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Abstract

The Mixture Lemma plays a central role in the study of

the singularity of solutions of the Boltzmann equation. We offer

a detailed proof of the lemma. The proof depends on the proper

switching of the differentiations with respect to the space variables

to those of the microscopic velocities, and depends on the precise

regularity properties of the collision operator.

1. Introduction

Consider the Boltzmann equation

Ft + ξ · ∇xF = Q(F,F ), F = F (x, t, ξ) ≥ 0, x, ξ ∈ R
3, t ∈ R+,

for the hard sphere model

Q(F,G) ≡ 1

2

∫

R3

∫

S2
+

[F (ξ
′
)G(ξ

′

∗) + F (ξ
′

∗)G(ξ
′
) − F (ξ)G(ξ∗)

−F (ξ∗)G(ξ)]|(ξ − ξ∗) · Ω|dΩdξ∗.

In this paper we offer a detailed proof of the Mixture Lemma of [5], [6].
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The Lemma is to study the singularity of the solutions for the Boltzmann

equation and is essential for the construction of the Green’s function for

the linearized Boltzmann equation. The Green’s function approach, e.g. [4],

[7], [8], [9], [10], offers more quantitative informations for the solutions of

the Boltzmann equation and is useful for the studies of interesting physical

phenomena. There is the celebrated Velocity Averaging Lemma, [3], which

is often used for the study of the combined effect of transport and collision.

It serves a different purpose of gaining space compactness for macroscopic

quantities, e.g. [2]. The Boltzmann equation for the hard sphere models is

semilinear hyperbolic and therefore the propagation of the singularities of

the solution can be studied on the level of linearized Boltzmann equation.

Consider the linearization about the normalized Maxwellian

F = M +
√

Mg,

M ≡ (2π)−3/2e−|ξ|2/2.

and the resulting linearized Boltzmann equation

∂tg + ξ · ∇xg = Lg. (1.1)

For the hard sphere model under consideration, the linearized collision op-

erator

Lg ≡ 2
1√
M

Q(M,
√

Mg)

has explicit form consisting of a multiplicative operator ν(ξ) and an integral

operator K, [1]:

Lg(ξ) = −ν(ξ)g(ξ) + Kg(ξ),

Kg(ξ) ≡
∫

R3

K(ξ, ξ∗)g(ξ∗)dξ∗,

K(ξ, ξ∗) ≡ 2√
2π|ξ − ξ∗|

exp
{
− (|ξ|2 − |ξ∗|2)2

8|ξ − ξ∗|2
− |ξ − ξ∗|2

8

}

−|ξ − ξ∗|
2

exp
{
− (|ξ|2 + |ξ∗|2)

4

}
,

ν(ξ) ≡ 1√
2π

[
2e−

|ξ|2

2 +
(
|ξ| + 1

|ξ|
) ∫ |ξ|

0
e−

u2

2 du
]
.
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Rewrite the linearized Boltzmann equation as follows:

∂tg + ξ · ∇xg + ν(ξ)g = Kg,

and view this as the coupling of the integral operator K with the damped

transport equation

∂th + ξ · ∇xh + ν(ξ)h = 0,

h(x, 0, ξ) = h0(x, ξ).
(1.2)

The damped transport equation has the solution operator S
t:

S
th0(x, ξ) = e−ν(ξ)th0(x − ξt, ξ). (1.3)

The above coupling leads to the Mixture operators M
t
k, k = 1, 2, . . . ,

when the Picard-type iterations are used in extracting parts of a Boltzmann

solution with varying degree of regularity, [5] and [6]:

M
t
kg0 ≡

∫ t

0

∫ s1

0
· · ·
∫ s2k−1

0
S

t−s1KS
s1−s2K · · · Ss2k−1−s2kKS

s2kg0ds2k · · · ds1.

The function ν(ξ) behaves like 1 + |ξ|. Let ν0 be a positive lower bound

of ν(ξ):

ν(ξ) > ν0, ξ ∈ R
3.

The main theorem as stated in [6] is the following:

Theorem 1.1. For each given k ≥ 0, there exists a positive constant Ck

such that, for any

β ∈ N
3
0, |β| = β1 + β2 + β3 = k,

‖Dβ
xM

t
kg0‖L2

x(L2
ξ
) ≤ Cke

−ν0t

2

∑

γ∈N3
0
,γi≤βi

‖Dγ
ξ g0‖L2

x(L2
ξ
).

The details of its proof for k = 1 has been carried out in [5, 6] using the

combination of Fourier transform and characteristic method. In this paper,

we make use of switching the differentiations along the characteristic curves

to prove the Mixture Lemma using characteristic method only. Shih-Hsien
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Yu has recently told us that he has also carried out the proof for the case of

k = 1 using characteristic method only.

There is a delicate regularity property for the kernel K(ξ, ξ∗) that we

need in order for the switching of differentiations method to work. This is

done in Section 2, Lemma 2.2. The proof of the Mixture Lemma is done

in Section 3 and Section 4. For easier reading, in Section 2 and Section 3,

we present the proofs for the case of one space dimension, and in Section 4

indicate the generalization to the case of three space dimensions.

2. Regularity of Collision Kernels

In this and next sections we consider the case of one space dimention

x ∈ R
1; the microscopic velocity is still of three dimensions ξ ∈ R

3. The

linearized Boltzmann equation becomes

∂tg + ξ1∂xg = Lg. (2.1)

The Mixture Lemma takes the following form:

Theorem 2.1. For each given k ≥ 0, there exists a positive constant Ck

such that

‖∂k
xM

t
kg0‖L2

x(L2
ξ
) ≤ Cke

−
ν0t

2

k∑

l=0

‖∂l
ξ1g0‖L2

x(L2
ξ
).

In preparation for its proof, we now study the regularity property of the

functions ν(ξ) and K(ξ, ξ∗).

Lemma 2.1. For any l ≥ 1, l-th derivatives of ν(ξ) is bounded, i.e., for

some constant Cl,

∣∣∣∂l
ξiν(ξ)

∣∣∣ ≤ Cl, i = 1, 2, and 3. (2.2)

Proof. It suffices to consider the term 1
|ξ|

∫ |ξ|
0 e−

u2

2 du for 0 < |ξ| < 1. We

have by Taylor expansion

1

|ξ|

∫ |ξ|

0
e−

u2

2 du =
1

|ξ|

∫ |ξ|

0

∞∑

n=0

1

n!
(−u2

2
)ndu
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=
1

|ξ|

∞∑

n=0

1

n!

∫ |ξ|

0
(−u2

2
)ndu

=
1

|ξ|

∞∑

n=0

(−1)n

n!2n

|ξ|2n+1

2n + 1

=
∞∑

n=0

(−1)n

n!2n

|ξ|2n

2n + 1

which is absolutely convergent as the function of |ξ|2 and therefore is analytic

in (ξ1, ξ2, ξ3). This completes the proof.

Unlike ν(ξ), the differentiations of the kernel K(ξ, ξ∗) are not all smooth,

even integrable. However, it is the smoothness of certain combinations of

the differentiations of K(ξ, ξ∗) that are needed. To express this, we have the

following notations:

(1) A ≡
{
α ∈ N

6k
0

∣∣∣α = (α1, α2, . . . , α2k) α2j = 0, α1
2j−1 = 0, 1, α2

2j−1 =

α3
2j−1 = 0, for j = 1, . . . , k

}

(2) H(ξ, ξ∗) ≡ |K(εξ, εξ∗)| + |∂ξ1
∗
K(εξ, εξ∗)|, for any fixed ε < 1.

(3) using the change of variables T : Ξ = (ξ1, ξ2, . . . , ξ2k) → V = (V1, V2, . . .,

V2k) where V1 ≡ ξ − ξ1, Vi ≡ ξi−1 − ξi for i = 2, 3, . . . , 2k, to rewrite the

kernel:

(4) Ki ≡ K(ξ −∑i−1
j=1 Vj , ξ −

∑i
j=1 Vj), Hi ≡ H(ξ −∑i−1

j=1 Vj, ξ −∑i
j=1 Vj).

Lemma 2.2. For 1 < l < 2k and α ∈ A, we have, for some constant Cα,

|Dα
V Kl| ≤ CαHl.

Proof. We focus only on the most interesting term in Kl:

Fl ≡
1

|Vl|
eGl ≡ 1

|Vl|
exp

{
−

(|ξ −∑l−1
j=1 Vj |2 − |ξ −∑l

j=1 Vj|2)2

|Vl|2
}
.

Note that we can find m such that αi = 0 for i > m and α1
m = 1 for the

given α in A, α 6= 0. And it is easy to see that Dα
V Kl = 0 in case of m > l,

so we consider the following two cases.
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Case A (m < l) Note that

∂Gl

∂V 1
n

=
−2(|ξ−∑l−1

j=1 Vj|2 − |ξ−∑l
j=1 Vj |2)(−2V 1

l )

|Vl|2
=

∂Gl

∂V 1
1

, for n < l, (2.3)

∂2Gl

∂V 1
n1

∂V 1
n2

=

(
V 1

l

|Vl|

)2

=
∂2Gl

∂[V 1
1 ]2

, for n1 and n2 <l and l > 2, (2.4)

we obtain multi index α′ by replacing αm with 0. Direct calculation then

gives us

Dα
V Fl = Dα′

V

(
Fl ·

∂Gl

∂V 1
1

)

=
∑

β<α′

(
α′

β

)
(
D

β
V Fl

)(
D

α′−β
V

∂Gl

∂V 1
1

)

≤ CmFl

[|α|/2]∑

n=1

( ∂Gl

∂V 1
1

)|α|−2n( ∂2Gl

∂[V 1
1 ]2

)n

≤ CmFl

( |V 1
l |

|Vl|
)|α| [|α|/2]∑

n=1

(4||ξ −∑l−1
j=1 Vj |2 − |ξ −∑l

j=1 Vj|2|
|Vl|

)|α|−2n
.

Here we have used the fact that the third derivatives of Gl vanishes, (2.3)

and (2.4). It is easy to see that, for any fixed ε < 1,, there is a constant Cm

such that |Dα
V Fl| is bounded by

|Dα
V Fl| ≤ Cm

1

|Vl|
exp

{
− ε2

(|ξ −∑l−1
j=1 Vj |2 − |ξ −∑l

j=1 Vj|2)2

|Vl|2
}
.

Case B (m = l) In this case, we observe that

∂V 1
l
Kl = −∂ξ∗K(ξ −

l−1∑

j=1

Vj , ξ −
l∑

j=1

Vj),

and use the same argument as in Case A to complete the proof.

3. One Space Dimension

Equipped with the above lemmas, we are now ready to prove the Mixture
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Lemma.

The Proof of Theorem 2.1.

With the explicit form of the solution operator (1.3) for the damped

transport equation, the Mixture operator M
t
kg0 is

M
t
kg0 =

∫

T

∫

R6k

e−ν(ξ)(t−s1)
[ 2k∏

i=1

e−ν(ξi)(si−si+1)K(ξi−1, ξi)
]

×g0(x −
2k∑

i=0

ξ1
i (si − si+1), ξ2k)dΞdS,

where we have set ξ0 ≡ ξ, , s0 ≡ t, , s2k+1 ≡ 0 and used the notations

S ≡ (s1, s2, . . . , s2k), T ≡ [0, t] × [0, s1] × · · · × [0, s2k−1].

We now change variables T as introduced in previous section, put ξ as V0.

The key observation is that one should do integrate by parts with respect to

V instead of with respect to ξ. This way the differentiations can be evenly

distributed to the differentiation with respect to the components of V :

∂k
xM

t
kg0

=

∫

T

∫

R6k

e−ν(ξ)(t−s1)
[ 2k∏

i=1

e−ν(ξi)(si−si+1)K(ξi−1, ξi)
]

×∂k
xg0(x −

2k∑

i=0

ξ1
i (si − si+1), ξ2k)dΞdS

=

∫

T

∫

R6k

e−ν(ξ)(t−s1)
[ 2k∏

i=1

e−ν(ξ−
Pi

j=1
Vj)(si−si+1)Ki

] 1

s1 · s3 · · · s2k−1

×
k∑

|α|=0,α∈A

Dα∂
k−|α|

ξ1
2k

g0(x −
2k∑

i=0

Visi, ξ −
2k∑

i=1

Vi)dV dS

=

k∑

|α|=0,α∈A

(−1)|α|
∫

T

∫

R6k

Dα
{

e−ν(ξ)(t−s1)
[ 2k∏

i=1

e−ν(ξ−
Pi

j=1
Vj)(si−si+1)Ki

]}

× 1

s1 · s3 · · · s2k−1
∂

k−|α|

ξ1
2k

g0(x −
2k∑

i=0

Visi, ξ −
2k∑

i=1

Vi)dV dS. (3.1)
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With (2.2) and Lemma 2.2, we can easily see that

Dα
{
e−ν(ξ)(t−s1)

[ 2k∏

i=1

e−ν(ξ−
Pi

j=1
Vj)(si−si+1)Ki

]}

≤ Cke
−ν0t

[ 2k∏

i=1

Hi

]
×
[ 2k∏

i=1

(si − si+1)
k
]
,

where Ck is a generic constant depending only on k. Thus from the Hölder

inequality,

|∂k
xM

t
kg0|

≤ Cke
−ν0t

k∑

α∈A,|α|=0

( ∫

T

∫

R6k

[ 2k∏

i=1

Hi

]∏2k
i=0(si − si+1)

2k

s1 · s3 · · · s2k−1
dV dS

) 1

2

×
( ∫

T

∫

R6k

1

s1 · s3 · · · s2k−1

[ 2k∏

i=1

Hi

]
|∂k−|α|

ξ1 g0(x −
2k∑

i=0

Visi, ξ −
2k∑

i=1

Vi)|2

dV dS
) 1

2

≤ Cke
−

ν0t

2

k∑

|α|=0

( ∫

T

∫

R6k

[∏2k
i=1 Hi

]

s1 · s3 · · · s2k−1
|∂k−|α|

ξ1 g0(x −
2k∑

i=0

Visi, ξ −
2k∑

i=1

Vi)|2

dV dS
) 1

2

, (3.2)

Here we have used the integrability of kernel K and ∂ξK and the fact that

the time integral is of the polynomial order. We now integrate the square of

(3.2) over R × R
3 to get

‖∂k
xM

t
kg0‖L2

x(L2
ξ
) ≤ Cke

−ν0t

2

k∑

m=0

‖∂k−m
ξ1 g0‖L2

x(L2
ξ
).

This completes the proof of Theorem 2.1. �

Remark 3.1. This result can be generalized to the function space L
p
x(L

p
ξ)

for 1 ≤ p ≤ ∞.

For the case of 1 ≤ p < ∞, we apply Hölder inequality to (3.1) with
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Hölder conjugate ( p
p−1 , p) to yield

|∂k
xM

t
kg0| ≤ Cke

−ν0t
k∑

α∈A,|α|=0

(∫

T

∫

R6k

[ 2k∏

i=1

Hi

]∏2k
i=0(si − si+1)

2k

s1 · s3 · · · s2k−1
dV dS

)1− 1

p

×
(∫

T

∫

R6k

1

s1 · s3 · · · s2k−1

[ 2k∏

i=1

Hi

]
|∂k−|α|

ξ1 g0(x−
2k∑

i=0

Visi, ξ −
2k∑

i=1

Vi)|pdV dS
) 1

p
.

(3.3)

We can then apply the same argument as in the above proof with the ex-

ponent p to establish the same estimate as in Theorem 2.1 for the spaces

L
p
x(L

p
ξ) for 1 ≤ p < ∞.

For the case of p = ∞, it is easy to see that

|∂k
xM

t
kg0| ≤ Cke

−ν0t
k∑

α∈A,|α|=0

( ∫

T

∫

R6k

[ 2k∏

i=1

Hi

]∏2k
i=0(si − si+1)

k

s1 · s3 · · · s2k−1
dV dS

)

×‖∂k−|α|
ξ1 g0‖L∞

x (L∞
ξ

).

4. Three Space Dimensions

For the three dimensional space case, the distribution of space differ-

entiations to that of microscopic differentiations is also done evenly and we

have the corresponding notations: For any β ∈ N
3
0 with |β| = k, one can

decompose β into β =
∑k

i=1 βi so that βi ∈ N3 and |βi| = 1. Define the set

Aβ ≡
{
α ∈ N

6k
0 : α = (α1, α2, . . . , α2k) , α2j = 0, α2j−1 = βj or 0,

for j = 1, . . . , k
}

and for α ∈ Aβ, denote α̃ ≡∑k
i=1 α2i−1 ∈ N

3
0.

A direct computation yields

Dβ
xg0(x −

2k∑

i=0

ξ1
i (si − si+1), ξ2k)

=
1

s1 · s3 · · · s2k−1

k∑

|α|=0,α∈Aβ

Dα
V D

β−eα
ξ2k

g0(x −
2k∑

i=0

Visi, ξ −
2k∑

i=1

Vi).
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Then we can apply the same argument as for the one space dimensional case

to establish

‖Dβ
xM

t
kg0‖L2

x(L2
ξ
) ≤ Cke

−ν0t

2

∑

γ∈N3
0
,γi≤βi

‖Dγ
ξ g0‖L2

x(L2
ξ
).

As for the one space dimensional case, the estimate also hold for Lp

spaces.
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