation type.

4. Heat Equation

Before we turn to the study of the combined effect of the nonlinearity for

hyperbolic conservation laws and the viscosity, we first consider the viscous

effect. For general systems (1.2), there are rich nonlinear interactions for

waves pertaining to distinct characteristic fields. The study of these inter-

actions requires the consideration of multiple scalings. We consider in this

section the linear viscous model, the heat equation

ut + λux = κuxx.

Our purpose here is to introduce the pointwise analysis for this simplest

situation. The initial value problem is solved using the heat kernel H =

H(x, t) = H(x, t;κ):

{

ut + λux = κuxx,

u(x, t) =
∫∞
−∞H(x− y − λt, t)u(y, 0)dy;

(4.1)

{

Ht = κHxx, H(x, 0) = δ(x),

H(x, t) = H(x, t;κ) ≡ (4πκt)−1/2e−x2/(4κt).
(4.2)

The heat kernel decays exponentially except for its essential domain of

width
√
t. It is important to visualize the essential domain of the heat kernel,

Figure 12. As aforementioned, we need to consider multiple scalings for the

general study of systems. In preparation of this, we suppose that the initial

data decay algebraically at x = ±∞:

{

ut = κuxx,

u(x, 0) = u0(x) = O(1)[|x| + 1]−α.
(4.3)
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dy

dτ
=λ

(x, t)

y

τ

Figure 12. Heat kernal H(x− y − λ(t− τ), τ).

Theorem 4.1. Consider the solution u(x, t) of (4.3). For α > 1, the total

heat

c ≡
∫ ∞

−∞
u0(x)dx, (4.4)

is finite and the solution approaches a multiple of the heat kernel H(x, t, κ)

time asymptotically:

|u(x, t) − cH(x, t+ 1;κ)| = O(1)(|x| +
√
t+ 1)−α

+O(1)(t+ 1)−
1
2H(x, t+ 1;D) ·











1, for α > 2;

log(t+ 1), for α = 2,

(t+ 1)−
α−2

2 , for 1 < α < 2,

(4.5)

for any constant D greater than κ. As a consequence,

‖u(x, t) − cH(x, t+ 1;κ)‖Lp(x)

= O(1)(t+ 1)
−1+ 1

2p











1, for α > 2;

log(t+ 1), for α = 2;

(t+ 1)−
α−2

2 , for 1 < α < 2.

(4.6)

Proof. As the heat kernel is of exponential type and the initial distribution

is of algebraic type, we are dealing with two distinct scalings. Thus the

arguments below necessarily involve consideration of cases with regard to

the four regions for the target (x, t) and the source u(y, 0) through the heat

kernel H(x − y, t). In this simplest setting, we will go into some details

of these cases, and it will serve as an introduction to the general pointwise



2010] VISCOUS CONSERVATION LAWS 255

estimates that will be our main emphasis.

Set

v(x, t) ≡ u(x, t) − cH(x, t+ 1), w(x, t) ≡
∫ x

−∞
v(y, t)dy.

We note that

v(x, 0) = O(1)[|x| + 1]−α, w(x, 0) = O(1)[|x| + 1]−α+1. (4.7)

By Duhamel’s principle

v(x, t) =

∫ ∞

−∞
H(x− y, t)v(y, 0)dy = −

∫ ∞

−∞
Hy(x− y, t)w(y, 0)dy. (4.8)

We will either use the first expression in (4.8):

v(x, t) = O(1)

∫ ∞

−∞
t−

1
2 e−

(x−y)2

4κt [|y| + 1]−αdy ≡ O(1)I(x, t;α;κ), (4.9)

or the second expression in (4.8):

v(x, t) =

∫ ∞

−∞
O(1)t−

1
2
∂

∂x
e−

(x−y)2

4κt [|y| + 1]−α+1dy

= O(1)

∫ ∞

−∞
t−1e−

(x−y)2

4Ct [|y| + 1]−α+1dy

= O(1)t−
1
2

∫ ∞

−∞
t−

1
2 e−

(x−y)2

4Ct [|y| + 1]−α+1dy

≡ O(1)t−
1
2 I(x, t;α− 1;C), (4.10)

for any constant C > κ. Here we have used (4.7). We need to consider

separately various regions for the variables (x, y, t) and use either (4.9) or

(4.10). For initial time layer, 0 < t < 1, we use (4.9); we omit the estimate

in this case as it is simpler than the following ones. After the initial layer,

t > 1, we note that

t−1 = O(1)(t+ 1)−1.

We consider the following two cases:

Case 1. |x| < M1

√
t.
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We use (4.10) and divide the integral I(x, t;α − 1, C) into two parts:

I(x, t;α− 1;C) =

[
∫

|y−x|<M2

√
t
+

∫

|y−x|>M2

√
t

]

t−
1
2 e−

(x−y)2

Ct (1 + |y|)−α+1dy

≡ I11 + I12.

We take 1 ≪M1 ≪M2. Then

I11 = O(1)

∫

|y|<O(1)
√

t
t−

1
2 (1 + |y|)−α+1dy

= O(1)(t+ 1)−
1
2 ·











1, for α > 2;

log(t+ 1), for α = 2;

(t+ 1)−
α−2

2 , for α < 2.

Similarly,

I12 = O(1)

∫

|y|>M2

√
t/2
t−

1
2 e−

(x−y)2

Ct (1 + |y|)−α+1dy.

If α > 2,

I12 = O(1)(t + 1)−
1
2

∫

|y|>M2

√
t/2

(1 + |y|)−α+1dy

= O(1)(t + 1)−
1
2 (1 +

√
t)−α+2 = O(1)(t + 1)−

α−1
2 ;

and if α ≤ 2,

I12 = O(1)

∫

|y|>M2

√
t/2
t−

α
2 e−

(x−y)2

Ct dy = O(1)t−
α−1

2 = O(1)(t+ 1)−
α−1

2 .

We summarize the above to conclude

|u(x, t)−cH(x, t+1)| = O(1)(t+1)−
1
2H(x, t+1) ·











1, for α > 2,

log(t+ 1), for α = 2,

(t+ 1)−
α−2

2 , for α < 2,

(4.11)

for |x| = O(1)
√
t+ 1. Note that if (4.9) is used for the estimate instead, we

would yield the weaker estimate of |u(x, t)− cH(x, t+ 1)| = O(1)H(x, t+ 1)

for |x| = O(1)
√
t+ 1.

Case 2. |x| > M1

√
t.
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In this case we use (4.8). We also divide the integral into two parts:

v(x, t) = −
[
∫

|y|<|x|/M
+

∫

|y|>|x|/M

]

Hy(x− y, t)w(y, 0)dy = I21 + I22,

where M > 0 is some constant. As in (4.10),

I21 = O(1)

∫

|y|<|x|/M
t−1e−

(x−y)2

4D′t (1 + |y|)−α+1dy,

where we take D′ such that D > D′′ > D′ > κ. For the range of integration

for I21, we also have

e−
(x−y)2

4D′t = O(1)e−
x2

4D′′t

by choosing M large. Therefore,

I21 = O(1)t−1e−
x2

4D′′t

∫

|y|<|x|/M
(1 + |y|)−α+1dy

= O(1)(t + 1)−
1
2H(x, t+ 1;D′′) ·















1, for α > 2,

log |x|, for α = 2,

(|x| + 1)−α+2, for α < 2

= O(1)(t + 1)−
1
2H(x, t+ 1;D) ·















1 for α > 2,

log(t+ 1), for α = 2,

(t+ 1)−
α−2

2 , for α < 2.

By integration by parts and similar to (4.9), we have

I22 = O(1)

∫

y>|x|/M
t−

1
2 e−

(x−y)2

4κt (|y| + 1)−αdy +O(1)t−
1
2 e−

x2

4Dt (|x| + 1)−α+1

= O(1)(|x| + 1)−α = O(1)(|x| +
√
t+ 1)−α.

This concludes the proof of the theorem. �

The following proposition is proved similarly as above; it is listed here to

contrast with the corresponding one, Proposition 7.4, for Burgers equation

later.

Proposition 4.2. For the initial value problem (4.3) with α = 1, the solu-
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tion satisfies, for any constant D > κ,

u(x, t) = O(1)[H(x, t;D) log(t+ 1) + (|x| +
√
t+ 1)−1]. (4.12)

5. Burgers Waves

We now consider the strongly nonlinear case and start with the sim-

ple model of inviscid Burgers equation, the Hopf equation, and the Burgers

equation,

ht +
(h2

2

)

x
= 0, (5.1)

bt + bbx = κbxx. (5.2)

The Burgers equation (5.2) can be solved explicitly by the Hopf-Cole trans-

formation through the following procedure: First integrate the Burgers equa-

tion to a Hamilton-Jacobi equation:

{

Bt + (Bx)2

2 = κBxx, Bx(x, t) = b(x, t),

B(x, 0) ≡
∫ x
0− b(y, 0)dy.

(5.3)

Then introduce the Hopf-Cole relation

B(x, t) = −2κ log[φ(x, t)]. (5.4)

Direct calculations shows that φ(x, t) satisfies the heat equation

{

φt = κφxx,

φ(x, 0) = e−
1
2κ

R x
0− b(y,0)dy ,

(5.5)

which is solved by convolving with the heat kernel:

φ(x, t) =

∫ ∞

−∞

1√
4πκt

e−
(x−y)2

4κt
− 1

2κ

R y
0− b(z,0)dzdy.

In fact, the Hamilton-Jacobi equation holds for B(x, t) so long as Bx(x, t) =

b(x, t). Thus we may replace B with B̂(x, t) ≡ B(x, t) + α(t) with the free

function α(t). The choice of B̂ is under the constraint B̂(0, t) = 0 at t = 0.
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However, if one chooses an appropriate α(t) so as to make

B(x, t) + α(t) =

∫ x

0
b(y, t)dy,

then

α(t) = 2κ log[φ(0, t)] = 2κ log

[ ∫ ∞

−∞

1√
4πκt

e−
y2

4κt
− 1

2κ

R y
0− b(z,0)dzdy

]

,

which is in general nonzero. In other words, the choice in (5.3) for B(x, t) is

particular and for simplicity in latter presentation. We summarize the above

solution formula:

φ(x, t) =

∫ ∞

−∞

1√
4πκt

e−
(x−y)2

4κt
− 1

2κ

R y
0− b(z,0)dzdy,

Bx(x, t) = b(x, t), B(x, 0) =
∫ x
0− b(y, 0)dy,

B(x, t) = −2κ log[φ(x, t)]

= −2κ log
[

∫ ∞

−∞

1√
4πκt

e−
(x−y)2

4κt
− 1

2κ

R y
0− b(z,0)dzdy

]

b(x, t) =

∫∞
−∞

x−y
t e−

(x−y)2

4κt
− 1

2κ

R y
0− b(z,0)dzdy

∫∞
−∞ e−

(x−y)2

4κt
− 1

2κ

R y
0− b(z,0)dzdy

(5.6)

This procedure is used to find various interesting particular solutions

of the Burgers equation. The Burgers kernel, the nonlinear diffusion wave

bD(x, t) = bD(x, t;A) is

(bD)t + bD(bD)x = κ(bD)xx,

bD(x, 0) = Aδ(x),

φD(x, t) = e−
A
2κ +

∫∞
x√
4κt

1√
π
(1 − e−

A
2κ )e−y2

dy,

bD(x, t) =

√
κ√
t
(e

A
2κ −1)e−

x2

4κt

√
π+

R ∞
x√
4κt

(e
A
2κ −1)e−y2dy

.

(5.7)

Unlike the heat kernel, which is symmetric in x, the nonlinearity makes the

Burgers kernel to lean toward the right when the mass A is positive, and to

the left when A is negative, Figure 13. The Burgers kernel can also be found
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by the self-similarity argument

b(x, t) =

√

κ

t
ψ
( x√

κt
,
A

κ

)

.

A > 0

x

t

A < 0

x

t

Figure 13. Burgers kernal bD(x, 1;A).

The Burgers rarefaction wave bR(x, t)=bR(x, t;λ0), λ0>0 is the solution

with the Riemann data, here taken to be symmetric in x, for simplicity,

(bR)t + bR(bR)x = κ(bR)xx,

bR(x, 0) =

{

−λ0, for x < 0,

λ0, for x > 0.

bR(x, t) = λ0
Erfc(

−x+λ0t√
4κt

)−e
λ0x

κ Erfc(
x+λ0t√

4κt
)

Erfc(
−x+λ0t√

4κt
)+e

λ0x
κ Erfc(

x+λ0t√
4κt

)

BR(x, t) = −2κ log[φR(x, t)]

φR(x, t)=e−
λ0x
2κ

+
(λ0)2t

4κ Erfc(−x+λ0t√
4κt

) 1√
π
+e

λ0x
2κ

+
(λ0)2t

4κ Erfc(x+λ0t√
4κt

) 1√
π
.

(5.8)

Here Erfc is the error function:

Erfc(z) ≡
∫ ∞

z
e−y2

dy.

The Burgers shock wave bS(ξ) = bS(ξ;λ0) = bS(x− st;λ0;κ), ξ = x− st, is

a traveling wave solution with speed s, taken to be zero, for simplicity, and

strength 2λ0:

(bS)t + bS(bS)x = κ(bS)xx,

bS(−∞) = λ0, bS(∞) = −λ0, λ0 > 0.
(5.9)

The shock bS(x, λ0) can be obtained as the time-asymptotic state of the
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solution of the Riemann problem:

(uS)t + uS(uS)x = κ(uS)xx,

uS(x, 0) =

{

λ0, for x < 0,

−λ0, for x > 0,

bS(x) = limt→∞ uS(x, t).

(5.10)

From (5.6),

uS(x, t) = −λ0

Erfc(−x−λ0t√
4κt

) − e−
λ0x

κ Erfc(x−λ0t√
4κt

)

Erfc(−x−λ0t√
4κt

) + e
−λ0x

κ Erfc(x−λ0t√
4κt

)
. (5.11)

There is also the corresponding function φ as in the case of the rerafefaction

case, and the time-asymptotic state bS(x) = limt→∞ uS(x, t) satisfies

(bS)t + bS(bS)x = κ(bS)xx,

bS(x) = −λ0 tanh(λ0x
2κ ) = −λ0

e
λ0x
2κ −e−

λ0x
2κ

e
λ0x
2κ +e−

λ0x
2κ

,

BS(x) = −2κ log
[

(e
λ0x
2κ + e−

λ0x
2κ )e

(λ0)2t
2κ

]

,

φS(x) =
[

e
λ0x
2κ + e−

λ0x
2κ

]

e
(λ0)2t

2κ .

(5.12)

Remark 5.1. There is the initial layer of the formation of the Burgers

shock profile bS(x) from the Riemann data uS(x, 0) in (5.10), Figure 14.

The shock formation time is the time it takes for the solution uS(x, t) to

become close to the shock profile bS(x). From (5.11) it is the values

| ± x− λ0t|√
4κt

that need to be greater than certain fixed large number. As the shock is

stationary, we can consider any given location x and the shock formation

time T is therefore determined by

λ0T√
4κT

= O(1), or T = O(1)
κ

(λ0)2
. (5.13)

Thus the shock formation time is proportional to the strength κ of viscosity

and inverse proportional to the square of the shock strength λ0. The reason
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x

t

Figure 14. Burgers shock formation.

for the dependence on the viscosity is clear; the formation time is longer for

weaker shock as the resulting weak compressibility delays the shock forma-

tion. As the Burgers equation is a good approximation to nonlinear waves

in dissipation systems, the above shock layer consideration is useful for the

study of similar problems for the general system, e.g. [7].

For the rarefaction wave bR(x, t), the formation time is the time it takes

for bR(x, t) to be close to the self-similar solution (2.5):

|bR(x, t) − x

t
| ≪ 1, for − λ0 < λ ≡ x

t
< λ0.

This can be quantified from the expression for bR(x, t) in (5.8). For this, we

use the easily verified estimate:

Erfc(z) ≡
∫ ∞

z
e−y2

dy = e−z2

[

1

2z
− 1

4z3
+

3

8z5
+O(1)

1

z7

]

, for z > 0, (5.14)

to obtain from (5.8):

|bR(x, t)−x
t
| = O(1)

[ 1

|λ0x−t|
+

1

|λ0x+ t|
]

, for −λ0t+
√
t<x<λ0t−

√
t. (5.15)

From (5.15), the convergence to the self-similar inviscid solution is of the

order of (t + 1)−1 uniformly in the viscosity κ for the region strictly inside

the rarefaction wave. Inside the rarefaction wave, the rate of (t + 1)−1 is

the same as the perturbation within the inviscid model, Figure 15. Around
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x

t

Figure 15. Burgers rarefaction wave.

the edges of the rarefaction waves x = ±λ0t, the convergence is less obvious

and the inviscid and viscous models differ. We will elaborate on these later

when we study the stability of rarefaction waves.

6. Burgers Green’s Functions

Suppose that ū is a given solution of the Burgers equation with corre-

sponding function φ̄ in the Hopf-Cole relation (5.4):

{

Ū(x, t) =
∫ x
0− ū(y, t)dy,

Ū(x, t) = −2κ log φ̄(x, t).
(6.1)

Consider the Burgers equation linearized around the particular solution:

{

vt + (ūv)x = κvxx

Vt + ŪxVx = κVxx.
(6.2)

We can use the Hopf-Cole procedure to find the solution formula for this

equation. This is done by linearizing the Hopf-Cole relation (5.4)

V + Ū = −2κ log[φ̄+ ζ]

around φ̄:

V = −2κ
ζ

φ̄
. (6.3)
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From the Hopf-Cole relation (6.1) and the linearized Hopf-Cole relation (6.3),

the linearized Burgers equation (6.2) yields the heat equation

ζt = κζxx.

This gives us the explicit solution formula for the initial value problem

of (6.2):



























V (x, t) =

∫ ∞

−∞

[ 1√
4πκt

e−
(x−y)2

4κt φ̄(y, 0)V (y, 0)
]

dy

φ̄(x, t)
,

ζ(x, t) = − 1
2κ

∫ ∞

−∞

[ 1√
4πκt

e−
(x−y)2

4κt φ̄(y, 0)V (y, 0)
]

dy.

(6.4)

We can apply this procedure to find the Green’s function Ḡ(x, t;x0, t0)

for the Burgers equation linearized around a given solution ū(x, t):

Ḡt + ūḠx = κ(Ḡ)xx,

Ḡ(x, t0;x0, t0) = δ(x− x0),
(6.5)

to obtain from (6.4) the explicit representation

Ḡ(x, t;x0, t0) =
1

√

4πκ(t − t0)
e
− (x−x0)2

4κ(t−t0)
φ̄(x0, t0)

φ̄(x, t)
(6.6)

The shock wave bS(x) is a function of the space function only, and so

the Green’s function GS(x, t;x0, t0) = GS(x, t− t0;x0, 0) ≡ GS(x, t− t0;x0):

(GS)t + bS(GS)x = κ(GS)xx,

GS(x, 0;x0) = δ(x− x0).
(6.7)

Apply (6.6) to obtain

GS(x, t;x0) =

∫∞
−∞

[

1√
4πκt

e−
(x−y)2

4κt φS(y, 0)GS(y, 0;x0)
]

dy

φS(x, t)

=
1√

4πκt
e−

(x−x0)2

4κt
φS(x0, 0)

φS(x, t)
,
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and so, from the last identity in (5.12),

GS(x, t;x0) =
1√

4πκt
e−

(x−x0)2

4κt
e

λ0x0
2κ + e−

λ0x0
2κ

e
λ0x
2κ + e−

λ0x
2κ

e−
(λ0)2t

4κ . (6.8)

This can be rewritten in terms of the heart kernel H(x, t), (4.2):

GS(x, t;x0) =
1+e−

λ0|x0|
κ

1+e−
λ0|x|

κ

·































H(x+ λ0t, t), for x>0, x0>0;

e−
λ0|x|

κ H(x− λ0t, t), for x>0, x0<0;

H(x− λ0t, t), for x<0, x0<0;

e−
λ0|x|

κ H(x+ λ0t, t), for x<0, x0>0.

(6.9)

dy
dτ

=λ0

dy

dτ
=−λ0

(x, t) (x, t)

y

τ

Figure 16. Green’s function for Burgers shock wave GS(y, t− τ ;x).

Notice that, within the accuracy of exponential decaying term e−λ0|x0|,

the Green’s function equals the heat kernel propagating with speed ±λ0,

Figure 16. This basic fact has been used by many authors, including the

present ones, see, for instance, [27].

The Green’s function GR(x, t;x0, t0); t ≥ t0 satisfies

(GR)t + bR(GR)x = κ(GR)xx,

GR(x, t0;x0, t0) = δ(x− x0).
(6.10)

As the equation coefficient bR(x, t), (5.8), depends on both variables (x, t),

the Green’s function is of the form GR(x, t;x0, t0), t ≥ t0. We have
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GR(x, t;x0, t0)

=
1

φR(x, t)

∫ ∞

−∞

1
√

4πκ(t − t0)
e
− (x−y)2

4κ(t−t0)φR(y, t0)GR(y, t0;x0, t0)dy.

And so

GR(x, t;x0, t0) =
1

√

4πκ(t− t0)
e
− (x−x0)2

4κ(t−t0) e−
(λ0)2(t−t0)

4κ

×
e−

λ0x0
2κ Erfc(λ0t0−x0√

4κt0
) + e

λ0x0
2κ Erfc(λ0t0+x0√

4κt0
)

e−
λ0x
2κ Erfc(λ0t−x√

4κt
) + e

λ0x
2κ Erfc(λ0t+x√

4κt
)

. (6.11)

The above Green’s functions GS(x, t;x0, t0), GR(x, t;x0, t0) are for the anti-

derivative variables. From these we can easily construct the Green’s function

gS(x, t;x0, t0), gR(x, t;x0, t0) for the original variables by gx0 = −Gx:

(gS)t + (bSgS)x = κ(gS)xx, gS(x, t0;x0, t0) = δ(x− x0),

gS(x, t;x0, t0) =

∫ ∞

x0

(GS)x(x, t; y, t0)dy;
(6.12)

(gR)t + (bRgR)x = κ(gR)xx, gR(x, t0;x0, t0) = δ(x − x0),

gR(x, t;x0, t0) =

∫ ∞

x0

(GR)x(x, t; y, t0)dy.
(6.13)

The Green’s function GR(x, t; y, s) exhibits both the hyperbolic expansion

and parabolic diffusion. We have from the estimate on the error function,

(5.14), that the Green’s function, , (6.11), has the following estimates after

the initial time, t, s ≥ λ0
−2, see [10] and [22], with the viscosity coefficient

κ = 1 here:
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GR(x, t; y, s)

= O(1)























































































































































































































































e
− (x−y+λ0(t−s))2

4(t−s)√
t−s

for x ≤ −λ0t+
√
t, y ≤ −λ0s+

√
s,

(
√

s
y+λ0s +

√
s

λ0s−y )e
− t(y−sx/t)2

4s(t−s) e−
(x+λ0t)2

4t√
(t−s)

for x ≤ −λ0t+
√
t, y ∈ (−sλ0 +

√
s, λ0s−

√
s),

e−
(x+λ0t)2

4t e
− s(x−λ0t)2

4t(t−s) e
− (y−λ0s)2

4(t−s) e
(x−λ0t)(y−λ0s)

2(t−s)√
(t−s)

for x ≤ −λ0t+
√
t, y ≥ λ0s−

√
s,

1√
t

x+λ0t
+

√
t

λ0t−x

e
(x+λ0t)(y+λ0s)

2(t−s) e
− (y+λ0s)2

4(t−s) e
−s(x+λ0t)2

4t(t−s)√
t−s

for x ∈ (−λ0t+
√
t, λ0t−

√
t), y ≤ −λ0s+

√
s,

√
s

y+λ0s
+

√
s

λ0s−y√
t

x+λ0t
+

√
t

λ0t−x

e
− t(y−sx/t)2

4s(t−s)√
(t−s)

for x ∈ (−λ0t+
√
t, λ0t−

√
t), y ∈ (−λ0s+

√
s, λ0s−

√
s),

1√
t

x+λ0t
+

√
t

λ0t−x

e
−s(x−λ0t)2

4t(t−s) e
− (y−λ0s)2

4(t−s) e
(x−λ0t)(y−λ0s)

2(t−s)√
t−s

for x ∈ (−λ0t+
√
t, λ0t−

√
t), y ≥ λ0s−

√
s,

e
(x+λ0t)(y+λ0s)

2(t−s) e
−(y+λ0s)2

4s e
−s(x+λ0t)2

4t(t−s) e−
(x−λ0t)2

4t√
t−s

for x ≥ λ0t−
√
t, y < −λ0s+

√
s,

(
√

s
y+λ0s +

√
s

λ0s−y )e
−t(y−sx/t)2

4s(t−s) e−
(x−λ0t)2

4t√
t−s

for x ≥ λ0t+
√
t, y ∈ (−λ0s+

√
s, λ0s−

√
s),

e
− (x−y−λ0(t−s))2

4(t−s)√
t−s

for x ≥ λ0t−
√
t, y ≥ λ0s−

√
s.

(6.14)

The rich structure in the above expressions is due to the coupling of

different scaling as we mentioned before. Take, for instance, when both the

source (y, s) and the target (x, t) are in the wave region −λ0t +
√
t < x <

λ0t−
√
t, −λ0s+

√
s < y < λ0s−

√
s. In this region, the hyperbolic scaling
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y

τ

(x, t)

Figure 17. Green’s function for Burgers rarefaction wave GR(y, τ ;x, t).

is strong and we have, from above,

GR(x, t; ys) = O(1)

√
s

y+λ0s +
√

s
λ0s−y√

t
x+λ0t +

√
t

λ0t−x

e
− t(y−sx/t)2

4s(t−s)

√

(t− s)
.

For small time, t close to s, the Green’s function is close to the heat kernel,

because the hyperbolic effect of expansion has not yet asserted itself. On the

other hand, for larger time its essential support moves around the hyperbolic

characteristics y/s = x/t, Figure 17. Similar estimates holds for the Green’s

function

gR(x, t; y, s) = −
∫ y

−∞
GR(x, t; z, s)dz.

Note that the nonlinearity in the Burgers equation is a critical one. For

instance, the difference of the Burgers kernel and the heat kernel decays no

faster than the heat kernel. This can be seen by simple scaling analysis

on the level of the heat and Burgers kernels: (bD)t = O(1)t−3/2, (bD)xx =

O(1)t−3/2 and that the nonlinear term is also of the same order bD(bD)x =

O(1)t−1/2 ·O(1)t−1 = O(1)t−3/2. We have seen in Remark 2.4 the relevance

of the inviscid Burgers equation for general convex hyperbolic conservation

laws. For the viscous conservation law (1.6) we have, for λ(u) = f ′(u),

λt + λλx = κλxx − κ
f ′′′(u)

(f ′′(u))2
(λx)2. (6.15)
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Thus there is the truncation error of

− f ′′′(u)
(f ′′(u))2

(λx)2.

Whether or not this is a small truncation error depends on the situation.

For the rarefaction waves and diffusion waves the truncation error is small

for large time, as λx → 0 as t → ∞ for these waves. For instance, for

the diffusion waves, (λx)2 tends to zero at the rate of t−2, faster than the

rate of t−3/2 for λt + λλx and for λxx.Thus the Green’s function GR we

have studied is useful for the time-asymptotic analysis of the propagation of

diffusion waves and the viscous rarefaction waves, as we will see in Section

7 and Section 9.

7. Stability of Diffusion Waves

We now study the nonlinear stability of the viscous waves that have

been constructed. We aim at the pointwise description of the perturbation

of the waves. To illustrate the basic idea, we start with the diffusion waves

for the Burgers equation.

Theorem 7.1. Consider the solution u(x, t) of the initial value problem for

the Burgers equation

{

ut + uux = κuxx,

u(x, 0) = u0(x) = O(1)[|x| + 1]−α, α > 1.
(7.1)

Then for

c ≡
∫ ∞

−∞
u0(x)dx,

the solution approaches the Burgers kernel bD(x, t; c), (5.7), time asymptot-

ically:

|u(x, t)−bD(x, t+ 1; c)| = O(1)(|x|+
√
t+1)−α+O(1)(t+1)−

1
2H(x, t+1;D)

·











1, for α > 2;

log(t+ 1), for α = 2,

(t+ 1)−
α−2

2 , for 1 < α < 2,

(7.2)
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for any constant D greater than κ. As a consequence,

‖u(x, t)−bD(x, t+1; c)‖Lp(x) = O(1)(t+1)−1+ 1
2p











1, for α > 2;

log(t+ 1), for α = 2;

(t+ 1)−
α−2

2 , for 1<α<2.

(7.3)

The theorem can be proved directly using the Hopf-Cole transformation.

Instead of doing this, we present the weakly nonlinear analysis here. The

reason for doing this is that the weakly nonlinear analysis for stability can

be applied in the general situation of systems. However, for this we need to

assume that the initial value is the small perturbation of the Burgers kernel:

u(x, 0) = bD(x, t+ 1) +O(1)ε(1 + |x|)−α, (7.4)

for sufficiently small ε. In fact, we will carry out the analysis for the pertur-

bation of the constant state ū solution for the general convex conservation

laws. Consider convex conservation law

{

ut + f(u)x = κuxx,

u(x, 0) = u0(x) = ū+O(1)ε[|x| + 1]−α, α > 1.
(7.5)

For the diffusion waves considered here, the characteristic value f ′(u) is well-

approximated by the Burgers solution time-asymptotically, (6.15). We thus

expect f ′(u)(x, t) − f ′(ū)(x, t) to tend to the solution of

λt + f ′(ū)λx + λλx = κλxx.

The diffusion wave is therefore bD(x − f ′(ū)t, t; c0f ′′(ū)) with the constant

c0 the total mass of the perturbation:

c0 ≡
∫ ∞

−∞
[u(x, 0) − ū]dx.

In the following theorem we express the convergence of basic variable u(x, t)−
ū(x, t).

Theorem 7.2. Consider the solution u(x, t) of (7.5). Suppose that in (7.5)

ε is sufficiently small and 1 < α < 2. Then the solution approaches the
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constant state plus the Burgers kernel, (5.7), time asymptotically:

∣

∣

∣

∣

u(x, t) − ū− 1

f ′′(ū)
bD(x− f ′(ū)(t+ 1), t+ 1; c0f

′′(ū))

∣

∣

∣

∣

= O(1)ε(|x − f ′(ū)(t+ 1)| +
√
t+ 1)−α. (7.6)

As a consequence,

∥

∥

∥

∥

u(x, t) − ū− 1

f ′′(ū)
bD(x− f ′(ū)(t+ 1), t + 1; c0f

′′(ū))

∥

∥

∥

∥

Lp(x)

= O(1)ε(t + 1)−
α
2
+ 1

2p . (7.7)

Proof. To simplify our notation, let

b(x, t) ≡ 1

f ′′(ū)
bD(x− λ̄(t+ 1), t+ 1; c0f

′′(ū)), λ̄ ≡ f ′(ū).

From (5.7) we have























bt + λ̄bx + f ′′(ū)( b2

2 )x = κbxx,

b(x, 0) = 1
f ′′(ū)bD(x− λ̄, 1; c0f

′′(ū))

= 1
f ′′(ū)

√
κ(ec0f ′′(ū)/(2κ)−1)e−

(x−λ̄)2

4κ
√

π+
R ∞
(x−λ̄)/

√
4κ

(ec0f ′′(ū)/(2κ)−1)e−y2dy
.

(7.8)

Let

v(x, t) ≡ u(x, t) − ū− b(x, t).

From (7.5) and (7.8) v satisfies

{

vt + λ̄vx = κvxx − gx(x, t),

v(x, 0) = u(x, 0) − ū− b(x, 0),
(7.9)

where

g(x, t) =
[

f(u) − f(ū) − f ′(ū)(u− ū) − 1

2
f ′′(ū)b2

]

(x, t)

=
[1

2
f ′′(ū)(b+ v)2 +O(1)(b+ v)3 − 1

2
f ′′(ū)b2

]

(x, t)

=
[

f ′′(ū)bv +
1

2
f ′′(ū)v2 +O(1)|b|3 +O(1)|v|3

]

(x, t). (7.10)
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Recalling the definition of c0, and using the fact that bD is conserved, by

(5.7) we have

∫ ∞

−∞
v(x, 0)dx =

∫ ∞

−∞
[u(x, 0) − ū]dx−

∫ ∞

−∞

1

f ′′(ū)
bD(x− λ̄, 1; c0f

′′(ū))dx

= c0 −
1

f ′′(ū)

∫ ∞

−∞
bD(x− λ̄, 0; c0f

′′(ū))dx

= c0 −
1

f ′′(ū)
c0f

′′(ū) = 0.

Therefore,
∫ ∞

−∞
v(x, t)dx =

∫ ∞

−∞
v(x, 0)dx = 0.

As in the proof of Theorem 4.1 we introduce the antiderivative

w(x, t) =

∫ x

−∞
v(y, t)dy = −

∫ ∞

x
v(y, t)dy.

From (7.5) it is clear that

c0 =

∫ ∞

−∞
[u(x, 0) − ū]dx = O(1)ε

∫ ∞

−∞
(|x| + 1)−αdx = O(1)ε.

Therefore, with (7.8),

v(x, 0) = u(x, 0) − ū− b(x, 0) = O(1)ε(|x| + 1)−α +O(1)c0e
− (x−λ̄)2

4κ

= O(1)ε(|x| + 1)−α, (7.11)

w(x, 0) = O(1)ε(|x| + 1)−α+1.

We now perform a priori estimate on v. Let

M(t) = sup
0≤τ≤t

‖v(x, τ)(|x − λ̄(τ + 1)| +
√
τ + 1)α‖L∞(x).

Then

|v(x, t)| ≤M(t)(|x− λ̄(t+1)|+
√
t+1)−α, −∞ < x <∞, t ≥ 0. (7.12)
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Applying Duhamel’s principle to (7.9), we have

v(x, t) =

∫ ∞

−∞
H(x− y − λ̄t, t)v(y, 0)dy

−
∫ t

0

∫ ∞

−∞
H(x− y − λ̄(t− τ), t− τ)gy(y, τ)dydτ

= I1 + I2. (7.13)

Because of (7.11), the estimate of I1 is the same as the proof of Theorem

4.1, and the result is stated in (4.5). That is,

I1 = O(1)ε(|x− λ̄t|+
√
t+ 1)−α = O(1)ε(|x− λ̄(t+ 1)|+

√
t+ 1)−α. (7.14)

To estimate I2, from (5.7) we note that

b(x, t) = O(1)ε(t + 1)−
1
2 e

− (x−λ̄(t+1))2

4κ(t+1) . (7.15)

Applying (7.12) and (7.15) to (7.10), we obtain

g(x, t) = O(1)[εM(t) + ε3](t+ 1)−
1+α

2 e
− (x−λ̄(t+1))2

4κ(t+1)

+O(1)M(t)2(|x− λ̄(t+ 1)| +
√
t+ 1)−2α.

Therefore,

I2 =

∫ t

0

∫ ∞

−∞

∂

∂y
H(x−y−λ̄(t−τ), t−τ)g(y, τ)dydτ

=O(1)[εM(t)+ε3]

∫ t

0

∫ ∞

−∞
(t−τ)−1e

−(x−y−λ̄(t−τ))2

4κ(t−τ) (τ+1)−
1+α
2 e

−(y−λ̄(τ+1))2

4κ(τ+1) dydτ

+O(1)M(t)2
∫ t

0

∫ ∞

−∞
(t−τ)−1e

−(x−y−λ̄(t−τ))2

4κ(t−τ) (|y−λ̄(τ+1)|+
√
τ+1)−2αdydτ

=I21+I22. (7.16)

Here I21 is the leading term. To estimate I21 we complete the square:

−(x− y − λ̄(t− τ))2

4κ(t− τ)
− (y − λ̄(τ + 1))2

4κ(τ + 1)

= − t+ 1

4κ(t− τ)(τ + 1)

[

y − (τ + 1)x

t+ 1

]2

− (x− λ̄(t+ 1))2

4κ(t+ 1)
.
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Thus

I21 = O(1)[εM(t) + ε3]

∫ t

0
(t− τ)−

1
2 (τ + 1)−

α
2 (t+ 1)−

1
2 e

− (x−λ̄(t+1))2

4κ(t+1) dτ

= O(1)[εM(t) + ε3](t+ 1)−
1
2 e

− (x−λ̄(t+1))2

4κ(t+1)

×
[
∫ t

2

0
(t+ 1)−

1
2 (τ + 1)−

α
2 dτ +

∫ t

t
2

(t− τ)−
1
2 (t+ 1)−

α
2 dτ

]

= O(1)[εM(t) + ε3](t+ 1)−
1
2 e

− (x−λ̄(t+1))2

4κ(t+1) (t+ 1)−
α−1

2

= O(1)[εM(t) + ε3][|x− λ̄(t+ 1)| +
√
t+ 1]−α. (7.17)

To estimate I22 we divide the space integral into two parts:

I22 =O(1)M(t)2
[ ∫ t

0

∫

|y−λ̄(τ+1)|≤
√

τ+1
+

∫ t

0

∫

|y−λ̄(τ+1)|≥
√

τ+1

]

(t− τ)−1

× e
− (x−y−λ̄(t−τ))2

4κ(t−τ) (|y − λ̄(τ + 1)| +
√
τ + 1)−2αdydτ

=I221 + I222. (7.18)

Here the estimate of I221 is completely parallel to I21:

I221 = O(1)M(t)2
∫ t

0

∫

|y−λ̄(τ+1)|≤
√

τ+1
(t− τ)−1

× e
− (x−y−λ̄(t−τ))2

4κ(t−τ) (τ + 1)−αe
− (y−λ̄(τ+1))2

4κ(τ+1) dydτ

= O(1)M(t)2e
− (x−λ̄(t+1))2

4κ(t+1) (t+ 1)−
1
2

∫ t

0
(t− τ)−

1
2 (τ + 1)

1
2
−αdτ

= O(1)M(t)2e
− (x−λ̄(t+1))2

4κ(t+1)











(t+ 1)−1, for α > 3
2 ;

(t+ 1)−1 log(t+ 1), for α = 3
2 ;

(t+ 1)
1
2
−α, for α < 3

2 .

Noting 1 < α < 2, we have

I221 = O(1)M(t)2(t+ 1)−
α
2 e

− (x−λ̄(t+1))2

4κ(t+1)

= O(1)M(t)2(|x− λ̄(t+ 1)| +
√
t+ 1)−α. (7.19)
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For I222 we change the variable from y − λ̄(τ + 1) to y and set

x̃ = x− λ̄(t+ 1)

to simplify our notations. Then

I222 = O(1)M(t)2
∫ t

0

∫

|y|≥
√

τ+1
(t− τ)−1e

− (x̃−y)2

4κ(t−τ) |y|−2αdydτ.

We also consider t ≥ 1 since the case t < 1 is trivial.

Case 1. |x̃| <
√
t+ 1.

I222 = O(1)M(t)2
[ ∫ t

2

0
(t+ 1)−1

∫ ∞

√
τ+1

y−2αdydτ

+

∫ t

t
2

(t− τ)−
1
2 (τ + 1)−α

∫

|y|≥
√

τ+1
(t− τ)−

1
2 e

− (x̃−y)2

4κ(t−τ)dydτ

]

= O(1)M(t)2
[
∫ t

2

0
(t+ 1)−1(τ + 1)

1
2
−αdτ +

∫ t

t
2

(t− τ)−
1
2 (t+ 1)−αdτ

]

= O(1)M(t)2











(t+ 1)−1, for α > 3
2

(t+ 1)−1 log(t+ 1), for α = 3
2

(t+ 1)
1
2
−α, for α < 3

2

= O(1)M(t)2(t+ 1)−
α
2 = O(1)M(t)2(|x̃| +

√
t+ 1)−α

= O(1)M(t)2(|x− λ̄(t+ 1)| +
√
t+ 1)−α. (7.20)

Case 2. |x̃| >
√
t+ 1.

I222 =O(1)M(t)2
∫ t

0

∫

√
τ+1≤|y|≤|x̃|/2

(t− τ)−1e
− (x̃−y)2

8κ(t−τ) e
− x̃2

32κ(t−τ) |y|−2αdydτ

+O(1)M(t)2
∫ t

0

∫

|y|>|x̃|/2
(t− τ)−1e

− (x̃−y)2

4κ(t−τ) |x̃|−2αdydτ.

For the first integral we repeat the estimate of (7.20). Thus

I222 =O(1)M(t)2e
− x̃2

32κ(t+1)











(t+ 1)−1, for α > 3
2

(t+ 1)−1 log(t+ 1), for α = 3
2

(t+ 1)
1
2
−α, for α < 3

2



276 TAI-PING LIU, SHIH-HSIEN YU AND YANNI ZENG [September

+O(1)M(t)2
∫ t

0
(t− τ)−

1
2 |x̃|−2αdτ

=O(1)M(t)2
[

e
− x̃2

32κ(t+1) (t+ 1)−
α
2 + (t+ 1)

1
2 |x̃|−2α

]

= O(1)M(t)2|x̃|−α

=O(1)M(t)2(|x̃| +
√
t+ 1)−α

=O(1)M(t)2(|x− λ̄(t+ 1)| +
√
t+ 1)−α. (7.21)

Combining (7.13), (7.14) and (7.16) to (7.21), we have

v(x, t) = O(1)[ε +M(t)2](|x− λ̄(t+ 1)| +
√
t+ 1)−α.

That is,

‖v(x, t)(|x − λ̄(t+ 1)| +
√
t+ 1)α‖L∞(x) ≤ C[ε+M(t)2]

for some constant C > 0. This implies

M(t) ≤ C[ε+M(t)2].

Therefore, if M(t) is small, we have

M(t) ≤ 2Cε. (7.22)

By a continuity argument, (7.22) is true provided ε is sufficiently small.

Substituting this into (7.12) we have

v(x, t) = O(1)ε(|x−λ̄(t+1)|+
√
t+1)−α = O(1)ε(|x−f ′(ū)(t+1)|+

√
t+1)−α.

�

Remark 7.3. Theorem 7.2 is for 1 < α < 2. If α ≥ 2, we replace the initial

condition in (7.5) by

u(x, 0) = ū+O(1)ε(|x| + 1)−α = ū+O(1)ε(|x| + 1)−β

with any β < 2 ≤ α, and apply Theorem 7.2. Therefor, the L∞ rate is

arbitrarily close to but slower than (t + 1)−1. This is a contrast to the

Burgers equation, where in (7.2) the optimal rate is (t+ 1)−1 for α > 2, and

(t+1)−1 log(t+1) for α = 2 (with ū = 0). These optimal rates are obtained

by way of Hopf-Cole transformation. For a general scalar conservation law



2010] VISCOUS CONSERVATION LAWS 277

we use Duhamel’s principle to perform a priori estimates. It is clear that

the leading term is I21 in (7.16), which comes from the term f ′′(ū)bv in the

source g in (7.10). Suppose α > 2 in (7.5). If we imitate the result for the

Burgers equation and replace (7.12) by

|v(x, t)| ≤M(t)
[

(|x−λ̄(t+1)|+
√
t+1)−α+(t+1)−

1
2H(x−λ̄(t+1), t+1;D)

]

,

we will have

I21 =O(1)[εM(t)+ε3]

∫ t

0

∫ ∞

−∞
(t−τ)−1e

− (x−y−λ̄(t−τ))2

4κ(t−τ) (τ+1)−
3
2 e

− (y−λ̄(τ+1))2

4κ(τ+1) dydτ

= O(1)[εM(t) + ε3]

∫ t

0
(t− τ)−

1
2 (τ + 1)−1(t+ 1)−

1
2 e

− (x−λ̄(t+1))2

4κ(t+1) dτ

= O(1)[εM(t) + ε3]H(x− λ̄(t+ 1), t+ 1)

∫ t

0
(t− τ)−

1
2 (τ + 1)−1dτ

= O(1)[εM(t) + ε3]H(x− λ̄(t+ 1), t+ 1)(t+ 1)−
1
2 log(t+ 1).

Because of the extra log(t+ 1), the a priori estimate cannot be closed. The

same situation happens to the case α = 2 as well: After the iteration,

the term (t + 1)−
1
2H(x − λ̄(t + 1), t + 1;D) log(t + 1) will induce the term

(t+ 1)−
1
2H(x− λ̄(t+ 1), t+ 1;D) log2(t+ 1).

The following proposition is compared with the one for heat equation,

Proposition 4.2.

Proposition 7.4. The solution of

ut + uux = κuxx,

u(x, 0) = u0(x) =

{

C[|x| + 1]−1, for x > 0,

0, for x ≤ 0.,

(7.23)

satisfies

u(x, t) = O(1)C(x2 + t)−
1
2 .

Proof. From the solution formula (5.6),

u(x, t) =

∫∞
−∞

x−y
t e−

(x−y)2

4κt
− 1

2κ

R y
0− u0(z)dzdy

∫∞
−∞ e−

(x−y)2

4κt
− 1

2κ

R y
0− u0(z)dy
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=

∫ 0
−∞

x−y
t e−

(x−y)2

4κt dy +
∫∞
0

x−y
t (1 + |y|)− C

2κ e−
(x−y)2

4κt dy
∫ 0
−∞ e−

(x−y)2

4κt dy +
∫∞
0 (1 + |y|)− C

2κ e−
(x−y)2

4κt dy
. (7.24)

The remaining of the proof is to estimate these integrals for the cases x > 0

and x < 0 and use the error function estimate (5.14), e.g. [22]. We omit the

details. �

8. Stability of Shock Waves

Consider the viscous convex conservation law corresponding to the hy-

perbolic scalar law (2.1):

ut + f(u)x = κuxx, f
′′(u) > 0. (8.1)

A viscous shock wave is a traveling wave, φ((x−st)/κ) ≡ φ(ξ/κ), with speed

s and end states u±:

−sφ′ + f(φ)′ = φ′′, φ(±∞) = u±.

Integrating this from x = −∞ to get

φ′ = f(φ) − f(u−) − s(φ− u−), φ(∞) = u+. (8.2)

For the wave to exist, we need to require that the R.H.S. of the equation is

zero at φ = u+:

f(u+) − f(u−) = s(u+ − u−),

which is the same as the Rankine-Hugoniot condition (2.9) for hyperbolic

conservation law. We also need the R.H.S. to be of the same sign as u+−u−:

[f(u) − f(u−) − s(u− u−)](u+ − u−) > 0.

For convex conservation law, f ′′(u) > 0, considered here, the above is satis-

fied if and only if u− > u+ and in fact we have

f ′(u−) > s > f ′(u+),
d

dξ
f ′(φ(ξ)) < 0, for −∞ < ξ <∞. (8.3)
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The first is the entropy condition (2.11), and the second the compressibility

of the shock waves.

It also results in

φ(ξ) ∈ (u+, u−). (8.4)

We will study the nonlinear stability of the shock wave. First we note that

the translation of the shock induces the flux:
∫ ∞

−∞
[φ((x+ x0)/κ) − φ(x/κ)]dx = x0[u+ − u−], (8.5)

which can be seen easily by considering the differentiation with respect to

x0 of the identity. For simplicity the speed of the shock is taken to be zero

s = 0, φ(ξ) = φ(x),

f(φ(x/κ))x = φ(x/κ)xx. (8.6)

Theorem 8.1. Consider the perturbation of the shock wave φ(x/κ):

u(x, 0) ≡ φ(x/κ) + v̄(x, 0), (8.7)

v̄(x, 0) = O(1)ε(|x| + 1)−α. (8.8)

Set

c0 ≡
∫ ∞

−∞
v̄(x, 0)dx, x0 ≡ c0

u+ − u−
.

Then, for ε sufficiently small and the constant α > 3
2 , the solution of the ini-

tial value problem for (8.1) tends to the traveling wave time-asymptotically:

lim
t→∞

|u(x, t) − φ((x+ x0)/κ)| = 0.

Proof. From (8.5)

∫ ∞

−∞
[φ((x+ x0)/κ) − u(x, 0)]dx = 0, x0 ≡ c0

u+ − u−
.

The perturbation induces a phase shift x0 of the shock if the total mass c0 of

the perturbation is nonzero. By replacing φ(x) in (8.9) with φ((x + x0)/κ)
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the perturbation has zero total mass.



































ut + f(u)x = κuxx, f
′′(u) > 0,

u(x, t) ≡ φ((x + x0)/κ) + v(x, t),

f(φ)x = φxx, φ(±∞) = u±,

v(x, 0) = O(1)ε(|x| + 1)−α,
∫∞
−∞ v(x, 0)dx = 0,

(8.9)

here, for simplicity, we still write the translated shock as φ(x/κ). By the

zero total mass property, we may consider the anti-derivative of v:

w(x, t) ≡
∫ x

−∞
v(y, t)dy, w(±∞, t) = 0.

The equations for the perturbation are:

{

vt + [f ′(φ(x/κ))v +O(1)v2]x = κvxx,

wt + f ′(φ(x/κ))wx +O(1)(wx)2 = κwxx, wx = v.
(8.10)

The simplest method for stability is the energy method, e.g. [6], [24], here

integrating the second equation in (8.10) times w:

∫ ∞

−∞

1

2
w2(x, t)dx+

∫ t

0

∫ ∞

−∞

[

− (f ′(φ(x/κ)))x
w2

2
+ κ(wx)2 +O(1)w(wx)2

]

dxdt

=

∫ ∞

−∞

1

2
w2(x, 0)dx. (8.11)

The crucial compressibility property, (8.3),

f ′(φ(x))x < 0

makes the first two terms in the double integral in (8.11) positive definite.

The third term O(1)w(wx)2 can be dominated by the second term κ(wx)2

provided that w is small. This is so, by Sobolev calculus, if we can estimate

the L2(x) norm of w and wx. The above is for the L2(x) estimate for w. And

similarly, starting with integrating the first equation in (8.10) times v = wx,

and using the above energy estimate, one obtains the L2(x) estimate for
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v = wx. Thus, in conclusion, we obtain the desired energy estimates

∫ ∞

−∞

1

2
w2(x, t)dx+

∫ t

0

∫ ∞

−∞
κ(wx)2dxdt = O(1)

∫ ∞

−∞

1

2
w2(x, 0)dx,

and similar one for v. This proves the stability of the shock profile φ provided

that the strength of the perturbation ε is small. �

In order for the above straightforward energy method to work, the decay

rate (|x|+1)−α of the initial perturbation need to be sufficiently large α > 3
2 .

This is not necessary if one adopts a combination of pointwise and energy

method. It is necessary for the initial data to be in L1(x) if the time-

asymptotic shift x0 can be calculated a priori.

Remark 8.2. The linearized equation

vt + (f ′(φ(x/κ))v)x = κvxx

has a trivial solution v(x, t) = φ′(x/κ)/κ induced by the translation of the

shock φ(x/κ) → φ((x+x0)/κ). In other words, the linearized operator has a

kernel φ′(x). After the phase shift of the shock is determined by conservation

law, (8.9), this kernel is screened out. One way is to consider the anti-

derivative and obtain the linearized equation

wt + f(φ(x/κ))wx = κwxx.

This linear equation does not have non-dissipative solution, and the stability

analysis is done easily by energy method as in the above.

One can take advantage of one aspect of the scalar equation, namely

the maximum principle, for the stability analysis to obtain results for large,

even non-integrable initial perturbation, [9], [4].

The stability of the shock profiles can be studied more quantitatively

be either the Green’s function approach or by the weighted energy method.

We will illustrate the Green’s function approach when we study the stability

of the rarefaction waves. For shock waves, the weighted energy method is

illustrative in exhibiting the relation of the entropy condition and the decay
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of the perturbation. Consider the convex conservation law

ut + f(u)x = κuxx, f
′′(u) > 0.

A shock, its speed taken to be zero, φ(x) is compressive in that

φ′(x) < 0, φ(±∞) = u±, f
′(u−) > 0 > f ′(u+).

In fact, it is easy to see from the Rankine-Hugoniot condition that

f ′(u−) > 2C1|u+ − u−|, f ′(u+) < −2C1|u+ − u−|,

for some positive constant C1 depending on the strength α of convexity

f ′′(u) > α. This form of compressibility says that at far field x close to ±∞
a perturbation propagates toward the center of the shock with speed |f ′(u±)|
comparable to the strength |u+ − u−| of the shock. Due to dissipation term

κuxx the perturbation cancelled out and resulting in a phase shift x0 of the

shock. To see this, we use the weighted energy method, integrating the

second equation in (8.10) times wA(x):

d

dt

∫ ∞

−∞

1

2
w2Adx+

∫ ∞

−∞
w2A

(

−1

2
f ′(φ(x/κ))x − f ′(φ(x/κ))

2

A′

A
− κ

2

A′′

A

)

dx

+

∫ ∞

−∞
A(1 +O(1)w)|wx|2dx = 0. (8.12)

Let










b ∈ (1/4, 1),

A(x) ≡ exp

(

− b

2κ

∫ x

0
f ′(φ(τ/κ))dτ

)

.
(8.13)

With (8.12) and (8.13), one has

d

dt

∫ ∞

−∞

1

2
w2Adx+

∫ ∞

−∞
w2A

(

−1
2(1 − b

2)f ′′(φ(x
κ))φ′(x

κ)+ b2

8 |f ′(φ(x
κ ))|2

κ

)

dx

+

∫ ∞

−∞
A(1 +O(1)w)|wx|2dx = 0. (8.14)
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By the property that f ′′ > 0, there exists α > 0 such that

f ′′(u) > α for u ∈ (u+, u−). (8.15)

This, (8.2), and (8.4) yield that there exists γ > 0 such that

−1

2
(1 − b/2)f ′′(φ(η))φ′(η) ≥ −γα(f(φ(η)) − f(u−)) > 0. (8.16)

Then, by the convexity of f to yield

γ0 ≡ min
u∈(u+,u−)

(

−γα(f(u) − f(u−)) + |f ′(u)|2
)

> 0. (8.17)

The estimates (8.16) and (8.17) together with the identity (8.14) give that

d

dt

∫ ∞

−∞

1

2
w2Adx+

∫ ∞

−∞
w2A

γ0

κ
dx+

∫ ∞

−∞
A(1 +O(1)w)|wx|2dx = 0. (8.18)

This yields the following estimate, c.f. (8.11),

eγ0t/κ

∫ ∞

−∞
A(x)w(x, t)2dx+

∫ t

0

∫ ∞

−∞
eγ0s/κA(x)(1 +O(1)w)|wx(x, s)|2dxds

=

∫ ∞

−∞
A(x)w(x, 0)2dx. (8.19)

Note that in order for the last integral to be bounded, the initial per-

turbation needs to decay exponentially because of the exponential growth

of the weighted function w(x). With such an initial data, (8.19) yields the

exponential decay, in both x and t, of the perturbation. Algebraic decay

rates of the perturbation can be obtained similarly when its initial values

decays algebraically. For this, different weighted functions of algebraic rates

should be chosen; details are omitted.

For the stability of viscous shock waves corresponding to non-convex flux

f(u), see [25]. For non-convex flux, there are wave pattern with complex

combination of shock and rarefaction waves. The stability of such wave

patterns is not explored nearly sufficiently, see [28].

Both of the weighted energy estimate and the elementary energy esti-

mate (8.11) yield the nonlinear stability of shock waves. The weighted energy

method yields the pointwise decay rates and more geometric understanding
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of the wave propagation. It is also clear from the Burgers Green’s function

GS(x, t;x0) around the shock profile, (6.9), that a perturbation around the

shock profile propagates toward the shock, except for an exponential decay-

ing factor. The above estimate (8.19) says that this is so for general convex

conservation law. Thus we can also use the Green’s function approach for

the pointwise estimates. We will carry out the Green’s function approach in

Section 10 when we study the stability of rarefaction waves.

The Green’s functions for Burgers waves have been constructed. In

the next section we show that the energy method allows us to estimate the

Green’s function for weak shock waves for more general convex conservation

laws.

9. Estimates of the Green’s Function

In this section, we normalized κ = 1 and consider the initial value prob-

lem:






∂tg + f ′(φ(x))∂xg − ∂xxg = 0, (x, t) ∈ R × R
+,

|g(x, 0)| ≤ σ0e
−σ0|x|/2,

(9.1)

where






σ0 ≡ min(1, |λ−|, |λ+|),

λ± ≡ f ′(u±).

One introduces an initial approximation solution g0(x, t) to the problem (9.1)

as follows:

g0(x, t) ≡ χ−(x)g−(x, t) + χ+(x)g+(x, t), (9.2)

where χ±(x) is a partition of unit satisfying



















χ−(x) + χ+(x) = 1,

0 ≤ χ′
+(x) ≤ O(1)σ0e

−4σ0|x|,

|χ′′
+(x)| ≤ O(1)σ2

0e
−4σ0|x|,
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and the functions g±(x, t) are given by

g±(x, t) ≡
∫ ∞

−∞

e−
(x−y−λ±t)2

4t

√
4πt

g(y, 0)dy.

The function g0(x, t) satisfies

|g0(x, t)| ≤ O(1)σ0e
−σ2

0t

4
−σ0|x|

2 . (9.3)

The truncation error of g0,

ge ≡ −
(

∂t + f ′(φ)∂x − ∂2
x

)

g0(x, t),

satisfies

|ge(x, t)| ≤ |χ−(x)(f ′(φ)−f ′(u−))∂xg−(x, t)+χ+(x)(f ′(φ)−f ′(u+))∂xg+(x, t)|
+2|χ′

−(x)| (|∂x(g−(x, t) − g+(x, t))| + |g−(x, t) − g+(x, t)|)
+2|χ′′

−(x)||g−(x, t) − g+(x, t)|. (9.4)

This yields the following estimate with the weighted function A(x) given in

(8.13) with κ = 1 and b = 1/4

∫ ∞

−∞
ge(x, t)

2A(x)dx < O(1)σ4
0

e−
σ2
0t

2√
t

for t > 0. (9.5)

Denote

w(x, t) ≡ g(x, t) − g0(x, t)

and the function w(x, t) will satisfy

{

∂tw + f ′(φ)∂xw − ∂2
xw = ge(x, t),

w(x, 0) ≡ 0.
(9.6)

By applying the energy estimates (8.12)-(8.19) with (9.5), there exist K0

and K1 > 0 such that

eγ0t

∫ ∞

−∞
A(x)w(x, t)2dx+

1

2

∫ t

0

∫ ∞

−∞
eγ0sA(x)|wx(x, s)|2dxds
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≤ K0

σ2
0

∫ t

0

∫ ∞

−∞
A(x)eγ0sge(x, s)

2dxds ≤ K1σ0. (9.7)

Remark 9.1. Here, the constants
√
γ0 and σ0 are of the same order as

min(1, |u− − u+|).

Thus,

∫ ∞

−∞
A(x)w(x, t)2dx+

1

2

∫ t

0

∫ ∞

−∞
e−γ0(t−s)A(x)|wx(x, s)|2dxdsds ≤ K1σ0e

−γ0t.

(9.8)

One uses the following bootstrap procedure to obtain the pointwise estimate

of w(x, t) for x ≤ 0:

|w(x, t)| ≤

∣

∣

∣

∣

∣

∣

∣

∫ t

0

∫ ∞

−∞

e
− (x−y−λ−(t−s))2

4(t−s)

√

4π(t− s)

(

ge(y, s)−(f ′(φ(y))−λ−)wy(y, s)
)

dyds

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

∫ t

0

∫ ∞

−∞

e
− (x−y−λ−(t−s))2

4(t−s)

√

4π(t− s)
ge(y, s)dyds

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∫ t

0

∫ ∞

−∞

e
− (x−y−λ−(t−s))2

4(t−s)

√

4π(t− s)
(f ′(φ) − λ−)wy(y, s)dyds

∣

∣

∣

∣

∣

∣

∣

. (9.9)

By Hölder inequality and (9.8), one has

∣

∣

∣

∣

∣

∣

∣

∫ t

0

∫ ∞

−∞

e
− (x−y−λ−(t−s))2

4(t−s)

√

4π(t− s)
(f ′(φ) − λ−)wy(y, s)dyds

∣

∣

∣

∣

∣

∣

∣

≤ O(1)







∫ t

0

∫ ∞

−∞

e
− (x−y−λ−(t−s))2

2(t−s)

(t− s)

(f ′(φ) − λ−)2eγ0(t−s)

A(y)
dyds







1/2

×
(∫ t

0

∫ ∞

−∞
e−γ0(t−s)A(y)|wy|2dyds

)1/2

≤ O(1)

(

∫ t

0

(

σ2
0e

−2σ0|x|−2σ2
0(t−s)

√
t− s

)

eγ0(t−s)ds

)1/2
(

σ0e
−γ0t

)1/2
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≤ O(1)σ0e
−σ0|x|−γ0t. (9.10)

This and (9.9) result in, for x ≤ 0,

|w(x, t)| ≤ O(1)σ0e
−σ0|x|−γ0t. (9.11)

With a symmetric argument, one has

|w(x, t)| ≤ O(1)σ0e
−σ0|x|−γ0t for x ≥ 0. (9.12)

By (9.3) and (9.12) together with Remark 9.1, it follows that, for some

D0 > 0,

|g(x, t)| ≤ O(1)σ0e
−σ0

2
|x|−σ2

0t

D0 . (9.13)

This estimate (9.13) establishes a semi-group property for the initial value

problem (9.1):

There exist A0 and E0 > 0 such that for t > 0

Gt
φ[g(·, 0)](x) ≡ g(x, t),











|g(x, 0)| ≤ σ0e
−σ0|x|,

|Gt
φ[g(·, 0)](x)| ≤ A0σ0e

−σ0|x|−
σ2
0

E0
t
.

(9.14)

By the semi-group property, the Green’s function G(x, t;x0, t0) of (∂t +

f ′(φ)∂x − ∂2
x)f = 0 is G(x, t − t0;x0, 0). The function G(x, t;x0, 0) is the

solution of an initial value problem

{

(∂t + f ′(φ)∂x − ∂2
x)G(x, t;x0, 0) = 0 for x ∈ R, t > 0,

G(x, 0;x0, 0) = δ(x− x0).
(9.15)

Similar to the introduction of the initial approximate solution g0(x, t), we

denote the initial approximate Green’s function G0(x, t;x0, 0) and its trun-

cation error Ge(x, t;x0, 0) as follows:























G0(x, t;x0, 0) ≡ χ−(x)
e−

(x−x0−λ−t)2

4t

√
4πt

+ χ+(x)
e−

(x−x0−λ+t)2

4t

√
4πt

,

Ge(x, t;x0, 0) ≡ −(∂t + f ′(φ)∂x − ∂2
x)G0(x, t;x0, 0),

W (x, t) ≡ G(x, t;x0, 0) −G0(x, t;x0, 0).

(9.16)
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There exists E1 > 0 such that for any τ > 0 the function Ge(x, τ ;x0, 0)

Ge(x, τ ;x0, 0)

σ0e−σ0|x| ≤ O(1)











e
− (|x0|−|λ−|τ)2

E1τ

(

1
τ + σ0√

τ

)

for x0 < 0,

e
− (|x0|−|λ+|τ)2

E1τ

(

1
τ + σ0√

τ

)

for x0 > 0.

(9.17)

The equation for W (x, t) is

{

(∂t + f ′(φ)∂x − ∂2
x)W = Ge, for t > 0,

W (x, 0) ≡ 0.
(9.18)

With the property (9.17), one can apply operator Gt−τ
φ to the element

Ge(·, τ) and the Duhamel’s principle to (9.18) to yield that

|W (x, t)| =

∣

∣

∣

∣

∫ t

0
Gt−τ

φ [Ge(·, τ)](x)dτ
∣

∣

∣

∣

≤ O(1)σ0e
−σ0|x|















∫ t

0
e
− σ2

0
E0

(t−τ)− (|x0|−|λ−|τ)2

E1τ

(

1

τ
+
σ0√
τ

)

dτ for x0 < 0,
∫ t

0
e
− σ2

0
E0

(t−τ)− (|x0|−|λ+|τ)2

E1τ

(

1

τ
+
σ0√
τ

)

dτ for x0 > 0.

(9.19)

Then, by (9.16) and the estimate (9.19) one obtains the global estimate of

the Green’s function G(x, t;x0, 0). There exists E > 0 such that

∣

∣

∣

∣

∣

∣

G(x, t;x0, 0) −



χ−(x)
e−

(x−x0−λ−t)2

4t

√
4πt

+ χ+(x)
e−

(x−x0−λ+t)2

4t

√
4πt





∣

∣

∣

∣

∣

∣

≤ O(1)σ0| log σ0|e−σ0|x|







e−
(|x0|−|λ−|t)2

4Et for x0 < 0,

e−
(|x0|−|λ+|t)2

4Et for x0 > 0.
(9.20)

Thus the Green’s function for general convex conservation laws is similar to

the one for the Burgers equation, (6.9).

10. Stability of Rarefaction Waves

Rarefaction waves are expansive. Consequently, for an inviscid rarefac-
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tion wave u(x, t), when parts of the wave is translated to become v(x, t),

then they are different in a region with width O(1)t and the magnitude of

their difference is O(1)t−1. Thus we have

|u(·, t) − v(·, t)|Lp(x) = [O(1)t(O(1)t−1)p]
1
p = O(1)t−

p−1
p , p ≥ 1. (10.1)

In particular, it decays in Lp(x) for p > 1 and does not decay for L1(x).

Note that there are continuum parameters of translations. Thus, unlike

shock waves, for a given perturbation of a rarefaction wave, it is not pos-

sible to have a simple translation of the rarefaction wave in order for the

perturbation to decay in L1(x) norm. This arguments were made for the

hyperbolic conservation laws in Section 3. Nevertheless, it holds also for

the viscous conservation laws. For viscous rarefaction waves, the dissipation

term works as usual outside the rarefaction fan. Inside the rarefaction fan

there are interesting combined effects of the hyperbolic expansion and the

dissipation, see Figure 17 in Section 6. As we will see in Part II for systems,

there is an additional strong coupling effect with other characteristic fami-

lies. There is no exact rarefaction waves for the system. In fact, even for

scalar conservation laws we need to use the explicit Burgers rarefaction wave

bR(x, t), (5.8), as an approximation, and study the stability of rarefaction

wave accordingly:



































ut + f(u)x = κuxx, f
′′(u) > 0, λ(u) ≡ f ′(u),

λ(u(x, t)) = bR(x, t+ T0) + v(x, t),

|v(x, 0)| + |vx(x, 0)| = O(1)ε(|x| + 1)−α, α > 1
2 ,

vt + [bRv + 1
2v

2]x = κvxx − κ f ′′′(u)
f ′′(u)2

[vx + (bR)x]2.

(10.2)

The last identity comes directly from (5.8), (6.15). Here we have chosen the

starting time T0 for the rarefaction wave to be large so that the wave has

already expanded sufficiently. This choice is made for convenience, as we are

focusing on the time-asymptotic behavior. Set u± to be the limiting state

of the rarefaction wave. In (5.8), we have u± = ±λ0.
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We now study the stability of rarefaction wave, first using the energy

method. The key property is the expansion of the wave, c.f. (5.8):

∂

∂x
bR(x, t) > 0.

Theorem 10.1. There exists a global solution to (10.2), and, for sufficiently

small |u+ − u−|(T0)
2 + ε2,

sup
x

|f ′(u(x, t)) − bR(x, t)| → 0, as t→ ∞. (10.3)

Proof. The equation (10.2) is of the form

vt + (bRv)x = κvxx − 1

2
(v2)x +O(1)[(vx)2 + ((bR)x)2].

Multiply this by v and integrate to obtain

d

dt

∫ ∞

−∞

1

2
v2(x, t)dx+

∫ ∞

−∞

[1

2
(bR)xv

2 + κ(vx)2
]

(x, t)dx

=

∫ ∞

−∞
[O(1)v(vx)2 +O(1)v((bR)x)2](x, t)dx.

The last term can be dominated by

∫ ∞

−∞
O(1)v((bR)x)2dx ≤ 1

4

∫ ∞

−∞
[v2(bR)x +O(1)((bR)x)3]dx

=
1

4

∫ ∞

−∞
v2(bR)xdx+O(1)|u+ − u−|(T0)

−2,

where we have used the expansion of the Burgers rarefaction wave (bR)x,

(5.8), which says basically that it decays with rate (t+ T0)
−1 with essential

width (λ(u+) − λ(u−))(t + T0). With the above, we close the first energy

estimate under the assumption that v(x, t) is sufficiently small:

∫ ∞

−∞
v2(x, t)dx +

∫ t

0

∫ ∞

−∞
[|(bR)x|v2 + κ(vx)2](x, s)dxds

= O(1)[(T0)
−2 +

∫ ∞

−∞
v2(x, 0)dx = O(1)[|u+ − u−|(T0)

2 + ε2].

The smallness of v(x, t) is assured by the next level of energy estimate for

vx(x, t) and the smallness of |u+−u−|(T0)
−2 +ε2. Note that the smallness of
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|u+ − u−|(T0)
−2 is ensured either for weak rarefaction wave, |u+ − u−| ≪ 1,

or for the wave sufficiently expanded, T0 ≫ 1. This finishes the energy

estimate and the time-asymptotic stability of the rarefaction wave. �

We next study the quantitative behavior of the perturbation of the rar-

efaction wave using the Green’s function approach. Consider the initial

perturbation of algebraic type:



































ut + f(u)x = κuxx, f
′′(u) > 0, λ(u) ≡ f ′(u),

λ(u(x, t)) = bR(x, t+ T0) + v(x, t),

v(x, 0) = ε(|x| + 1)−α, 1 < α < 2,

vt + [bRv + 1
2v

2]x = κvxx − κ f ′′′(u)
f ′′(u)2

[vx + (bR)x]2.

(10.4)

Note that, except for the case of Burgers equation f(u) = u2/2, bR(x, t) is

not an exact solution of the convex conservation law and so the perturbation

will be non-zero for t > 0. In the following theorem, it is interesting to see the

difference and similarity between the viscous and the inviscid cases, Theorem

3.2.

Theorem 10.2. There exists a global solution to (10.4), and for sufficiently

small |u+ − u−|(T0)
2 + ε2,

|f ′(u(x, t)) − bR(x, t)|

= O(1)



































































e−
(x+λ0t)2

Dt√
T0+t

+ ε(|x+ λ0(t+ 1)| +
√
t+ 1)−α,

for x < −λ0t+
√
t,

1

|x+ λ0t+ T0|
+

1

|x− λ0t| + T0

for x ∈ (−λ0t+
√
t, λ0t−

√
t),

e−
(x−λ0t)2

5t

√
1 + t

+ ε(|x− λ0(t+ 1)| +
√
t+ 1)−α

for x > λ0t−
√
t.

(10.5)

In particular

‖f ′(u(x, t)) − bR(x, t)‖Lp(x) = O(1)(t+ 1)
− p−1

2p , p ≥ 1.
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Proof. We have, by integrating the equation (10.2) times gR, the Duhamel’s

principle, (6.11), The result,

v(x, t) =

∫ ∞

−∞
v(y, 0)gB(y, 0;x, t)dy

+

∫ t

0

∫ ∞

−∞

[

(gR)y
1

2
v2 − κ

f ′′′(u)
f ′′(u)2

[vy + (bR)y]
2gR

]

(y, s)dyds.(10.6)

There are two known terms in the above expression. The first known term

is the convolution in y of the Green’s function with the initial perturbation

v(y, 0). The first yields the ansatz as stated in the theorem. The far field is

the same as for the diffusion waves in Theorem 7.2, because the influence of

the rarefaction wave is weak there. Around the rarefaction wave region, it is

similar to the difference of the viscous rarefaction wave and the inviscid diffu-

sion wave in (5.15), as both are under both the dissipation and the nonlinear

hyperbolictiy. The second known term is the convolution, both in space and

time (y, s), with the known source O(1)[(bR)y]
2 = O(1)[(bR)y(y, s + T0)]

2.

The computations and estimates of these convolutions are done using the es-

timates of the Green’s function in Section 6. This yields the same ansatz as

the first known term but without the terms involving ε. After these computa-

tions, we plug the ansatz into the double integral in the above expression and

show that the ansatz can be closed, a standard procedure, as in the study

of the stability of nonlinear diffusion waves. For the details, see Section 4 of

[22]. �

11. Initial-Boundary Value Problem

In this section we study the boundary effect on the propagation of the

nonlinear waves. We first study the stability of shock wave propagating

away from the boundary using the Green’s function approach. We do this

for the Burgers equation, as the Green’s function is explicitly known, (6.9).

The analysis applies to general convex conservation law using the explicit

construction of accurate approximate Green’s function, (9.20). There are

two cases for the shock waves. The situation is simpler when the viscous

shock is propagating toward the boundary and becomes the boundary layer,

c.f. Figure 5 in Section 2. We consider the case when the viscous shock is

propagating away from the boundary, c.f. Figure 4 in Section 2. Instead

of taking the shock with positive speed, we take the boundary to move
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toward the left and the shock to be stationary. Thus we consider the initial-

boundary value problem:



















ut + uux = uxx, −L− t < x <∞,

u(x, 0) = φ(x) + ū0(x), x > 0,

u(−L− t, t) = u−, u(+∞, t) = u+ = −u−,

(11.1)

where L>0 is a large constant, φ(x)=−u− tanh (u−x)
2 is a stationary Burgers

shock wave, and the initial perturbation ū0(x) satisfies the assumptions:



















ū0(−L) = u− − φ(−L),

ū0(x) = O(1)e−L(1 + x+ L)−α, α > 1,

ū0x(x) = O(1)e−L(1 + x+ L)−α−1.

(11.2)

The solution u(x, t) for (11.1) is expected to tend to the Burgers shock wave

φ(x−x0) with a shift x0 to be determined. Unlike the initial value problem,

(8.5), there is no a priori explicit expression of the shift in terms of the initial

data ū0(x) and the boundary data u−:

x0 ≡
limt→∞

∫∞
−L−t(u(x, t) − φ(x)) dx

u− − u+

=

∫ ∞

−L
ū0(x)dx+ lim

t→∞

∫ t

0
(u−−φ(−L−σ)−ux(−L−σ, σ))dσ

u− − u+
. (11.3)

So the shift depends also on the boundary flux ux(−L− t, t) as well as the

initial perturbation.

To obtain the boundary estimates, we first consider the linearization of

u(x, t) around φ(x). Without loss of generality, we assume u− = 1, and set

v(x, t) = u(x, t)−φ(x)−Ψ(x, t), Ψ(x, t) ≡ (1−φ(−L− t))(x+L+ t+1)−α.
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Then the small perturbation v(x, t) satisfies















































vt + (φv)x − vxx = −
(

v2

2 + Ψv
)

x
− Ψt −

(

φΨ + Ψ2

2

)

x
+ Ψxx,

−L− t < x <∞, t > 0,

v(−L− t, t) = 0, v(∞, t) = 0,

v(x, 0) = O(1)e−L(1 + x+ L)−α, v(−L, 0) = 0,

vx(x, 0) = O(1)e−L(1 + x+ L)−α−1.

(11.4)

In the following, we are interested in the time-asymptotic propagation of the

shock wave and so we take the initial shock location L to be large.

Theorem 11.1. (Boundary Estimates) Suppose that L is sufficiently large.

Then the solution v(x, t) for (11.4) satisfies

v(x, t) = O(1)e−
L
2r















e−
|x|
2 |x+ L+ t| for x∈ [−L−t,−L−t+1],

e−
|x|
2 for x ∈ [−L− t, 0),

e−
|x|
2 +(1+x+L+t)−α for x ≥ 0,

(11.5)

and

vx(−L− t, t) = O(1)e−
L
2r e

−L−t
2 , r & 1.

From Theorem 11.1, we can obtain the boundary estimate for u

ux(−L− t, t) = vx(−L− t, t) + φ
′
(−L− t) + Φx(−L− t, t) (11.6)

= O(1)e−
L
2r e

−L−t
2 .

Then the time-asymptotical shift x0 of the Burgers shock can be determined

by (11.3)

x0 = O(1)e
−2
3

L.

With the correction of the Burgers shock location, the convergent rates of

u(x, t) to φ(x− x0) can be obtained. Let

v̄(x, t) ≡ u(x, t) − φ(x− x0),

w(x, t) ≡ −
∫ ∞

x
v̄(y, t)dy, (wx = v̄ ).
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Theorem 11.2. Suppose that L is sufficiently large. Then w(x, t) satisfies

|w(x, t)| ≤C0







e
−|x|

4 e
−t
8 e

−L
4 +e

−|x|
2 (x+t+L+1)−α+1e

−L
4 , −L−t≤x≤0,

(x+ t+ L+ 1)−α+1e
−L
4 , x > 0,

(11.7)

|wx(x, t)| ≤C0







e
−|x|

4 e
−t
8 e

−L
4 +e

−|x|
2 (x+t+L+1)−α+1e

−L
4 , −L−t≤x≤0,

(x+t+L+1)−αe
−L
4 +e

−|x|
3 (x+t+L+1)−α+1e

−L
4 , x>0,

(11.8)

where C0 > 0 is a constant.

There are two mechanisms which govern the solution behavior for this

initial- boundary problem: the compressibility of the shock and the presence

of the boundary. To prove Theorem 11.1, we will introduce an iteration

scheme which can separate these two effects. We divide the x − t domain

into two regions:

I =
{

(x, t) : −L− t < x <
−L− t

2
, t > 0

}

,

II =
{

(x, t) :
−L− t

2
≤ x <∞, t > 0

}

.

In region I, we use the Green’s function KB(x, t; y, s) for

{

wt + wx = wxx,

w(−L− t, t) = 0, w(∞, t) = 0,
(11.9)

and focus on the boundary effect, ignoring the nonlinearity of the shock.

The Green’s function KB(x, t; y, s) satisfies the forward equation















KB
s −KB

y +KB
yy = 0,

KB(x, t;−L− s, s) = 0, KB(x, t;∞, s) = 0,

KB(x, t; y, t) = δ(x− y).

(11.10)

By odd reflection, KB can be expressed in terms of heat kernel H(x, t;κ =

1),(4.2),

KB(x, t; y, s) = H(x−y−(t−s), t−s; 1)−H(x+y−t+3s+2L, t−s; 1)e−2(y+L+s).

(11.11)
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Multiply KB with the equation of v in (11.4) and integrate to yield the

solution representation in region I

v(x, t) =

∫ ∞

−L
KB(x, t; y, 0)v(y, 0)dy

+

∫ t

0

∫ ∞

−L−σ
KB

y (x, t; y, σ)

[

(φ(y) − 1 + Ψ(y, σ))v(y, σ) +
v(y, σ)2

2

]

dydσ

+

∫ t

0

∫ ∞

−L−σ
KB(x, t; y, σ)

{

−Ψσ−
(

φΨ+
Ψ2

2

)

y

+Ψyy

}

(y, σ)dydσ. (11.12)

In region II, we will focus on the nonlinearity of the Burgers shock. Let

gS(x, t; y, s) be the Green’s function for

zt + (φ(x)z)x − zxx = 0, −∞ < x <∞, (11.13)

and let GS(x, t; y, s) be the Green’s function for the anti-derivative variable

z̃

z̃t + φ(x)z̃x − z̃xx = 0, −∞ < x <∞. (11.14)

From section 6, we have

GS(x, t; y, s) =
cosh(y

2 )

cosh(x
2 )
H(x− y, t− s; 1)e−

t−s
4 (11.15)

and

gS(x, t; y, s) =

∫ ∞

y
(GS)x(x, t; ξ, s)dξ

= GS(x, t; y, s) −
∫∞
y sinh(x−ξ

2 )H(x− ξ, t− s; 1)e−
t−s
4 dξ

2 cosh2 x
2

.(11.16)

Multiply gS with the equation of v in (11.4) and integrate to yield the solu-

tion representation in region II

v(x, t) =

∫ ∞

−L
gS(x, t; y, 0)v(y, 0)dy−

∫ t

0
gS(x, t;−L−σ, σ)vy(−L−σ, σ)dσ

+

∫ t

0

∫ ∞

−L−σ
(gS)y(x, t; y, σ)

(

Ψ(y, σ)v(y, σ) +
v(y, σ)2

2

)

dydσ
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+

∫ t

0

∫ ∞

−L−σ
gS(x, t; y, σ)

{

−Ψσ−
(

φΨ+
Ψ2

2

)

y

+Ψyy

}

(y, σ)dydσ. (11.17)

By (11.12) and (11.17), we introduce the following iteration scheme to

construct a sequence of function {vn}∞n=0 to get the boundary estimate:

for x ∈ [−L− t,−(L+ t)/2),

v0(x, t) =

∫ ∞

−L
KB(x, t; y, 0)v(y, 0)dy

+

∫ t

0

∫ ∞

−L−σ
KB(x, t; y, σ)

{

−Ψσ −
(

φΨ +
Ψ2

2

)

y

+ Ψyy

}

(y, σ)dydσ, (11.18)

for x ≥ −(L+ t)/2,

v0(x, t) =

∫ ∞

−L
gS(x, t; y, 0)v(y, 0)dy

−
∫ t

0
gS(x, t;−L− σ, σ)v0

y(−L− σ, σ)dσ

+

∫ t

0

∫ ∞

−L−σ
gS(x, t; y, σ)

{

−Ψσ −
(

φΨ +
Ψ2

2

)

y

+ Ψyy

}

(y, σ)dydσ; (11.19)

for x ∈ [−L− t,−(L+ t)/2), n ≥ 1,

vn(x, t) =

∫ ∞

−L
KB(x, t; y, 0)v(y, 0)dy

+

∫ t

0

∫ ∞

−L−σ
KB

y (x, t; y, σ)

[

(φ(y)−1+Ψ(y, σ))vn−1(y, σ)+
vn−1(y, σ)2

2

]

dydσ

+

∫ t

0

∫ ∞

−L−σ
KB(x, t; y, σ)

{

−Ψσ−
(

φΨ+
Ψ2

2

)

y

+Ψyy

}

(y, σ)dydσ; (11.20)

for x ≥ −(L+ t)/2, n ≥ 1,

vn(x, t) =

∫ ∞

−L
gS(x, t; y, 0)v(y, 0)dy−

∫ t

0
gS(x, t;−L−σ, σ)vn

y (−L−σ, σ)dσ

+

∫ t

0

∫ ∞

−L−σ
(gS)y(x, t; y, σ)

(

Ψ(y, σ)vn−1(y, σ) +
vn−1(y, σ)2

2

)

dydσ

+

∫ t

0

∫ ∞

−L−σ
gS(x, t; y, σ)

{

−Ψσ −
(

φΨ +
Ψ2

2

)

y

+ Ψyy

}

(y, σ)dydσ.(11.21)
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Lemma 11.3 There exist constants C0 > 0 and r > 1 such that

v0(x, t) ≤ C0















e−
L
2r e−

|x|
2 |x+ L+ t| for x ∈ [−L− t,−L− t+ 1],

e−
L
2r e−

|x|
2 for x ∈ [−L− t, 0),

e−
L
2r e−

|x|
2 + e−

L
2 (1 + x+ L+ t)−α for x ≥ 0,

(11.22)

v0
x(−L− t, t) ≤ C0e

− L
2r e−

L+t
2 .

Proof. Let X = x + L + t and Y = y + L + σ. From (11.11), KB can be

rewritten as

KB(x, t; y, σ) = (H(Y −X, t− σ; 1) −H(Y +X, t− σ; 1) ) e(X−Y )−(t−σ)

= −X
∫ 1

−1
∂YH(Y − θX, t− σ; 1)dθ e(X−Y )−(t−σ). (11.23)

Then for x ∈ [−L− t,−L− t+ 1],

∣

∣

∣

∣

∫ ∞

−L
KB(x, t; y, 0)v(y, 0)dy

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ∞

0

∫ 1

−1
(−X)∂Y H(Y − θX, t; 1)dθe(X−Y )−tv(Y, 0)dY

∣

∣

∣

∣

=

∣

∣

∣

∣

(−X)

∫ 1

−1

∫ ∞

0
∂YH(Y − θX, t; 1)e(X−Y )−tv(Y, 0)dY dθ

∣

∣

∣

∣

=

∣

∣

∣

∣

X

∫ 1

−1

∫ ∞

0
H(Y − θX, t; 1)e(X−Y )−t(−v(Y, 0) + vY (Y, 0))dY dθ

∣

∣

∣

∣

≤ CXe−Le−t; (11.24)

and by | − Ψσ −
(

φΨ + Ψ2

2

)

y
+ Ψyy| = O(1)e−L−σ(Y + 1)−σ, we can obtain

∣

∣

∣

∣

∣

∫ t

0

∫ ∞

−L−σ
KB(x, t; y, σ)

{

−Ψσ −
(

φΨ +
Ψ2

2

)

y

+ Ψyy

}

(y, σ)dydσ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

0

∫ ∞

0
(−X)

∫ 1

−1
∂YH(Y − θX, t− σ; 1) dθ

×e(X−Y )−(t−σ)[Ψσ − (φΨ +
Ψ2

2
)Y + ΨY Y ]dY dσ

∣

∣

∣

∣

= O(1)X

∫ t

0

∫ 1

−1

∫ ∞

0

∫ 1

−1

1√
t− σ

H(
Y − θX

D
, t− σ; 1)dθe(X−Y )−(t−σ)
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×e−L−σ(Y + 1)−αdY dθdσ

= O(1)Xe−s(L+t), s & 1. (11.25)

From (11.24) and (11.25), we have

{

v0(−L− t, t) = 0,

v0
x(−L− t, t) = O(1)e−s(L+t).

(11.26)

For −L− t < x < −L−t
2 , we have, by straightforward computation,

|v0(x, t)| ≤ O(1)

[
∫ ∞

−L
H(x− y − t, t; 1)e−L(1 + y + L)−αdy

+

∫ t

0

∫ ∞

−L−σ
H(x−y−t−σ, t− σ; 1)e−L−σ(1+y+L+σ)−αdydσ

]

≤ O(1)e
−L
2 e

−|x|
2 e

−t
4 .

For x ≥ −L−t
2 , by (11.15) and (11.26), we have

∣

∣

∣

∣

∫ t

0
gS(x, t;−L− σ, σ)v0

y(−L− σ, σ)dσ

∣

∣

∣

∣

≤ O(1)

∫ t

0

[

e
−|x|

2 e
L+σ

2 H(x+ L+ σ, t− σ; 1)e
−(t−σ)

4 + e−|x|
]

· e−L
2r e

−(L+σ)
2 dσ

= O(1)e
−|x|

2 e
−L
2r (11.27)

∣

∣

∣

∣

∣

∫ t

0

∫ ∞

−L−σ
gS(x, t; y, σ)

{

−Ψσ −
(

φΨ +
Ψ2

2

)

y

+ Ψyy

}

(y, σ)dydσ

∣

∣

∣

∣

∣

≤ O(1)
[

∫ t

0

∫ ∞

−L−σ
GS · e−L−σ(1 + y + L+ σ)−αdydσ

+

∫ t

0

∫ ∞

−L−σ
e−|x| · e−L−σ(1 + y + L+ σ)−αdydσ

]

≡ E1(x, t) +E2(x, t). (11.28)

It is easy to get

|E2(x, t)| = O(1)e−|x|e−L. (11.29)
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By (6.9), we have for −L−t
2 ≤ x ≤ 0,

|E1(x, t)|

=O(1)
(

∫ t

0

∫ 0

−L−σ
H(x− y − (t− σ), t− σ; 1)e−L−σ(1+y+L+σ)−αdydσ

+

∫ t

0

∫ ∞

0
e−|x|H(x−y+(t−σ), t−σ; 1)e−L−σ(1+y+L+σ)−αdydσ

)

=O(1)(e
−|x|

2 e
−t
4 e

−L
2 + e−|x|e−L), (11.30)

and for x > 0,

|E1(x, t)|

=O(1)
(

∫ t

0

∫ 0

−L−σ
e−|x|H(x−y−(t−σ), t− σ; 1)e−L−σ(1+y+L+σ)−αdydσ

+

∫ t

0

∫ ∞

0
H(x−y + (t−σ), t−σ; 1)e−L−σ(1+y+L+σ)−αdydσ

)

=O(1)
{

e−|x|e−L+

∫ t

0

(

∫ x+t−σ
2

0
+

∫ ∞

x+t−σ
2

)

H(x− y+(t−σ), t−σ; 1)

×e−L−σ(1+y+L+σ)−αdydσ
}

=O(1)
(

e−|x|e−L+

∫ t

0

∫ x+t−σ
2

0

1
√

4π(t−σ)
e

−(x+t−σ)2

16(t−σ) e−L−σ(1+y+L+σ)−αdydσ

+

∫ t

0

∫ ∞

x+t−σ
2

H(x−y + (t−σ), t−σ; 1)e−L−σ(1+
x+t− σ

2
+L+σ)−αdydσ

)

=O(1)(e
−|x|

8 e
−t
16s e−L + (1+x+t+L)−αe−L), s & 1. (11.31)

(11.27), (11.29), (11.30) and (11.31) imply that v0(x, t) satisfies the estimate

(11.22) for x ≥ −L−t
2 . �

Proof for Theorem 11.1

The function vn can be written as

vn = v0 + (v1 − v0) + (v2 − v1) + (v3 − v2) + · · · + (vn − vn−1). (11.32)
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Let
{

δ0(x, t) ≡ v0(x, t),

δn(x, t) ≡ vn(x, t) − vn−1(x, t), n ≥ 1.
(11.33)

We claim by induction that for n ≥ 1























‖|δn‖| ≤ C‖|δn−1‖|e− L
2r ,

|δn(x, t)|≤C|x+L+t|‖|δn−1‖|e− L
2r e−

|x|
2 , for x ∈ [−L−t,−L−t+1),

|δn
x (−L− t, t)| ≤ C‖|δn−1‖|e− L

2r e−
L+t
2 ,

(11.34)

under the weighted super norm

‖|h‖| ≡ sup
t≥0

−L−t≤x<0

|h(x, t)|
e−

|x|
2

+ sup
t≥0
x≥0

|h(x, t)|
e−

|x|
2 + (1 + x+ L+ t)−α

. (11.35)

Similar to (11.23), we can rewrite KB
y as

KB
y =KB

Y = −KB+(HY (Y −X, t−σ; 1)−HY (Y +X, t−σ; 1))e(X−Y )−(t−σ)

= −X
∫ 1

−1
(−∂YH + ∂Y YH)(Y − θX, t− σ; 1)dθ e(X−Y )−(t−σ). (11.36)

whereX = x+L+t and Y = y+L+σ. For n = 1 and x ∈ [−L−t,−L−t+1),

δ1(x, t) =

∫ t

0

∫ ∞

−L−σ
KB

y (x, t; y, σ)

[

(φ− 1 + Ψ)v0 +
(v0)2

2

]

(y, σ)dydσ

=

(
∫ t−1

0
+

∫ t

t−1

)
∫ ∞

−L−σ
· · · dydσ

≡ J1 + J2. (11.37)

By (11.36), Lemma 11.3 and

Ψ(x) ≤ (1 − φ(x)) ≤
{

ex, −L− t ≤ x ≤ 0,

2, x > 0,

we can get
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|J1(x, t)|

≤ O(1)

∫ t−1

0

∫ ∞

−L−σ
|x+ L+ t|

∫ 1

−1

e
−(y+L+σ−θ(x+L+t))2

4d(t−σ)

√
t− σ

ex−ydθ

×
∣

∣

∣

[

(φ− 1 + Ψ)v0 +
(v0)2

2

]

(y, σ)
∣

∣

∣dydσ

= O(1)|x+ L+ t|
∫ t−1

0

∫ 1

−1
(

∫ 0

−L−σ
+

∫ ∞

0
) · · · dydσ

= O(1)|x+ L+ t|‖|v0‖|







∫ t−1

0

∫ 1

−1

∫ 0

−L−σ

e
−(y+L+σ−θ(x+L+t))2

4d(t−σ)

√
t− σ

ex−y

×(e−|y|e
−|y|

2 + e−|y|e
−L
2r )dydθdσ

+

∫ t−1

0

∫ 1

−1

∫ ∞

0

e
−(y+L+σ−θ(x+L+t))2

4d(t−σ)

√
t− σ

ex−y(e
−|y|

2 +(1+y+L+σ)−α)dydθdσ







≤ O(1)|x+ L+ t|‖|v0‖|e
−|x|

2 e−
L
2r . (11.38)

J2(x, t) =

∫ t

t−1

∫ ∞

−L−σ
KB

y (x, t; y, σ)

[

(φ− 1 + Ψ)v0 +
(v0)2

2

]

(y, σ)dydσ

=

∫ t

t−1
(

∫ −L−σ+4

−L−σ
+

∫ 0

−L−σ+4
+

∫ ∞

0
) · · · dydσ

≡ J21 + J22 + J23.

J21(x, t) =

∫ t

t−1

∫ 4

0
KB

Y

[

(φ− 1 + Ψ)v0 +
(v0)2

2

]

(Y − L− σ, σ)dY dσ

=

∫ t

t−1
(

∫ 2X

0
+

∫ 4

2X
) · · · dY dσ (0 ≤ X < 1)

≡ J211 + J212.

By lemma 11.3, (11.36) and

|φ(x) − 1 + Ψ(x, t)| = O(1)|x+ L+ t|e−|x| for − L− t ≤ x < 0, (11.39)

we have

|J211(x, t)| ≤ O(1)

∫ t

t−1

∫ 2X

0

(

H(Y −X, t−σ)+
H(Y −X

D , t− σ)√
t− σ

)

eX−Y −(t−σ)
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×‖|v0‖|(Y e 3
2
(Y −L−σ) + Y eY −L−σe

−L
2r )dY dσ

≤ O(1)|x+ L+ t|‖|v0‖|e−|x|e−
L
2r (11.40)

For 0 ≤ 2X ≤ Y ≤ 4 and 0 ≤ θ ≤ 1, we have (Y − θX) ≥ Y
2 . Then

|J212(x, t)|

=
∣

∣

∣

∫ t

t−1

∫ 4

2X
(−X)

∫ 1

−1
(−∂YH+∂Y YH)(Y −θX, t−σ; 1)dθe(X−Y )−(t−σ)

×
[

(φ− 1 + Ψ)v0 +
(v0)2

2

]

(Y − L− σ, σ)dY dσ
∣

∣

∣

≤O(1)X

∫ t

t−1

∫ 4

2X

∫ 1

−1
(

1√
t− σ

+
1

t−σ )H(Y −θX, t−σ; 1)e(X−Y )−(t−σ)dθ

·‖|v0‖|(Y e 3
2
(Y −L−σ) + Y eY −L−σe

−L
2r )dY dσ

≤O(1)X‖|v0‖|
∫ t

t−1

∫ 1

−1

∫ 4

2X

Y

t− σ
H(

Y

2
, t− σ; 1)dY dθdσe−te(

−1
2r

−1)L

=O(1)|x+ L+ t|‖|v0‖|e
−|x|

s e−
L
2r , s & 1. (11.41)

For 0 ≤ X ≤ 1 and Y ≥ 4, we have from (11.36)

|KB
y | ≤ O(1)XH(

Y − θX

D
, t− σ; 1)e(X−Y )−(t−σ). (11.42)

Then it is easy to get

|J22(x, t)|, |J23(x, t| ≤ O(1)|x + L+ t|‖|v0‖|e
−|x|

2 e−
L
2r . (11.43)

Thus, from (11.40), (11.41) and (11.43), we have

|J2(x, t)| ≤ O(1)|x + L+ t|‖|v0‖|e
−|x|

2 e−
L
2r . (11.44)

Combining (11.38) and (11.44), we have







|δ1(x, t)|≤O(1)|x+L+t|‖|v0‖|e
−|x|

2 e−
L
2r , −L−t≤x<−L−t+1,

|δ1x(x, t)|≤O(1)‖|v0‖|e
−|x|

2 e−
L
2r .

(11.45)

With (11.36) and the fact (gS)y = −(GS)x, we can obtain, by straightforward
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computation,

|δ1(x, t)| ≤ O(1)‖|v0‖|e
−|x|

2 e−
L
2r , −L− t ≤ x <

−L− t

2
,

|δ1(x, t)| ≤ O(1)‖|v0‖|e− L
2r







e−
|x|
2 for x ∈ [−(L+ t)/2, 0),

e−
|x|
2 + (1 + x+ L+ t)−α for x ≥ 0.

Thus (11.34) is true for n = 1. It can be proved that (11.34) also holds for

n = k + 1 by similar analysis with n = 1,and the details is omitted.

With the claim (11.34), we have that {‖|δn‖|} and {|δn+1
x (−L − t, t)|}

are geometric sequences when L is sufficiently large. Then

v(x, t) = lim
n→∞

vn(x, t), (11.46)

and by Lemma 11.3 and (11.34)

|v(x, t)| = |
∞
∑

n=0

δn(x, t)|

≤ |v0(x, t)| +Ce−
L
2r (‖|δ0‖| + ‖|δ1‖| + ‖|δ2‖| + · · · )

×















e−
|x|
2 |x+ L+ t| forx ∈ [−L− t,−L− t+ 1),

e−
|x|
2 forx ∈ [−L− t, 0),

e−
|x|
2 + (1 + x+ L+ t)−α, forx > 0,

≤ C̄e−
L
2r















e−
|x|
2 |x+ L+ t| forx ∈ [−L− t,−L− t+ 1),

e−
|x|
2 forx ∈ [−L− t, 0),

e−
|x|
2 + (1 + x+ L+ t)−α, forx > 0.

�

The proof of Theorem 11.2 is analogous to Theorem 11.1, the details

are omitted, [11].

The stability of the shock propagating away form the boundary can also

be done using the energy method, [18], [26], without the rate of convergence.

There is the interesting case of the propagating of shock waves with the same

speed as the boundary. In this case, the shock still propagates away from

the boundary due to the boundary effect. However, the speed is then of the

order of 1/t and the distance from the boundary is of the order of log t. The
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situation is more subtle and has been studied by the pointwise method for

the Burgers equation, [19].

For the stability of rarefaction waves, straightforward energy method

applies. We consider the interesting case of portion of the rarefaction wave

become a boundary layer and another portion propagating away from the

boundary, c.f. Figure 7 in Section 2. Assume that the flux function is convex

f
′′
(u) > 0 and f(0) = f

′
(0) = 0. For u− < 0 < u+ (f

′
(u−) < 0 < f

′
(u+)),

we consider the following initial boundary value problem



























ut + f(u)x = uxx, x > 0, t > 0,

u(0, t) = u−,

u(x, 0) = u0(x) =

{

u− at x = 0,

→ u+ at x→ ∞.

(11.47)

Thus we expect to have the time-asymptotic configuration of the rarefaction

boundary layer φ(x) connectingu− and u0 plus the rarefaction wave (0, u+)

propagating into the region x > 0. We construct the approximate rarefaction

wave (0, u+) with smooth initial values for the inviscid Burgers equation, see

Remark 2.4, (2.15),

{

ht + hhx = 0, x ∈ R, t > 0,

h(x, 0) = h0(x) = f
′
(u+) · κq

∫ x
0 (1 + y2)−qdy, q > 1

2 ,
(11.48)

where κq

∫∞
0 (1 + y2)−qdy = 1. Then ψ(x, t) := (f

′
)−1(h(x, t)) is a smooth

function and satisfies


























ψt + f(ψ)x = 0,

ψ(0, t) = 0,

ψ(x, 0) = ψ0(x) = (f
′
)−1(h0(x))

{

0 at x = 0,

→ u+ at x→ ∞.

(11.49)

Let φ(x) be a stationary solution which satisfies the ordinary differential

equation
{

f
′
(φ) = φxx,

φ(0) = u−, φ(∞) = 0.
(11.50)
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For the initial boundary value problem (11.47), we have the following sta-

bility result, [17].

Theorem 11.4. Suppose that u0 − φ(·) − ψ(·, 0) ∈ H1. Then there exists a

unique global solution u(x, t) of (11.47) such that

u− φ− uR ∈ C([0,∞),H1)

(u− φ− uR)x, (u− φ)xx ∈ L2(R+ ×R+)

and

sup
R+

|u(x, t) − φ(x, t) − uR(x, t)| → 0 as t→ ∞,

where uR is the centered rarefaction wave (0, u+), (2.16), and φ(x) is the

boundary rarefaction wave, (11.50).

Set

v(x, t) = u(x, t) − Φ(x, t) = u(x, t) − φ(x) − ψ(x, t).

Then v(x, t) satisfies the reformulated problem















vt + (f(Φ + v) − f(Φ))x − vxx = F,

v(0, t) = 0,

v(x, 0) = v0(x) := u0(x) − φ(x) − ψ(x, 0),

(11.51)

where

F = −(f
′
(φ+ ψ) − f

′
(φ))φx − (f

′
(φ+ ψ) − f

′
(ψ))ψx + ψxx (11.52)

Theorem 11.5. If v0 ∈ H1, then there exists a unique solution v(x, t) of

(11.51) which satisfies

v ∈ C([0,∞),H1), vx ∈ L2([0,∞),H1),

and

sup
R+

|v(x, t)| → 0 as t→ ∞.
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Lemma 11.6 The solution ψ(x, t) for (11.49) satisfies

(i) 0 ≤ ψ(x, t) < u+, ψx(x, t) > 0, (x, t) ∈ R+ × (0,∞).

(ii) For any 1 ≤ p ≤ ∞ there exists a constant Cp,q such that

‖ψx(t)‖Lp ≤ Cp,q min(u+, u
1/p
+ t

−1+ 1
p ),

‖ψxx(t)‖Lp ≤ Cp,q min(u+, u
− (p−1)

2pq

+ t
−1− (p−1)

2pq ).

(iii) limt→∞ |ψ(x, t) − uR(x, t)| = 0.

Theorem 11.5 and Lemma 11.6 imply Theorem 11.4. Theorem 11.5 is

proved by the local existence of the solution in the solution space

X(0, T ) = {v ∈ C([0, T ];H1), vx ∈ L2(0, T ;H1)

and

∂m
x v(x, t)|x=0 < +∞ for t ∈ (0, T ] and m ∈ Z+}.

and the following priori estimates

Proposition 11.7. Suppose that v ∈ X(0, T ) is a solution of (11.51). Then

there exists a positive constant C, independent of T , satisfying

‖v(t)‖2
1 +

∫ t

0
(‖
√

Φx(τ)v(τ)‖2 + ‖vx(τ)‖2
1)dτ ≤ C(‖v0‖2

1 + 1). (11.53)

Proof. Multiplying (11.51)1 by v and integrating the equation over R+, we

have by v(0, t) = 0

1

2

d

dt
‖v(t)‖2 +

∫ ∞

0
(f(Φ + v) − f(Φ)− f

′
(Φ)v)Φxdx+ ‖vx(t)‖2 =

∫ ∞

0
Fvdx.

(11.54)

Since Φx = ψx + ψx > 0 and f
′′
(Φ + v) ≥ c0 > 0, (11.54) gives

1

2

d

dt
‖v(t)‖2 + ‖

√

Φx(t)v(t)‖2 + ‖vx(t)‖2 ≤ C

∣

∣

∣

∣

∫ ∞

0
Fvdx

∣

∣

∣

∣

. (11.55)

We estimate the last term of (11.55) using (11.52). First,

∣

∣

∣
C −

∫ ∞

0
(f

′
(φ+ ψ) − f

′
(φ))φxvdx

∣

∣

∣
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≤ C

∫ ∞

0
ψφx|v|dx =

∫ f
′
(u+)t

0
+

∫ ∞

f
′
(u+)t

:= I1 + I2. (11.56)

By φ < 0, ψ > 0, Lemma 11.6 and the fact |φ(x)| ≤ C(1 + x)−1, we have

I1 ≤ C sup
R+

|v| · {[φψ]
f
′
(u+)t

0 +

∫ f
′
(u+)t

0
(−φ)ψxdx}

≤ C‖v(t)‖1/2‖v(t)x‖1/2(1 + t)−1

∫ f
′
(u+)t

0

dx

1 + x

≤ 1

8
‖vx(t)‖2 + C{(1 + t)−1 log(2 + t)}4/3(‖v(t)‖2 + 1), (11.57)

and

I2 ≤ C sup
R+

|v| · u+

∫ ∞

f ′ (u+)t
φx(x)dx ≤ C‖v(t)‖1/2‖v(t)x‖1/2(1 + t)−1

≤ 1

8
‖vx(t)‖2 + C(1 + t)−4/3(‖v(t)‖2 + 1). (11.58)

Secondly, in a similar fashion to (11.57) and (11.58),

∣

∣

∣
C −

∫ ∞

0
(f

′
(φ+ ψ) − f

′
(ψ))ψxvdx

∣

∣

∣

≤ 1

4
‖vx(t)‖2+C{(1+t)−4/3+((1+t)−1 log(2+t))4/3}(‖v(t)‖2+1). (11.59)

Thirdly,
∣

∣

∣

∣

∫ ∞

0
ψxxvdx

∣

∣

∣

∣

≤ ‖ψxx‖‖v(t)‖. (11.60)

Substituting (11.57)- (11.60) into (11.55), we have

d

dt
‖v(t)‖2 + ‖

√

Φx(t)v(t)‖2 +
1

2
‖vx(t)‖2

≤C{(1+t)−4/3+((1+t)−1 log(2+t))4/3+(1+t)−1− 1
4q }(‖v(t)‖2+1). (11.61)

Then integrating (11.61) over (0, t) and using Gronwall inequality, we have

‖v(t)‖2 +

∫ t

0
(‖
√

Φx(τ)v(τ)‖2 + ‖vx(τ)‖2)dτ ≤ C(‖v0‖2
1 + 1). (11.62)

The estimates of higher order derivatives can be obtained by the similar

fashion to the above and the details is omitted. �
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