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Abstract

The object of the present paper is to introduce and study
a new class of multivalent analytic functions associated with an
integral operator Qj which was investigated recently by Jung,
Kim and Srivastava [J.Math.Anal. Appl. 176(1993), 138-147].

1. Introduction and Preliminaries

Let A(p) denote the class of functions of the form
f(2) =2+ anz"? (pe N={1,2,3,---}), (1.1)
n=1

which are analytic in the open unit disk U = {z : z € C and |2| < 1}.

Suppose that f(z) and g(z) are analytic in U. We say that the function
f(2) is subordinate to g(z) in U, and we write f(z) < g(z) (z € U), if there
exists an analytic function w(z) in U with w(0) = 0 and |w(z)| < 1 for all
z € U, such that f(z) = g(w(z)) (2 € U). If g(2) is univalent in U, then

the following equivalence relationship holds true.

f(z) <g(z) < f(0) = g(0) and f(U) C g(U).
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For functions f;(z) € A(p) (j =1,2) given by
[i(2) =22+ an 2P (j=1,2),
n=1
we define the Hadamard product (or convolution) of fi(z) and fa(z) by

(fr# f2)(2) =22+ anian22™P = (f2 5 f1)(2).

n=1

Recently, Jung, Kim and Srivastava [3] introduced the following integral
operator Q3 : A(1) — A(1) :

Q%ﬂ@=:<azﬂ>§%1f<1—g>a1#%@mt

(@>0,8> —1; f(2) € A(1)). (1.2)

Some interesting subclasses of analytic functions, associated with the opera-
tor QF, have been considered by Jung et al. [3], Aouf et al. [1], Liu |4, €, [7],

Liu and Owa [4] and others.

Motivated by Jung, Kim and Srivastava’s work [3]. we consider a linear

operator QF : A(p) — A(p) as following:
wen  [Prat+tB—1)a [* N\
Q) = ( S ) (-0 o

(a=0,8>-1;f(2) € Alp)). (1.3)

It is easily verified from the definition (3 that
2QFf(2)) = (a+B+p—-1QF ' f(2) — (a+5-1QFf(2).  (1.4)

Let P be the class of functions h(z) with h(0) = 1, which are analytic

and convex univalent in U.
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Now we introduce the following subclass of A(p) associated with the
operator Q%‘.

Definition. A function f(z) € A(p) is said to be in the class M), o 3(A; h)
if it satisfies the subordination condition

A
(1=A)z"Q5f(2) + 52*p+1(Q§f(Z))' < h(z), (1.5)
where A is a complex number and h(z) € P.

A function f(z) € A(1) is said to be in the class S*(p) if

Re{széij)} >p (z€U) (1.6)

for some p(p < 1). When 0 < p < 1, S*(p) is the class of starlike functions
of order p in U. A function f(z) € A(1) is said to be prestarlike of order p
in U if

m *f(z) € 57(p) (p<1). (1.7)

We note this class by R(p) (see [10]). Clearly a function f(z) € A(1) is in
the class R(0) if and only if f(z) is convex univalent in U and

1 1
Rl=-)=5(=].
(z)=5C)
We need the following lemmas in order to derive our main results for
the class M, o g(A; h).

Lemma 1. Let g(2) be analytic in U and h(z) be analytic and convex
univalent in U with h(0) = ¢(0). If

g() + %zg%z) < h(2), (18)

where Rep > 0 and p # 0, then

g9(z) < h(z) = pz™* /Ozt FIh(t)dt < h(2)

and h(z) is the best dominant of (R).
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Lemma 2. Let p < 1, f(z) € S*(p) and g(z) € R(p). Then, for any
analytic function F(z) in U,

g* (fF) =
e (U) Ceo(F(U)),

where ¢o(F(U)) denotes the closed conver hull of F(U).

Lemma 1 is due to Miller and Mocanu [9] (see also [2]) and Lemma 2

can be found in Ruscheweyh [10].

Lemma 3.(see [8]) Let g(z) =1+ 2, bp2" (k€ N) be analytic in
U. If Re{g(2)} >0 (z€U), then

Re{g(2)} =

2. Main Results
Theorem 1. Let 0 < Ay < Ag. Then

Mp@,ﬁ()\g; h) C Mp7a7g()\1; h).

Proof. Let 0 < A1 < Ay and suppose that
9(2) = 27PQ3f(2) (2.1)

for f(z) € My, o 5(A2; h). Then the function g(z) is analytic in U with g(0) =
1. Differentiating both sides of ([II) with respect to z and using ([CHl), we
have

—-pHo A2 _ o
(1= X)27PQ5/ () + 227" H(Q5/ ()
Ay,
=g(z)+ ;zg (2) < h(z). (2.2)
Hence an application of Lemma 1 yields

g(z) < h(z). (2.3)
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Noting that 0 < i—; < 1 and that h(z) is convex univalent in U, it follows

from 1) to Z3) that
A
(1—M)2PQ5f(2) + jz*p“@%ﬂz))’

=5 ((1 — X))z PQSf(2) + %z‘p“(Q%f(Z))’) + (1 - i—;) 9(2)

=< h(z).
Thus f(z) € M, o 3(A1;h) and the proof of Theorem 1 is completed.

Theorem 2. Let A > 0,7 > 0 and f(z) € My op(M\syh+1—7). If

—1
1 p [Lukt
- (1-2 9.4
0 2( A/01+ud“ : (2:4)

then f(2) € My 5(0;h). The bound o is sharp when h(z) = .

Y < o, where

Proof. Let us define
9(z) = 27PQ3f(2) (2.5)
for f(z) € Mpap(A;vh+1—7) with A > 0 and v > 0. Then we have

o(2) + %zg’(z) = (1- N2 PQ3f () + %z‘p“(Q%f(Z))’

< vh(z) +1—1.

Hence an application of Lemma 1 yields

g(z) < ¥z7§ /0 ARt + 1 —~ = (hx¥)(2), (2.6)
where
z 421
tx
W(z) = lfz_§/0 Tt 1. (2.7)

If 0 < v <79, where o > 1 is given by (Z4), then it follows from (ZTI)
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that

1
Rey)(z) = 77 uxRe < Z) du+1—r

|
/

Now,by using the Herglotz representation for ¢(z), from [ZI) and ZH) we

du—i—l—'y

1
> =
- 2

arrive at
27PQ3f(2) < (hx9)(2) < h(2)
because h(z) is convex univalent in U. This shows that f(z) € M, 4 3(0;h).

For h(z) = £ and f(z) € A(p) defined by

W o_p [FEAT
Q) = Wk [ a1y

it is easy to verify that
—p o A —p+1 «@ /
(1=X)zPQ3f(2) + P (Q3f(2)) =7h(z) +1 -~

Thus f(2) € My o p(A;vh 4+ 1 —7). Also, for v > v, we have

1,21
- ap [ uA 1— 1 1
Re{z PQ§f ()} — A/O L1 -y <5 (=),

which implies that f(z) ¢ My ,(0;h). Hence the bound 7y cannot be

1

increased when h(z) = =.

Theorem 3. Let f(z) € My, o 3(A\;h),
g(z) € A(p) and Re{z"Pg(z)} > % (ze€U). (2.8)
Then

(f *9)(2) € Mpap(A; h)).
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Proof. For f(z) € My 3(A;h) and g(z) € A(p), we have

(1= N)=PQ5(f * 9)(=) + %z—p“@%(f )2

— (1= N (= Pg(2) * (= PQEF() + %wg(z)) L (PHQIF())
= (27Pg(2)) x¥(2), (2.9)
where
b(z) = (1 - N2 PQ3f(2) + %zp“@gf(z))' < h(z). (2.10)

In view of (), the function 2 Pg(z) has the Herglotz representation

2 Pg(z) = /| dya() (z € U), (2.11)

z|=1 1—2z

where p(x) is a probability measure defined on the unit circle |z| = 1 and

/ du(z) = 1.
|z|=1
Since h(z) is convex univalent in U, it follows from (Z9) to (I that
A
(1=X2)z""Q5(f *9)(2) + Ez_p“(Q%(f *9)(2))f
= [ pnte) <hie)

This shows that (f * g)(2) € My o (\; h) and the theorem is proved.

Corollary 1. Let f(z) € M, o 3(X;h) be given by (L)) and let

m—1
sm(2) =22+ Y anz"P (me N\ {1}).
n=1

Then the function
1
om(z) = / t Psp(tz)dt
0

is also in the class My o g(A;h).
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Proof. We have

onlz) =+ mz I (Fag)(s) (meNV{L), (212)
where
ﬂ@—w+§pzﬂumgwun)
and -
i) =2+ 3 2 e )

Also, for m € N \ {1}, it is known from [11] that

m—1 n
Re{zPgn(2)} = Re {1 + Z ni_ 1} > % (z€U). (2.13)
n=1

In view of (ZI2) and (ZI3)), an application of Theorem 3 leads to o,,(z) €
Mp7a7ﬁ()\; h)'

Theorem 4. Let f(z) € My, o 3(A\;h),
g(z) € A(p)and z7*1g(2) € R(p) (p < 1).

Then
(f*9)(z) € Mpap(A;h).

Proof. For f(z) € My, o 3(A;h) and g(2) € A(p), from (ZH) (used in the
proof of Theorem 3) we can write

(1= N)=PQ5(f * 9)(=) + %z‘p“(Q%(f )2
() « ()

(P g(2) * 2

(z € U), (2.14)

where 1(z) is defined as in (ZI0).

Since h(z) is convex univalent in U,

U(2) < h(2),27" 1g(2) € R(p) and z € S*(p) (p < 1),
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it follows from (14 and Lemma 2 the desired result.
Taking p =0 and p = %, Theorem 4 reduces to the following.
Corollary 2. Let f(z) € My (A h) and let g(z) € A(p) satisfy either
of the following conditions:

(1) 27Pt1g(2) is convex univalent in U

or
(ii) 27 PTlg(z) € S*(%)
Then
(f*9)(2) € Mpap(A;h).
Theorem 5. Let A > 0 and
fi(z) =22+ an 2" € Mpap(\hy) (5 =1,2), (2.15)
n=1
where
1+2
hj(z) = 5j + (1 — ﬁ])TZ and ﬁj < 1. (2.16)
If f(2) € A(p) is defined by
Q5f(2) = Q3f1(2) x Q5 f2(2), (2.17)

then f(z) € My o (A h), where

1+ 2z
1—=2

h(z) = B3+ (1 — B3) (2.18)

and the parameter B3 is given by

5 { =40 - B0 - B)(1 -4 f) Hrdn) (>0, g
1— 21— B1)(1 - Bo) (=0

The bound (3 is the best possible.
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Proof. We consider the case when A > 0. By setting
Cpa A o .
Fi(z) = (1= A)2"PQ3f5(2) + e PR S(2) (1=12)

for fj(z) (j =1,2) given by (ZIH), we find that

- 1
Fi(a) =143 bogs <+ (1 - )~ (G=12)  (220)
n=1
and
Q1) = 55 [ R0e (=1, e

Now, if f(z) € A(p) is defined by ([ZI1), we find from (ZZI) that

Q5f(2) = Q5f1(2) * Q5 f2(2)

p 1 y4 1 p 1 p 1
= (—zp/ ux" Fl(uz)du) * (—zp/ ux" Fg(uz)du>
A Jo A Jo

1
:§zp/ uX"'F(uz)du, (2.22)
0

where

>3

1
F(z) = § /0 WEUE + Fy)(uz)du. (2.23)

Also, by using ([Z20)) and the Herglotz theorem, we see that

re{ (B257) (54 S0y )| 70 v

which leads to
Re{(F1 *FQ)(Z)} >ﬂo=1—2(1—ﬂ1)(1—ﬂ2) (ZGU).

According to Lemma 3, we have

1 —|2|
1+ |z|

Re {(Fy * F2)(2)} > fo + (1 — fh) (zeU). (224
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Now it follows from (Z2Z2) to 24) that
Re {(1 S NEPQSS(2) + %z‘p“(Q%f(Z))’} — Re(F(2)}

P ! p_
:X/O ux 'Re {(Fy * Fy)(uz)} du

1
D p_q 1 — ulz|
> = + (1 - d
- )\/0 v (ﬂo ( ﬂ0)1+u|z|) "

1— 1 1-—
>50+M/u§1 udu
0

A 1+u
p Lkl
:1_4(1_61)(1_62)<1_X/0 1+udu>
:ﬂ3 (ZEU),

which proves that f(z) € M) o s(X; h) for the function h(z) given by EIS).
In order to show that the bound (3 is sharp, we take the functions

fi(z) € A(p) (j =1,2) defined by

@6 =5 [ (e a-mi)a =12, )

for which we have

Fi(:) = (1= 02756 + 57 Q3 ()
= (=B (=12

and

z
1—2z

(F1x Fy)(z) =1+4(1 — p1)(1 — B9)

Hence, for f(z) € A(p) given by (ZIT), we obtain

(1 - N)=PQ3f(2) + %z‘p“(Q%f(Z))’

1
:g/o ui-1 <1+4(1—ﬂ1)(1—ﬂ2) v )du

1—uz
— 03 (asz— —1).
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Finally, for the case when A = 0, the proof of Theorem 5 is simple, and

so we choose to omit the details involved.

Theorem 6. Let f(z) € My o (A h). Then the function F(z) defined

by

F(z) = “;p /O )t (Rep > —p) (2.26)

s in the class Mp,aﬁ()\;ﬁ), where

h(z) = (u+ p)z~ WP /OZ PR dt < h(2).

Proof. For f(z) € A(p) and Rep > —p, we find from (Z26]) that F(z) €

A(p) and
(4 + p)f () = WF(2) + 2F'(2). (2.27)
Define G(z) by
p [e} A «a !
PG(z) = (1 - NQFF(2) + ;z(Qﬁ (2)). (2.28)
Differentiating both sides of ([Z2]]) with respect to z, we get
A
2G'(2) + pG(z) = (1 — )\)z*pQg(zF’(z)) + ;zpr(Qg(zF’(z)))’. (2.29)
Furthermore, it follows from ([ZZ17) to [ZZJ) that

(12751 (:) + 5575 ()Y
I (uF(Z) T zF'<z>> A (@g (uF(Z) T zF’<z>>>’
p

p+p H+p

a (2G(2) + pG(2))

=—G(2) +
p+p [+ p

—O(s 2G'(2)

_G()+7;§;' (2.30)
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Let f(z) € My o (X;h). Then, by 30),

2G'(2)

< h(z Reu > —p),
T hE) (Rep> —p)

G(z) +

and so it follows from Lemma 1 that
G(z) < h(z) = (u+p)z~ P / PRt dE < h(z2).
0
Therefore we conclude that

F(2) € My (M h) C My g(A;h).

Theorem 7. Let f(z) € A(p) and F(z) be defined as in Theorem 6. If
(1 =)z"PQ5F (2) +727PQ3f(2) < h(z) (v>0), (2.31)
then F(z) € Mpya,g(O;%), where Rey > —p and

h(z) = H——szfu%p / t%ﬂflh(t)dt =< h(z).
v 0

Proof. Let us define
G(2) = 2 PQGF (2). (2.32)
Then G(z) is analytic in U, with G(0) = 1, and

2G'(2) = —pG(2) + zpr(Q%‘F(z))’. (2.33)

Making use of (Z27), Z31), Z32) and Z33), we deduce that

(1= 7)2 PQSF(2) + 72 PQ5f(2)
= (1-7)zPQ3F (2) + ﬁwzmgm) + 2P QSF(2)))

_ v /
=G(z) + p +sz (2) < h(z)

for Rep > —p and v > 0. Therefore an application of Lemma 1 yields the

assertion of Theorem 7.
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Theorem 8. Let F(z) € My g(A;h). If the function f(z) is defined by

Fz) =12 /0 Bt (1> —p), (2.34)
then
o Pfloz) € Mpap(Ah),
where
2 _
o= o) = Y2 (:jpp) L e ©0.1). (2.35)

The bound o is sharp when

1+ 2z
1 —

hz)=v+(1-7) (v#1). (2.36)

Proof. For F(z) € A(p), it is easy to verify that

and zF'(2) = F(z) * (ﬁ -1 > .

—Zz

Hence, by ([Z34), we have

pF(z) + 2F'(2)

f(z) = TP = (Fxg)(z) (z€U;p>—p), (2.37)
where
1 2P ZP
9(2) = 7= ((/Hp—l)l_z + (1_2)2> € A(p). (2.38)
Next we show that
Re{zPg(2)} > % (2] < o), (2.39)

where o = 0,(p) is given by ([Z30). Setting

1

::Reie (R>0) and |z]=r<]1,
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we see that

14+ R*(1—1r?)
_— > .
2R and - R 297

For 1 > —p it follows from ([Z3R) and ([Z20) that

cosf =

(2.40)

2
2Re{z " Pg(2)} = m[(u +p—1)Rcosf + R*(2cos? 6 — 1)]

1
= m[(u+p—1)(1+R2(1—r2))+(1+32(1_7«2))2_232]
2
= R—[R2(1 ) (u+p+ 1)1 -1 -2 +1

(A=r)2+u+p+1)(1—r?) -2 +1

(n+p—2r—(n+p)r?) +1.

Cptp
This evidently gives ([Z39), which is equivalent to

Re{z"Po Pg(0z)} > % (z€U). (2.41)

Let F(z) € M, o 3(A;h). Then, by using [37) and (ZZ1]), an applica-
tion of Theorem 3 yields

o Pfloz) =F(2)* (07 Pg(0z)) € My ap(A;h).

For h(z) given by (30, we consider the function F(z) € A(p) defined
by
“POXF A —p+1 amp !
(1=XN)z"PQ3F (2) + EZ (Q3F(2))

! (2.42)

=7+ (1-7)

Then, by [222), (Z28)) and Z30) (used in the proof of Theorem 6), we find
that

(1- N)=PQ5f(2) + %zp“(Q%‘f(z))’

1+ 2 z 1+ 2\
v+ ( vh_z+u+p<v+( vh_z)
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(1= +p+22— (u+p)2?)
(n+p)(1—2)?
=7 (2=-0)

Therefore we conclude that the bound ¢ = o, (1) cannot be increased for
each pu(p > —p).
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