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EXISTENCE OF COMMON RANDOM FIXED POINT

AND RANDOM BEST APPROXIMATION FOR

NON-COMMUTING RANDOM OPERATORS

BY

HEMANT KUMAR NASHINE

Abstract

We present existence of common random fixed point as ran-

dom best approximation results for non-commuting random oper-

ators. These results improve, extend and generalize some existing

known results in the literature.

1. Introduction

Probabilistic functional analysis is an important mathematical disci-

pline because of its applications to probabilistic models in applied problems.

Random operator theory is needed for the study of various classes of ran-

dom equations. The theory of random fixed point theorems was initiated

by the Prague school of probabilistic in the 1950s. The interest in this sub-

ject enhanced after publication of the survey paper by Bharucha Reid [9].

Random fixed point theory has received much attention in recent years (see

[4, 15, 16, 18]).

Random fixed point theorems and random approximations are stochastic

generalization of classical fixed point and approximation theorems, and have

application in probability theory and nonlinear analysis. The random fixed
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point theory for self-maps and nonself-maps has been developed during the

last decade by various author (see e.g. [3, 4, 10]). Recently, this theory has

been further extended for 1-set contractive, nonexpansive, semi-contractive

and completely continuous random maps, etc.

Random fixed point theorems have been applied in many instances in

the field of random best approximation theory and several interesting and

meaningful results have been studied. The theory of approximation has

become so vast that it intersects with every other branch of analysis and plays

an important role in the applied sciences and engineering. Approximation

theory is concerned with the approximation of functions of a certain kind

by other functions. In this point of view, in the year 1963, Meinardus [13]

was first to observe the general principle and to use a Schauder Fixed Point

Theorem. Later on, number of results were developed in this direction under

different conditions following the line made by Meinardus (see [3, 4, 6, 8, 14]).

The purpose of this paper is to first find existence results on common

random fixed point as random best approximation for R-subweakly com-

muting random operators satisfying S-nonexpansive condition and affinity

of random operator S in the setup of compact and weakly compact subset

of Banach space. Secondly, an existence result on common random fixed

point for uniformly R-subweakly commuting satisfying asymptotically S-

nonexpansive condition and affinity of random operator S has been estab-

lished in the same frame work, which is further applied to derived random

best approximation results. In this way, results of Nashine [14] are improved

and generalized with the aid of more general class of noncommuting random

operators and weakening the condition of linearity of random operators by

affinity. Incidently, results of Beg and Shahzad [6, Theorem 2] and Beg and

Shahzad [8, Theorem B] have also been generalized.

2. Preliminary

For the sake of convenience, we gather some basic definitions and set

out our terminology needed in the sequel.

Definition 2.1.([8]) Let (Ω,A) be a measurable space and X be a metric

space. Let 2X be the family of all nonempty subsets of X and C(X ) denote

the family of all nonempty compact subsets of X . A mapping F : Ω →
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2X is called measurable (respectively, weakly measurable) if, for any closed

(respectively, open) subset B of X , F−1(B) = {ω ∈ Ω : F(ω) ∩ B 6= φ} ∈ A.

Note that, if F(ω) ∈ C(X ) for every ω ∈ Ω, then F is weakly measurable if

and only if measurable.

A mapping ξ : Ω → X is said to be measurable selector of a measurable

mapping F : Ω → 2X , if ξ is measurable and, for any ω ∈ Ω, ξ(ω) ∈ F(ω).

A mapping T : Ω × X → X is called a random operator if, for any x ∈ X ,

T (., x) is measurable. A measurable mapping ξ : Ω → X is called a random

fixed point of a random operator T : Ω × X → X , if for every ω ∈ Ω,

ξ(ω) = T (ω, ξ(ω)).

Let X be a normed space. A map T : X → X is said to be

(1) a uniformly asymptotically regular on X if, for each η > 0, there exists

N(η) = N such that ‖Tnx − Tn+1x‖ < η for all η ≥ 0 and all x ∈ X .

(2) S-nonexpansive, if there exists a self-map S on X such that

‖T x − T y‖ ≤ ‖Sx − Sy‖ for all x, y ∈ X .

(3) asymptotically S-nonexpansive, if there exists a sequence {kn} of real

numbers with kn ≥ 1 and limn→∞kn = 1 such that ‖T nx − T ny‖ ≤

kn‖Sx − Sy‖ for all x, y ∈ X and n = 1, 2, 3, . . .∞.

Two maps T ,S : X → X are called

(4) R-weakly commuting, if there exists some R > 0 such that

‖T S(x) − ST (x)‖ ≤ R‖T (x) − S(x)‖ for all x ∈ X .

Suppose p ∈ Fix(S), M ⊂ X is p-starshaped and both T and S are

invariant. Then T and S are said to be

(5) R-subweakly commutating on M, if there exists a real number R > 0

such that

‖T Sx − ST x‖ ≤ Rdist(Sx, [T x, p])

for all x ∈ M where dist(y,K) = inf{dist(y, z) : z ∈ K} for K ∈ M and

y ∈ M. Obviously, commutativity implies R-subweak commutativity

but the converse is not true in general [17].
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(6) uniformly R-subweakly commuting on M − {p} if there exists a real

number R > 0 such that

‖T nSx − ST nx‖ ≤ Rdist(Sx, [T nx, p])

for all x ∈ M−{p}, where [T nx, p] = kT nx+(1−k)p for some k ∈ (0, 1]

and n ∈ N [2].

It is clear from (6) that uniformly R-subweakly commuting mappings

on M − {p} are R-subweakly commuting on M − {p}, but R-subweakly

commuting mappings on M−{p} need not be uniformly R-subweakly com-

muting on M−{p}. To see, this we consider the following example.

Example 2.2. Let X = R with norm ‖x‖ = |x|, M = [1, 0) and let S

and T be self-mappings on M defined by T x = 2x − 1, Sx = x2. Then S

and T are R-subweakly commuting on M− {p}. In fact, ‖T Sx − ST x‖ ≤

Rdist(Sx, [T x, p]) for all x ∈ M − {p}, where R = 12 and p = 1 is the

fixed point of S. But S and T are not uniformly R-subweakly commuting

on M−{p} because if we take n = 2, x > 1 then

‖T 2Sx − ST 2x‖ ≤ Rdist(Sx, [T 2x, p])

with R = 12 and p = 1 ∈ Fix(S).

A random operator T : Ω × X → X is continuous (respectively, nonex-

pansive, S-nonexpansive) if, for each ω ∈ Ω, T (ω, ·) is continuous(respectively,

nonexpansive, S-nonexpansive). Random operators T ,S : Ω × X → X are

R-weakly commuting (respectively R-subweakly commuting, uniformly R-

subweakly commuting), if T (ω, ·) and S(ω, ·) are R-weakly commuting (re-

spectively R-subweakly commuting, uniformly R-subweakly commuting) for

each ω ∈ Ω.

Definition 2.3. A Banach space X satisfies Opial’s condition if for

every sequence {xn} in X weakly convergent to x ∈ X , the inequality

liminfn→∞‖xn − x‖ < liminfn→∞‖xn − y‖ holds for all y 6= x. Every

Hilbert space and the space lq(1 ≤ q < ∞) satisfy Opial’s condition. The

map T : M → X is said to be demiclosed at 0 if for every sequence {xn} in

M such that {xn} converges weakly to x and {T xn} converges strongly to

0 ∈ X , then 0 = T x.
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Definition 2.4.([8]) Let M be a nonempty subset of a normed space

X . For x0 ∈ X , let us define

dist(x0,M) = inf
y∈M

‖x0 − y‖

and

PM(x0) = {y ∈ M : ‖x0 − y‖ = dist(x0,M)}.

An element y ∈ PM(x0) is called a best approximant of x0 out of M. The

set PM(x0) is the set of all best approximation of x0 out of M.

3. Main results

The following result is needed in the sequel:

Theorem 3.1.([7]) Let X be a Polish space and T ,S : Ω×X → X be two

random operators such that, for each ω ∈ Ω, T (ω,X ) ⊆ S(ω,X ). If T and

S are R-weakly commutative, T is continuous and d(T (ω, x),T (ω, y)) ≤

hd(S(ω, x),S(ω, y)) for all x, y ∈ X , ω ∈ Ω and h ∈ (0, 1) such that

S(ω, x) 6= S(ω, y), then T and S have a unique common random fixed point.

Following is a common random fixed point theorem as random best

approximation for R-subweakly commuting random operators in the setting

of compact subset.

Theorem 3.2. Let X be a normed space. Let T ,S : Ω × X → X be

R-subweakly commuting random operators and M ⊆ X such that T (ω, ·) :

∂M → M, where ∂M stands for the boundary of M. Let x0 ∈ X and

x0 = T (ω, x0) = S(ω, x0) for each ω ∈ Ω. Suppose T is S-nonexpansive on

PM(x0)∪{x0}, and S(ω, ·) be affine and nonexpansive on PM(x0). Suppose

PM(x0) is nonempty compact, p-starshaped and S(ω,PM(x0)) = PM(x0)

for each ω ∈ Ω, then there exists a measurable map ξ : Ω → PM(x0) such

that ξ(ω) = T (ω, ξ(ω)) = S(ω, ξ(ω)) for each ω ∈ Ω.

Proof. Let y ∈ PM(x0). Then S(ω, y) ∈ PM(x0), since S(ω,PM(x0)) =

PM(x0) for each ω ∈ Ω. Also, if y ∈ ∂M and so T (ω, y) ∈ M, since
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T (ω, ∂M) ⊆ M for each ω ∈ Ω. Now, since x0 = T (ω, x0) and T is S-

nonexpansive map, we have

‖T (ω, y) − x0‖ = ‖T (ω, y) − T (ω, x0)‖ ≤ ‖S(ω, y) − S(ω, x0)‖.

As S(ω, x0) = x0, we therefore have,

‖T (ω, y) − x0‖ ≤ ‖S(ω, x0) − x0‖ = d(x0,M),

since S(ω, y) ∈ PM(x0). This implies that T (ω, y) is also closest to x0,

so T (ω, y) ∈ PM(x0); consequently PM(x0) is T (ω, ·)-invariant, that is,

T (ω,PM(x0)) ⊆ PM(x0).

Choose a fixed sequence of measurable mappings kn : Ω → (0, 1) such

that kn(ω) → 1 as n → ∞. For n ≥ 1, define a sequence of random operators

Tn : Ω × PM(x0) → PM(x0) as

Tn(ω, x) = kn(ω)T (ω, x) + (1 − kn(ω))p. (3.1)

It is clear that Tn is a well-defined map from PM(x0) into PM(x0) for each

n and ω ∈ Ω, since PM(x0) is p-starshaped. It follows from (3.1) and S-

nonexpansiveness of T that

‖Tn(ω, x) − Tn(ω, y)‖ = kn(ω)‖T (ω, x) − T (ω, y)‖

≤ kn(ω)‖S(ω, x) − S(ω, y)‖

i.e.,

‖Tn(ω, x) − Tn(ω, y)‖ ≤ kn(ω)‖S(ω, x) − S(ω, y)‖ (3.2)

whenever S(ω, x) 6= S(ω, y), for all x, y ∈ PM(x0) and ω ∈ Ω.

Also, from the affinity of S and R-subweakly commutativity of T and

S

‖Tn(ω,S(ω, x)) − S(ω,Tn(ω, x))‖

= kn(ω)‖T (ω,S(ω, x)) − S(ω,T (ω, x))‖

= kn(ω)R‖(kn(ω)T (ω, x) + (1 − kn(ω))p) − S(ω, x)‖

≤ kn(ω)R‖Tn(ω, x) − S(ω, x)‖
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i.e.,

‖Tn(ω,S(ω, x)) − S(ω,Tn(ω, x))‖ ≤ kn(ω)R‖Tn(ω, x) − S(ω, x)‖ (3.3)

for all x, y ∈ PM(x0) and ω ∈ Ω which implies that Tn and S are kn(ω)R

-weakly commuting on PM(x0) for each n and Tn(ω,PM(x0)) ⊆ PM(x0) =

S(ω,PM(x0)) for each ω ∈ Ω. Moreover, S(ω, ·) is nonexpansive and so con-

tinuous on PM(x0). Thus, all the condition of the Theorem 3.1 are satisfied

on PM(x0) and so, there exists a common random fixed point ξn of Tn and

S such that

ξn(ω) = Tn(ω, ξn(ω)) = S(ω, ξn(ω)). (3.4)

For each n, define Gn : Ω → C(PM(x0)) by Gn = cl{ξi(ω) : i ≥ n} where

C(PM(x0)) is the set of all nonempty compact subset of PM(x0).

Let G : Ω → C(PM(x0)) be a mapping defined as G(ω) = ∩∞
n=1Gn(ω). By

Himmelberg [10, Theorem 4.1] implies that G is measurable. The Kuratowski

and Ryll-Nardzewski selection Theorem [11] further implies that G has a

measurable selector ξ : Ω → PM(x0). We show that ξ is the random fixed

point of T and S. Fix ω ∈ Ω. Since ξ(ω) ∈ G(ω), therefore there exists

a subsequence {ξm(ω)} of {ξn(ω)} that converges to ξ(ω); that is ξm(ω) →

ξ(ω). Since Tm(ω, ξm(ω)) = ξm(ω), we have Tm(ω, ξm(ω)) → ξ(ω).

On the other hand, we have

Tm(ω, ξm(ω)) = km(ω)T (ω, ξm(ω)) + (1 − km(ω))p.

Proceeding to the limit as m → ∞, km(ω) → 1 and continuity of T , we have

T (ω, ξ(ω)) = ξ(ω).

Also from the continuity of S, we have

S(ω, ξ(ω)) = S(ω, lim
m→∞

ξm(ω)) = lim
m→∞

S(ω, ξm(ω)) = lim
m→∞

ξm(ω) = ξ(ω).

Following is the result for weakly compact subset.

Theorem 3.3. Let X be a Banach space. Let T ,S : Ω × X → X be

R-subweakly commutative weakly random operators and M ⊆ X such that

T (ω, ·) : ∂M → M, where ∂M stands for the boundary of M. Let x0 ∈ X
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and x0 = T (ω, x0) = S(ω, x0) for each ω ∈ Ω. Suppose T is S-nonexpansive

on PM(x0) ∪ {x0}, and S(ω, ·) be affine and weakly continuous on PM(x0).

Suppose PM(x0) is nonempty separable weakly compact, p-starshaped and

S(ω,PM(x0)) = PM(x0) for each ω ∈ Ω, then there exists a measurable

map ξ : Ω → PM(x0) such that ξ(ω) = T (ω, ξ(ω)) = S(ω, ξ(ω)) for each

ω ∈ Ω, provided (S − T )(ω, ·) is demiclosed at zero for each ω ∈ Ω.

Proof. For each n ∈ N , define {kn(ω)}, {Tn} as in the proof of the

Theorem 3.2. Also, we have

‖Tn(ω, x) − Tn(ω, y)‖ ≤ kn(ω)‖S(ω, x) − S(ω, y)‖

and

‖Tn(ω,S(ω, x)) − S(ω,Tn(ω, x))‖ ≤ kn(ω)R‖Tn(ω, x) − S(ω, x)‖

for all x, y ∈ PM(x0), ω ∈ Ω. Since weak topology is Hausdorff and PM(x0)

is weakly compact, it follows that PM(x0) is strongly closed and is a complete

metric space. Thus by weakly continuity of S and Theorem 3.1, there exists

a random fixed point ξ of Tn such that ξn(ω) = S(ω, ξn(ω)) = Tn(ω, ξn(ω))

for each ω ∈ Ω.

For each n, define Gn : Ω → WC(PM(x0)) by Gn = w − cl{ξi(ω) : i ≥ n},

where WC(PM(x0)) is the set of all nonempty weakly compact subset of

PM(x0) and w − cl denotes the weak closure. Defined a mapping G : Ω →

WC(PM(x0)) by G(ω) = ∩∞
n=1Gn(ω). Because PM(x0) is weakly compact

and separable, the weak topology on PM(x0) is a metric topology. Then

by Himmelberg [10, Theorem 4.1] implies that G is w-measurable. The

Kuratowski and Ryll-Nardzewski selection Theorem [11] further implies that

G has a measurable selector ξ : Ω → PM(x0). We show that ξ is the random

fixed point of T . Fix ω ∈ Ω. Since ξ(ω) ∈ G(ω), therefore there exists

a subsequence {ξm(ω)} of {ξn(ω)} that converges weakly to ξ(ω); that is

ξm(ω) → ξ(ω).

Now, from weakly continuity of S, we have

S(ω, ξ(ω)) = S(ω, lim
m→∞

ξm(ω)) = lim
m→∞

S(ω, ξm(ω)) = lim
m→∞

ξm(ω) = ξ(ω).

Now,

S(ω, ξm(ω)) − T (ω, ξm(ω)) = ξm(ω) − T (ω, ξm(ω))
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= Tm(ω, ξm(ω)) − T (ω, ξm(ω))

= (1 − km(ω))(p − T (ω, ξm(ω)).

Since PM(x0) is bounded and km(ω) → 1, it follows that

S(ω, ξm(ω)) − T (ω, ξm(ω)) → 0.

Now, ym = S(ω, ξm(ω)) − T (ω, ξm(ω)) = (S − T )(ω, ξm(ω)) and ym → 0.

Since (S −T )(ω, ·) is demiclosed at 0, so 0 ∈ (S − T )(ω, ξ(ω)). This implies

that S(ω, ξ(ω)) = T (ω, ξ(ω)) and so, S(ω, ξ(ω)) = T (ω, ξ(ω)) = ξ(ω).

Theorem 3.4. Let M be a subset of a Banach space X and T ,S :

Ω×M → M be two random operators such that, for each ω ∈ Ω, T (ω,M−

{p}) ⊆ S(ω,M−{p}) where p ∈ Fix(S). Suppose T is continuous and

d(T (ω, x),T (ω, y)) ≤ k(ω)d(S(ω, x),S(ω, y))

for all x, y ∈ M, ω ∈ Ω and k(ω) ∈ (0, 1) such that S(ω, x) 6= S(ω, y). If T

and S are R-weakly commutative on M−{p}, then T and S have a unique

common random fixed point.

Proof. It can be proved following the similar arguments of those given

in the proof of [7].

Theorem 3.5. Let M be a nonempty complete p-starshaped subset of

a normed space X and let T ,S : Ω × X → X be uniformly R-subweakly

commutative random operators on M − {p} such that for each ω ∈ Ω,

S(ω,M) = M and T (ω,M−{p}) ⊆ S(ω,M−{p}) where p ∈ Fix(S). Sup-

pose T is continuous, asymptotically S-nonexpansive with sequence {kn(ω)}

and S(ω, ·) be affine. For each n ≥ 1, define a random operator Tn(ω, ·) by

Tn(ω, x) = µn(ω)T n(ω, x) + (1− µn(ω))p, x ∈ M, where µn(ω) = λn(ω)
kn(ω) and

λn(ω) is a sequence in (0, 1) such that limn→∞λn(ω) = 1. Then for each

n ≥ 1, Tn and S have exactly one common random fixed point.

Proof. For all x, y ∈ M, we have

‖Tn(ω, x)−Tn(ω, y)‖=µn(ω)‖T n(ω, x)−T n(ω, y)‖≤λn(ω)‖S(ω, x)−S(ω, y)‖.
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Also, Tn is a self-mapping of M such that Tn(M − {p}) ⊆ S(M) − {p}

for each n. From the uniformly R-subweakly commutativity of S and T on

M−{p} and affinity of S, it follows that

‖Tn(ω,S(ω, x)) − S(ω,Tn(ω, x))‖

= ‖µn(ω)T n(ω,S(ω, x)) + (1 − µn(ω))p − S(ω, µn(ω)T nx + (1 − µn(ω)p))‖

= µn(ω)‖T n(ω,S(ω, x)) − S(ω,T n(ω, x))‖

≤ µn(ω)Rdist(S(ω, x), [T n(ω, x), p])

≤ µn(ω)R‖µn(ω)T n(ω, x) + (1 − µn(ω))p − S(ω, x)‖

≤ µn(ω)R‖Tn(ω, x) − S(ω, x)‖

for all x ∈ M−{p}. Thus Tn and S are µn(ω)R-weakly commuting. There-

fore, Theorem 3.4 implies that there exists a random fixed point ξn(ω) of Tn

such that ξn(ω) = S(ω, ξn(ω)) = Tn(ω, ξn(ω)) for each ω ∈ Ω.

Following is the common random fixed point results for uniformly R-

weakly commuting random operators.

Theorem 3.6. Let M be a nonempty p-starshaped subset of a normed

space X and let T ,S : Ω × X → X be continuous random operator such

that for each ω ∈ Ω, S(ω,M) = M and T (ω,M − {p}) ⊆ S(ω,M −

{p}) where p ∈ Fix(S). Suppose T is uniformly asymptotically regular,

asymptotically S-nonexpansive with sequence {kn(ω)} and S(ω, ·) be affine

on M. If T ,S be uniformly R-subweakly commutative random operators

on M, then there exists a measurable map ξ : Ω → M such that ξ(ω) =

T (ω, ξ(ω)) = S(ω, ξ(ω)) for each ω ∈ Ω, if one of the following conditions is

satisfied:

(1) M is compact and S is continuous;

(2) X is Banach space, M is weakly compact, S is weakly continuous and

(S − T n)(ω, ·) is demiclosed at 0;

(3) S is weakly continuous, M is weakly compact and X is Banach space

satisfying Opial’s condition.

Proof. From Theorem 3.5, for each n ≥ 1, there exists exactly one point

in M such that

S(ω, ξn(ω)) = ξn(ω) = µn(ω)T n(ω, ξn(ω)) + (1 − µn(ω))p.
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Also

‖ξn(ω) − T n(ω, ξn(ω))‖ = (1 − µn(ω))‖T n(ω, ξn(ω)) − p‖.

Since T (M − {p}) is bounded and kn(ω) → 1 as n → ∞, it follows that

‖ξn(ω) − T n(ω, ξn(ω))‖ → 0. Now

‖ξn(ω) − T (ω, ξn(ω))‖

≤ ‖ξn(ω) − T n(ω, ξn(ω))‖ + ‖T n(ω, ξn(ω)) − T n+1(ω, ξn(ω))‖

+‖T n+1(ω, ξn(ω)) − T (ω, ξn(ω))‖

≤ ‖ξn(ω) − T n(ω, ξn(ω))‖ + ‖T n(ω, ξn(ω)) − T n+1(ω, ξn(ω))‖

+k1(ω)‖S(ω,T n(ω, ξn(ω))) − S(ω, ξn(ω))‖.

Since S is continuous, affine and T is uniformly asymptotically regular, we

have

‖ξn(ω) − T (ω, ξn(ω))‖

≤ ‖ξn(ω) − T n(ω, ξn(ω))‖ + ‖T n(ω, ξn(ω)) − T n+1(ω, ξn(ω))‖

+k1(ω)‖S(ω,T n(ω, ξn(ω))) − ξn(ω)‖ as n → ∞.

Thus T (ω, ξn(ω)) − ξn(ω) → 0 as n → ∞.

(1) Since M is compact, therefore, in the line of Theorem 3.2, there exists a

subsequence {ξm} of {ξn} such that ξm(ω) → ξ(ω) ∈ M as m → ∞. By

the continuity of T , we have T (ω, ξ(ω)) = ξ(ω). Since T (M − {p}) ⊂

S(M − {p}), it follows that ξ(ω) = T (ω, ξ(ω)) = S(ω, ζ(ω)) for some

ζ ∈ M. Moreover,

‖T (ω, ξm(ω)) − T (ω, ζ(ω))‖ ≤ k1(ω)‖S(ω, ξm(ω)) − S(ω, ζ(ω))‖

= k1(ω)‖ξm − ζ(ω)‖.

Taking the limit as m → ∞, we get T (ω, ξ(ω)) = T (ω, ζ(ω)). Thus,

ξ(ω) = T (ω, ξ(ω)) = T (ω, ζ(ω)) = S(ω, ζ(ω)). Since S and T are uni-

formly R-subweakly commuting on M−{p}, it follows that

‖T (ω, ξ(ω)) − S(ω, ξ(ω))‖ = ‖T (ω,S(ω, ζ(ω))) − S(ω,T (ω, ζ))‖

≤ R‖T (ω, ζ(ω)) − S(ω, ζ(ω))‖ = 0.
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Hence, we have T (ω, ξ(ω)) = S(ω, ξ(ω)) = ξ(ω).

(2) Since M is weakly compact, therefore, in the line of Theorem 3.2, there

exists a subsequence {ξm} of {ξn} such that ξm(ω) → ξ(ω) ∈ M as

m → ∞. Now, from weakly continuity of S, we have

S(ω, ξ(ω)) = S(ω, lim
m→∞

ξm(ω)) = lim
m→∞

S(ω, ξm(ω)) = lim
m→∞

ξm(ω) = ξ(ω).

Now,

S(ω, ξm(ω)) − T m(ω, ξm(ω)) = ξm(ω) − T m(ω, ξm(ω))

= Tm(ω, ξm(ω)) − T m(ω, ξm(ω))

= (1 − µm(ω))(p − T m(ω, ξm(ω)).

Since M is bounded and µm(ω) → 1, it follows that

‖S(ω, ξm(ω)) − T m(ω, ξm(ω))‖ → 0.

Since (S − T m)(ω, ·) is demiclosed at 0, so S(ω, ξ(ω)) = T m(ω, ξ(ω))

and so, S(ω, ξ(ω)) = T m(ω, ξ(ω)) = ξ(ω). It is remaining to show that

T (ω, ξ(ω)) = ξ(ω).

‖T (ω, ξ(ω))−T m(ω, ξ(ω))‖ = ‖T (ω, ξ(ω)) − T (ω,T m−1(ω, ξ(ω)))‖

≤ k1(ω)‖S(ω, ξ(ω))−S(ω,T m−1(ω, ξ(ω)))‖

‖T (ω, ξ(ω)) − ξ(ω)‖ ≤ k1(ω)‖ξ(ω) − S(ω, ξ(ω))‖

= k1(ω)‖ξ(ω) − ξ(ω)‖ = 0.

a contradiction. Hence T (ω, ξ(ω)) = ξ(ω) which implies T (ω, ξ(ω)) =

S(ω, ξ(ω)) = ξ(ω).

(3) As in (2), S(ω, ξ(ω)) = ξ(ω) and ‖(S − T m)(ω, ξm(ω))‖ → 0 as m →

∞. If S(ω, ξ(ω)) 6= T m(ω, ξ(ω)), then by Opial’s condition of X and

asymptotically S-nonexpansiveness of T , it follows that

lim inf
m→∞

‖S(ω, ξm(ω)) − S(ω, ξ(ω))‖

< lim inf
m→∞

‖S(ω, ξm(ω)) − T m(ω, ξ(ω))‖

< lim inf
m→∞

‖S(ω, ξm(ω)) − T m(ω, ξm(ω))‖

+ lim inf
m→∞

‖T m(ω, ξm(ω)) − T m(ω, ξ(ω))‖
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< lim inf
m→∞

‖T m(ω, ξm(ω)) − T m(ω, ξ(ω))‖

≤ km(ω)‖S(ω, ξm(ω)) − S(ω, ξ(ω))‖

a contradiction. Hence S(ω, ξ(ω)) = T m(ω, ξ(ω)) = ξ(ω). We can show

that T (ω, ξ(ω)) = S(ω, ξ(ω)) as in (2).

An analogue of Theorem 3.2 is presented in the following in the frame

work of uniformly R-subweakly commuting random operators.

Theorem 3.7. Let X be a normed space. Let T ,S : Ω×X → X be con-

tinuous random operators and M ⊆ X such that T (ω, ·) : ∂M∩M → M,

where ∂M stands for the boundary of M. Let x0 = T (ω, x0) = S(ω, x0)

for each x0 ∈ X and ω ∈ Ω. Suppose T is uniformly asymptotically reg-

ular, asymptotically S-nonexpansive and S(ω, ·) be affine on PM(x0) with

S(ω,PM(x0)) = PM(x0). If PM(x0) is nonempty, p-starshaped and T and

S are uniformly R-subweakly commuting mappings on PM(x0) ∪ {x0} sat-

isfying ‖T (ω, x) − T (ω, x0)‖ ≤ ‖S(ω, x) − S(ω, x0)‖, then there exists a

measurable map ξ : Ω → PM(x0) such that ξ(ω) = T (ω, ξ(ω)) = S(ω, ξ(ω))

for each ω ∈ Ω, if one of the following conditions is satisfied:

(1) PM(x0) is compact and S is continuous;

(2) X is Banach space, PM(x0) is weakly compact, S is weakly continuous

and (S − T n)(ω, ·) is demiclosed at 0;

(3) S is weakly continuous, PM(x0) is weakly compact and X is Banach

space satisfying Opial’s condition.

Proof. Let y ∈ PM(x0). Then ‖y−x0‖ = dist(x,M). Note that for any

t(ω) ∈ (0, 1),

‖t(ω)x0 + (1 − t(ω))y − x0‖ = (1 − t(ω))‖y − x0‖ < dist(x0,M).

It follows that the line segment {t(ω)x0 +(1− t(ω))y : 0 < t(ω) < 1} and the

set M are disjoint. Thus y is not in the interior of M and so y ∈ ∂M∩M.

Since T (∂M∩M) ⊂ M, T x must be in M. Also since S(ω, y) ∈ PM(x0),

x0 = T (ω, x0) = S(ω, x0) and therefore by the given contractive condition,

we have

‖T (ω, y) − x0‖ = ‖T (ω, y) − T (ω, x0)‖ ≤ ‖S(ω, x) − S(ω, x0)‖
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= ‖S(ω, y) − x0‖ = dist(x0,M).

Consequently PM(x0) is T (ω, ·)-invariant. Hence,

T (ω,PM(x0)) ⊆ PM(x0) = S(ω,PM(x0)).

Thus, the result follows from Theorem 3.6.

Define CS
M

(x0) = {x ∈ M : Sx ∈ PM(x0)} and DS
M

(x0) = PM(x0) ∩

CS
M

(x0) [1].

Theorem 3.8. Let X be a normed space. Let T ,S : Ω×X → X be ran-

dom operators and M ⊆ X such that T (ω, ·) : ∂M → M, where ∂M stands

for the boundary of M. Let x0 = T (ω, x0) = S(ω, x0) for each x0 ∈ X and

ω ∈ Ω. Suppose T is continuous, uniformly asymptotically regular, asymptot-

ically S-nonexpansive and S(ω, ·) be nonexpansive PM(x0)∪{x0} and affine

on D = DS
M

(x0) with S(ω,D) = D. If D is nonempty, p-starshaped and T

and S are uniformly R-subweakly commuting mappings on PM(x0) ∪ {x0}

satisfying ‖T (ω, x) − T (ω, x0)‖ ≤ ‖S(ω, x) − S(ω, x0)‖, then there exists a

measurable map ξ : Ω → PM(x0) such that ξ(ω) = T (ω, ξ(ω)) = S(ω, ξ(ω))

for each ω ∈ Ω if one of the following conditions is satisfied:

(1) D is compact and S is continuous;

(2) X is Banach space, D is weakly compact, S is weakly continuous and

(S − T n)(ω, ·) is demiclosed at 0;

(3) S is weakly continuous, D is weakly compact and X is Banach space

satisfying Opial’s condition.

Proof. Let y ∈ D, then S(ω, y) ∈ D, since S(ω,D) = D for each ω ∈ Ω.

Also, if y ∈ ∂M and so T (ω, y) ∈ M, since T (ω, ∂M) ⊆ M for each ω ∈ Ω.

Now since x0 = T (ω, x0) and T is S-nonexpansive map, we have

‖T (ω, y) − x0‖ = ‖T (ω, y) − T (ω, x0)‖ ≤ ‖S(ω, y) − S(ω, x0)‖.

As S(ω, x0) = x0, we therefore have,

‖T (ω, y) − x0‖ ≤ ‖S(ω, x0) − x0‖ = dist(x0,M),

since S(ω, y) ∈ PM(x0). This implies that T (ω, y) is also closest to x0,

so, T (ω, y) ∈ PM(x0); consequently PM(x0) is T (ω, ·)-invariant, that is,
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T (ω, ·) ⊆ PM(x0). As S is nonexpansive on PM(x0) ∪ {x0}, so for each

ω ∈ Ω, we have

‖S(ω,T (ω, y)) − x0‖ = ‖S(ω,T (ω, y)) − S(ω, x0)‖ ≤ ‖T (ω, y) − x0‖

= ‖T (ω, y) − T (ω, x0)‖ ≤ ‖S(ω, y) − S(ω, x0)‖

= ‖S(ω, y) − x0‖.

Thus, S(ω,T (ω, y)) ∈ PM(x0). This implies that T (ω, y) ∈ CS
M

(x0) and

hence T (ω, y) ∈ D. So, T (ω, ·) and S(ω, ·) are self-maps on D. Hence, all the

condition of the Theorem 3.6 are satisfied. Thus, there exists a measurable

map ξ : Ω → D such that ξ(ω) = T (ω, ξ(ω)) = S(ω, ξ(ω)) for each ω ∈ Ω.

Remark 3.9. With the remark given by Beg et al. [2] that uniformly

R-subweakly commuting random operators are R-subweakly commuting but

not conversely and weakening the condition of linearity of S, Theorem 3.7

and Theorem 3.8 are generalization of the results of Nashine [14].

Remark 3.10. With the Remark 3.9 and remark given by Shahzad [17]

that R-subweakly random operators includes the class of commutative ran-

dom operators, Theorem 3.2 to Theorem 3.8 are generalization of the results

due to Beg and Shahzad [6, 8].
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