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Abstract

In this paper, we apply the variational iteration method

(VIM) for solving discrete KdV equation which arises in various

physical phenomena related to physical and applied sciences. Nu-

merical results show the efficiency of the proposed algorithm.

1. Introduction

This paper is devoted to the study of discrete KdV equation which

arises in various physical phenomena including vibrations in lattices, currents

in electrical networks, biological chains, modern physics, astrophysics and

applied sciences; see [1, 5, 7, 8, 9, 10, 11] and the references therein. Several

techniques including homotopy perturbation, variational iteration and exp-

function have been applied to solve such problems [1, 5, 7, 8, 9, 10, 11].

It is worth mentioning that the differential difference equations were very

difficult to solve but due to the formulation of He’s homotopy perturbation,

variational iteration and exp-function methods it is now very convenient to

handle such problems. The basic motivation of this paper is to apply the

variational iteration method (VIM) for solving a physical problem whose

governing equation is a discrete KdV [7]. The VIM was developed and

formulated by He [2, 3, 4] and has been extremely useful in solving the
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complex diversified nonlinear problems, see [2, 3, 4, 6, 8]. Numerical results

show the complete reliability of the proposed technique.

2. Variational Iteration Method (VIM)

To illustrate the basic concept of the He’s VIM, we consider the following

general differential equation

Lu + Nu = g(x), (1)

where L is a linear operator, N a nonlinear operator and g(x) is the inho-

mogeneous term. According to variational iteration method [2, 3, 4, 6, 8],

we can construct a correction functional as follows

un+1(x) = un(x) +

∫ x

0

λ(Lun(s) + Nũn(x) − g(s))ds, (2)

where λ is a Lagrange multiplier [2, 3, 4], which can be identified optimally

via variational iteration method. The subscripts n denote the nth approxi-

mation, ũn is considered as a restricted variation. i.e. δũn = 0; (2) is called

a correction functional. The solution of the linear problems can be solved in

a single iteration step due to the exact identification of the Lagrange multi-

plier. The principles of variational iteration method and its applicability for

various kinds of differential equations are given in [2, 3, 4]. In this method, it

is required first to determine the Lagrange multiplier λ optimally. The suc-

cessive approximation un+1, n ≥ 0 of the solution u will be readily obtained

upon using the determined Lagrange multiplier and any selective function

u0, consequently, the solution is given by u = lim
n→∞

un.

3. Numerical Applications

In this section, we apply He’s variational iteration method (VIM) for

solving the governing equation of a physical problem which is a discrete

KdV and is given by [7]:

dun

dt
= u2

n(un+1 − un−1),
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with initial conditions

un(0) = 1 −
1

n2
.

The exact solution of the above problem is given by

un(t) = 1 −
1

(n + 2t)2
.

The correction functional is given by

un,m+1(t) =
(

1 −
1

n2

)

+

∫ t

0

λ(s)

(

dun,m(s)

dt
− ũ2

n,m(s)
(

ũn,m+1(s) − ũn−1,m(s)
)

)

ds.

Making the correction functional stationary, the Lagrange multiplier can be

identified as λ(s) = −1, we get the following iterative scheme:

un,m+1(t) =
(

1−
1

n2

)

−

∫ t

0

(

dun,m(s)

dt
−ũ2

n,m(s)
(

ũn,m+1(s)−ũn−1,m(s)
)

)

ds.

Consequently, following approximants are obtained

un,0(t) = 1 −
1

n2
,

un,1(t) = 1 −
1

n2
+

4

n3
t,

un,2(t) = 1 −
1

n2
+

4

n3
t −

12

n4
t2,

un,3(t) = 1 −
1

n2
+

4

n3
t −

12

n4
t2 +

32

n5
t3,

...

The series solution is given by

un(t) = 1 −
1

n2
+

4

n3
t −

12

n4
t2 +

32

n5
t3 + · · · ,

and the closed form solution is given as

un(t) = 1 −
1

(n + 2t)2
.
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4. Conclusion

In this paper, we applied variational iteration method (VIM) for solving

a physical problem related to a discrete KdV equation. The method is ap-

plied in a direct way without using linearization, transformation, discretiza-

tion, perturbation or restrictive assumptions. The fact that the proposed

technique solves nonlinear problems without using Adomian’s polynomials

is a clear advantage of this algorithm over the decomposition method.
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