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VISCOUS RAREFACTION WAVES

BY

TAI-PING LIU AND SHIH-HSIEN YU

Abstract

A rarefaction wave for system of viscous conservation laws
induces strong coupling of waves pertaining to different charac-
teristic fields. For the characteristic field pertaining to the rar-
efaction wave, there are the nonlinear hyperbolic, linear in time,
and the parabolic, sub-linear in time, dissipations. We study the
quantitative properties of the waves propagating around the rar-
efaction wave. Our analysis depends on the explicit informations
on the wave coupling obtained through the Hopf-Cole transforma-
tion for the Burgers equation, and an inner-outer expansion for

waves propagating between the characteristic directions.

1. Introduction

Consider the general system of viscous conservation laws
ur+ F(u); = Uz, u € R"™ (1.1)

The main goal of this paper is to understand the strong coupling of waves
pertaining different characteristic fields due to the presence of a rarefaction
wave in the background. We show that this coupling is stronger than for
shock wave. The main reason being that shock waves have exact form, and
are compressive and highly stable; while there is no exact, time-invariant
form for the rarefaction waves which induces strong coupling with the other,

transversal characteristic fields. Our analysis makes use of the explicit solu-
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tions to the Burgers and linearized Burgers equations through the Hopf-Cole
transformation. We devise a scheme of inner-outer expansion to study the
nonlinear interaction of waves pertaining to the rarefaction characteristic
field and other transversal fields. It is assumed that the associated hyper-

bolic conservation laws
us + F(u), =0, u e R, (1.2)

is strictly hyperbolic

and that each characteristic field is either genuinely nonlinear or linearly
degenerate, [4]. An important physical system with both genuinely nonlin-
ear and linear degenerate characteristic fields is the Euler equations in gas

dynamics:

P pU
pu + pu? +p = 0. (1.4)
tp(u®+e) . spu(u® +e) + pu
Here the pressure p as the function of the density p and the internal energy

e is given as p(p,e) = (v — 1)pe, v > 1, for polytropic gases. We normalize
the eigenvectors so that, for each i € 1,--- | n, either

; Or,

1
N (1.5)

{V)\i(u) -ri(u)
VAi(u) - ri(u)

The genuine nonlinearity is needed only for the characteristic field, say A;(u),
of the rarefaction wave (u_,u, ). For other characteristic fields, no assump-
tion is needed. It is the values of VA;(u)-7;(u) at the end states u_ (or u4)
for j < (or j > i) that matters. For each genuinely nonlinear characteristic
field, there are the shock waves and rarefaction waves. These two types of
waves are different in their stability property. The shock waves are compres-
sive and have permanent exact form. Consequently, a shock wave is strongly
nonlinear stable. On the other hand, a shock wave is orbital stable and its
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location needs to be identified exactly for the perturbation to decay around
it. Thus the stability of a shock wave is necessarily locally in L;(z). The
shock location can either be a priori determined through global conservation
laws or be traced using local conservation laws, see [9], [10], [11], [13], and
references therein. A rarefaction wave is expansive and remains stable when
locally translated. The translation can be arbitrary. Thus a rarefaction
wave is not stable locally in L (z). There is no exact explicit representation
of viscous rarefaction waves, though there is an accurate approximation of
rarefaction waves for the system using the scalar Burgers equation. From the
explicit approximation, it is clear that a rarefaction wave in general induces
a strong coupling with other transversal fields. The basic coupling for the

general systems can be expressed in terms of the coefficients

N —

C,zl(u) ljF"(u)(rk.,rl).

The effective way to understand the strong coupling is through the explicit,
accurate approximation of the rarefaction wave using the Burgers equation.
There is a truncation error in the transversal j-characteristic field if the cou-
pling coefficient CZJZ = 0. As a consequence, the coupling of waves pertaining
to different characteristics is strong. Another important feature is that the
viscous rarefaction wave contains both the nonlinear hyperbolic expansion
and the parabolic diffusion; the formal is linear while the later is sub-linear
in time. There are many studies of nonlinear stability of rarefaction waves
using the energy method, see [3], [14], 4], [I] and references therein. On
the other hand, more quantitative description of the propagation of waves
over a rarefaction wave requires deeper understanding of the coupling of
waves. It is our goal to present the quantitative analysis for the intricate
linear-nonlinear couplings that are induced by the presence of a rarefaction

wave.

A basic understanding for the rarefaction waves is provided by the Burg-

ers and the inviscid Burgers (Hopf) equations

Up + Uy = Ugy, (1.6)

up +uuy = 0. (1.7)
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Consider the rarefaction wave with Riemann initial data (u_,uy), u_ <
U,

(2,0) u_, for z <0,
u(z,0) =
uy, for x > 0.

By a transformation of the independent variables (x,t), we may centralize

the rarefaction wave, for some ¢ > 0,

—e, for xz <0,
u(z,0) = re (1.8)
g, for x > 0.

The inviscid rarefaction wave B¥(z,t), the solution of () and (LX), is self-
similar:
€ for x > et,
Bi(z,t) = x/t for x € (—et,et), (1.9)

—e  for x < —et.

The Burgers rarefaction wave BY, the solution of (LO) and (J]) can be
constructed by the Hopf-Cole transformation and has the explicit form:

o0 2 o0 2
e “dz—e” e “dz
et—x et+x

BY(x,t) = €<

24/t 2Vt
< 0 2 0 2 -
/ e ”? dz—i—em/ e ”? dz> . (1.10)
6215\7;5 E;\-;%

In Section 2 we study the difference of these two rarefaction waves. These
rarefaction waves are used for the construction of approximate rarefaction
waves for the system. To highlight the primary coupling of waves pertaining
the different characteristic directions, we thus derive in Section 2 a reduced,
primary nonlinear system as coupling of the scalar heat and Burgers equa-

tions with sources.

The Green’s function for the Burgers equation around its rarefaction
wave can also be constructed explicitly by the Hopf-Cole transformation.
The analysis of the dual nonlinear hyperbolic and linear parabolic dissipa-
tive properties of the Green’s function, done in Section 3, is essential for the
study of the general systems. The Green’s function for the transverse field
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is accurately and explicitly constructed based on the characteristic method.
The main part of the present paper, the study of the coupling of waves for the
primary nonlinear system, is done in Section 4. Due to the strong coupling
effects of the rarefaction wave on other, transversal characteristic fields, it is
necessary to distinguish the two cases: The transversal characteristic field is
linear degenerate or genuine nonlinear. In the case of linear degeneracy, the
coupling effect give rise to a wave of the order of (t 4 1)~'/2log(t 4 1). For
this the usual Duhamel’s principle suffices for the analysis. In the case of
genuine nonlinearity, more precise information on the coupling effect using
Hopf-Cole transformation is obtained. The rate is then (t 4+ 1)~'/2. Di-
rect analysis immediately suggests these two rates, see, for instance, [12].
However, the complete analysis for the genuinely nonlinear transversal field
requires intricate analysis, see Remark 4.7 and also Remark 2.1. This paper
presents the first definitive result on the pointwise estimates on the propa-
gation of perturbation over a rarefaction wave. This faster rate is similar to
that for the Burgers solution with the initial data

_ 1
x4+ 1

u(zx,0)

In Section 4 we devise an inner-outer scheme to extract the main part of
the coupling of the rarefaction wave with a transversal genuinely nonlinear
characteristic field. The main part is reduced to an initial value problem for
the Burgers equation similar to the one just mentioned, ([@34]), and can then
be calculated explicitly using the Hopf-Cole transformation. For simplicity
in presentation, we will carry out the analysis in Section 4 for 2 x 2 gen-
uinely nonlinear systems. The complete analysis of the primary nonlinear
system requires an interesting combination of the Hopf-Cole analysis and
the Duhamel’s principle. Identifying the above exact rates is necessary for
closing the analysis when the other nonlinearities are put into consideration.
This last step is done in the remaining sections. In Section 5, we consider
the genuinely nonlinear systems of Section 4, starting with lemmas on some
integrations that will arise later in the nonlinear coupling. Finally, in Section
6, we consider systems with both linearly degenerate and genuinely nonlin-
ear transversal characteristic fields. For simplicity, we consider a system,

whose associated hyperbolic conservation laws are the Euler equations in
gas dynamics, ().
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Let R;(\) be the integral curve of the right eigenvector r; connecting the
inviscid i-rarefaction wave (u_,u) of the system (C2) and parametrized by

the eigenvalue \;:

Ri(a), e >0.

F
!
=z
|
o
g
+
!

The inviscid rarefaction wave for the system ([[C2) and the approximate vis-
cous rarefaction wave for the system ([II) are constructed based on the

inviscid Burgers and Burgers rarefaction waves, (L), ([CI):
Ri(Bi(z,1)); v(z,t) = R;y(B°(x,1)).

For the i-rarefaction wave (u_,uy), we set the relevant end states for the
transversal characteristic set:

0_ {u_, for j < i,

uy, forj >

and the corresponding characteristic values

We divide the set of transversal characteristic fields j # 4 into the disjoint
union of Ay, and A;, with A4 the genuinely nonlinear set and A; the linearly

degenerate fields:

Ay={j| j#1i, Aj is genuinely nonlinear at ul;
Ay ={j| j#4, \; is linearly degenerate at u}.

Theorem 1.1. Suppose that the strength € of the inviscid i-rarefaction

(u—_,uy) is sufficiently small. Then there is a solution u(z,t) of the system

T2 satisfying

|u(z,t) — Ry(B'(x,t))] = O(1)e

1 1
«Mw+dﬁ+t+\4x—dy+t
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1 1
+0(1) X[t + O(1) X[—et,\0t
; (z = A0t)2 + ¢ Ay ; (z = \Jt)% + e
1 _(aten)? _e—en? logt _@=agn? 1 _@=agn?
+0(1)e| —=e 5t + Z 5 +Z e s
\/% \/_ JEN; JEA, \/E
(1.11)
Moreover, there exists C > 0 such that, for each j € A; with C’ZjZ #0,
) lo t
uest) - R(B )| > o5 por o i < Vi (112
and, for each j € Ay with C'ZJZ #0,
) 1 Vit
t) — R;(Bi(x,t))| > 2% < = 1.13
u(z,t) — Ri(B'(z, ))\_&‘C\/Z e = At < 5 (1.13)

Here, the function X[,y is the characteristic function for a given interval

[a,b], i.e
1 ifx € la,b,
Xla,b] (.%') -
0 else.

For the theorem, we construct a solution of the system ([CII) which
approaches the inviscid rarefaction wave R;(B*(z,t)) time asymptotically. It
follows from our analysis that a nonlinear stability result for the rarefaction
wave can also be formulated and proved. We do not carry out this; it is our
goal in the present paper to emphasize the strong coupling that a rarefaction
wave induces. This is reflected in the different decay rates for the genuinely
nonlinear transversal fields j € A, and for the linearly degenerate fields
j € Ay in (LII). In fact, in our analysis we obtain explicit expression
of the leading terms which leads to the lower bound estimate ([LI2) for
linearly degenerate transversal fields and ([LI3]) for the genuinely nonlinear
transversal fields. We will simplify the situation by taking particular initial
data u(z,0) = v*(z,e %) = R;{(B"(z,e2)). Such an initial data avoid the
singularity near the Riemann data and the appearance of the initial layer.

This allows us to highlight the fact that the above rates are mainly the



130 TAI-PING LIU AND SHIH-HSIEN YU [June

consequence of the strong coupling, rather than the perturbation through

the initial data.

2. Preliminaries

The elementary waves for the conservation laws ([LI) and (C2) can be

approximated by the simple scalar equations, the inviscid and viscous Burg-

-

ers equations, [6], [2], [§]. Such approximations make it definite the strong

couplings of the the rarefaction wave with the transversal fields.

2.1. Scalar rarefaction waves

Consider the inviscid and viscous Burgers equations

(B"): + <(Bi)2>x =0, (2.1)

2

O S (2:2)

with the Riemann initial data corresponding to rarefaction waves:

. —e forxz <O,
B'(z,0) = B(z,0) = (2.3)
€ for x > 0,
where € is a given positive constant. For the inviscid Burgers equation, the

Riemann rarefaction wave is the well-known self-similar solution:

€ for x > et,
Bi(z,t) = z/t for z € (—et,et), (24)

—e  for x < —et.

The rarefaction wave for the inviscid Burgers equation can be used for the
construction of the rarefaction waves for the general convex scalar hyperbolic

conservation law

up + f(u)e =0, f"(u) >0,
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by the relation

Bi(z,t) = f'(u(z,1)).

The solution of the viscous rarefaction wave for Burgers equation is con-

structed explicitly by the Hopf-Cole transformation, [2],

BY(z,t)

W(z,t)

B°(z,t)

where k(z

)

= —20; logW(z,t),
0 00
= <t/ (/ k(z —y,t)eY 2 dy + / k(x — y,t)e_ey/Qdy)
—0o0 0
1 e et —=x et +x
= - Erf T Erf ; 2.5
o (B (57 remae(TF)) e
Erfc (&=2 ) — e*TErfe ( &E2
| (eli) e v
El—X €T 13 X
EI’fC (2—\/Z> =+ ef EI’fC (2—\/Z>

t) is the heat kernel and Erfc is the error function:

4t

k(x,t) = 3@’ Erfe(v) = % /OO e dz. (2.7)

From these, by direct computations, for ¢t > =2

|BY(z,t) — Bi(x,t)]

= 0(1)

= 0(1)

;

7(1+€t)2
e 4t
for x < —et + /1,
\/E —
—|mi€t‘ + —\z—leﬂ for & € (—et + V/t, et — /1), (2.8)
_(*IIEt)Q
e t
for & > et — /1,
\/E -
7($-26t)2
e t
" for x < —et + V1,
1 1
for @ € (—et + V%, et — V1), (2.
e e ity e eVt =), (29)
(zfst)Q

e 4t

; for x > et — V1,
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and

By (@, 1)]

rx

(_ (z+et)?
e at

t3
\/_1 1

V(e R/ can ey oy

_ (ac—fst)2
e at

Vi3

for x < —et + V¢,

for x € (—et +\/t,et—/1),

for x > et — /1,

(2.10)
and for ¢ € (0,672)
_ (z+€t)2 Lo (zfst)Q
e 4t e 4t
By 1)] = O E——E (2.11)
_ (x+6t)2 4 _ (ac—fst)2
(& 4t e 4t
Bl (6] = O —— (212)

Remark 2.2. The estimate (2§) is linear inside the rarefaction wave and
degenerates to sublinear, t~1/2, at the edge of the rarefaction wave. These
rates can be generalized to the system in the characteristic region of the
rarefaction wave, see the first term on the R.H.S. of (LII). These rates are
optimal. There is a continuum of parameters to translate a rarefaction wave,
and unlike the shock wave, no single translation can accommodate the initial
perturbation to obtain higher rate. The rate inside the rarefaction wave is
higher due to the hyperbolic expansion at linear rate in £. The unattainable
higher rate of t~!logt has been claimed on the edge of the rarefaction wave
in [12].

2.2. Approximate rarefaction waves for systems

For the hyperbolic system
ou+ 0, F(u) =0, (2.13)

the rarefaction waves exist for genuinely nonlinear fields, the first case of
([CH). The inviscid Burgers rarefaction wave B*(x,t) can be used to construct
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the exact rarefaction waves (u_,u4 ) for the system by setting
w(, 1) = Ri(Bi (1)),

where R; is the integral curve of the i-th characteristic direction

dR;(N)
dA

[ ri(Ri(N)).

The parameter, the i-th characteristic value A = \;(R;(u)), is the inviscid
Burgers rarefaction wave (Z4l). Similarly, we use the Burgers rarefaction
wave BY(x,t), [0), to construct, not exact, but an approximate, viscous

rarefaction wave for the system:
v%(z,t) = R;(BY(z,t)). (2.14)
Direct calculations yield the truncation error:

O + 0, F (v*) — 920" = —(BY)?R!(B").

' ' (2.15)
h]_’_n ’va’(gj’t) = Rl(ﬁ)’ hm ’Ua(zﬂ,t) == Rz(_g)

Denote the perturbation

where v is a solution of
v+ F(v), — vy = 0.

We are interested in the interplay of the nonlinear hyperbolicity, the linear
rate of expansion, (ZZ]), and the sublinear rate of dissipation of heat kernel
type. For this we will avoid the singularity at t = 0 and start at time 72,
and, to simplify the presentation, we assume that the initial data of the

perturbation E is identically equal to zero at t = e~ 2:

((z, 7)) =0. (2.16)

Our analysis for this situation can be applied straightforwardly to more
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general perturbations. With @IH), our perturbation ¢ satisfies

- < — v\2 P/ RV
{Ct ( ( ) ) wa + N = (Ba:) Ri (B )7 (2'17)
¢(z,e72) =0,
where
N = F(v + ) — F(v®) — F/(v")C.
The nonlinear term N (x,t) can be expanded component-wise as
( N(z,t) = ZN (x,t)rj(x,t),
Ni(z,t) = Z clckct+o)I¢P,
1<k,I<n
Cly(w,t) = LF" (@) (ry, 1), (2.18)
Li(x,t) = (0% (x, 1)), mj(2,t) = 75(0° (2, 1),
5(‘7:775) = ch(x,t)rl(x,t).
=1

2.3. Primary nonlinear system

The main task is to understand the nonlinear coupling of waves pertain-
inig to distinct characteristic fields. For this, for the rest of this section and
much of remaining of the present paper, we will make the assumption that
the system (L) is 2 x 2 and genuinely nonlinear in both characteristic fields.
Thus one has that Clll # 0 for [ = 1,2. With normalization, we can assume
Clll:

1
Cl(x,t) = 5+ OB (z,1) —¢) for [ =1,2. (2.19)
By a suitable rescaling, we may assume that

A1 (v%(z,t)) = BY(x,t),
(2.20)
Ao (v%(z,t)) =14 O(1)(BY(z,t) — ¢).
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We introduce a diagonal nonlinear system (p as an auxiliary system to

{EDt + (F;/(Ua)fD)x - 5Dzz + NzD = (B;:})2Rg,(va)’ (2.21)
x, 5

e7?) =

where
2

NP(a,t) =) Oyl t)(Cp) i, 1),
=t (2.22)

Cp(a,t) =D Chla, tyri(a, ).
=1
One can decompose the system EZ21) for (p(z,t) as follows
(Che + <B”§}))x — Chaw + (CH(CD) s
=1 (Zrm<2<]’3x—0£k<<]’3>2>—mz(Az—B“)<%+rm<]’5+<3;’>21%’{> :
Bt aCBe—Chnt (G,

2
=1 <Z 71 (2C e —Cin(CH)?) —T22 (A2 — B”)CZQ)Jrrme)wL(Bi’)zR'f) ;
k=1

Cp(z,e2) =0.
(2.23)

It turns out that the RHS of ([ZZ3) is dominated by |BY|? and the pri-
mary system is a decoupled nonlinear system with the inhomogeneous terms
I RY(B2)%. In fact, we will see later that the other terms on the RHS of
223) have the faster decay of

€ B 1 10:Cp By, [Ch Byl < 1/ for [a] < et. (2.24)

This leads us to the consideration of the primary nonlinear system:

{ LA (BUC o= Chaa + (CH () = (L RY)(BY)?, (primary field)
G AN+ d(2, ) — e+ (C5(())e = (LRY)(BY)?, (transverse field),
C},(m,s”) =0forl=1,2,
(2.25)
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where

)\3(.%', t) = )‘Q(Rl (Bl(xv t)))v

. . . (2.26)
da,t) = (X5, + (0 = B)a(Ry (BY)rau (Ri (BY) ),

are the 2-characteristics of the hyperbolic rarefaction wave, ([Z4), (ZI9) and
&Z0). Corresponding to the second equation of [ZZH) for the transverse
field, we introduce an auxiliary linear hyperbolic equation

{Zt + Moz +dz = (LR (BY)(B1)?, 13(2,t) = lo(R1(B'(x,1))), (2.27)

z(—et,t) = 0.

Remark 2.3. The system (28] contain Burgers nonlinearity in both char-
acteristic fields. For the first characteristic field, the nonlinearity is encoded
in the transport term (B”C;)x over the Burgers rarefaction wave BY, and
the term (C{,(¢})?) can be viewed as the source. For the second character-
istic field the term (C3,(¢2)?), should be taken as Burgers nonlinearity and
dealt with by Hopf-Cole technique. In both characteristic fields, there are
the nonlinear sources (11 RY)(BY)? and (I2R})(BY)?. Thus in solving (ZZ3),
the analysis has to be essentially nonlinear in both characteristic fields. In
contrast to this, for the study of the shock stability, the method for handling
the transversal fields is basically linear.

Let G(x,t;y,s) be the Green’s function of the Burgers equation lin-
earized around BY, see (BZ) in Section 3. We have from the first equation

in €25)
Gty = [, [ Gt~ Choogms?),

By (y, 520 (y, )R (B (y, 5)) ) dyds. (2:28)

2.4. Secondary nonlinear system

The secondary waves, the solution minus the primary waves

{5(96715) = (=35 Gl m(at), (2.29)

& (1) = (1) - () for k= 1,2,
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satisfies the following secondary nonlinear system:

§+(B'E -+ (Che e He)+ Y ChE+E+¢)
(o) (L,1,1) i

2
:zl(kzlrm(2<<;f+5’f>z— > Gl NG +em)

1<l,;m<2
120 = BY)(GZ + &%) + () +€1)),
& + (M2%)s + (N2 = BY)E loras — &5,
+(C22252(252 +G)+ D Gkl) £(2,2,2) C]l'k(fj + )R+ C;];))z
2
(Y 2k ((€F+6Ha= 0 ChlGH+ENG+E™) +riaal€"+5) ).
k=1

1<l,;m<2

£(r,e72) = 0.
(2.30)

Remark 2.4. One can rewrite (230) in the form

¢! B0 (&N (¢ _ (&) g
€),((2)(€)).-6), e (@rg)svmor

Here, the matrix L is the form

1
I 0 O(1) .

0 O(1)
It is important that the first element in the matrix is zero, meaning that the
source for the rarefaction field comes only from the transversal field. This is
due to the fact that the approximate rarefaction wave R;(B"(x,t)) has been

put into the construction of the vector r1(z,t) = r1(Ri(B"(z,t))). In other
word, the structure of the hyperbolic rarefaction wave has already been used.
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3. The Green’s Functions

The Green’s function for the system is approximated by two explicitly
constructed scalar Green’s functions. For the characteristic field associated
with the rarefaction wave, we use the exact Burgers Green’s function for the
construction. For construction of the Green’s function for the transversal

characteristic field we use the basic characteristic method.

3.1. Burgers Green’s functions

The Burgers equation linearized around the viscous rarefaction wave
BY(z,t) is

v+ (BY (2, t)v)y = gy, (3.1)
and the equation for the anti-derivative variable w,(z,t) = v(x,t) is

wi + BY(z,t)wy = wyy. (3.2)
We consider the corresponding two types of Green’s function:

Gi(x,t;y,s) + B (x,t)Gy(z,t;y, 8) = Gz, t;y,s) for x € Rt > S,( )
3.3
G(.%" sy, 8) - 5(‘7: - y)7

Gi(z,t;y, 8)+(BY(2,t)G)(z, t;y, ) = Guu(x, t;y, s) for xeR > s, 3.4
3.4

G’(m) S3Y, S) = 5($ - y))

With the function W (z,t) in Z3) from the Hopf-Cole transformation,

one can apply the linear version of the Hopf-Cole transformation to (B2,
V(z,t) = W(z, t)w(x,t),

and the function V (z,t) satisfies

62



2010] VISCOUS RAREFACTION WAVES 139

This leads to the representation of the solution of (B2):
2

w(z,t) = /R %e_zk(az -y, t)w(y,0)dy. (3.5)

The Green’s function G(z,t;y, s) is therefore given by

62 —S
Wiy, s) o)

G@¢%$vaxw

k(x —y,t —s). (3.6)

By the property that w,(z,t) = v(x,t), the Green’s function G(z,t;y,s) is
obtained by the relation

0yG(x,t;y,s) = —0,G(z, 1y, 5). (3.7)

By straightforward calculations, we have the following expansion of the error
function

JT © (1 1 3 1
TEI‘fC(’U) = Z} e dZ =€ % — m + @ + O(l)y fOI' v Z 1,
(3.8)

and use it to expand components for W (z,t) in (Z3) to yield

O(1)e> for & < —et + V1,

Vi Vi o)t O \ 2 .
((€t+$)+(5t—x)+(€t_x)2+(€t+x)2)e 1w
for z € (—et + Vi, et — V1),

O(l)e 2 for x > et — /1.

(3.9)
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This and (B6) yield the estimates for the Green’s function for t,s > 2

G(z,t;y,s)

_ (a—yte(t—s))?
e 4(t—s)

—= for x < —et + Vt,y < —es + /5,

7t(y—sath)2 2
( \/E + \/E )e 4s(t—s) e_(xﬁfii
y+es £s—Y \/(tfs)

for x < —et +t,y € (—se + /5,65 — \/3),

(etety? _s(z—et)?  (y—es)?  (z—et)(y—es)
- at

e A4t(t—s) ¢ 4(t—s) ¢ 2(t—s)

V)
for @ < —et +/t, y > es5 — /5,

e

(z+et)(y+es) (y+ss)2 7s(z+€t)2

1 e 2(t—s) e 4(t—s) ¢ 4t(t—s)
Vit Vit Vi—
ac+5t+6t—ac t=s

for & € (—et +/t,et +/1), y < —es + /5,

NG NG _t(y—sac[t)2
y+zs+ss—sy e 4s(t—s)

Vi Vo [(t-s)
for x € (—et+/t,et+\1),y € (—es++/5,e5+1/5),

—s(ac—fst)2 o (y—ss)2 (x—et)(y—es)

1 e 4t(t—s) o 4(t—s) ¢ 2(t—s)
Vi NG Vi—
z+it+stjz t=s

for x € (—et +V/t,et + V1), y > 5 — /5,

(etet)(utes) _(ypes? =s@@ret)® (o op2
e 2(t—s) e%ﬁi)e 4t(t—s) 7(‘4;&7)

t—s
for x > et — /1,y < —es 4+ /5,
—t(y—sac/t)2 7(30_5”2

( \/E + \/E )e 4s(t—s) e 17
y+es | es—y Vi—s

for & > et + /1, y € (—es + /5,65 — \/5),

_(a—y—e(t—s))2
(

e 9 for x > et —/t, y > es5 — /5.

t—s

(3.10)

Lemma 3.5. The Green’s function G(z,t;y,s) satisfies the following esti-

mates fort,s > e 2:
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For x < —et — \/t,

1 _@oytett—s)?

141

(t—s) ¢ e fory < —es+ /s,
Vs Vs
(?Hr:s fyfss) _ (z+et)? _ty—%s)°
(t S) e 5t e 5s(t—s)
G t: <01 _
Grln =00 fory € [—es+/s,es — /3]
1 (atet)? sr—et)?  (y—es)? (z—et)(y—es)

e 5t e ©5tt—s) ¢ B(t—s) ¢

(t—s)

fory >es —/s.
For € (_Et + \/i et — \/¥)7
|G€E(‘T’ ta Y, 5)|
w =+ ‘y + 53’ 7s(z+€t)2 B (y+ss)2 (2+et) (y+es)
e S5tlt—s) ¢ 5(t—s) e

(xﬁt + *ﬂst) (t - 3)3/2

|% _y|< B + = ) _t(y*%S)Q

fory < —es+ /s,

(3.11)

(3.12)

yt+es —y+es TS
(1) (Het + _m+€t) (t —s)3/2
fory € [—es+ /5,65 — \/3]
w + ‘y - 63’ o 55(:(;5?)2 o (g(;iss); e(szt)(y—gs)
Vi Vi
(erEt + *:rJrst) (t - 8)3/2
fory >es— /s,
For x> et + /1,
|G1(:Ca ta Y, 8)|
1 (@—et)? _ s(e—ct)? _ (y+es)?  (otet)(yes)

e” 5t e Bti=s) ¢ Bl=s) ¢ (-9
(t—s)
fory < —es+ /s,
S s
<\[ + 55 ) _@—et)? _tw—%s)°

< 0(1) y+sz fg;Jrz-:s LR
t—s
fory € [—es+ \/s,es — /9]
1 (x—y—e( —s))2
- Eymema)® fory > e5 — /5.

(t—s)

(3.13)
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Proof. From (B8]) and X)) one has that

(z—1)? (t—s)
_(aw)_2(t-s)

sy — (Lgv x—y \ Wiz, t)e T
Gz, t;y,s) = (§B (z,1) — 2(t_8)> s Jar— (3.14)

By BId), B3), and B ~ —¢ for x < et, one has the following three cases.

For & < —et — v/t and y < —es — /5,
_@=y)?_ 2(t=s)
o)) W
2(t — s) W(x,t) An(t — s)

_ (a—yte(t—s))?

— CK1)<€Q‘—8)+($-—y)> e 1G9

Gm(xat; Y, S) - 0(1) (_8(

—2(t —s) Amc(t — s)
_(zyte(t—s)?
ot "7 (3.15)
B (t—s) '
For x < —ct — v/t and y € (—es + /5,65 — \/5),
Ga(z,t;y,5)
(o) ry)| et (V5 VE )RS
e(t—s)+(x— tes s s \e =5
= 0(1) (— i >e— L < n >
2(t—s) es+y es—y An(t—s)
) _(ac—ys-(kts_(t;s))Q
<oy EE (S Vs e
es+y es—y (t—s)
(ac+5t)2 —t (y—%s)2
\/g \/g e 5t e 5(t—s)s
O(1 3.16
- ()(65+y+5s—y (t—s) (3.16)
For x < —et — v/t and y > €5 + /5,
(=9t oy e T
e(t—s r—y)\ _.€ =
Gz(x,t;y,8) = O() | — eV ——————
(atins) = o) (-t et o
_ (e—yte(t—s))?
_ e 5(t—s)
< O(1)e 51
(t—s)

2
_(ac+5t)2 ,tw (y—ss)2
e 5t e o(t—s)s ¢ 5s

(t—s)

A
Q
=
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Cte)? _gm=et)?  (y—e9)?  (a—et)(y—es)
e 5t e 5(t—s)t ¢ 5(t—s) g
< 0(1) (3.17)
(t—s)

Similar to the above three cases, one uses BY ~ x/t for x € (—et,et) to
yields the following two cases.

For o € (—et + V/t,et —/t) and y < —e5 — /5,

(=%  _2(t—s)

x r—y ) W(y,s)e < =12

Gl 11y, 5) = O(1) (

2t 2t—s)) W(z,t) /dr(t —s)
ES x 1> 2 x 1> ES
el o\ 1 o
< 0(1) — N .(3.18)
( 8) et—x + et+x (t N S)

For & € (—et + V/t, et —/t) and y € (—es + /5,658 — \/5),

2
zs Vs Vs 4%
Gulantins) =O) (=5 ) 222

=) B VT

The remaining cases are symmetric to the above cases and are dealt with

(3.19)

the same way. This completes the proof of the lemma. O

Lemma 3.6. Fort,s > e 2, we have the following estimates:
For x < —et —\/t and y < —es — |/,

(e—yte(t—s))?

Yy e_ 4(t—s)
G(z,t;y,s) = Gylx,t;z,8)dz < O(1 3.20
(@tis) = [ Gulantizs)ds < O = (320)
Forw<—5t—\/5(mdy263+\/§,
G(z,t;y, s) / Gy(z,t; 2, 8)dz
<¢+Ez)2 _s@—et)?  —(y—es)? (z—et)(y—es)
< O(l)mln( Je~ e Bti=s) e 5t=s) e B(t=s) . (3.21)

t—s' et—x

For x < —et —\/t and y € (—es + /5,65 — /3),

G(z, t;y, s) / Gy(z,t; 2, 8)dz
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rdet)2 s(z—e )2 (x+e )2 t( *ES)Q
< 0(1) min(—s,;)e_( Ett) e 5t(t—ts) + Me_%_ Sz(tt—s) .
t—s et—x t—s
(3.22)
For x € (—et ++/1,0) and y > s + /s,
G(z,t;y, s) / Gy(z,t; 2, 8)dz
_(z—¢ )2 _ 785)2 (z—et)(y—es)
< 0(1) (Hgt)” s, ohel)s | Gy oY SR (503
(x —et)2V/t V(t—s)t3

Forz € (—et++/1,0), s € (672, (t/(z+¢et))?), andy € (—es+s(z+et)/t,es),

G(z,t;y,s) /Gxtzsd

(x+et)VEt—s N (z+et)s % N (x +¢et)s o (;Sz:TIS%
(x—et)2V/t V(t—s)t3 t(t —s) .

< o(1)

(3.24)

For v € (—et +/1,0), s € (e72,(t/(x + €t))?), and y € (—es + /5, —es +
s(z +et)/t),

y
G(z,t;y,s) / Gy(z,t;2,8)dz

o
vizs (z +et)s e,%_‘_(x—i—at)s J;ysasi;g
(z+et)WWt /{t—s)t3 t(t —s) '

< 0(1)

For x € (—et + v/1,0), s € ((t/(x+¢ct))*,t), and s(x +et)/t < y+es <
2es — /s,

G(z,t;y,s) 2/ Gy(z,t; 2, 8)dz
Y

< o1 (x4 et)y/T — (x +¢ct)s %i(fti? gﬁgt
< oQ) (x—st)Q t -+ (t — s)t3 ‘

— SL T—E 25
+O(1)e” ’;s(t o) <( (+ et) se_(su_is))t + L)) . (3.26)
S

t(t —s) t(t —
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For z € (—et +/1,0), s € ((t/(x +€t))?,t), and /5 < y+es < s(x +et)/t,

Y
G(Cl?,t;y,S) = _/ Gz(fE,t;Z,S)dZ

— (= 5) (_*)2
o) [ =2y THEDs ) ey
(z +et)Vit V(t = s)t3

_ (y—*)Q (m + 5t)8 _ (z4et)? \/g
YO wo S E Nty M5 ) (3.27
W (t(t—s> )

IN

For x € (—et +/t,0) and y < —es — /5,

G(z,t;y,s) = / Gy(z,t;2,8)dz

(y+ss) (z+et)(y+es) (x+st)2s
0(1)76 5(t—s) g  5(t—s) e 8tlt—s) | (3.28)
t(t —s)

IN

Proof. (B20) (respectively ([BZI)) is a consequence of (BI1l) in the case
y < —es + /s (vespetively y > es + v/t.) For (22)), we apply (1) in the
case y € (—es + +/s,es — /) together with (B2I]).

B23) is a consequence of ([BIZ) in the case y > es + /s. (BZ0), BZ0)
are consequences of ([BZ3) and BI2) in the case y € [—es + \/s,es — /s].

The rationale for (B20]) and ([B27]) is similar to that for (B23]). ([B28]) follows
from ([BI2) in the case y < —es — /5. O

2. Green’s function for the transverse field

For the transverse field, second equation in (ZZH), we construct the

approximate Green’s function for the equation
v+ Asvg + d(x, t)v — vy = 0. (3.29)
Thus we construct the Green’s function

GQ(xat;yv 8) = g(x,t)
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satisfying

{(GQ)t + X5(2,1)(Ga)a + d(2,1)(G2)a = (G2)ag for 2 € Rt > s, (3.30)

Ga(r,8) = 6(z —y).

Unlike the case for linearized Burgers equation (1), for which there is an
explicit formula; for G5 we need to construct accurate approximation Gs.
Consider the characteristic curve z = Z(o; z,t) in the (z,0) domain for the
inviscid characteristic field Ao(B:(x, 1)),

{605(0;36,15) = A (E(o32,1),0), (3.31)

E(t;x,t) =x

The approximate Green’s function Gy (z,t;y, s) for [B30) is defined by

(sz(o';z,t))Q
GQ (:C, t’ Z, O') =e fot d(E(TVL'vt)vT)dT&. (332)
Ar(t — o)

One has the representation of Cg as follows

Gty = [, [ (Galetns) 05009~ 2(Els57.0.9)
~Ga(w,t5y,5)(d(y, 5) — d(E(s:2,1),5)) ) Gy, s)dyds

t
+/; /RGQy(xut; Y, 8)0222(y7 S)Cg(y78)2
+Gao(x, t;y, ) (12 RY) BY (y, 5)dyds. (3.33)

By considering the identity,
t ~
0= [ [ Galantiz.0)(0sGalz00.5) + X5(2.0)0.Galzs01019)
s JR
+d(z,0)Ga(z, 05y, 5) — 02Ga(z, 03y, 5))dzdo, (3.34)
we obtain the relation

G :C t Y,Ss G2(x)tay’ )
/ / )\* (z,0) J(U;x,t))ég(:c,t; z,a)) Ga(z,03y,8)dzdo
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- / /R (d(z,0) — d(E(0:2,1),0))Ca (2, 1 2, 0)Ga (2, 01y, 8)dzdor. (3.35)

Lemma 3.7. Suppose that € is sufficiently small. Then there exists a uni-
form constant C > 0 such that for s, 7 > 1,

1—Ce <10,2(s;m,7)| < 1+ Ce. (3.36)

Proof. The equation for Z,(s;n,7) is

{%En(s; n,T) = O A5 (E(s5m,7), S)ET](3§ n,7), (3.37)

Ey(rim,7) =1

From (Z4)), we know that 0;A%(x,t) times the width of its support at time ¢
is of the order of €. Moreover, the characteristic curve Z(s;z,t) crosses the
fan region, the support of 9, A3(x,t), transversally. Thus

/ 10,75(2(53m, 7). 8)|ds = O(1)e. (3.38)
1
This and (B31) yield the lemma. O

The next lemma is proved by the direct usage of the explicit expression
E3) of the inviscid rarefaction wave, and is omitted.

Lemma 3.8. The characteristic curve Z(s;x,t), B3D), satisfies, for s €

(0,%),
.
x—t+s forx>ectandr—t+s>es+1,
(=50m) t—z__\"
/ T—eto) ) THO 1—e+0(1)
- T gr g enTEO0/
s §ho sho
for x > et and Z(s;x,t) € (—es,es),
2(s;2,8) = —es0+ (1 — Koe)(s — s0) for x> et and E(s;z,t) < —es,
t KO0 KO
-/ %dT + e for x € (—et,et) and Z(s;z,t) € (—es,¢es8),
—eso + (1 — koe)(s — sq) for x € (—et,et) and =(s;x,t) < —es,
x— X(u_)(t—s) for x < —et,

(3.39)
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and

|Zs(s;z,t) — 1| = O(1)e. (3.40)
Here, ko = t0;A\5(0,t) and sg € (0,t) is defined by Z(so; x,t) = —eso.
Lemma 3.9. Suppose that ¢ < 1. Then, fort > s> 1

(y—E(ss2,1))?

~ e 10(i—s)
|Ga(x,t;y,s) — Ga(z, t;y,s)| < O(l)\/gﬁ, (3.41)
and
,(y—SEésix,)t»?
|C~;2y(33,t;ya5) — Goy(z,t;y,s)| = O(l)ﬁeﬁ% fort,s > 1.
(3.42)

Proof. We only consider the case that y < 0; the case y > 0 is simpler.
Assume that we have a priori assumption

(y=E(s3,1))?
- e_ 10(t—s)
Go(x,t;y,8) — Go(x,t;y,8) <O(l)———forall t >s>1. (3.43
Gali 53,5) = Gala, 69, 9)] < O() —— > 1 (3.43)

Then, from (B3H) and (B30,

‘GQ T, t; Y, S ) GQ(x t Y,s )’

< / / (|0:X5(2,0)| + |d(z,0) — d(Z(0; x,t),0)|) G2 (2,05 2, 1)
+|(N5(2,0) — Eg(0; 2, 1)) |G (z,a,x,t)) Ga(z,0;y,s)dzdo
' [A5(z,0) — Es(o; 7, 1))
< 1//<8Z)\*z,0 + 22 SR, >
) [ ] (060 —
_Elsmo)—Esw))?  _ (y=E(siz.0))°
e 5(t—o) e 10(o—s)
X dzdo. (3.44)
(t—o) (0 —s)

Use the property that 9,\5(z,0) = O(1)9,B%(z,0) and \3(z,0)—Z4(0; z,t) =
O(1)(B(z,0) — BY(Z(0;m,t),0)), and the properties of B' in ([Z4) to yield
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that

|Ga(z, t;y, 5) — Ga(z, 5y, 5)|

< o1 //<|Bzza|+| ) \/B;(—Ea(asct) ”)

2

Eszo‘ szt))2 (y—E(s;z,0))
e o') 10(oc—s)

(t—0)(o—s)
Direct calculations from (4] give the estimate for the first term on the

R.H.S. of (BZA):

dzdo. (3.45)

¢ _ Eizo)—E(siet)?  (y=E(siz,0))? _ (y—E(sim,t)?
X e 10(t—o) 8(oc—s) e 10(t—s)
/ / |B:(z,0)| dzdo < O(1)e ——oo.
s JR (t—o0)(o—s) (t—s)
(3.46)

The estimate for the second term on the R.H.S. of ([BZ%)) will be done

in the following two cases.

Case 1. [zt — E(t;y,s)| < (t —s)/4 and t > 2|y| + 1

The condition ¢ > 2|y| + ¢~! assures Z(t;y,s) > et. The characteristic

curve z = Z(o;x,t) crosses the rarefaction fan before o = t, see Figure 1.

Define
L= {(z0)l0 € (s,1), [2(s:2,0) —y — 2= ;L( (s30,1) y)y
§K|log< t+a r )| t+o— 23)} (3.47)
L={(z0)l0 € (5,8),12(s:2,0) -y — A (E s, t) - y>| |

ZK\log( e )! =% )}-

We have

(B(siz,0)~E(siz, )% (y—5(s:2,0))2

z = - 5(t—o) 10(o—s)
// |Bi(z,0) < (032,1),5)| e oo
Vi—o (t—o)(o—s)

Bl )t (o2 (@(s52,0)—y— 2075 (E(siw)—y))?

// 5(t+o‘ 2s)  10(t—o)(o—s Y~ t+ro—2s d d
zZa0
\/t—a (t—o)(oc—s)
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z=—€0

Figure 1.

_ (w—E(siz,1))?

e s [t (t—o)o—s)\ ¥
O(1 d
Y /S\/t—a( t—s) 7
_ (=S(siw0))?
e 8(t—s)

— =

for some K > 1.

IN

< O(1)e (3.48)

To analyze the integral over I, one needs to divide the region I; into com-
ponents, Figure 1:

L=IfulbUIs,
B=hn{oco,t),b=hn{ocec(o_,o), I{=LNn{o€(s,0-)},
oy = max{s,inf{r < t|(([1U{z =E(o;z,t)}) N{o € (1,1)})
N{z € (—eo,es)} = 0}},
o_ =max{s,sup{7 < o1 |((I1 U{z =E(o;z,t)}) N{o =T7})
N{z € (—¢eo,es)} = 0}}.

Thus, for (z,0) € If U I{ one has

|B(2,0) — BY(Z(0; z,t),0)| = 0. (3.49)
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This yields that

(E(s32,0)~E(siz,1)? _ (y—E(s32,0))2

// [B(2,0) (5(0 z,t),s)le 500 T —

Vi-o (t =)o —s)

[eur¢
(3.50)
For (z,0) € I?, under the conditions ¢t > 2(|y| + &~ !) and |z — E(;y, s)| <
(t — s)/4 it follows

{0+ <2, (3.51)
o4 — 0| < Oy — Z(s; 2, 1),
By &1) and B'(z,0) — B (Z(0;,t),0) < O(1)e. This yields that
/ |Bi(z,0) (E(U x,t),s)|
e_ (y5?tE+(;;f’2t2))2 - 102?:;‘,)7(205_)3) (5(8;270)_y_ 3.{.2:;)3 (E(S;xvt)_y))Q
X dzdo
(t—o)(o—s)
_ (ylf;t(iw)/té)Q os _ (ylf;t(iw)/té)Q _ ;
< 0(1)867/ do < 0(1)86 |y H(S,x, )|
t—s o t—s
_<y—1§5ts;_z,§>>2
= O(1)es (3.52)

Vt—s
Thus, B24), (2]), B20), and B352) yield the proof for this case.
Case 2. z <t/2.

Similar to the decomposition I; U I5, one introduces a decomposition:

J1 ={(z,0)|o € (s,1),|E(0;2,t) — z| < KVt —olog(t—o+1),
Jo ={(z,0)|o € (s,1),|E(0;2,t) — 2| > Kvt—olog(t—o+1).

And similar to (B48]) and (BX0), we have

(B(si2,0)—E(siz,t)? _ (y—E(s;2,0))2

Z = - 5(t—o) 10(o—s)
[[ 1o < (0:2,1),0)| o
Vi-o (t—0)(o—s)

JoUJFUJY
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c
z=—-€0 z=¢0 (x,1)

s =1 \ ’ /)E/
+ Dl
*********** 7 ]
—= AR
=0()K log(x —et)v/x —et
, = O(l)et
_ = 9(1) log(x —et)\/x —¢&t

Figure 2.

_ (y—E(siz,1))?
e 8(t—s)

— = (3.53)

It is easy to see that the condition = < ¢/2 results in, see Figure 2,

< O(1)e

{(t —s)/A<T_—s, (3.54)

T —7- < O(1) (Klog(t)Vt +et) .

Then, one uses that B'(z,0) — BY(Z(0;x,t),0) < O(l)w to
result in

(E(s32,0)~E(siz,1))? _ (y—E(s32,0))2

// |Bi(z,0) — B{(E(0;1,t),s)|e”  st-o) S(o—s)

dzdo
J Vt—o (t—o)(oc—s)
Jl
gt sty o~
e = og e =
< 0(l)———— —do <O(1) | e+
(1) Vi—s s S ()< \/f) Vi—s
_ (y=E(siz,1)?
<oyt (3.55)
- Vi—s '

Thus, (B53) and ([BE0) conclude this case.

The other cases for verifying a prior assumption BZ3]) can be obtained

easily. They are omitted. Thus, (BZ3) is true. This completes the proof of
the lemma. O
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4. Primary Nonlinear System

The construction of the solutions of the primary nonlinear system (Z2H])
is divided into two subsections. The study of waves for the primary field of
the rarefaction wave is based on the Burgers Green’s function. The more
interesting study of the transversal field highlights the role of two types
of nonlinearity. The first one is the coupling term from the primary field,
represented by the source By (y, 5)2. The second nonlinearity is the genuine
nonlinearity of the second characteristic field that we are assuming. To study
the total effect of these two nonlinearities, we design a intricate inner-outer

estimates. Each subsections starts with some preparatory lemmas.

4.1. Primary field

We start with the convolution of the source with both types of Burgers

Green’s function G and G.

Lemma 4.1 Fort > ¢ 2,

t
/ / Gz, t:y,3)BY(y, 5)2dyds
e=2JR

_ (z+€t)2
e 5t

——— forz < —et+ V1,
V14t

logt 1 1
1 €(—¢t t,et—Vt),
+0(1)e|log ¢ |x+et|+|x—et| for x€(—et+/t,et—/1)
_(x—st)Q
e 5t

v1+t

< 0O(1)——

for x> et — /1.

(4.1)

Proof. By (B20), (E21), {22), and @, for x < —et — V7,

t —es—/s es—/s o0
LA L L oenamosron
e—2 —oo —es++/s esty/s

(z— y+€(t s) 2 (y+53)2

Ve eiidd
// Vies  (s+12 7
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(ac+5t) t(y*_S)Q

—es—V/5 T B T Eses ] nd
/ / Vt—s (s+1)2 yas

r4e s(z—et 2 _ —ESs 2 T —et —ESs —es 2
—E85— \/_ - + n? 5t(t— s)) e él(jt—s)) e( 5(295) : ef(y 45)
/ / 5 dyds
t—s (s+1)
(x+6t)2
5t

By B28) and 1), for x € (—et + /1,0),
t —es—v/s
[ ] ot Byt s ys
e 2J—-o00

t 1 €
1) /52 \/ﬁds < O(l)z. (4.3)

By (24), (ZH), and 1), for = € (—t + /1, 0),
/ / Gz, t:y, 3)BY(y, s)2dyds

e72<s<t? /(z+et)?
—es+v/s<y<es

Merer 1 g
oQ) /5_2 ((et — x)s3/2 * t251/2> ds

30(1)( c +%> (4.4)

IN

T +et
By @2Z6), BZ10), and 1), for x € (—ct + V/t,0),

G(x,t;y,)By(y, s) dyds

t2/(z+et)2<s<t
—est+y/s<y<es

€ 1

< 01 —

- ()<x+5t+t>
(z—et)® at)

t (z +et)e s—97° 1
O(1 d
* ( )/252/(:1c+z-:25)2 t(t - 5) 1/2 " (t(t - 8))1/25 ’

0(1) ( ‘4 bg(t)) . (4.5)

T+ et t

IN
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By BZ3) and ), for z € (—ct + /1,0),
/ / Gz, t:y,5)BY(y, s)2dyds

e 2<s<t
y>es++/s

< 0(1)/: v s

—2 (et — x)s3/2

V2 (o 4 et)em ST (ot ety STEF
X gt)e 8t X gt)e -s
1 d
o | [, T |
€ 1
< o( 2. 4.6
_O()(at—x+t) (46)

From (), (E4), [EH), and 5], one concludes that for z € (—et + v/t,0)

t —es—/s es—/s *
[ VA R B L AT
2 0 —es++/s es+/s

logt elloge| e|loge|
< 01 . 4.7
- ()( t +x+€t+—x+€t (47)

This proves the cases z > 0 by () and EZ). The case, x < 0 is the
analogous. This proves the lemma. O

The following lemma follows from Lemma through straightforward
computations.

Lemma 4.2.

[t
T .’L',t, yS + S
0 J—es++/s Y (y+€8)2 (y_88)2 Y

—
e
— for x < —et,
< 0(1) L 1 for x € (—¢t, et) (4.8)
= V(ztet)2+t  \/(z—et)2+t T )
(ac—fst)2
e~ 5t

—— for x < —et.
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(y+56s)2 . ,(y—Sss)Q
s e s
/ / Gy(z, t;y, s
s
_ z+8t)2
% for x < —et + /1,
<O i+ L+ jorze(—et+viet—vi), (49)
(zfst)Q
e 5t i
— for x > et NG

For v € (1/2,1]

es—+/s 1 1 nd
)t7 )
//Ew (659, )<<y+es>sv+<y—ss>sv> v

o (z+€t)2
% for x < —et,
< O()q £ for x € (—et,et), (4.10)
(zfst)Q
% for x < —et.

Theorem 4.3. The solution (}(x,t) of @ZR) satisfies, for t > >

)

z x
G (@, 0] < 0(1)<log +elloge |(X[Et+ﬂ’€t*/ﬂ( ) Xatevier-vy(®)

|z + €t |z — et
_ (z+€t)2 Y (zfat)2
e 5t e 5t
+ . 4.11
i) )

Proof. By (B), one can rewrite [Z2Z8) as

/ / (@, t;9,5)C11 (y, 8)C, (y, 5)°

G (@, ty, 5) By (y, )20 (9, )R (B (y, 5)) ) dyds.  (4.12)

By (), there exists Cy such that

C;( ) <(1+0(1 /2/G x,ty, s C( ,8))2dyds + CoWy (x,1),
: (4.13)
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( _ (ztet)?
e 5t

———— for & < —et + V1,
VAR
logt 1 1
+
|z +et| |z — et

_ (zfst)Q
e 5t

VvV1i+t

for 2 € (—et + V', et — V1),

for > et — V/1.

(4.14)
By making an ansatz assumption C;(x, t) < 2CyVq(z,t) and substituting it
into (EEI3), we have, by Lemma E2, C;(:c,t) < (14 0(1)e|loge|)Co¥q(x,t).

Thus, the ansatz assumption holds for ¢ <« 1 and the theorem follows. [

4.2. The transverse fields

For the problem (Z2H]), we will consider the following linear hyperbolic

equation first.

{Zt 5@, 0 20 + d(,0)2 = By (e, ORI(B @, 0), o

Z(x,e7?) = 0.

This is solved by the characteristic method:
¢
Z(wt) = / efi —dE DN ((BU)2, RY(B)) (B(r,x.t), 7)dr.  (4.16)
e—2

Here d(z,t) is given in [Z6). and 9¥BY, #B', k =0,1,2, j = 0,1 in [EX),
(Z3), @10), and ).

Lemma 4.4. There exists Dy such that fort > 1,

t Dy o(1)
FPurthermore,
1Z(2,1)] < O(1)————— for z € R, (4.18)

|z —t|+1
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and
1

Z <OoOl)————
20,0 < O0) gy

for x € R. (4.19)

Proof. The problem [Z21) for x € (—¢t,et) admits a self-similar solution of

the form

2(x,t) =t m(z/t),

with m(&) given by

—&mg + Nyme + d(§)m = BY for € € (—¢,¢), (4.20)
m(—e) =0,
and
d(&) = td(x,t), € = a/t,
B5(€) = #* By (x, 1)1 (x, t) RY (B' (2, 1)), € = /1.
Thus, under the condition € < 1 one has that
m(e) = O(1)e, (4.21)
and
1
Z(t)2.t) = Z(%(l +22)(1 = 2)t, 5 (1+22)(1 - <)),
This leads to
m(e)
Z(t/2,t) ~ , 4.22
(t/2.1) T(1+2e)(1—e)t (4.22)
and this determines the constant Dy:
2
= m(e) (4.23)

Do = e(1+2)(1—¢)

By @), 3), |d(z,t)| <|O(1)Bi(z,t)|, and the representation ([@IH),
one has that
|2(t/2,t) — Z(t/2,t)|
t
/ , eth _d(E(th/Qat)ag)dU ((B;))QIQR/{(B’U)
o
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~(ByPLRI(B)) (B(r,1/2,), 7)dr

IN

0(1)/ |((By)*12R{(B) — (B,)*l3R{(B"))| (E(r, 2, t), 7)dr

—2

= O(1)t3/2. (4.24)

This and @Z3) conclude [IT). The estimate [EIX) follows by a similar
analysis; we omit its proof. For the proof of the estimate (EI), we differ-
entiate (L10) in x, and use the estimate ([IF]) for the inhomogeneous term
X5, Z and (Z3) and I0) for the inhomogeneous term BYBY,. Finally, the
estimate (EEI)) is proved by the characteristic method. O

The self-similar solution z(x,t) of [ZZ1) asserts the solution Z(x,t) of
the hyperbolic problem is rather regular in a domain close to z = ¢/2. Then,
one considers a viscous nonlinear problem without the quadratic nonlinearity
in the second equation of ([ZZ0)):

{5tvo + X50,09 + dv9 — 9209 + 0u(X[—002t/3 (1) 03 (v9)?) = (BY)*L2RY,

vO(x,e7%) =0.
(4.25)

Lemma 4.5. (Outer Nonlinearity) The solution v®(z,t) of @ZH) satisfies
O (t)2,t) — % <O)t3/2, (4.26)

where Dy is given by [EZ3).
Proof. By substituting Z(z, t) the solution of (f13) into ([E2H), the difference
oz, t) =09 (x,t) — Z(z, 1) (4.27)

satisfies

Oy + N300 + di — 020 + O (X[—co,2t/3 (2)C3,0(20 + Z)) = 032
t(x,e72) = 0.
(4.28)
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Then, one uses the Green’s function Ga(z,t;y, s) to represent 0(z,t) as fol-

lows

t
@(.%', t) - / 5 AGZy(xa Ly, 3)()([700,23/3] (y)0222(Z + 2{))@ + Zy)(yv s)dyds.
—
(4.29)
By the estimate of Z, in (EI9), one has that

t _(x_t)2 \/%
o e Goy(x,t;y,5)Zy(y, s)dyds < O(1) | logte™ st~ + m .
(4.30)
This leads to the ansatz assumption
X _G=n? Vi
O(x,t) < O(1) <log te” s+ m) . (4.31)

Under this ansatz assumption and together with the cut-off nonlinearity,
X[—00,25/3]C32(Z + 20)0 < |Z, ], (4.32)
we have from BZ1), (B822), and the representation [EZ9) that
[6(t/2,1)] < O(1)t3/2, (4.33)
This, @I7), and [Z7) conclude the lemma. O

With the constant Dy given in ({23]), we now concentrate on the effect
of genuine nonlinearity to the solution around the characteristic x = ¢ by
considering the following initial value problem for the translated Burgers
equation

vtl + vi + vlvi = véw

0 forx >1
=5 4.34
vl(z,0) = eDy (4.34)
——— for z < 0.
2(1 —2)

Lemma 4.6.(Inner Nonlinearity) The solution v!(x,t) of @34) satisfies

D O(1)e
I 0
v (t/2,t) e < TR

(4.35)
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Furthermore, the function v!(x,t) satisfies

3

I
[v" (x,t)] < O(l)m.

(4.36)

Proof. The function
u(z,t) = 14" (2,1),

satisfies the Burgers equation u; + uty, — uzz = 0. Then, one can use the
Hopf-Cole transformation to express u(z,t) as follows

_(@=y=t)? eDg
fo € ® (1-y) 1 d
=1 + 6‘DO —0o0 Vamnt Y (4 37)
B 2 _(z—y—1)2 €Dg _(z=y—t)? ’
fO e & (1—y) 4 dy + foo R
—o0 vant 0 Vit Yy

Thus, for t > 1,

vl (t/2,t) = u(t/2,t) — 1

n

eD, ) 2 eD,
(1+t/2) ! <1 + 5 s (1 + 115)70*1 - 1)d77>

o ED()
eDy o o F 0 12D
(1+t¢/2)72 <1+f—t/2\/4_7rt((1+1+;) 1 —1)d7]>
ED() 1
= 2(1+01)=). 4.38
2 (1+0m) (4.38)

The same expansion also works for z < t — v/t and we have

2

Do _ o o g _
b (t—xz+1)7 1<1+fm_w4_7:t((1+1+;7x) 7 1—1)dn>
1 0
t) =
v (ZCa ) 9 <Dy - 67% ) <Dy
(t—z+1) 7 (14 [2, = (04 =) T = Ddn
w1)

t—xz+1

€D0

= —2 <1 +0(1)

t—x+1 (4.39)
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Around the characteristic direction, |2 — t| < v/t, we consider the following

cases:

Case 1. Dy <0

From
o0 e (x_i/i_t)2
0o Vi W =14 (4.40)
_(a—y—t)? D :
fi)oo %(1 —y) T ldy < O(1)/VA,
we have
ol (z,1)] < 0(1)% for |z — t| < V4. (4.41)

Case 2. Dy € (0,1).
For any fixed a € (—1,00), one has the following scaling property
o0 12
/ e~ T a%dx = O(1)t /2 (4.42)
0

whence one has, for |z —t| < O(1)V/%,

,(zftfy)Q eD, eD,
0 £Dg eDg
L=y Ty~ (1485, .13)
7(17?/702 eD eD ’
0 LA eDg _ eDg 1
S (L =y) F Ty ~ (1 1)
From this one also concludes that
ol (z,1)] < O(1)-= for |z — t| < VX. (4.44)

Vi

For = >t ++/t, one has

(x—y—t)2 eD, 1
fO e 4t (1-y) @ — d
> VArt Yy
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eDg 1 _ (z—t)2
t7 4 2e 5t
S — for Dy > 0,
ta e st 41
< 0(1) (4.45)
1 (a—t)?
t 2e 5t
T for Dy < 0,
t7a e Tt +1
and again we conclude
(z—1)2
I e 5t
v (z, )| <O1)e———— 4.46
v (z,1)] < O(1) 7 (4.46)
This completes the proof of the lemma. O

Remark 4.7. The series of reductions that leads to the problem (E34])
allows us to use the Hopf-Cole transformation for exact estimates of the
effect of the rarefaction wave on the transversal genuinely nonlinear field.
This exact analysis of the leading term yields, in particular, the lower bound
estimate (CI3)). Without these reductions, one would need to study problem
of the Burgers-like equation with a source, a problem to which the Hopf-Cole
transformation in general cannot be applied for definite estimates. Such an
approach, however, has been used, c.f. (3.18) to (3.22) in [12].

One denotes by v™ (x,t) the interpolation
M _ Lo L\ o
v (xut) = X+(.TJ - 575)’[) (1‘,t) + X_(.%' - 575)’[) (1’,t),
where x4 is a partition of unity with supp(x/;) C (=1,1) and x4(1) = 1.

Lemma 4.8.(Matching Nonlinearity) The truncation error of function v™ (x,t),

E(z,t) = — (&gvM + /\gv;” + doM — v% + ((’UM)20222)1 — (B;))ngle) ,
(4.47)
satisfies
_elz—3l

t3/2 :

This lemma is a consequence of (26, ([E30), (ZI9) and EZ0).

& (x,t)| = O(1)e (4.48)
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Theorem 4.9 The solution (3(x,t) of @ZH) satisfies

_(z—1)?
c = forax >t
\/z — 7
C(2,0)] < O(1)e d ———— for € (—et,1)
PR t+ [z —t2 w7
_ (atet)?
e 5t
—a for x < —et.

Proof. The function
’U)(J,‘, t) = Cg(mu t) - ’UM(xv t)a
satisfies

{wt + Nswy + dw — wep + (02w +vM)C2,), = &,

w(z,e72) = 0.

Similar to [@29), the representation of w(z,t) is
t
wlot) = [ [ Gayfatin. o) (Chu(zuw + ™))y, sdyds
e2 JR

t
+ / / Ga(z, £y, )& (y, 5)dyds.
e=2JR

Under the property ([ZS]), one has

g
Vi |z =t

This leads us to the ansatz assumption for w(z,t):

t
/ / Go(z,t;y,8)E(y, s)dyds < O(1)
e 2 JR

€

Vit e =t

w(z,t) <O(1)

[June

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

By substituting this ansatz assumption into (EXI), one concludes that
f;,Q Jz Ga(, t;y, )& (y, s)dyds is the dominant term in the representation
@XRT), and that the ansatz assumption ([ER3) is justified. This proves the

theorem.

O
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5. Linear and Nonlinear Coupling

We now study the secondary nonlinear system (EZ30). Its solution &

satisfies

t 2
— /_Q/RGx(x,t;y,s)< > Cék(ﬁ(§+22gﬁl1rky>

ok D)(1,1,1)

2
G(z,t;y, s 22 Gy (L7 gy)ydyds
k=1

t
+ / B /R G(w,t;y,s)h(;( > GGrCE ey — roy(ha — BY)G

1<l,;m<2

+rkyygg> ) dyds

Ay KERCTR (Chf%%l rhe Yy SEIEE
e (5,k,1)#(1,1,1)

2
+> 2§kl1rky> dyds

k=1

t 2
+ /52 /R(G’(-T’t;y, 5)( - ll’f'2a:()\2 - Bv)f2 + ; < — ka(ll’l“ky)y

oy e

5 Clkmrky + Tkyy§k>)dyds, (5.1)

1<l,;m<2

t .
t) = /E_Q/RGzy(x,t;y,S)< Z C}kgg)gj_ (Ao —A§)>dyds

(]7]{:71)#(27272)

t 2
] Gz(ﬂﬂ,t;y,s)lQZ( ) —cﬁm<;<y2rky+myy<§)dyds
e~ 2 JR

k=1 “M1<I,m<2
2

¢ 2
—|—/ . / —Goy(z,t;y, s)ls Z 2'rkyg“;; — Go(z,t;y, s) Z 2(l2rky)yggdyds
e~ R k=1

k=1

t Ciighet+260¢k
+/ /Gzy(Sﬂ,t; Y, 5) <C§z€2(2§2+43)+ >, )dyds
TR (kD)A(2:2.2)
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t 2 Cljn Cl§m+2€l€m
+lQAG2($;t;y)S)lZZ( Z l (p 5 )2rky+rk‘yy£k)dyd5

k=1 *1<I,m<2

2
/ / GQy x)taya l222’l"ky£ G2 :C L Y,s 22 l2’l"k-y yé- dyds (5 2)
k=1

k=1

The representations (BJl) and (B2) can be expressed in the forms:

! =
ZD/QAGﬂ%t%®®H%@+Wmﬁ¢D
+G(z,t;9,5)(SE(y, s) + Ubly, ;€))dyds,  (5.3)

t
0 = [, [ Galetins)(E0.5) + Uiy sid)
.
+Ga (@, t;,9)(Sp(y, 8) + Uply, s:))dyds.  (5.4)
The functions S,

1) and @Z9). U and Uj, i = 1,2 are functional of €. The functions S,
and S} satisfy

and Sz, 1 = 1,2 are determined by g:;?(x,t), estimated in

Sh(@,t) = O + GG+ IBL(G +1¢2D),  (5.50)
Sh(@,t) = O(1) (1B + G2 BL + |G I(Bo |+ B2)), (5.5D)
S3(z,t) = O(1) (102 + (G2 + 1B" = BUIGI) . (5:5¢)

and
S2(z, 1) = O(1)| BL.G. (5.54)

5.1. Lemmas for linear and nonlinear coupling

We list in below the lemmas that will be used later for the study of

coupling of waves. Their proofs are by direct calculations and omitted.
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Lemma 5.1.(Nonlinear coupling to the primary field)

ss+\/_
/ /ss Vs

ss+\[
/ /ss Vs

l o
(z,ty, s )|Og8| dyds
1 _ (ztet)?
Ze* 5 for x < —et + /1,
1 a+1
£l log e og:] for x € (—et +V/t,et — V1), (5.6)
1 _(@—et)?
{ ;ef = forx > et — Vi,
1
(x,t;y,8) dyds
s\/|ly—es|*>+s
1 _ (@ter)?
Ze_ 5 forx < —et + Vi,
1
n for x € (—et +/t,et — V1), (5.7)
1 (z—ct)
;ef 5 forx > et — Vi,
G, iy, 8)————dyd
x 8)—————dyds
X M 7y7 (y _ 8)2 + S y
(1 (z+et)?
—e Bt orx < —et + \/f,
7 for x <
1
7 for x € (—et +/t,et — /1),
1537 fOT’ T € (€t — \/E, et + \/%), (58)
1
for x € (et +t, t — V1),
(t —x)(z — et) ( )
1 _@-?
\ me t forx >t — Vi,
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t s++/s 1
/ / Go(z,t5y,5) dyds
2 Jes—/5 s\/ly —es|?> +s
( _(x+st)2
5t
¢ ; for x < —et + V1,
1
7 for x € (—et +Vt,et — /1),
_ logt
= 0Q1) % for x € (et — \/t, et + /1), (5.9)
logt
o8 for x € (et +Vt,t — V),
(x —et)\/(t —x)
logt _ (z=t?
t s++/s 1
[ AT ——
e=2 Jes—/s S \y—s[2—|—s
1 (ate)?
;6_% for x < —et + /1,
1
7 for x € (—et + /1, et + /1),
= 0(1) (5.10)
Vi — logt
< o8 for x € (et +/t,t — V1),
tlx—et)  (t—x)\/(x—et)
logt _(=—t?
%6_ 5 for x>t —/t.
t s++/s 1
Gylx, tyy,s) ——————dyds
/52 /53—\/§ ’ ) ly —es|? +s
logt _ (a+et)?
( %6_ 5 for x < —et,
1
— or x € (et — /T, et + V1),
N7 forz € )
logt 1
= 0(1)¢ -2 for € (—et + Vi, et — Vi), (5.11)
t t(et — x)
1
T for x € (et +Vt, t — V),
|z — et
_ (z—t)?
e > for x>t —/t,

t
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Lemma 5.2.(Linear coupling to the primary field)

1 1 1
4y, + dyd
[ g (e s s

([ (@ten)?
C X Jorw<—ct+ A,
t3
=0(1) ( = + = )forxe(—et—i—\/iat—\/%), (5.12)
T+et et—=x
_ (z—et)?
%faer&t—ﬁ.
2

Lemma 5.3.(Nonlinear coupling to the transverse field, A)

(y—

(W—E(s;z,t)?
5(t s) 1 1 1
+ + dyds
/ /as—i—\/_ t—s ((y—é’)2 (y —es)? (y+€8)2>

_ (y—E(siz )2

//as—l—f ts—(t: <\/((?/—8)2+81)((?/+8s)2+5)

1
i dyds
V((y—s)2+s)((y —es)? + 8))
,(Z+Et)2
% for x < —et++/t
o) | Ve * T for o € (—et + Vi,et — V),
1 L )
V/ (t—z)(z+et) + S0 for z € (et + Vi, t — V1),
o—1)2
e P

(5.13)

Lemma 5.4.(Nonlinear coupling to the transverse field, B)

w=S(siz))? ))2

—es++/s t—s 52 (y_53)2 (y+€3)2 S Y
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( _(z+st)2
5t
¢ 2 forx < —et+ Vi
1
- for x € (—et +Vt,et — /1),
= 0(1)( 1 (5.14)
W forxe(at—i-\/f,t—\/Z),
_ (z—t)?
\e \/? foert—i—\/f.

5.2. The Global Pointwise Estimates of the Perturbations

Finally, we finish the estimates for the secondary waves in the pertur-
bation of the rarefaction wave. From (&.3), one has

t
/ / G, £, 5)SL (1, ) + Gz, £y, 5)S} (v, 8)dyds
e=2JR

_(ac+st)2
5% for x < —et — V1,
glogt e?|logel? £2|logel|? et —
= 0(1) < et Vit (atet)? + \/t+(ac—at)2) for x € (—et — Vt, et + /1),
&2 B
(z—et)(t—7) for = € (et + V1, t — V1),
_@—t)?
82% for x >t — V1,
(5.15)
t
/ / Gay(2,t;y,5)S2(y, ) + Ga(z, t;y, s)Si(y, s)dyds
e 2JR
( 7(z+st)2
5t
etT for x < —et + V1,
;3/2 for z € (—et + V1, et + V1),
< o) @=1 .10
___ e B
ooy oreelett Vit =),
_(@=t?
e ot
kgw for = 2 t— \/E
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With (EIH) and (EI6), one is led to the following ansatz assumption on &:

€ (2,1)] = O(1) ¥ (x,1),
) (5.17)
2 (z,1)] = O(1)¥?(x, ).

l(e,l) = ¢ X[—et+V7,et—1) (z) X[et+vE etV (x) N X[t (@)
Vit (z+et)? Vit @ —et)2  (z—et)t—a)

Velogt
t o X et (z)

(wtet)? (z—t)2 (2—t)2
5t e 5t e 5t
_l’_

t1/2 + t1/2 )

€
+e

t1/2
(5.18)

\IlQ(x 1) = ¢ X[—et-+VEt—V1 (95) n Xlet+v/Et— V7] (95)
’ Vi —t)(z+et) (z—t)(z—et)
_ (wtet)? _(z=et)? _(@=1)?
5t 5t

e 5t e
- -

e

+e

$3/4 $3/4 t1/2

1
+O(1)eX (et \/ﬁ

Under the ansatz assumption (BI7) and (BIX), the functions U

a

and [UZ
satisfy

Uily: 5,€], Ualy, s, €] = O(1)8(x, 1), (5.19)

where

for y <—es,

2 1 2
5‘*’(;—55)2 + s+(;+65)2 + £ c;g?S) for y € (—es—/s,e5+/s),

S(z, t)
for y € (es+ /s, — \/s),

for y > s —+/s.
(5.20)
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(T9), Lemma B, (&13), and (BI4) together yield

t
/ / G(z,t;y, s)TU(ll[y, s;&)dyds < \Tll(x,t),
e IR (5.21)

t
/ / Gy (0,15, ) U2y, s: Eldyds < B ().
e~ 2JR

The function Ué is dominated by the linear coupling term in the expressions
with a coeflicient lekamrj:

Ubly, 5:€), UZly, s:€] < O(1)|BE[F2(y, 5). (5.22)

This results in

t
/ / G(z,t;y, s)TUé [y, s;€]dyds < \T/l(x,t),
e 2R (5.23)

t
/ / Golz, t;y, )2y, ; Eldyds < B2(z, t).
e=2JR

Thus, (BIH), GI6), (22), and 23) conclude the ansatz assumption
(ETD). From the decomposition (Z29), and the estimates (EIT), [EZ9) for

the primary waves, and finally, the estimate ([BI7) for the secondary waves,
we have established the estimates for the perturbation of the rarefaction
wave of the same form as our main Theorem [Tl when the characteristic
fields are genuinely nonlinear. We have carried out our analysis when there
is only one transversal characteristic field besides the one associated with
the rarefaction wave and that transversal field is genuinely nonlinear. In the
next section we will consider the case when there is a transversal field that

is linearly degenerate.

6. A System with Genuinely Nonlinear and Linearly Degenerate
Fields

Finally, we indicate through the Fuler equations in gas dynamics the
difference between genuinely nonlinear and linear degenerate fields in term
of the coupling with the rarefaction wave. For simplicity we consider the

polytropic gases:
ut + F(u), =0, (6.1)
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p pu
u= U , F(u) = pu? + pb
2p(u® + 30) Spu(u® +50)

The first and third characteristic fields
M =u—+/50/3, As = u+/50/3,
are genuinely nonlinear, and the 2nd characteristic field
Ay =1

is linearly degenerate. This gives rise to three different behavior for the

perturbation of a rarefaction wave for the viscous system
ur + F(u)y = ugy. (6.2)
Let (u_,uy) be a weak l-rarefaction wave with the property
—AM(u-) =XM(uy) =¢>0. (6.3)

As before, one uses ([ZI4) to define the approximate solution v®(z,t) to

approximate the hyperbolic rarefaction wave Ry (\(x,t)):

v(z,t) = Ry (B (x,1)); (6.4)
and denote
C(z,t) = t(z,t) — v%x,t). (6.5)
This function ¢ satisfies
G+ (F'(v")C)a — G + No = —(BL)?R{(BY), (6.6)

where

N=F@*+()— F(v*) — F'(v*)(.
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The nonlinear term N (z,t) can be expanded component-wise as

ZN (x,t)rj(x,t),

N (1) = Z Cligh¢! + 0P,
1<k,<3
Ol (x,t) = L F"(v) (g, m),
(6.7)
C%Q(ioovt) - 07
Li(z,t) = 1;(0% (2, 1)), 752, t) = 7;(0% (2, 1)),
3
E Z xz, t 'rl x, t
The primary nonlinear system for (E71) is
(Gt (B'G)a = Gpaa + (CL(G)P)e = (W RD)(BY)?,
(primary field)
Gt T A5Cpe + da (@, 1)) — G = (LRY)(B)?,
(degenerated transverse field), (6.8)
Gt N3G + d3(@, )Gy = G + (C33(G)°), = (s R)(BR)?,
(nonlinear transverse field),
Cll)(x,s_2) =0forl=1,2.
A3(x,t) = Aa(Ri(B'(, 1)),
Aj(z,t) = A3(Ri (B (2, 1)), (6.9)

dy(w.t) = (A, + (A = B (Ry (BY)rjo(Ry (B)) ) for j = 2.3,

The second equation in (B) is a linear equation with almost constant coef-

ficient transport-diffusion equation, as [B2Zd) plus a source. The source
(aR))(By)?

is non-zero as the coupling coefficient Iy R/ is non-zero for general constitutive
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relations, and in particular for the polytropic gases. The main part of the
source therefore is of the form

1 " 1
Cis < (Lo R)(BY)? (x,1)| < Casy, [a] <et.

Thus the main contribution to Cg, the solution of the second equation of
(63), is an integral involving the Green’s function G, like that of [B32):

t s 1
/ Ga(z,t;y, 8) 5 dyds. (6.10)
e=2J—es s

Direct calculations yield the following upper and lower bounds for the inte-
gral and thus for the solution (2(z,1), t > e~

(z—2F1)2
1 1 (1 t) e Do(l+t)
oo V1i+t
(z—2g )2
e Do(l+1)
< |3 (x,t)| < Celog(l + t)———— for |z — A\Jt| < Vt, (6.11
< G (1)) < g( )m | 2t < (6.11)
(z—x2f )2
1 e~ Dottro
2 +
z,t)] < Ce|l —— +1log(1 +t)—— | for z € (—et, \It — V1),
‘Cp( )‘ >~ <|$—)\;t| g( ) \/1—+t ) ( 2 )
(6.12)
_ (ac+5t)2
5 e Do(i+D)
Kp(x,t)\ S CW for x S —€t, (613)
and
(z—2f )2
) ¢~ Do -

The component C; is estimated by similar arguments for the proof of Theo-
rem 3 for ¢ > 2

logt X[—et+v/t,et—1] () X[—et+vEet—1] (z)
! < 0| — 1 ’ :
b 0] < OB 4 cftoge (et I Xt
_ (z«;&t)Q Lem (z;&t)Q
e t e t
+ : 6.15
Vit >> (6:15)

and one can apply the idea for the proof of Theorem EEd to yield the estimate
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for Cg:
([ @f0?
e 5t
for © > A\it,
Vit . -
G, t)| < O(1)e —  forz € (—et, A7), (6.16)
4|z — A3 t)?
_ (x+6t)2
e 5t
for x < —et.
t2

The system for

3
E Z xtrjxt

satisfies

( . .
£§+<vil>z—f;$+<0%151<251+<;>+ > C§k<5ﬂ+<g><5k+<;f>)

Gk D2(1,1,1) g
—l1<zrkx< Cp+§k

> G+ +£’")>

1<l,m<2

+'f’km(45+fk)—2?:2 Tlm(Al_BU)C;%)a

€4 (M)t (ha— BY)E2ora, — 2, + ( e 5J+<J><5k+<p>)
D E2.2,2)
()‘2 )‘Q)Cpm ()‘23? AQJ})C}%

+l2<227’m( 46— D Cln(G+ENG! +5“’L)) Tk +Cp>>

1<i,m<2
&+ (N\36%)o+(N3—B")E3rs, — €3,

+ (033353(253 +CS) DG,k 1) #(3,3.,3) le'k(fj +) ek +C£)>

1<i,m<3

T

f(:ce) 0.
(6.17)
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Similar to the representation in (B3) and (B4)), one has that

¢z,t) = / / Gl t;y, 8)(S(y, s) + Ubly, 5:€]) + G(x, t;, ) (S (y, 5)
e=2JR

+ Uy, s; &))dyds, (6.18)

t -
E(at) = / / Gy (2,59, 8)(S2(y, 5) + U2[y, ;1) + Gl £, 8) (S (31, )
e=2JR

+U3y, ;€])dyds, (6.19)

t -
&(x,t) = / /Gsy(x,t;yﬁ)(gi(y,S)+U2[y,8;§])+G3(x,t;y78)(52(y78)
e 2JR

+Ujly, s; €])dyds, (6.20)
where the functions satisfy

Sa(,t) < O(M((G)? + 16,61 + 1BIGD;
Sp(x,t) < O(1)| BICH,
Sa(z,t) <O1) (GG + (6)?)

(z,t) < 0(1) (1661 + (6)?) (6.21)
Sp(x,t) < O(1)| BL,Gl,
Sa(z.t) < O(1) (IGG]+(6)?)
Sp(x,t) < O(1)| BL,Gl,

and Gy and G3 are similar to the Gy constructed in (B33).

One makes an ansatz assumption on E,
1€ (x, )| < O(1) W (x,t) for i =1,2,3 for t > &2, (6.22)

where

\Ill (;p’ t) = ¢ (X[EtJr\/E,Et\/ﬂ (1’) X[EtJr\/z,stf\/ﬂ (1’) X[—Et,k;t—\/ﬂ (1’)

Vit+ (x4 et)? " Vit (z —et)? +\/($_€t)u;t_x)

X[_gt)\gt_\/ﬂ(x) ) n \/Elogt
)

W(x SOt -z o Manviava)
v
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7(ac+5t)2 7(7)—615)2 7(95—)\3_1)2 7(35—&3_1)2
5t 5t e 5t e 5t

e
+6( t1/2 + t1/2 + t1/2 + +1/2 ’
_ 5< X[—et+virgt—va (@) L Xetrvirfe-va ()
JOFt—a)@+et) /Ot —a)(@ - et)

X[—et+vEA t—V1 (z) x [et-+VENT t—/1) (z)
* + (At — x)3/2
(x—=AJt)2+t 3

7(ac+5t)2 7(7)—615)2 7@7}\;02 (I*A;t)Q
5t e 5t e 5t e 5t

e
+€< $3/4 + $3/4 + t1/2 + t ’

X[—et-+VIAT t—V1] (z) . Xlet-+VIAT t—V1] (z)
VoIt —a)@+et) Ot —2)(@—et)
L+ X[—et+vEAFt—V1] (z) Xlet+vE T t—V1] (x)>

U3(z,t) = 5<

+
\/(x —At)(z = AJt) (A5t —x)
7(z+st)2 7(:1}*8t)2 7(1*)\;t)2 - (zfA;»t)Q
e 5¢ e 5¢ e 5t e 5t
. 2
—i—&?( T R T e ) (6.23)

Then, by the procedure in Subsection 5.2 the ansatz assumption can be
justified. It yields the global estimate (G22). Finally, by (622) and (GEIT)
have the lower bounded estimates

11 1 (x5 )2
C(x,t) > (—E - C’—> e~ s for lz — A | <Vt (6.24)

This proves the main theorem Theorem [Tl in this case.

Remark 6.5. There are important differences between genuinely nonlinear
3-characteristic field and linear degenerate 2-characteristic field: The pertur-

1/2 for 3-waves; and t~1/2logt for 2-waves. The

bation decays at the rate t~
Burgers nonlinearity for the 3-characteristic field induces this faster decay
rate as we have seen in Section 4 and Section 5. For the linearly degenerate
2-characteristic field, there is no quadratic Burgers term. Thus the main
contribution is the integral EIM) with the Green’s function Gy similar to
the heat kernel with speed Ao. This gives the t71/21logt rate. The fact that
there is no quadratic nonlinear term as the source also allows ansatz (622

to be closed such a lower decay rate.
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