
Bulletin of the Institute of Mathematics
Academia Sinica (New Series)
Vol. 5 (2010), No. 2, pp. 215-224

SOME NOTES ON A CERTAIN CLASS

OF ANALYTIC FUNCTIONS ASSOCIATED

WITH THE DZIOK-SRIVASTAVA OPERATOR

BY

JIN-LIN LIU

Abstract

The main object of the present paper is to investigate

several further interesting properties of the class Vp,q,s(α1; A, B)

which was recently introduced and studied by Dziok and Srivas-

tava [Appl.Math.Comput.103(1999)1-13].

1. Introduction and Definitions

For p ∈ N := {1, 2, 3, . . .}, we denote by A(p) the class of functions of

the form

f(z) = zp +

∞
∑

n=p+1

anzn, (1.1)

which are analytic in the open unit disk U := {z : z ∈ C and |z| < 1}.

Let f(z) and g(z) be analytic in U . We say that the function g(z) is

subordinate to f(z) if there exists an analytic function w : U → U with

w(0) = 0 such that g(z) = f(w(z)) for z ∈ U . This relation is denoted by

g(z) ≺ f(z). In case f(z) is univalent in U we have that the subordination

g(z) ≺ f(z) is equivalent to g(0) = f(0) and g(U) ⊂ f(U).
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For analytic functions

f(z) =

∞
∑

n=0

anzn and g(z) =

∞
∑

n=0

bnzn,

by f ∗g we denote the Hadamard product (or convolution) of f and g, defined

by

(f ∗ g)(z) :=
∞

∑

n=0

anbnzn. (1.2)

Making use of the Hadamard product (or convolution) given by (1.2),

we now define the Dziok-Srivastava operator:

Hp(α1, . . . , αq;β1, . . . , βs) : A(p) → A(p),

which was introduced and studied in a series of recent papers by Dziok and

Srivastava ([2, 3, 4]; see also [5, 9, 10, 11]).

We recall that for q, s ∈ N0 = N∪ 0 with q ≤ s + 1 and complex param-

eters α1, . . . , αq and β1, . . . , βs with βj 6= 0,−1,−2, . . . for j = 1, . . . , s, the

generalized hypergeometric function qFs(α1, . . . , αq;β1, . . . , βs; z) is defined

by

qFs(α1, . . . , αq;β1, . . . , βs; z) =
∞
∑

n=0

(α1)n · · · (αq)n
(β1)n · · · (βs)n

·
zn

n!

where (λ)n is the Pochhammer symbol defined, in terms of the Gamma

function, by

(λ)n =
Γ(λ + n)

Γ(λ)
=

{

1 , n = 0

λ(λ + 1) · · · (λ + n − 1) , n ∈ N.

Corresponding to a function hp(α1, . . . , αq;β1, . . . , βs; z) defined by

hp(α1, . . . , αq;β1, . . . , βs; z) = zp
qFs(α1, . . . , αq;β1, . . . , βs; z),

Dziok and Srivastava [2] considered a linear operator defined on A(p) by the

following Hadamard product

Hp(α1, . . . , αq;β1, . . . , βs)f(z) = hp(α1, . . . , αq;β1, . . . , βs; z) ∗ f(z), z ∈ U.
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For convenience, we write

Hp,q,s(α1) = Hp(α1, . . . , αq;β1, . . . , βs).

Thus, after some calculations, we have

z(Hp,q,s(α1)f(z))′ = α1Hp,q,s(α1 + 1)f(z) − (α1 − p)Hp,q,s(α1)f(z). (1.3)

We observe that, for a function f of the form (1.1), we have

Hp,q,s(α1)f(z) = zp +

∞
∑

n=p+1

Γn(α1)anzn, (1.4)

where

Γn(α1) :=
(α1)n−p · · · (αq)n−p

(β1)n−p · · · (βs)n−p(n − p)!
. (1.5)

The Dziok-Srivastava operator Hp,q,s(α1) includes various other linear

operators which were considered in earlier works. In particular, for p = s = 1

and q = 2 , we obtain the liner operator

F (α1, α2, β1)f(z) = H1(α1, α2;β1)f(z),

which was defined by Hohlov [7]. Setting moreover α2 = 1,we obtain the

Carlson-Shaffer operator

L (α1, β1)f(z) = H1(α1, 1;β1)f(z),

which was introduced by Carlson and Shaffer [1].

Many interesting subclasses of analytic functions, associated with the

Dziok-Srivastava operator Hp,q,s(α1) and its many special cases, were inves-

tigated recently by (for example) Dziok and Srivastava [2, 3, 4], Gangad-

haran et al. [5], Liu [9], Liu and Srivastava [10, 11] and others (see also

[8, 13, 15, 16, 17]).

Let p, q, s ∈ N and suppose that the parameters α1, . . . , αq and β1, . . . , βs

are positive real numbers. Also let

0 < B < 1 and − B ≤ A < B.
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We denote by Vp,q,s(α1;A,B) the class of functions f ∈ A(p) of the form

f(z) = zp −

∞
∑

n=p+1

anzn , z ∈ U, (1.6)

where an ≥ 0, n ∈ N,which also satisfy the following condition

α1

Hp,q,s(α1 + 1)f(z)

Hp,q,s(α1)f(z)
+ p − α1 ≺ p

1 + Az

1 + Bz
. (1.7)

The class Vp,q,s(α1;A,B) was first introduced and studied by Dziok and Sri-

vastava [2]. Many interesting properties such as coefficients estimates, dis-

tortion theorems, extreme points, and the radii of convexity and starlikeness

for the class Vp,q,s(α1;A,B) were given by Dziok and Srivastava [2]. In the

present sequel to these earlier works, we shall derive some interesting char-

acteristics of the δ -neighborhood associated with the class Vp,q,s(α1;A,B).

2. Main results

We begin by recalling each of the following lemmas which will be required

in our present investigation.

Lemma 1. (Dziok and Srivastava [2]). A function f of the form (1.6)

belongs to Vp,q,s(α1;A,B) if and only if

∞
∑

n=p+1

((B + 1)n − (A + 1)p)Γn(α1)an ≤ p(B − A), (2.1)

where Γn(α1) is defined by Eq.(1.5).

Making use of the same method by Liu and Srivastava [10, 12], we

immediately have:

Lemma 2. Let λ > −p. If f ∈ Vp,q,s(α1;A,B), then the function F (z)

defined by

F (z) =
λ + p

zλ

∫ z

0

tλ−1f(t)dt (2.2)

also belongs to Vp,q,s(α1;A,B).
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Following the earlier works (see [6, 14]; see also [10, 12]), we now define

the δ-neighborhood of a function f ∈ A(p) for δ ≥ 0, 0 < B < 1 and

−B ≤ A < B by

Nδ,A,B(f) =







g ∈ A(p) : g(z) = zp −

∞
∑

n=p+1

bnzn (bn ≥ 0) and

∞
∑

n=p+1

((B + 1)n − (A + 1)p)Γn(α1)

p(B − A)
|bn − an| ≤ δ







. (2.3)

Theorem 1. If f ∈ Vp,q,s(α1 + 1;A,B),then

Nδ,A,B(f) ⊂ Vp,q,s(α1;A,B), (2.4)

where δ := 1

α1+1
.The result is sharp in the sense that the number δ cannot

be increased.

Proof. It is easily seen from (1.7) that a function g ∈ A(p) belongs to

the class Vp,q,s(α1;A,B) if and only of for z ∈ U we have:

α1(Hp,q,s(α1 + 1)g(z) − Hp,q,s(α1)g(z))

p(A − B)Hp,q,s(α1)g(z) − Bα1(Hp,q,s(α1 + 1)g(z) − Hp,q,s(α1)g(z))
6= σ

(2.5)

for any σ ∈ C with |σ| = 1,which is equivalent to:

(g ∗ h)(z)

zp
6= 0 , z ∈ U, (2.6)

where we denoted by h : U → C the function defined by

h(z) = zp +
∞
∑

n=p+1

cnzn

= zp +

∞
∑

n=p+1

(n − p)(1 + Bσ) + pσ(B − A)

pσ(A − B)
Γn(α1)z

n. (2.7)
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We easily find from (2.7) that

|cn| =

∣

∣

∣

∣

(n − p)(1 + Bσ) + pσ(B − A)

pσ(A − B)
Γn(α1)

∣

∣

∣

∣

≤
n(1 + B) − p(1 + A)

p(B − A))
Γn(α1)

for any n > p. If f ∈ Vp,q,s(α1 + 1;A,B) is given by (1.6), we obtain that

∣

∣

∣

∣

(f ∗ h)(z)

zp

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 −

∞
∑

n=p+1

ancnzn−p

∣

∣

∣

∣

∣

∣

≥ 1 −

∞
∑

n=p+1

n(1 + B) − p(1 + A)

p(B − A)
Γn(α1)an|z|

n−p

> 1 −
α1

α1 + 1

∞
∑

n=p+1

n(1 + B) − p(1 + A)

p(B − A)
Γn(α1 + 1)an

≥ 1 −
α1

α1 + 1
=

1

α1 + 1
:= δ

by appealing to Lemma 1.

Now, if we let

ϕ(z) = zp +

∞
∑

n=p+1

bnzn ∈ Nδ(f),

where δ = 1

α1+1
, then

∣

∣

∣

∣

(f(z) − ϕ(z)) ∗ h(z)

zp

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∞
∑

n=p+1

(an − bn)cnzn−p

∣

∣

∣

∣

∣

∣

≤

∞
∑

n=p+1

n(1 + B) − p(1 + A)

p(B − A)
Γn(α1)|an − bn| · |z|

n−p

< δ

for any z ∈ U . Thus, for any complex number σ with |σ| = 1, we have

(ϕ ∗ h)(z)

zp
6= 0 , z ∈ U,
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which implies that ϕ ∈ Vq,s(α1;A,B).

In order to see the sharpness of the assertion of the theorem, we consider

the functions f, g : U → C defined by

f(z) = zp −
p(B − A)

((B + 1)(p + 1) − (A + 1)p)Γp+1(α1 + 1)
zp+1

and

g(z) = zp − (
p(B − A)

((B + 1)(p + 1) − (A + 1)p)Γp+1(α1 + 1)

+
p(B − A)δ′

((B + 1)(p + 1) − (A + 1)p)Γp+1(α1)
)zp+1,

where δ′ > δ = 1

α1+1
are arbitrarily fixed . It is easy to see that we have

f ∈ Vp,q,s(α1 +1;A,B) and g ∈ Nδ′,A,B(f). Thus, by observing from Lemma

1 that the function g is not in the class Vp,q,s(α1;A,B), it follows that the

constant δ in the statement of the theorem cannot be increased, completing

the proof of the theorem. �

Theorem 2. If the function f(z) is in the class Vp,q,s(α1;A,B) , then

for any λ > −p the function F (z) defined by (2.2) belongs to N1(f). The

result is sharp in the sense that the constant 1 can not be decreased.

Proof. Suppose that the function f(z) is in the class Vp,q,s(α1;A,B).

Then it follows from (2.2) and Lemma 2 that

F (z) := zp −

∞
∑

n=p+1

bnzn

= zp −

∞
∑

n=p+1

λ + p

λ + n
anzn ∈ Vp,q,s(α1;A,B). (2.8)

Since by hypothesis f ∈ Vp,q,s(α1;A,B), we have

∞
∑

n=p+1

((B + 1)n − (A + 1)p)Γn(α1)

p(B − A)
|bn − an|

=

∞
∑

n=p+1

((B + 1)n − (A + 1)p)Γn(α1)

p(B − A)
·
n − p

λ + n
an
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≤

∞
∑

n=p+1

((B + 1)n − (A + 1)p)Γn(α1)

p(B − A)
an

≤ 1,

which shows that F (z) ∈ N1(f).

In order to see the sharpness for an arbitrarily fixed n ≥ p + 1, we

consider the function f : U → C defined by

f(z) = zp −
p(B − A)

((B + 1)n − (A + 1)p)Γn(α1)
zn, z ∈ U.

It is easy to see that f ∈ Vp,q,s(α1;A,B), and from (2.2) we have

F (z) =
λ + p

zλ

∫ z

0

tλ−1f(t)dt

= zp −
p(B − A)

((B + 1)n − (A + 1)p)Γn(α1)
·
λ + p

λ + n
zn, z ∈ U.

We have

((B + 1)n − (A + 1)p)Γn(α1)

p(B − A)
|bn − an| =

n − p

λ + n
,

which shows that the function F belongs to the class Nδ,A,B(f) for any

δ ≤ n−p
n+λ

. Since n−p
n+λ

ր 1 as n → ∞, this shows that the statement of the

theorem cannot be decreased, concluding the proof. �
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